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Abstract. In this article we establish an isomorphism between universal infinitesimal
Cherednik algebras and W -algebras for Lie algebras of the same type and 1-block nilpo-
tent elements. As a consequence we obtain some fundamental results about infinitesimal
Cherednik algebras.

Introduction

This paper is aimed at the identification of two algebras of seemingly different
nature. The first, finite W -algebras, are algebras constructed from a pair (g, e),
where e is a nilpotent element of a finite dimensional simple Lie algebra g. Their
theory has been extensively studied during the last decade. For the related refer-
ences see, for example, reviews [L6], [W] and articles [BGK], [BK1], [BK2], [GG],
[L1], [L2], [L3], [P1], [P2].

The second class of algebras we consider in this paper are the so called infinites-
imal Cherednik algebras of type gln and sp2n, introduced in [EGG]. These are
certain continuous analogues of the rational Cherednik algebras and in the case of
gln are deformations of the universal enveloping algebra U(sln+1). In both cases
we call n the rank of an algebra. The theory of those algebras is less developed,
while the main references there are: [EGG], [T1], [T2], [DT].

This paper is organized in the following way:

• In Section 1, we recall the definitions of infinitesimal Cherednik algebras
Hζ(gln), Hζ(sp2n), and introduce their modified versions, called the universal
length m infinitesimal Cherednik algebras. We also recall the definitions and basic
results about the finite W -algebras U(g, e).

• In Section 2, we prove our main result, establishing an abstract isomorphism
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of W -algebras U(sln+m, em) (respectively U(sp2n+2m, em)) with the universal in-
finitesimal Cherednik algebras Hm(gln) (respectively Hm(sp2n)).

• In Section 3, we establish explicitly a Poisson analogue of the aforementioned
isomorphism. As a result we deduce two claims needed to carry out the arguments
of the previous section.

• In Section 4, we derive several important consequences about algebrasHζ(gln),
Hζ(sp2n). This clarifies some lengthy computations from [T1], [T2], [DT] and
proves new results. Using the results of [DT, Sect. 3], about the Casimir element of
Hζ(gln), we determine the aforementioned isomorphismHm(gln)

∼−→ U(sln+m, em)
explicitly.

• In Section 5, we recall the machinery of completions of the graded deforma-
tions of Poisson algebras, developed by the first author in [L1]. This provides the
decomposition theorem for the completions of infinitesimal Cherednik algebras.
This is analogous to a result by Bezrukavnikov and Etingof ([BE, Thm. 3.2]) in
the theory of rational Cherednik algebras.

• In the Appendix, we provide some computations.

Acknowledgment. A. Tsymbaliuk is grateful to Pavel Etingof for numerous sti-
mulating discussions.

1. Basic definitions

1.1. Infinitesimal Cherednik algebras of gln

We recall the definition of the infinitesimal Cherednik algebras Hζ(gln) follow-
ing [EGG]. Let Vn and V ∗

n be the basic representation of gln and its dual. Choose
a basis {yi}1≤i≤n of Vn and let {xi}1≤i≤n denote the dual basis of V ∗

n . For any
gln-invariant pairing ζ : Vn × V ∗

n → U(gln), define an algebra Hζ(gln) as the
quotient of the semi-direct product algebra U(gln)� T (Vn ⊕ V ∗

n ) by the relations
[y, x] = ζ(y, x) and [x, x′] = [y, y′] = 0 for all x, x′ ∈ V ∗

n and y, y′ ∈ Vn. Consider an
algebra filtration on Hζ(gln) by setting deg(Vn) = deg(V ∗

n ) = 1 and deg(gln) = 0.

Definition 1. We say that Hζ(gln) satisfies the PBW property if the natural
surjective map U(gln) � S(Vn ⊕ V ∗

n ) � grHζ(gln) is an isomorphism, where S
denotes the symmetric algebra. We call these Hζ(gln) the infinitesimal Cherednik
algebras of gln.

It was shown in [EGG, Thm. 4.2], that the PBW property holds for Hζ(gln)

if and only if ζ =
∑k

j=0 ζjrj for some nonnegative integer k and ζj ∈ C, where
rj(y, x) ∈ U(gln) is the symmetrization of αj(y, x) ∈ S(gln) � C[gln] and αj(y, x)
is defined via the expansion

(x, (1 − τA)−1y) det(1− τA)−1 =
∑
j≥0

αj(y, x)(A)τ
j , A ∈ gln.

Let us define the length of such ζ by l(ζ) := min{m ∈ Z≥−1 | ζ≥m+1 = 0}.
Example 1 (cf. [EGG, Example 4.7]). If l(ζ)=1 then Hζ(gln)

∼=U(sln+1). Thus,
for an arbitrary ζ, we can regard Hζ(gln) as a deformation of U(sln+1).
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One interesting problem is to find deformation parameters ζ and ζ ′ of the above
form with Hζ(gln) � Hζ′(gln). Even for n = 1 (when Hζ(gl1) are simply the
generalized Weyl algebras), the answer to this question (given in [BJ]) is quite
nontrivial. Instead, we will look only for the filtration preserving isomorphisms,

where both algebras are endowed with the N th standard filtration {F (N)
• }. Those

are induced from the grading on T (gln⊕Vn⊕V ∗
n ) with deg(gln) = 2 and deg(Vn⊕

V ∗
n ) = N , where N > l(ζ). For N ≥ max{l(ζ)+1, l(ζ ′)+1, 3} we have the following

result (see Appendix A for a proof):

Lemma 1.

(a) N -standardly filtered algebras Hζ(gln) and Hζ′(gln) are isomorphic if and
only if there exist λ ∈ C, θ ∈ C∗, s ∈ {±} such that ζ ′ = θϕλ(ζ

s), where
• ϕλ : U(gln)

∼−→ U(gln) is an isomorphism defined by ϕλ(A) = A+λ · trA
for any A ∈ gln,

• for ζ = ζ0r0 + ζ1r1 + ζ2r2 + · · · we define ζ− := ζ0r0 − ζ1r1 + ζ2r2 −
· · · , ζ+ := ζ.

(b) For any length m deformation ζ, there is a length m deformation ζ ′ with
ζ′m = 1, ζ ′m−1 = 0, such that algebras Hζ(gln) and Hζ′(gln) are isomorphic
as filtered algebras.

1.2. Infinitesimal Cherednik algebras of sp2n

Let V2n be the standard 2n-dimensional representation of sp2n with a symplectic
form ω. Given any sp2n-invariant pairing ζ : V2n × V2n → U(sp2n) we define an
algebra Hζ(sp2n) := U(sp2n) � T (V2n)/([x, y] − ζ(x, y) | x, y ∈ V2n). It has a
filtration induced from the grading deg(sp2n) = 0, deg(V2n) = 1 on T (sp2n⊕V2n).

Definition 2. Algebra Hζ(sp2n) is referred to as the infinitesimal Cherednik al-

gebra of sp2n if it satisfies the PBW property: U(sp2n)� S(V2n)
∼−→ grHζ(sp2n).

It was shown in [EGG, Thm. 4.2], that Hζ(sp2n) satisfies the PBW property

if and only if ζ =
∑k

j=0 ζjr2j for some nonnegative integer k and ζj ∈ C, where
r2j(x, y) ∈ U(sp2n) is the symmetrization of β2j(x, y) ∈ S(sp2n) � C[sp2n] and
β2j(x, y) is defined via the expansion

ω(x, (1− τ2A2)−1y) det(1 − τA)−1 =
∑
j≥0

β2j(x, y)(A)τ
2j , A ∈ sp2n.

Similarly to the gln-case, we define the length of such ζ by l(ζ) := min{m ∈ Z≥−1 |
ζ≥m+1 = 0}.
Example 2 (cf. [EGG, Example 4.11]). For ζ0 �= 0 we have

Hζ0r0(sp2n)
∼= U(sp2n)�Wn,

where Wn is the nth Weyl algebra. Thus, Hζ(sp2n) can be regarded as a deforma-
tion of U(sp2n)�Wn.

For any N>2l(ζ), we introduce the Nth standard filtration {F (N)
• } onHζ(sp2n)

by setting deg(sp2n) = 2, deg(V2n) = N . The following result is analogous to
Lemma 1:
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Lemma 2. For N ≥ max{2l(ζ)+1, 2l(ζ ′)+1, 3}, the N -standardly filtered algebras
Hζ(sp2n) and Hζ′(sp2n) are isomorphic if and only if there exists θ ∈ C∗ such that
ζ′ = θζ.

1.3. Universal algebras Hm(gln) and Hm(sp2n)

It is natural to consider a version of those algebras with ζj being independent
central variables. This motivates the following notion of the universal length m
infinitesimal Cherednik algebras.

Definition 3. The universal length m infinitesimal Cherednik algebra Hm(gln) is
the quotient of U(gln)� T (Vn ⊕ V ∗

n )[ζ0, . . . , ζm−2] by the relations

[x, x′] = 0, [y, y′] = 0, [A, x] = A(x), [A, y] = A(y),

[y, x] =

m−2∑
j=0

ζjrj(y, x) + rm(y, x),

where x, x′ ∈ V ∗
n , y, y′ ∈ Vn, A ∈ gln and {ζj}m−2

j=0 are central. The filtration is
induced from the grading on T (gln ⊕ Vn ⊕ V ∗

n )[ζ0, . . . , ζm−2] with deg(gln) = 2,
deg(Vn ⊕V ∗

n ) = m+1, deg(ζi) = 2(m− i) (the latter is chosen in such a way that
deg(ζjrj) = 2m for all j).

Algebra Hm(gln) is free over C[ζ0, . . . , ζm−2] and Hm(gln)/(ζ0 − c0, . . . , ζm−2 −
cm−2) is the usual infinitesimal Cherednik algebra Hζc(gln) with ζc = c0r0 + · · ·+
cm−2rm−2 + rm. In fact, for odd m, Hm(gln) can be viewed as a universal family
of length m infinitesimal Cherednik algebras of gln, while for even m, there is an
action of Z/2Z we should quotient by1.

Remark 1. One can consider all possible quotients

U(gln)� T (Vn ⊕ V ∗
n )[ζ0, . . . , ζm−2]/I for

I = ([x, x′], [y, y′], [A, x]−A(x), [A, y] −A(y), [y, x]− η(y, x)),

with a gln-invariant pairing η : Vn × V ∗
n → U(gln)[ζ0, . . . , ζm−2] such that the

inequality deg(η(y, x)) ≤ 2m holds. Such a quotient satisfies a PBW property if
and only if η(y, x) =

∑m
i=0 ηi(ζ0, . . . , ζm−2)ri(y, x) with deg(ηi(ζ0, . . . , ζm−2)) ≤

2(m− i) (this is completely analogous to [EGG, Thm. 4.2]).

We define the universal version of Hζ(sp2n) in a similar way:

Definition 4. The universal length m infinitesimal Cherednik algebra Hm(sp2n)
is defined as

Hm(sp2n) := U(sp2n)� T (V2n)[ζ0, . . . , ζm−1]/J for

J = ([A, x]−A(x), [x, y] −
m−1∑
j=0

ζjr2j(x, y) − r2m(x, y)),

1 This follows from our proof of Lemma 1.
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where A ∈ sp2n, x, y ∈ V2n and {ζi}m−1
i=0 are central. The filtration is induced from

the grading on T (sp2n⊕V2n)[ζ0, . . . , ζm−1] with deg(sp2n) = 2, deg(V2n) = 2m+1
and deg(ζi) = 4(m− i).

The algebra Hm(sp2n) is free over the subalgebra C[ζ0, . . . , ζm−1] and the al-
gebra Hm(sp2n)/(ζ0 − c0, . . . , ζm−1 − cm−1) is the usual infinitesimal Cherednik
algebra Hζc(sp2n) for ζc = c0r0 + · · · + cm−1r2(m−1) + r2m. In fact, the algebra
Hm(sp2n) can be viewed as a universal family of length m infinitesimal Cherednik
algebras of sp2n, due to Lemma 2.

Remark 2. Analogously to Remark 1, the result of [EGG, Thm. 4.2], generali-
zes straightforwardly to the case of sp2n-invariant pairings η : V2n × V2n →
U(sp2n)[ζ0, . . . , ζm−1].

1.4. Poisson counterparts of Hζ(g) and Hm(g)

Following [DT], we introduce the Poisson algebras Hcl
m(g) for g being gln or sp2n.

As algebras these are S(gln ⊕ Vn ⊕ V ∗
n )[ζ0, . . . , ζm−2] (respectively S(sp2n ⊕

V2n)[ζ0, . . . , ζm−1]) with a Poisson bracket {· , ·} modeled after the commutator

[· , ·] from the definition of Hm(g), so that {y, x} = αm(y, x)+
∑m−2

j=0 ζjαj(y, x) (re-

spectively {x, y}=β2m(x, y)+
∑m−1

j=0 ζjβ2j(x, y)). Their quotientsH
cl
m(gln)/(ζ0−c0,

. . . , ζm−2 − cm−2) and Hcl
m(sp2n)/(ζ0 − c0, . . . , ζm−1 − cm−1), are the Poisson in-

finitesimal Cherednik algebras Hcl
ζc
(gln) (ζc = c0α0 + · · · + cm−2αm−2 + αm) and

Hcl
ζc
(sp2n) (ζc = c0β0 + · · ·+ cm−1β2m−2 + β2m) from [DT, Sects. 5 and 7] respec-

tively.
Let us describe the Poisson centers of the algebras Hcl

m(gln) and Hcl
m(sp2n).

For g = gln and 1 ≤ k ≤ n we define an element τk ∈ Hcl
m(g) by τk :=∑n

i=1 xi{Q̃k, yi}, where 1+
∑n

j=1 Q̃jz
j = det(1+zA). We set ζ(w) :=

∑m−2
i=0 ζiw

i+
wm and define ci ∈ S(gln) via

c(t) = 1 +
n∑

i=1

(−1)icit
i := Resz=0ζ(z

−1)
det(1 − tA)

det(1 − zA)

z−1dz

1− t−1z
.

For g = sp2n and 1 ≤ k ≤ n we define an element τk ∈ Hcl
m(g) by τk :=∑2n

i=1{Q̃k, yi}y∗i , where 1 +
∑n

j=1 Q̃jz
2j = det(1+ zA), while {yi}2ni=1 and {y∗i }2ni=1

are the dual bases of V2n, that is, ω(yi, y
∗
j )=1. We set ζ(w) :=

∑m−1
i=0 ζiw

i + wm

and define ci ∈ S(sp2n) via

c(t) = 1 +

n∑
i=1

cit
2i := 2Resz=0ζ(z

−2)
det(1− tA)

det(1− zA)

z−1dz

1− t−2z2
.

The following result is a straightforward generalization of [DT, Thms. 5.1 and 7.1]:

Theorem 3. Let zPois(A) denote the Poisson center of the Poisson algebra A. We
have:

(a) zPois(H
cl
m(gln)) is a polynomial algebra in free generators ζ0, . . . , ζm−2, τ1 +

c1, . . . , τn + cn;
(b) zPois(H

cl
m(sp2n)) is a polynomial algebra in free generators ζ0, . . . , ζm−1, τ1+

c1, . . . , τn + cn.
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1.5. W -algebras

Here we recall finite W -algebras following [GG].
Let g be a finite dimensional simple Lie algebra over C and e ∈ g be a nonzero

nilpotent element. We identify g with g∗ via the Killing form ( , ). Let χ be
the element of g∗ corresponding to e and zχ be the stabilizer of χ in g (which is
the same as the centralizer of e in g). Fix an sl2-triple (e, h, f) in g. Then zχ is
ad(h)–stable and the eigenvalues of ad(h) on zχ are nonnegative integers.

Consider the ad(h)–weight grading on g =
⊕

i∈Z
g(i), that is, g(i) := {ξ ∈

g | [h, ξ] = iξ}. Equip g(−1) with the symplectic form ωχ(ξ, η) := 〈χ, [ξ, η]〉.
Fix a Lagrangian subspace l ⊂ g(−1) and set m :=

⊕
i≤−2 g(i) ⊕ l ⊂ g, m′ :=

{ξ − 〈χ, ξ〉, ξ ∈ m} ⊂ U(g).

Definition 5 (cf. [P1], [GG]). By the W -algebra associated with e (and l), we

mean the algebra U(g, e) := (U(g)/U(g)m′)adm
with multiplication induced from

U(g).

Let {F st• } denote the PBW filtration on U(g), while U(g)(i) := {x ∈ U(g) |
[h, x]= ix}. Define FkU(g) =

∑
i+2j≤k(F

st
j U(g)∩U(g)(i)) and equip U(g, e) with

the induced filtration, denoted {F•} and referred to as the Kazhdan filtration.
One of the key results of [P1], [GG] is a description of the associated graded

algebra grF• U(g, e). Recall that the affine subspace S := χ + (g/[g, f ])∗ ⊂ g∗ is
called the Slodowy slice. As an affine subspace of g, the Slodowy slice S coincides
with e+c, where c = Kerg ad(f). So we can identify C[S] ∼= C[c] with the symmetric
algebra S(zχ). According to [GG, Sect. 3], algebra C[S] inherits a Poisson structure
from C[g∗] and is also graded with deg(zχ ∩ g(i)) = i+ 2.

Theorem 4 (cf. [GG, Thm. 4.1]). The filtered algebra U(g, e) does not depend on
the choice of l (up to a distinguished isomorphism) and grF• U(g, e) ∼= C[S] as
graded Poisson algebras.

1.6. Additional properties of W -algebras

We want to describe some other properties of U(g, e).
(a) Let G be the adjoint group of g. There is a natural action of the group

Q := ZG(e, h, f) on U(g, e), due to [GG]. Let q stand for the Lie algebra of

Q. In [P2] Premet constructed a Lie algebra embedding q
ι
↪→ U(g, e). The adjoint

action of q on U(g, e) coincides with the differential of the aforementionedQ-action.
(b) Restricting the natural map U(g)adm → U(g, e) to Z(U(g)), we get an

algebra homomorphism Z(U(g))
ρ→ Z(U(g, e)), where Z(A) stands for the center

of an algebra A. According to the following theorem, ρ is an isomorphism:

Theorem 5.

(a) [P1, Sect. 6.2] The homomorphism ρ is injective.
(b) [P2, footnote to Quest. 5.1] The homomorphism ρ is surjective.

2. Main theorem

Let us consider g = slN or g = sp2N , and let em ∈ g be a 1-block nilpotent
element of Jordan type (1, . . . , 1,m) or (1, . . . , 1, 2m), respectively. We make a
particular choice for em:
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• em = EN−m+1,N−m+2 + · · ·+ EN−1,N in the case of slN , 2 ≤ m ≤ N ,
• em = EN−m+1,N−m+2+ · · ·+EN+m−1,N+m in the case of sp2N , 1 ≤ m ≤ N .2

Recall the Lie algebra inclusion ι : q ↪→ U(g, e) from Section 1.6. In our cases:

• For (g, e) = (sln+m, em), we have q � gln. Define T ∈ U(sln+m, em) to be the
ι-image of the identity matrix In ∈ gln, the latter being identified with

Tn,m = diag(m/(n+m), . . . ,m/(n+m),−n/(n+m), . . . ,−n/(n+m))

under the inclusion q ↪→ sln+m. Let Gr be the induced ad(T )-weight grading on
U(sln+m, em), with the jth grading component denoted by U(sln+m, em)j .

• For (g, e) = (sp2n+2m, em), we have q � sp2n. Define

T
′
:= ι(I ′n) ∈ U(sp2n+2m, em),

where I ′n = diag(1, . . . , 1,−1, . . . ,−1) ∈ sp2n � q. Let Gr be the induced ad(T
′
)-

weight grading on U(sp2n+2m, em) =
⊕

j U(sp2n+2m, em)j .

Lemma 6. There is a natural Lie algebra inclusion Θ : gln �Vn ↪→ U(sln+m, em)
such that Θ |gln= ι |gln and Θ(Vn) = Fm+1U(sln+m, em)1.

Proof. First, choose a Jacobson–Morozov sl2-triple (em, hm, fm) ⊂ sln+m in a
standard way3. As a vector space, zχ ∼= gln ⊕ Vn ⊕ V ∗

n ⊕Cm−1 with gln = zχ(0) =
q, Vn ⊕ V ∗

n ⊂ zχ(m − 1), and ξj ∈ zχ(2m − 2j − 2). Here Cm−1 has a basis
{ξm−2−j = En+1,n+j+2 + · · · + En+m−j−1,n+m}m−2

j=0 , Vn ⊕ V ∗
n is embedded via

yi �→ Ei,n+m, xi �→ En+1,i, while gln
∼= sln ⊕ C · In is embedded in the following

way: sln ↪→ sln+m as a left-up block, while In �→ Tn,m.
Under the identification grF• U(sln+m, em) � C[S] � S(zχ), the induced grad-

ing Gr′ on S(zχ) is the ad(Tn,m)-weight grading. Together with the above de-
scription of ad(hm)-grading on zχ, this implies that FmU(sln+m, em)1 = 0 and
that Fm+1U(sln+m, em)1 coincides with the image of the composition Vn ↪→ zχ ↪→
S(zχ). Let Θ(y) ∈ Fm+1U(sln+m, em)1 be the element whose image is identified
with y. We also set Θ(A) := ι(A) for A ∈ gln. Finally, we define Θ : gln ⊕ Vn ↪→
U(sln+m, em) by linearity.

We claim that Θ is a Lie algebra inclusion, that is,

[Θ(A),Θ(B)] = Θ([A,B]), [Θ(y),Θ(y′)] = 0, [Θ(A),Θ(y)] = Θ(A(y)),

∀ A,B ∈ gln, y, y
′ ∈ Vn.

The first equality follows from [Θ(A),Θ(B)] = [ι(A), ι(B)] = ι([A,B]) = Θ([A,B]).
The second one follows from the observation that [Θ(y),Θ(y′)] ∈ F2mU(g, em)2
and the only such element is 0. Similarly, [Θ(A),Θ(y)] ∈ Fm+1U(g, em)1, so that
[Θ(A),Θ(y)] = Θ(y′) for some y′ ∈ Vn. Since y′ = gr(Θ(y′)) = gr([Θ(A),Θ(y)]) =
[A, y] = A(y), we get [Θ(A),Θ(y)] = Θ(A(y)). �

Our main result is:
2 We view sp2N as corresponding to the pair (V2N , ω2N ), where ω2N is represented

by the skew symmetric antidiagonal matrix J = (Jij := (−1)jδ2N+1
i+j )1≤i,j≤2N . In this

presentation, A = (aij) ∈ sp2N if and only if a2N+1−j,2N+1−i = (−1)i+j+1aij for any
1 ≤ i, j ≤ 2N .

3 That is, we set hm :=
∑m

j=1 (m+ 1− 2j)En+j,n+j and fm :=
∑m−1

j=1 j(m −
j)En+j+1,n+j .
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Theorem 7.

(a) For m ≥ 2, there is a unique isomorphism

Θ : Hm(gln)
∼−→ U(sln+m, em)

of filtered algebras, whose restriction to sln � Vn ↪→ Hm(gln) is equal to Θ.
(b) For m ≥ 1, there are exactly two isomorphisms

Θ(1), Θ(2) : Hm(sp2n)
∼−→ U(sp2n+2m, em)

of filtered algebras such that Θ(i) |sp2n
= ι |sp2n

; moreover, Θ(2) ◦Θ−1

(1) : y �→
−y,A �→ A, ζk �→ ζk.

Let us point out that there is no explicit presentation of W -algebras in terms
of generators and relations in general. Among the few known cases are: (a) g =
gln, due to [BK1], (b) g � e, the minimal nilpotent, due to [P2, Sect. 6]. The
latter corresponds to (e2, slN ) and (e1, sp2N ) in our notation. We establish the
corresponding isomorphisms explicitly in Appendix B.

Proof of Theorem 7.
(a) Analogously to Lemma 6, we have an identification Fm+1U(sln+m, em)−1 �

V ∗
n . For any x ∈ V ∗

n , let Θ(x) ∈ Fm+1U(sln+m, em)−1 be the element iden-
tified with x ∈ V ∗

n . The same argument as in the proof of Lemma 6 implies
[Θ(A),Θ(x)] = Θ(A(x)).

Let {F̃j}n+m
j=2 be the standard degree j generators of the algebra C[sln+m]SLn+m

� S(sln+m)SLn+m (that is, 1 +
∑n+m

j=2 F̃j(A)z
j = det(1 + zA) for A ∈ sln+m) and

Fj := Sym(F̃j) ∈ U(sln+m) be the free generators of Z(U(sln+m)). For all 0 ≤
i ≤ m− 2 we set Θi := ρ(Fm−i) ∈ Z(U(sln+m, em)). Then gr(Θk) = F̃m−k|S ≡ ξk

mod S(gln ⊕⊕m−2
l=k+1 Cξl), where ξk was defined in the proof of Lemma 6.

Let U ′ be a subalgebra of U(sln+m, em), generated by Θ(gln) and {Θk}m−2
k=0 . For

all y ∈ Vn, x ∈ V ∗
n we define W (y, x) := [Θ(y),Θ(x)] ∈ F2mU(sln+m, em)0 ⊂ U ′.

Let us point out that equalities [Θ(A),Θ(x)] = Θ([A, x]), [Θ(A),Θ(y)] = Θ([A, y])
(for all A ∈ gln, y ∈ Vn, x ∈ V ∗

n ) imply the gln-invariance of W : Vn × V ∗
n → U ′ �

U(gln)[Θ0, . . . .Θm−2].
By Theorem 4, U(sln+m, em) has a basis formed by the ordered monomials in

{Θ(Eij), Θ(yk), Θ(xl), Θ0, . . . ,Θm−2}.

In particular, U(sln+m, em) � U(gln) � T (Vn ⊕ V ∗
n )[Θ0, . . . ,Θm−2]/(y ⊗ x −

x⊗ y −W (y, x)) satisfies the PBW property. According to Remark 1, there exist
polynomials ηi ∈ C[Θ0, . . . ,Θm−2], for 0 ≤ i ≤ m − 2, such that W (y, x) =∑

ηjrj(y, x) and deg(ηi(Θ0, . . . ,Θm−2)) ≤ 2(m − i). As a consequence of the
latter condition: ηm, ηm−1 ∈ C.

The following claim follows from the main result of the next section (Theo-
rem 10):
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Claim 8.

(i) The constant ηm is nonzero.
(ii) The polynomial ηi(Θ0, . . . ,Θm−2) contains a nonzero multiple of Θi for

any i ≤ m− 2.

This claim implies the existence and uniqueness of the isomorphismΘ : Hm(gln)
∼−→

U(sln+m, em) with Θ(yk) = Θ(yk) and Θ(A) = Θ(A) for A ∈ sln.
Moreover, Θ(xk) = η−1

m Θ(xk) and Θ(In) = Θ(In)− nηm−1/(n+m)ηm
4, while

Θ(ζk) ∈ C[Θk, . . . ,Θm−2].

(b) Choose a Jacobson–Morozov sl2-triple (em, hm, fm) ⊂ sp2n+2m in a standard
way.5 As a vector space, zχ ∼= sp2n⊕V2n⊕Cm with sp2n = zχ(0), V2n = zχ(2m−1)
and ξj ∈ zχ(4m − 4j − 2). Here Cm has a basis {ξm−k = En+1,n+2k + · · · +
En+2m−2k+1,n+2m}mk=1, V2n is embedded via

yi �→ Ei,n+2m + (−1)n+i+1En+1,2n+2m+1−i,

yn+i �→ En+2m+i,n+2m + (−1)i+1En+1,n+1−i, i ≤ n,

while q = zχ(0) � sp2n is embedded in a natural way (via four n×n corner blocks
of sp2n+2m).

Recall the grading Gr on U(sp2n+2m, em). The induced grading Gr′ on the space
grU(sp2n+2m, em) is the ad(I ′n)-weight grading on S(zχ). The operator ad(I

′
n) acts

trivially on Cm, with even eigenvalues on sp2n and with eigenvalues ±1 on V ±
2n,

where V +
2n is spanned by {yi}i≤n, while V −

2n is spanned by {yn+i}i≤n.
Analogously to Lemma 6, we get identifications of F2m+1U(sp2n+2m, em)±1 and

V ±
2n. For y∈V ±

2n, let Θ(y) be the corresponding element of F2m+1U(sp2n+2m, em)±1,
while for A ∈ sp2n we set Θ(A) := ι(A). We define Θ : sp2n⊕V2n ↪→U(sp2n+2m, em)
by linearity. The same reasoning as in the gln-case proves that [Θ(A),Θ(y)] =
Θ(A(y)) for any A ∈ sp2n, y ∈ V2n.

Finally, the argument involving the center goes along the same lines, so we
can pick central generators {Θk}0≤k≤m−1 such that gr(Θk) ≡ ξk mod S(sp2n ⊕
Cξk+1 ⊕ . . .⊕ Cξm−1).

Let U ′ be the subalgebra of U(sp2n+2m, em), generated by Θ(sp2n) and {Θk}m−1
k=0 .

For x, y ∈ V2n, we set W (x, y) := [Θ(x),Θ(y)] ∈ F4mU(sp2n+2m, em)even ⊂ U ′.
The map

W : V2n × V2n → U ′ � U(sp2n)[Θ0, . . . ,Θm−1]

is sp2n-invariant.
Since U(sp2n+2m, em) � U(sp2n) � T (V2n)[Θ0, . . . ,Θm−1]/(x ⊗ y − y ⊗ x −

W (x, y)) satisfies the PBW property, there exist polynomials ηi∈C[Θ0, . . . ,Θm−1],
for 0 ≤ i ≤ m−1, such thatW (x, y) =

∑
ηjr2j(x, y) and deg(ηi(Θ0, . . . ,Θm−1)) ≤

4(m− i) (Remark 2).
The following result is analogous to Claim 8 and will follow from Theorem 10

as well:

4 The appearance of the constant nηm−1/(n+m)ηm is explained by the proof of
Lemma 1(b).

5 That is, hm :=
∑2m

j=1(2m + 1 − 2j)En+j,n+j and fm :=
∑2m−1

j=1 j(2m −
j)En+j+1,n+j .
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Claim 9.

(i) The constant ηm is nonzero.
(ii) The polynomial ηi(Θ0, . . . ,Θm−1) contains a nonzero multiple of Θi for

any i ≤ m− 1.

This claim implies Theorem 7(b), where Θ(i)(y) = λi ·Θ(y) for all y ∈ V2n and
λ2
i = η−1

m . �

3. Poisson analogue of Theorem 7

To state the main result of this section, let us introduce more notation:
• In the contexts of (sln+m, em) and (sp2n+2m, em), we use Sn,m and zn,m instead

of S and zχ.

• Let ι : gln ⊕ Vn ⊕ V ∗
n ⊕ Cm−1 ∼−→ zn,m be the identification from the proof of

Lemma 6.
• Let ι : sp2n ⊕ V2n ⊕ Cm ∼−→ zn,m be the identification from the proof of

Theorem 7(b).
• Define Θk = gr(Θk) ∈ S(zn,m) 0 ≤ k ≤ m−s, where s = 1 for sp2N and s = 2

for slN .
• We consider the Poisson structure on S(zn,m) arising from the identification

S(zn,m) ∼= C[Sn,m].

The following theorem can be viewed as a Poisson analogue of Theorem 7:

Theorem 10.

(a) The formulas

Θ
cl
(A) = ι(A), Θ

cl
(y) = ι(y), Θ

cl
(x) = ι(x), Θ

cl
(ζk) = (−1)m−kΘk

define an isomorphism Θ
cl

: Hcl
m(gln)

∼−→ S(zn,m) � C[Sn,m] of Poisson
algebras.

(b) The formulas

Θ
cl
(A) = ι(A), Θ

cl
(y) = ι(y)/

√
2, Θ

cl
(ζk) = Θk

define an isomorphism Θ
cl

: Hcl
m(sp2n)

∼−→ S(zn,m) � C[Sn,m] of Poisson
algebras.

Claims 8 and 9 follow from this theorem.

Remark 3. An alternative proof of Claims 8 and 9 is based on the recent result
of [LNS] about the universal Poisson deformation of S∩N (here N denotes the
nilpotent cone of the Lie algebra g). We find this argument a bit overkilling (be-
sides, it does not provide precise formulas in the Poisson case).
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Proof of Theorem 10.
(a) The Poisson algebra S(zn,m) is equipped both with the Kazhdan grading

and the internal grading Gr′. In particular, the same reasoning as in the proof of
Theorem 7(a) implies:

{ι(A), ι(B)} = ι([A,B]), {ι(A), ι(y)} = ι(A(y)), {ι(A), ι(x)} = ι(A(x)).

We set W (y, x) := {ι(y), ι(x)} for all y ∈ Vn, x ∈ V ∗
n . Arguments analogous to

those used in the proof of Theorem 7(a) imply an existence of polynomials ηi ∈
C[Θ0, . . . ,Θm−2], such that W (y, x)=

∑
j ηjαj(y, x) and deg(ηj(Θ0, . . . ,Θm−2))=

2(m− j).
Combining this with Theorem 3(a) one gets that

τ ′1 =
∑
i

xiyi +
∑
j

ηj trS
j+1A

is a Poisson-central element of S(zn,m) ∼= C[Sn,m].
Let ρ : zPois(C[sln+m]) → zPois(C[Sn,m]) be the restriction homomorphism. The

Poisson analogue of Theorem 5 (which is, actually, much simpler) states that ρ

is an isomorphism. In particular, τ ′1 = cρ(F̃m+1) + p(ρ(F̃2), . . . , ρ(F̃m)) for some
c ∈ C and a polynomial p.

Note that ρ(F̃i) = Θm−i for all 2 ≤ i ≤ m. Let us now express ρ(F̃m+1) via the
generators of S(zn,m). First, we describe explicitly the slice Sn,m. It consists of
the following elements:{

em +
∑
i,j≤n

xi,jEi,j +
∑
i≤n

uiEi,n+1 +
∑
i≤n

viEn+m,i +
∑

k≤m−1

wkf
k
m − γn,m

∑
n<j≤n+m

Ejj

}
,

where γn,m =
1

m

∑
i≤n

xii

which can also be explicitly depicted as follows:

Sn,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 · · · x1,n u1 0 0 · · · 0
x2,1 x2,2 · · · x2,n u2 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

xn,1 xn,2 · · · xn,n un 0 0 · · · 0
0 0 · · · 0 λ 1 0 · · · 0
0 0 · · · 0 � λ 1 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 � � � · · · 1
v1 v2 · · · vn � � � · · · λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For X ∈ sln+m of the above form let us define X1 ∈ gln, X2 ∈ glm by

X1 :=
∑
i,j≤n

xi,jEi,j , X2 := em +
∑

k≤m−1

wkf
k
m − x11 + · · ·+ xnn

m

∑
n<j≤n+m

Ejj ,

that is, X1 and X2 are the left-up n × n and right-down m × m blocks of X ,
respectively.

The following result is straightforward:
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Lemma 11. Let X,X1, X2 be as above. Then:

(i) For 2 ≤ k ≤ m : F̃k(X) = trΛk(X1) + tr Λk−1(X1) tr Λ
1(X2) + · · ·

+ trΛk(X2).

(ii) We have F̃m+1(X) = (−1)m
∑

uivi+trΛm+1(X1)+tr Λm(X1) tr Λ
1(X2)+

· · ·+ trΛm+1(X2).

Combining both statements of this lemma with the standard equality∑
0≤j≤l

(−1)j trSl−j(X1) tr Λ
j(X1) = 0, ∀l ≥ 1, (1)

we obtain the following result:

Lemma 12. For any X ∈ Sn,m we have:

F̃m+1(X) = (−1)m
∑

uivi

+
∑

2≤j≤m

(−1)m−jF̃j(X) trSm+1−j(X1) + (−1)m trSm+1(X1).
(2)

Proof of Lemma 12. Lemma 11(i) and equality (1) imply by induction on k:

tr Λk(X2) = F̃k(X)− trS1(X1)F̃k−1(X)

+ trS2(X1)F̃k−2(X)− . . .+ (−1)k trSk(X1)F̃0(X),

for all k ≤ m, where F̃1(X) = 0, F̃0(X) = 1.
Those equalities together with Lemma 11(ii) imply:

F̃m+1(X) = (−1)m
∑

uivi

+
∑

0≤j≤m

∑
0≤k<m+1−j

(−1)k tr Λm+1−j−k(X1) trS
k(X1)F̃j(X).

According to (1), we have∑
0≤k≤m−j

(−1)k tr Λm+1−j−k(X1) trS
k(X1) = (−1)m−j trSm+1−j(X1).

Recalling our convention F̃1(X) := 0, F̃0(X) := 1, we get (2). �
Identifying C[Sn,m] with S(zn,m) we get

ρ(F̃m+1) = (−1)m
(∑

xiyi + trSm+1A+
∑

2≤j≤m

(−1)jΘm−j trS
m+1−jA

)
. (3)

Substituting this into τ ′1 = cρ(F̃m+1)+p(Θ0, . . . ,Θm−2) with Θm−1 := 0, Θm :=
1, we get

p(Θ0, . . . ,Θm−2) = (1− (−1)mc)
∑
i

xiyi

+
∑

0≤j≤m

(ηj(Θ0, . . . ,Θm−2)− (−1)jcΘj) trS
j+1A.
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Hence c = (−1)m and

p(Θ0, . . . ,Θm−2) =
∑

0≤j≤m

(ηj(Θ0, . . . ,Θm−2)− (−1)m−jΘj) trS
j+1A.

According to Remark 1, the last equality is equivalent to

ηm = 1, ηm−1 = 0, ηj(Θ0, . . . ,Θm−2) = (−1)m−jΘj , ∀ 0 ≤ j ≤ m−2, p = 0.

This implies the statement.

(b) Analogously to the previous case and the proof of Theorem 7(b) we have:

{ι(A), ι(B)} = ι([A,B]), {ι(A), ι(y)} = ι(A(y)), {ι(x), ι(y)} =
∑

ηjβ2j(x, y),

for some polynomials ηj ∈ C[Θ0, . . . ,Θm−1], such that deg(ηj(Θ0, . . . ,Θm−1)) =
4(m− j).

Due to Theorem 3(b), we get τ ′1 :=
∑2n

i=1{Q̃1, yi}y∗i − 2
∑

j ηj trS
2j+2A ∈

zPois(S(zn,m)). In particular, τ ′1 = cρ(F̃m+1) + p(ρ(F̃1), . . . , ρ(F̃m)) for some c ∈ C

and a polynomial p.
Note that ρ(F̃k) = Θm−k for 1 ≤ k ≤ m. Let us now express ρ(F̃m+1) via the

generators of S(zn,m). First, we describe explicitly the slice Sn,m. It consists of
the following elements:

{
em + ι(X1) +

∑
i≤n

viUi,n+1 +
∑
i≤n

vn+iUn+2m+i,n+1

+
∑
k≤m

wkf
2k−1
m

∣∣∣ X1 ∈ sp2n, vi, vn+i, wk ∈ C

}
,

where Ui,j := Ei,j+(−1)i+j+1E2n+2m+1−j,2n+2m+1−i ∈ sp2n+2m. ForX ∈ sp2n+2m

of the above form let us define X2 := em +
∑

k≤m wkf
2k−1
m ∈ sp2m, viewed as the

centered 2m× 2m block of X .
Analogously to (3), we get the following formula:

ρ(F̃m+1) =
1

4

2n∑
i=1

{Q̃1, yi}y∗i − trS2m+2A−
∑

0≤j≤m−1

Θj trS
2j+2A. (4)

Comparing the above two formulas for τ ′1, we get the equality:

2n∑
i=1

{Q̃1, yi}y∗i − 2
∑
j

ηj trS
2j+2A = c · ρ(F̃m+1) + p(Θ0, . . . ,Θm−1).

Arguments analogous to the one used in part (a) establish

c = 4, p = 0, ηm = 2, ηj = 2Θj , ∀ j < m.

Part (b) follows. �
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Remark 4. Recalling the standard convention U(g, 0) = U(g) and Example 1, we
see that Theorem 7(a) (as well as Theorem 10(a)) obviously holds for m = 1 with
e1 := 0 ∈ sln+1.

The results of Theorems 7 and 10 can be naturally generalized to the case of
the universal infinitesimal Hecke algebras of son. However, this requires reproving
some basic results about the latter algebras, similar to those of [EGG], [DT], and
is discussed separately in [T].

4. Consequences

In this section we use Theorem 7 to get some new (and recover some old) results
about the algebras of interest. On the W -algebra side, we get presentations of
U(sln, em) and U(sp2n, em) via generators and relations (in the latter case there
was no presentation known for m > 1). We get many more results about the
structure and the representation theory of infinitesimal Cherednik algebras using
the corresponding results on W -algebras.

Also we determine the isomorphism from Theorem 7(a) basically explicitly.

4.1. Centers of Hm(gln) and Hm(sp2n)

We set s = 2 for g = slN and s = 1 for g = sp2N . Recall the elements {F̃i}Ni=s,

where deg(F̃i) = (3 − s)i. These are the free generators of the Poisson center
zPois(S(g)). The Lie algebra q = zg(e, h, f) from Section 1.6 equals gln for (g, e) =

(sln+m, em) and sp2n for (g, e) = (sp2n+2m, em). Thus {Q̃j} from Section 1.4 are

the free generators of zPois(S(q)), and Qj := Sym(Q̃j) are the free generators of
Z(U(q)).

The following result is a straightforward generalization of formulas (3) and (4):

Proposition 13. There exist {bi}ni=1 ∈ S(g)ad g[ρ(F̃s), . . . , ρ(F̃m)], such that:

ρ(F̃m+i) ≡ sn,mτi + bi mod C[ρ(F̃s), . . . , ρ(F̃m+i−1)], ∀ 1 ≤ i ≤ n,

where sn,m = (−1)m for g = gln and sn,m = 1/4 for g = sp2n.

Define tk ∈ Hm(gln) by tk :=
∑n

i=1 xi[Qk, yi] and tk ∈ Hm(sp2n) by tk :=∑2n
i=1[Qk, yi]y

∗
i . Combining Proposition 13, Theorems 5, 7 with gr(Z(U(g, e))) =

zPois(C[S]) we get

Corollary 14. For g being either gln or sp2n, there exist

C1, . . . , Cn ∈ Z(U(g))[ζ0, . . . , ζm−s],

such that the center Z(Hm(g)) is a polynomial algebra in free generators {ζi} ∪
{tj + Cj}nj=1.

Considering the quotient of Hm(g) by the ideal (ζ0 − a0, . . . , ζm−s − am−s)
for any ai ∈ C, we see that the center of the standard infinitesimal Cherednik
algebra Ha(g) contains a polynomial subalgebra C[t1 + c1, . . . , tn + cn] for some
cj ∈ Z(U(g)).

Together with [DT, Thms. 5.1 and 7.1] this yields:

508



INFINITESIMAL CHEREDNIK ALGEBRAS AS W -ALGEBRAS

Corollary 15. We actually have Z(Ha(g)) = C[t1 + c1, . . . , tn + cn].

For g = gln this is [T1, Thm. 1.1], while for g = sp2n this is [DT, Conj. 7.1].

4.2. Symplectic leaves of Poisson infinitesimal Cherednik algebras

By Theorem 10, we get an identification of the full Poisson-central reductions of
the algebras C[Sn,m] and Hcl

m(gln) or H
cl
m(sp2n). As an immediate consequence we

obtain the following proposition, which answers a question raised in [DT]:

Proposition 16. Poisson varieties corresponding to arbitrary full central reduc-
tions of Poisson infinitesimal Cherednik algebras Hcl

ζ (g) have finitely many sym-
plectic leaves.

4.3. Analogue of Kostant’s theorem

As another immediate consequence of Theorem 7 and discussions from Section 4.1,
we get a generalization of the following classical result:

Proposition 17.

(a) The infinitesimal Cherednik algebras Hζ(g) are free over their centers.
(b) The full central reductions of grHζ(g) are normal, complete intersection

integral domains.

For g = gln this is [T2, Thm. 2.1], while for g = sp2n this is [DT, Thm. 8.1].

4.4. Category O and finite dimensional representations of Hm(sp2n)

The categories O for the finite W -algebras were first introduced in [BGK] and
were further studied by the first author in [L3]. Namely, recall that we have an
embedding q ⊂ U(g, e). Let t be a Cartan subalgebra of q and set g0 := zg(t).
Pick an integral element θ ∈ t such that zg(θ) = g0. By definition, the category O
(for θ) consists of all finitely generated U(g, e)-modules M , where the action of t is
diagonalizable with finite dimensional eigenspaces and, moreover, the set of weights
is bounded from above in the sense that there are complex numbers α1, . . . , αk

such that for any weight λ of M there is i with αi −〈θ, λ〉 ∈ Z�0. The category O
has analogues of Verma modules, Δ(N 0). Here N0 is an irreducible module over
the W -algebra U(g0, e), where g0 is the centralizer of t. In the cases of interest
((g, e) = (sln+m, em), (sp2n+2m, em)), we have g0 = gln×Cm−1, g0 = sp2n×Cm and
e is principal in g0. In this case, the W -algebra U(g0, e) coincides with the center
of U(g0). Therefore N

0 is a one-dimensional space, and the set of all possible N 0 is
identified, via the Harish-Chandra isomorphism, with the quotient h∗/W0, where
h,W0 are a Cartan subalgebra and the Weyl group of g0 (we take the quotient
with respect to the dot-action of W0 on h∗). As in the usual BGG category
O, each Verma module has a unique irreducible quotient, L(N 0). Moreover, the
map N0 �→ L(N0) is a bijection between the set of finite dimensional irreducible
U(g0, e)-modules, h∗/W0, in our case, and the set of irreducible objects in O. We
remark that all finite dimensional irreducible modules lie in O.

One can define a formal character for a module M ∈ O. The characters of
Verma modules are easy to compute basically thanks to [BGK, Thm. 4.5(1)]. So
to compute the characters of the simples, one needs to determine the multiplicities
of the simples in the Vermas. This was done in [L3, Sect. 4] in the case when e is
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principal in g0. The multiplicities are given by values of certain Kazhdan-Lusztig
polynomials at 1 and so are hard to compute, in general. In particular, one cannot
classify finite dimensional irreducible modules just using those results.

When g = sln+m, a classification of the finite dimensional irreducible U(g, e)-
modules was obtained in [BK2]; this result is discussed in the next section. When
g = sp2n+2m, one can describe the finite dimensional irreducible representations
using [L2, Thm. 1.2.2]. Namely, the centralizer of e in Ad(g) is connected. So,
according to [L2], the finite dimensional irreducible U(g, e)-modules are in one-to-
one correspondence with the primitive ideals J ⊂ U(g) such that the associated
variety of U(g)/J is O, where we write O for the adjoint orbit of e. The set of such
primitive ideals is computable (for a fixed central character, those are in one-to-one
correspondence with certain left cells in the corresponding integral Weyl group),
but we will not need details on that.

One can also describe all N 0 ∈ h∗/W0 such that dimL(N0) < ∞ when e is
principal in g0. This is done in [L4, 5.1]. Namely, choose a representative λ ∈ h∗

of N0 that is, antidominant for g0, meaning that 〈α∨, λ〉 �∈ Z>0 for any positive
root α of g0. Then we can consider the irreducible highest weight module L(λ) for
g with highest weight λ−ρ. Let J (λ) be its annihilator in U(g); this is a primitive
ideal that depends only on N 0 and not on the choice of λ. Then dimL(N 0) < ∞
if and only if the associated variety of U(g)/J (λ) is O. The associated variety is
computable thanks to results of [BV]; however, this computation requires quite a
lot of combinatorics. It seems that one can still give a closed combinatorial answer
for (sp2n+2m, em) similar to that for (sln+m, em) but we are not going to elaborate
on that.

Now let us discuss the infinitesimal Cherednik algebras. In the gln-case the
category O was defined in [T1, Def. 4.1] (see also [EGG, Sect. 5.2]). Under the iso-
morphism of Theorem 7(a), that category O basically coincides with its W -algebra
counterpart. The classification of finite dimensional irreducible modules and the
character computation in that case was done in [DT], but the character formulas
for more general simple modules were not known. For the algebras Hm(sp2n), no
category O was introduced, in general; the case n = 1 was discussed in [Kh]. The
classification of finite dimensional irreducible modules was not known either.

4.5. Finite dimensional representations of Hm(gln)

Let us compare classifications of the finite dimensional irreducible representations
of U(sln+m, em) from [BK2] and Ha(gln) from [DT].

In the notation of [BK2]6, a nilpotent element em ∈ gln+m corresponds to the
partition (1, . . . , 1,m) of n + m. Let Sm act on Cn+m by permuting the last
m coordinates. According to [BK2, Thm. 7.9], there is a bijection between the
irreducible finite dimensional representations of U(gln+m, em) and the orbits of the
Sm-action on Cn+m containing a strictly dominant representative. An element ν =
(ν1, . . . , νn+m) ∈ Cn+m is called strictly dominant if νi − νi+1 is a positive integer
for all 1 ≤ i ≤ n. The corresponding irreducible U(gln+m, em)-representation
is denoted Lν . Viewed as a gln-module (since gln = q ⊂ U(gln+m, em)), Lν =

6 In the loc.cit. g = gln+m, rather then sln+m. Nevertheless, it is not very crucial
since gln+m = sln+m ⊕ C.
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L′
ν ⊕ ⊕

i∈I L
′
ηi
, where L′

η is the highest weight η irreducible gln-module, ν :=
(ν1, . . . , νn) and I denotes some set of weights η < ν.

Let us now recall [DT, Thm. 4.1], which classifies all irreducible finite dimen-
sional representations of the infinitesimal Cherednik algebra Ha(gln). They turn
out to be parameterized by strictly dominant gln-weights λ = (λ1, . . . , λn) (that is,
λi−λi+1 is a positive integer for every 1 ≤ i < n), for which there exists a positive
integer k satisfying P (λ) = P (λ1, . . . , λn−1, λn − k). Here P is a degree m + 1
polynomial function on the Cartan subalgebra hn of all diagonal matrices of gln,
introduced in [DT, Sect. 3.2]. According to [DT, Thm. 3.2] (see Theorem 18(b)
below), we have P =

∑
j≥0 wjhj+1, where both wj and hj are defined in the next

section (see the notation preceding Theorem 18).
These two descriptions are intertwined by a natural bijection, sending ν =

(ν1, . . . , νn+m) to λ := (ν1, . . . , νn), while λ = (λ1, . . . , λn) is sent to the class of
ν = (λ1, . . . , λn, νn+1, . . . , νn+m) with {νn+1, . . . , νn+m} ∪ {λn} being the set of
roots of the polynomial P (λ1, . . . , λn−1, t)− P (λ).

4.6. Explicit isomorphism in the case g = gln

We compute the images of particular central elements ofHm(gln) and U(sln+m, em)
under the corresponding Harish-Chandra isomorphisms. Comparison of these im-
ages enables us to determine the isomorphism Θ of Theorem 7(a) explicitly, in the
same way as Theorem 10(a) was deduced.

Let us start from the following commutative diagram:

U(sln+m, em)0
π

������
����

��




��

Z(U(sln+m, em))
jn,m��

ϕW

��

U(sln+m, em)0

o

������
����

���

U(gln)⊗ U(slm, em) Z(U(gln))⊗ U(slm, em)
jn⊗Id��

Diagram 1

In the above diagram:

• U(sln+m, em)0 is the 0-weight component of U(sln+m, em) with respect to the
grading Gr.

• U(sln+m, em)0 := U(sln+m, em)0/I, where

I = (U(sln+m, em)0 ∩ U(sln+m, em)U(sln+m, em)>0).

• π is the quotient map, while o is an isomorphism constructed in [L3, Thm. 4.1].7

• The homomorphism � is defined as � := o ◦ π, making the triangle commu-
tative.

• The homomorphisms jn+m, jn are the natural inclusions.
• The homomorphism ϕW is the restriction of � to the center, making the

square commutative.

7 Here we actually use the fact that U(gln) ⊗ U(slm, em) is the finite W -algebra
U(gln ⊕ slm, 0⊕ em).
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• U(slm, em) ∼= Z(U(slm, em)) ∼= Z(U(slm)) since em is a principal nilpotent of
slm.

We have an analogous diagram for the universal infinitesimal Cherednik algebra
of gln:

Hm(gln)0
π′

������
����

����


′

��

Z(Hm(gln))
j′n,m��

ϕH

��

Hm(gln)
0

o′

�����
����

����

U(gln)⊗ C[ζ0, . . . , ζm−2] Z(U(gln))⊗ C[ζ0, . . . , ζm−2]
jn⊗Id��

Diagram 2

In the above diagram:

• Hm(gln)0 is the degree 0 component of Hm(gln) with respect to the grading
Gr, defined by setting deg(gln) = deg(ζ0) = . . . = deg(ζm−2) = 0, deg(Vn) =
1, deg(V ∗

n ) = −1.
• Hm(gln)

0 is the quotient of Hm(gln)0 by Hm(gln)0 ∩Hm(gln)Hm(gln)>0.
8

• π′ denotes the quotient map, o′ is the natural isomorphism, �′ := o′ ◦ π′.
• The inclusion j′n,m is a natural inclusion of the center.

• The homomorphism ϕH is the one induced by restricting �′ to the center.

The isomorphism Θ of Theorem 7(a) intertwines the gradings Gr, inducing

an isomorphism Θ
0
: Hm(gln)

0 ∼−→ U(sln+m, em)0. This provides the following
commutative diagram:

Z(Hm(gln))
ϑ ��

ϕH

��

Z(U(sln+m, em))

ϕW

��
Z(U(gln))⊗ C[ζ0, . . . , ζm−2]

ϑ �� Z(U(gln))⊗ Z(U(slm))

Diagram 3

In the above diagram:

• The isomorphism ϑ is the restriction of the isomorphism Θ to the center.

• The isomorphism ϑ is the restriction of the isomorphism Θ
0
to the center.

Let HCN denote the Harish-Chandra isomorphism

HCN : Z(U(glN ))
∼−→ C[h∗N ]SN ,•,

where hN ⊂ glN is the Cartan subalgebra consisting of the diagonal matrices and
(SN , •)-action arises from the ρN -shifted SN -action on h∗N with ρN = ((N − 1)/2,
(N − 3)/2, . . . , (1−N)/2) ∈ h∗N . This isomorphism has the following property:

8 It is easy to see that Hm(gln)0 ∩ Hm(gln)Hm(gln)>0 is actually a two-sided ideal
of Hm(gln)0.
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any central element z ∈ Z(U(glN )) acts on the Verma module Mλ−ρN of U(glN )
via HCN (z)(λ).

According to Corollary 14, the center Z(Hm(gln)) is the polynomial algebra in
free generators {ζ0, . . . , ζm−2, t

′
1, . . . , t

′
n}, where t′k = tk + Ck. In particular, any

central element of Kazhdan degree 2(m+1) has the form ct′1 + p(ζ0, . . . , ζm−2) for
some c ∈ C and p ∈ C[ζ0, . . . , ζm−2].

Following [DT], we call t′1 = t1 +C1 the Casimir element9. An explicit formula
for ϕH(t′1) is provided by [DT, Thm. 3.1], while for any 0 ≤ k ≤ m − 2 we have
ϕH(ζk) = 1⊗ ζk.

To formulate the main results about the Casimir element t′1, we introduce:

• the generating series ζ(z) =
∑m−2

i=0 ζiz
i + zm (already introduced in Sec-

tion 1.4),
• a unique degree m+1 polynomial f(z) satisfying f(z)−f(z−1) = ∂n(znζ(z))

and f(0) = 0,

• a unique degreem+1 polynomial g(z) =
∑m+1

i=1 giz
i satisfying ∂n−1(zn−1g(z))

= f(z),
• a unique degree m polynomial w(z) =

∑m
i=0 wiz

i satisfying

f(z) = (2 sinh(∂/2))n−1(znw(z)),

• the symmetric polynomials σi(λ1, . . . , λn) via

(u+ λ1) · · · (u+ λn) =
∑

σi(λ1, . . . , λn)u
n−i,

• the symmetric polynomials hj(λ1, . . . , λn) via

(1 − uλ1)
−1 · · · (1− uλn)

−1 =
∑

hj(λ1, . . . , λn)u
j ,

• the central element Hj ∈ Z(U(gln)) which is the symmetrization of trSj(·) ∈
C[gln]

∼= S(gln).

The following theorem summarizes the main results of [DT, Sect. 3]:

Theorem 18.

(a) [DT, Thm. 3.1] ϕH(t′1) =
∑m+1

j=1 Hj ⊗ gj (where gj are viewed as elements
of C[ζ0, . . . , ζm−2]),

(b) [DT, Thm. 3.2] (HCn ⊗Id) ◦ ϕH(t′1) =
∑m

j=0 hj+1 ⊗ wj.

Let HC′
N denote the Harish-Chandra isomorphism Z(U(slN ))

∼−→ C[h
∗
N ]SN ,•,

where hN is the Cartan subalgebra of slN , consisting of the diagonal matrices,
which can be identified with {(z1, . . . , zN) ∈ CN | ∑ zi = 0}. The natural inclusion
hN ↪→ hN induces the map

h∗N → h
∗
N : (λ1, . . . , λN ) �→ (λ1 − μ, . . . , λN − μ), where μ :=

λ1 + · · ·+ λN

N
.

9 The Casimir element is uniquely defined up to a constant.
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The isomorphisms HC′
n+m,HC′

m,HCn fit into the following commutative dia-
gram:

ρ
�����

���
�

Z(U(sln+m, em))

ϕW ����
���

��

Z(U(sln+m))

ϕW

��

C[Cn+m−1]Sn+m,•HC′
n+m
−1

��

ϕC

��
Z(U(gln))⊗Z(U(slm)) C[Cn]Sn,•⊗C[Cm−1]Sm,•HC−1

n ⊗HC′
m
−1

��

Diagram 4

In the above diagram:

• ρ is the isomorphism of Theorem 5.
• The homomorphism ϕW is defined as the composition ϕW := ϕW ◦ ρ.
• The homomorphism ϕC arises from an identification Cn × Cm−1 ∼= Cn+m−1

defined by

(λ1, . . . , λn, ν1, . . . , νm) �→
(
λ1, . . . , λn, ν1−λ1+· · ·+λn

m
, . . . , νm−λ1+· · ·+λn

m

)
.

In particular, ϕC is injective, so that ϕW is injective and, hence, ϕH is injective.

Define σk ∈ C[h
∗
N ] as the restriction of σk to CN−1 ↪→ CN . According to

Lemma 12,

ϕC(σm+1) = (−1)mhm+1 ⊗ 1 +

m∑
j=2

(−1)m−jhm+1−j ⊗ 1 · ϕC(σj). (5)

Define Sk ∈ Z(U(sln+m)) by Sk := (HC′
n+m)−1(σk) for all 0 ≤ k ≤ n +m, so

that S0 = 1, S1 = 0. Similarly, define Tk ∈ Z(U(gln)) as Tk := HC−1
n (hk) for all

k ≥ 0, so that T0 = 1.
Equality (5) together with the commutativity of Diagram 4 imply

ϕW (Sm+1) = (−1)mTm+1 ⊗ 1 +

m∑
j=2

(−1)m−jTm+1−j ⊗ 1 · ϕW (Sj).

According to our proof of Theorem 7(a), we have Θ(A) = Θ(A) + s trA for all
A ∈ gln, where s = −ηm−1/(n+m)ηm. In particular, ϑ−1(X ⊗ 1) = ϕ−s(X) ⊗ 1
for all X ∈ Z(U(gln)), where ϕ−s was defined in Lemma 1.

As a consequence, we get:

ϑ−1(ϕW (Sm+1)) = (−1)mϕ−s(Tm+1)⊗ 1

+

m∑
j=2

(−1)m−jϕ−s(Tm+1−j)⊗ 1 · ϑ−1(ϕW (Sj)).
(6)

The following identity is straightforward:
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Lemma 19. For any positive integer i and any constant δ ∈ C we have

hi(λ1 + δ, . . . , λn + δ) =

i∑
j=0

(
n+ i− 1

j

)
hi−j(λ1, . . . , λn)δ

j .

As a result, we get

ϕ−s(Ti) =

i∑
j=0

(
n+ i− 1

j

)
(−s)jTi−j. (7)

Combining equations (6) and (7), we get:

ϑ−1(ϕW (Sm+1)) = (−1)mTm+1 ⊗ 1

+ (−1)m+1s(n+m)Tm ⊗ 1 +

m−2∑
l=−1

(−1)lTl+1 ⊗ 1 · V l,
(8)

where V l = ϑ−1(ϕW (Vl)) and for 0 ≤ l ≤ m− 2 we have

Vl =
∑

0≤j≤m−l

sm−l−j

(
n+m− j

m− l − j

)
Sj .

On the other hand, the commutativity of Diagram 3 implies

ϑ−1(ϕW (Sm+1)) = ϕH(ϑ−1(ρ(Sm+1))).

Recall that there exist c ∈ C, p ∈ C[ζ0, . . . ζm−2] such that ϑ−1(ρ(Sm+1)) =
ct′1 + p. As ϕH(ζi) = 1 ⊗ ζi and ϕH(t′1) =

∑m
j=0 Tj+1 ⊗ wj (by Theorem 18(b)),

we get

ϕH(ϑ−1(ρ(Sm+1))) = 1⊗ p(ζ0, . . . , ζm−2) +
∑

0≤j≤m

Tj+1 ⊗ cwj . (9)

Recalling the equalities wm = 1, wm−1 = (n+m)/2, the comparison of (8)
and (9) yields:

• The coefficients of Tm+1 must coincide, so that (−1)m = cwm ⇒ c = (−1)m.
• The coefficients of Tm must coincide, so that cwm−1 = (−1)m+1(n +m)s ⇒

s = −1/2.
• The coefficients of Tj+1 must coincide for all j ≥ 0, so that

wj = (−1)m−jV j ⇒ ϑ(wj) = (−1)m−jρ(Vj).

Recall that ηm = 1, and so ηm = ηm = 1. As a result s = −ηm−1/(n+m), so
that ηm−1 = (n+m)/2.

The above discussion can be summarized as follows:
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Theorem 20. Let Θ : Hm(gln)
∼−→ U(sln+m, em) be the isomorphism from The-

orem 7(a). Then Θ(A) = Θ(A) − 1
2 trA, Θ(y) = Θ(y), Θ(x) = Θ(x), while

Θ |C[ζ0,...,ζm−2] is uniquely determined by Θ(wj) = (−1)m−jρ(Vj) for all 0 ≤ j ≤
m− 2.

4.7. Higher central elements

It was conjectured in [DT, Rem. 6.1], that the action of central elements t′i =
ti + ci ∈ Z(Hm(gln)) on the Verma modules of Ha(gln) should be obtained from
the corresponding formulas at the Poisson level (see Theorem 3) via a basis change
ζ(z) � w(z) and a ρn-shift. Actually, that is not true. However, we can choose
another set of generators ui ∈ Z(Hm(gln)), whose action is given by formulas
similar to those of Theorem 3.

Let us define:

• central elements ui ∈ Z(Hm(gln)) by ui := ϑ−1(ρ(Sm+i)) for all 0 ≤ i ≤ n,
• the generating polynomial

ũ(t) :=

n∑
i=0

(−1)iuit
i,

• the generating polynomial

S(z) :=
n∑

i=0

(−1)iϑ−1(ϕW (Sm−i))z
i ∈ C[ζ0, . . . , ζm−2; z].

The following result is proved using the arguments of Section 4.6:

Theorem 21. We have:

(HCn ⊗Id) ◦ ϕH(ũ(t)) = (ϕ1/2 ⊗ Id)

(
Resz=0 S(z−1)

∏
1≤i≤n

1− tλi

1− zλi

z−1dz

1− t−1z

)
.

5. Completions

5.1. Completions of graded deformations of Poisson algebras

We first recall the machinery of completions, elaborated by the first author (our
exposition follows [L7]). Let Y be an affine Poisson scheme equipped with a C∗-
action, such that the Poisson bracket has degree −2. Let A� be an associative flat
graded C[�]-algebra (where deg(�) = 1) such that [A�,A�] ⊂ �2A� and C[Y ] =
A�/(�) as a graded Poisson algebra. Pick a point x ∈ Y and let Ix ⊂ C[Y ] be the

maximal ideal of x, while Ĩx will denote its inverse image in A�.

Definition 6. The completion of A� at x ∈ Y is by definition A∧x

�
:= lim←− A�/Ĩ

n
x .

This is a complete topological C[[�]]-algebra, flat over C[[�]], such that A∧x

�
/(�)

= C[Y ]∧x . Our main motivation for considering this construction is the decom-
position theorem, generalizing the corresponding classical result at the Poisson
level:
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Proposition 22 (cf. [K, Thm. 2.3]). The formal completion Ŷx of Y at x ∈ Y

admits a product decomposition Ŷx = Zx × Ŷ s
x , where Y s is the symplectic leaf of

Y containing x and Zx is a local formal Poisson scheme.

Fix a maximal symplectic subspace V ⊂ T ∗
xY . One can choose an embedding

V
i
↪→ Ĩ∧x

x such that [i(u), i(v)] = �2ω(u, v) and composition V
i
↪→ Ĩ∧x

x � T ∗
xY

is the identity map. Finally, we define W�(V ) := T (V )[h]/(u ⊗ v − v ⊗ u −
�2ω(u, v)), which is graded by setting deg(V ) = 1, deg(�) = 1 (the homogenized
Weyl algebra). Then we have:

Theorem 23 ([L7, Sect. 2.1], Decomposition theorem). There is a splitting

A∧x

�
∼= W�(V )∧0⊗̂C[[�]]A′

�,

where A′
� is the centralizer of V in A∧x

�
.

Remark 5. Recall that a filtered algebra {Fi(B)}i≥0 is called a filtered deformation
of Y if grF• B

∼= C[Y ] as Poisson graded algebras. Given such B, we set A� :=
Rees�(B) (the Rees algebra of the filtered algebra B), which naturally satisfies all
the above conditions.

This remark provides the following interesting examples of A�:

• The homogenized Weyl algebra.

Algebra W�(V ) from above is obtained via the Rees construction from the usual
Weyl algebra. In the case V = Vn ⊕V ∗

n with a natural symplectic form, we denote
W�(V ) just by W�,n.

• The homogenized universal enveloping algebra.

For any graded Lie algebra g =
⊕

gi with a Lie bracket of degree −2, we define

U�(g) := T (g)[�]/(x⊗ y − y ⊗ x− �2[x, y] | x, y ∈ g),

graded by setting deg(gi) = i, deg(�) = 1.

• The homogenized universal infinitesimal Cherednik algebra of gln.

Define H�,m(gln) as a quotient

H�,m(gln) :=U�(gln)� T (Vn ⊕ V ∗
n )[ζ0, . . . , ζm−2]/J,

where

J =

(
[x, x′], [y, y′], [A, x]− �2A(x), [A, y]− �2A(y),

[y, x]− �2
(m−2∑

j=0

ζjrj(y, x) + rm(y, x)

))
.

This algebra is graded by setting deg(Vn ⊕ V ∗
n ) = m+ 1, deg(ζi) = 2(m− i).
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• The homogenized universal infinitesimal Cherednik algebra of sp2n.
Define H�,m(sp2n) as a quotient

H�,m(sp2n) := U�(sp2n)� T (V2n)[ζ0, . . . , ζm−1]/J,

where

J =

(
[A, y]− �2A(y), [x, y]− �2

(m−1∑
j=0

ζjr2j(x, y) + r2m(x, y)

))
.

This algebra is graded by setting deg(V2n) = 2m+ 1, deg(ζi) = 4(m− i).

• The homogenized W -algebra.
The homogenized W -algebra, associated to (g, e), is defined by

U�(g, e) := (U�(g)/U�(g)m
′)adm.

There are many interesting contexts in which Theorem 23 proves to be a useful
tool. Among such let us mention rational Cherednik algebras ([BE]), symplectic
reflection algebras ([L5]) and W -algebras ([L1], [L7]).

Actually, combining results of [L7] with Theorem 7, we get isomorphisms

Ψm : H�,m(gln)
∧v ∼−→ H�,m+1(gln−1)

∧0⊗̂C[[�]]W
∧v

�,n, (*)

Υm : H�,m(sp2n)
∧v ∼−→ H�,m+1(sp2n−2)

∧0⊗̂C[[�]]W
∧v

�,2n, (♠)

where v ∈ Vn (respectively v ∈ V2n) is a nonzero element and m ≥ 1.
These decompositions can be viewed as quantizations of their Poisson versions:

Ψcl
m : Hcl

m(gln)
∧v ∼−→ Hcl

m+1(gln−1)
∧0⊗̂CW

cl,∧v
n , (�)

Υcl
m : Hcl

m(sp2n)
∧v

∼−→ Hcl
m+1(sp2n−2)

∧0⊗̂CW
cl,∧v

2n , (♥)

where W cl
n � C[x1, . . . , xn, y1, . . . , yn] with {xi, xj} = {yi, yj} = 0, {xi, yj} = δji .

Isomorphisms (*) and (♠) are not unique and, what is worse, are inexplicit.
Let us point out that localizing at other points of gln × Vn × V ∗

n (respectively
sp2n × V2n) yields other decomposition isomorphisms. In particular, one gets [T3,
Thm. 3.1]10 as follows:

Remark 6. For n = 1,m > 0, consider e′ := em + E1,2n+2 ∈ S1,m ⊂ sp2m+2,
which is a subregular nilpotent element of sp2m+2. The above arguments yield a
decomposition isomorphism

H�,m(sp2)
∧E12

∼−→ U�(sp2m+2, e
′)∧0⊗̂C[[�]]W

∧0

�,1. (♣)

The full central reduction of (♣) provides an isomorphism of [T3, Thm. 3.1].11

In Appendix C, we establish explicitly suitably modified versions of (*) and
(♠) for the cases m = −1, 0, which do not follow from the above arguments. In
particular, the reader will get a flavor of what the formulas look like.

10 This result is stated in [T3]. However, its proof in the loc. cit. is wrong.
11We use an isomorphism of the W -algebra U(sp2m+2, e

′) and the non-commutative
deformation of Crawley-Boevey and Holland of type Dm+2 Kleinian singularity.
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A. Proof of Lemmas 1, 2

Proof of Lemma 1(a). Let φ : Hζ(gln)
∼−→ Hζ′(gln) be a filtration preserving

isomorphism. We have φ(1) = 1, so that φ is the identity on the 0th level of the
filtration.

Since F (N)
2 (Hζ(gln)) = F (N)

2 (Hζ′(gln)) = U(gln)≤1, we have φ(A) = ψ(A) +
γ(A), ∀A ∈ gln, with ψ(A) ∈ gln, γ(A) ∈ C. Then φ([A,B]) = [φ(A), φ(B)],
∀A,B ∈ gln, if and only if γ([A,B]) = 0 and ψ is an automorphism of the Lie
algebra gln. Since [gln, gln] = sln, we have γ(A) = λ · trA for some λ ∈ C. For
n ≥ 3, Aut(gln) = Aut(sln) × Aut(C) = (μ2 � SL(n)) × C∗, where −1 ∈ μ2 acts
on sln via σ : A �→ −At. This determines φ up to the filtration level N − 1.

Finally, F (N)
N (Hζ(gln)) = F (N)

N (Hζ′(gln)) = Vn ⊕ V ∗
n ⊕ U(gln)≤N . As we just

explained, φ|U(gln)
is parameterized by (ε, T, ν, λ) ∈ (μ2 � SL(n))×C∗ ×C (no μ2

for n = 1, 2). Let In ∈ gln be the identity matrix. Note that [In, y] = y, [In, x] =
−x, [In, A] = 0 for any y ∈ Vn, x ∈ V ∗

n , A ∈ gln.
Since φ(y) = φ([In, y]) = [ν · In + nλ, φ(y)] = ν[In, φ(y)], ∀y ∈ Vn, we get

ν = ±1.
Case 1 : ν = 1. Then φ(y) ∈ Vn, φ(x) ∈ V ∗

n (∀y ∈ Vn, x ∈ V ∗
n ). Since Vn � V σ

n

as sln-modules for n ≥ 3 and Endsln(Vn) = C∗, we get ε = 1 ∈ μ2 (so that
φ(A) = TAT−1, ∀A ∈ sln) and there exist θ1, θ2 ∈ C∗ such that φ(y) = θ1 ·
T (y), φ(x) = θ2 · T (x) (∀y ∈ Vn, x ∈ V ∗

n ). Hence, we get ϕ(T, λ)(ζ(y, x)) =
φ([y, x]) = [φ(y), φ(x)] = θζ ′(T (y), T (x)), where θ = θ1θ2 and the isomorphism
ϕ(T, λ) : U(gln)

∼−→ U(gln) is defined by A �→ TAT−1 + λ trA, ∀A ∈ gln. Thus,
ζ′ = θ−1ϕλ(ζ

+) in that case.

Case 2 : ν = −1. Then φ(y) ∈ V ∗
n , φ(x) ∈ Vn (∀y ∈ Vn, x ∈ V ∗

n ). Similarly
to the above reasoning we get ε = −1, φ(A) = −TAtT−1 + λ trA (∀A ∈ gln), so
that there exist θ1, θ2 ∈ C∗ such that φ(yi) = θ1 · T (xi), φ(xj) = θ2 · T (yj). Then
φ(ζ(yi, xj)) = −θ1θ2ζ

′(T (yj), T (xi)). Hence, ζ
′ = −θ−1

1 θ−1
2 ϕ−λ(ζ

−) in that case.

Finally, the above arguments also provide isomorphisms φθ,λ,s : Hζ(gln)
∼−→

Hθϕλ(ζs)(gln) for any deformation ζ, constants λ ∈ C, θ ∈ C∗ and s ∈ {±}. �
Proof of Lemma 1(b). Let ζ be a length m deformation. Since (θζ)m = θζm, we
can assume ζm = 1. We claim that ϕλ(ζ)m−1 = 0 for λ = −ζm−1/(n+m), which
is equivalent to ∂αm/∂In = (n +m)αm−1. This equality follows from comparing
coefficients of sτm in the identity∑

αi(y, x)(A+ sIn)τ
i = (1− sτ)−n−1

∑
αi(y, x)(A)(τ(1 − sτ)−1)i. �

Proof of Lemma 2. Let φ : Hζ(sp2n)
∼−→ Hζ′(sp2n) be a filtration preserving

isomorphism. Being an isomorphism, we have φ(1) = 1, so that φ is the identity
on the 0th level of the filtration.

Since F (N)
2 (Hζ(sp2n)) = F (N)

2 (Hζ′(sp2n)) = U(sp2n)≤1, we have φ(A) = ψ(A)+
γ(A) for all A ∈ sp2n, with ψ(A) ∈ sp2n, γ(A) ∈ C. Then φ([A,B]) = [φ(A), φ(B)],
∀A,B ∈ sp2n, if and only if γ([A,B]) = 0 and ψ is an automorphism of the Lie
algebra sp2n. Since [sp2n, sp2n] = sp2n, we have γ ≡ 0. Meanwhile, any automor-
phism of sp2n is inner, since sp2n is a simple Lie algebra whose Dynkin diagram
has no automorphisms. This proves φ|U(sp2n)

= Ad(T ), T ∈ Sp2n. Composing
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with an automorphism φ′ of Hζ′(sp2n), defined by φ′(A) = Ad(T−1)(A), φ′(x) =
T−1(x) (A ∈ sp2n, x ∈ V2n), we can assume φ|U(sp2n)

= Id.
Recall the element I ′n = diag(1, . . . , 1,−1, . . . ,−1) ∈ sp2n. Since ad(I ′n) has

only even eigenvalues on U(sp2n) and eigenvalues ±1 on V2n, we actually have
φ(V2n) ⊂ V2n. Together with Endsp2n

(V2n) = C∗ this implies the result.
The converse, that is, Hζ(sp2n)

∼= Hθζ(sp2n) for any ζ and θ ∈ C∗, is obvious.
�

B. Minimal nilpotent case

We compute the isomorphism of Theorem 7 explicitly for the case of e ∈ g being
the minimal nilpotent. This case has been considered in detail in [P2, Sect. 4].

To state the main result we introduce some more notation. Let z1, . . . , z2s be a
Witt basis of g(−1), i.e., ωχ(zi+s, zj) = δji , ωχ(zi, zj) = ωχ(zi+s, zj+s) = 0 for any
1 ≤ i, j ≤ s. We also define � : g(0) → g(0) by x� := x − 1

2 (x, h)h. Finally, we set
c0 := −n(n + 1)/4 for g = sln+1 and c0 := −n(2n+ 1)/8 for g = sp2n. Then we
have the following theorem:

Theorem 24 (cf. [P2, Thm. 6.1]). The algebra U(g, e) is generated by the Casimir
element C and the subspaces Θ(zχ(i)) for i = 0, 1, subject to the following relations:

(i) [Θx,Θy] = Θ[x,y], [Θx,Θu] = Θ[x,u] for all x, y ∈ zχ(0), u ∈ zχ(1);
(ii) C is central in U(g, e);
(iii) for all u, v ∈ zχ(1),

[Θu,Θv] =
1
2 (f, [u, v])(C −ΘCas − c0)

+ 1
2

∑
1≤i≤2s

(Θ[u,zi]�Θ[v,z∗
i ]

� +Θ[v,z∗
i ]

�Θ[u,zi]�),

where ΘCas is a Casimir element of the Lie algebra Θ(zχ(0)).

Our goal is to construct explicitly isomorphisms of Theorem 7 for those two
cases, that is, for g = sln+1, sp2n+2, and a minimal nilpotent e ∈ g.

Lemma 25. Formulas

γ̃(ζ0) =
c0 − C

2
, γ̃(yi) = ΘEi,n+1 , γ̃(xi) = ΘEn,i ,

γ̃(A) = ΘA, A ∈ gln � zχ(0)
(10)

establish the isomorphism H2(gln−1)
∼−→ U(sln+1, En,n+1) from Theorem 7(a).

Proof. Choose a natural sl2-triple (e, h, f) = (En,n+1, En,n−En+1,n+1, En+1,n) in
g = sln+1. Then {Ei,n+1, Eni}1≤i≤n−1 form a basis of zχ(1), while {Eij , E11 −
Ekk, Tn−1,2}2≤k≤n−1

1≤i�=j≤n−1 form a basis of zχ(0). Identifying zχ(1) with Vn−1 ⊕
V ∗
n−1, we get an epimorphism of algebras γ : U(gln−1) � T (Vn−1 ⊕ V ∗

n−1)[C] �
U(sln+1, En,n+1) defined by

γ(C) = C, γ(yi) = ΘEi,n+1 , γ(xi) = ΘEn,i , γ(In−1) = ΘTn−1,2 ,

γ(A) = ΘA, A ∈ sln−1 ⊂ sln+1.
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According to Theorem 24, its kernel Ker(γ) is generated by

w ⊗ w′ − w′ ⊗ w − 1
2

(
f, [γ(w), γ(w′)]

)(
C − γ−1(ΘCas)− c0

)
− γ−1

(
Sym

∑
1≤i≤2s

Θ[w,zi]�Θ[w′,z∗
i ]

�

)
,

with w,w′ ∈ Vn−1 ⊕ V ∗
n−1, γ

−1(Θς) ∈ gln−1 ⊕ Vn−1 ⊕ V ∗
n−1 well-defined for ς ∈

zχ(0)⊕ zχ(1).
Choose the Witt basis of g(−1) as zi := Ei,n, zi+s := En+1,i, 1 ≤ i ≤ n−1 =: s.

• For w,w′ ∈ Vn−1 or w,w′ ∈ V ∗
n−1 we just get w ⊗ w′ − w′ ⊗ w ∈ Ker(γ).

• For w = yp ∈ Vn−1, w
′ = xq ∈ V ∗

n−1 we get the following element of Ker(γ):

yp ⊗ xq − xq ⊗ yp +
δqp
2

(
C − γ−1(ΘCas)− c0

)
− γ−1

(
Sym

∑
1≤i≤2s

Θ[Ep,n+1,zi]�Θ[Enq,z∗
i ]

�

)
.

For 1 ≤ i ≤ s we obviously have [Ep,n+1, zi] = 0, while

[Ep,n+1, zi+s] = Epi− δipEn+1,n+1 ⇒ [Ep,n+1, zi+s]
� = Epi− 1

2δ
i
p(Enn+En+1,n+1).

A similar argument implies

[Enq, z
∗
i+s] = Eiq − δiqEnn ⇒ [Enq, z

∗
i+s]

� = Eiq − 1
2δ

i
q(Enn + En+1,n+1).

Thus

Θ[Ep,n+1,zi+s]� = γ(Epi) +
1
2δ

i
pγ(In−1), Θ[Enq,z∗

i+s]
� = γ(Eiq) +

1
2δ

i
qγ(In−1),

so that

γ−1(Sym
∑

Θ[Ep,n+1,zi]�Θ[Enq,z∗
i ]

�) = Sym

(∑
EpiEiq

)
+ Sym(In−1 ·Epq) +

1

4
δqpI

2
n−1.

On the other hand, since γ−1(γ(Elk)
∗) = Ekl +

1
2δ

l
kIn−1, we get

γ−1(ΘCas) =
∑
k �=l

EklElk +
∑
k

E2
kk + 1

2I
2
n−1.

Let R̃n−1 :=
∑

E2
ii +

1
2

∑
i�=j (EiiEjj + EijEji). Then we get yp ⊗ xq − xq ⊗

yp −
(

c0−C
2 · δqp︸︷︷︸

r0(yp,xq)

+Sym

(∑
EpiEiq + In−1 · Epq + δqpR̃n−1︸ ︷︷ ︸

r2(yp,xq)

))
∈ Ker(γ). This

implies the statement of the lemma. �
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Lemma 26. Formulas

γ̃(ξ0) =
c0 − C

2
, γ̃(yi) =

Θvi√
2
, γ̃(A) = ΘA, A ∈ sp2n � zχ(0) (11)

establish the isomorphism H1(sp2n)
∼→ U(sp2n+2, E1,2n+2) from Theorem 7(b).

Proof. First, choose an sl2-triple (e, h, f) = (E1,2n+2, E11 − E2n+2,2n+2, E2n+2,1)
in g = sp2n+2. Then {vk := Ek+1,2n+2 + (−1)kE1,2n+2−k}1≤k≤2n form a basis
of zχ(1), while zχ(0) � sp2n. Identifying zχ(1) with V2n via yk �→ vk, we get an
algebra epimorphism

γ : U(sp2n)� T (V2n)[C] � U(sp2n+2, E1,2n+2),

C �→ C, yi �→ Θvi , A �→ ΘA (A ∈ sp2n).

According to Theorem 24, its kernel Ker(γ) is generated by {yq⊗ yp− yp⊗ yq−
(. . .)}p,q≤2n. Let us now compute the expression represented by the ellipsis.

Choose the Witt basis of g(−1) with respect to the form ωχ as

zi :=
(−1)i+1

2
(E2n+2−i,1 + (−1)iE2n+2,i+1),

zi+s := Ei+1,1 − (−1)iE2n+2,2n+2−i, 1 ≤ i ≤ n =: s.

Since (f, [vq, vp]) = 2(−1)qδ2n+1
p+q , the above expression in ellipsis equals to:

(−1)qδ2n+1
p+q

(
C − γ−1(ΘCas)− c0

)
+ γ−1

(
Sym

( ∑
1≤i≤2s

Θ[vq,zi]�Θ[vp,z∗
i ]

�

))
,

where γ−1(Θς) ∈ sp2n ⊕ V2n is well-defined for any ς ∈ zχ(0)⊕ zχ(1), though γ is
not injective.

For any 1 ≤ k, l ≤ 2n, 1 ≤ j ≤ n it is easily verified that

[vk, zj ] = − 1
2 (Ek+1,j+1 − (−1)k+jE2n+2−j,2n+2−k)− 1

2δ
j
k · h,

[vl, zj+s] = (−1)j+1(El+1,2n+2−j + (−1)l−jEj+1,2n+2−l) + (−1)lδ2n+1
l+j · h,

so that

[vk, zj ]
� =

(−1)k+jE2n+2−j,2n+2−k − Ek+1,j+1

2
,

[vl, zj+s]
� = (−1)j+1El+1,2n+2−j + (−1)l+1Ej+1,2n+2−l.

We also have

γ−1(ΘCas) =
1

4

∑
i,j

(Ej,i + (−1)i+j+1E2n+1−i,2n+1−j)

× (Ei,j + (−1)i+j+1E2n+1−j,2n+1−i).
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On the other hand, it is straightforward to check that

r0(yq, yp) = (−1)pδ2n+1
p+q ,

r2(yq, yp) =
(−1)q+1

4
Sym

∑
s

(
Es,2n+1−q + (−1)s+qEq,2n+1−s

)
× (

Ep,s + (−1)p+s+1E2n+1−s,2n+1−p

)
+

(−1)p

8
δ2n+1
p+q Sym

∑
i,j

(
Ei,j + (−1)i+j+1E2n+1−j,2n+1−i

)
× (

Ej,i + (−1)i+j+1E2n+1−i,2n+1−j

)
.

To summarize, the kernel of the epimorphism γ is generated by the elements

{yq ⊗ yp − yp ⊗ yq − (2r2(yq, yp) + (c0 − C)r0(yq, yp))}p,q≤2n.

This implies the statement of the lemma. �

C. Decompositions (*) and (♠) for m = −1, 0

• Decomposition isomorphism H�,−1(gln)
∧v ∼= H

′
�,0(gln−1)

∧0⊗̂C[[�]]W
∧v

�,n

Here H
′
�,0(gln−1) is defined similarly to H�,0(gln−1) with an additional central

parameter ζ0 and the main relation being [y, x] = �2ζ0r0(y, x), while H�,−1(gln) :=
U�(gln � (Vn ⊕ V ∗

n )).

Notation: We use yk, xl, ek,l when referring to the elements of H�,−1(gln) and

capital Yi, Xj , Ei,j when referring to the elements of H
′
�,0(gln−1). We also use

indices 1 ≤ k, l ≤ n and 1 ≤ i, j, i′, j′ < n to distinguish between ≤ n and < n.
Finally, set vn := (0, . . . , 0, 1) ∈ Vn.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 27. Formulas

Ψ−1(yk) = zk, Ψ−1(en,k) = zn∂k,

Ψ−1(ei,j) = Ei,j + zi∂j , Ψ−1(ei,n) = z−1
n Yi −

∑
j<n

z−1
n zjEi,j + zi∂n,

Ψ−1(xj) = Xj , Ψ−1(xn) = −z−1
n ζ0 −

∑
p<n

z−1
n zpXp

define an isomorphism Ψ−1 : H�,−1(gln)
∧vn

∼−→ H
′
�,0(gln−1)

∧0⊗̂C[[�]]W
∧vn

�,n .

Its proof is straightforward and is left to an interested reader (most of the
verifications are the same as those carried out in the proof of Lemma 28 below).

• Decomposition isomorphism H�,0(gln)
∧v ∼= H

′
�,1(gln−1)

∧0⊗̂C[[�]]W
∧v

�,n

Here H
′
�,1(gln−1) is an algebra defined similarly to H�,1(gln−1) with an addi-

tional central parameter ζ0 and the main relation being [y, x] = �2(ζ0r0(y, x) +
r1(y, x)). We follow analogous conventions as for variables yk, xl, ek,l, Yi, Xj , Ei,j

and indices i, j, i′, j′, k, l.
The following lemma establishes explicitly the aforementioned isomorphism:

523



I. LOSEV, A. TSYMBALIUK

Lemma 28. Formulas

Ψ0(yk) = zk, Ψ0(en,k) = zn∂k,

Ψ0(ei,j) = Ei,j + zi∂j , Ψ0(ei,n) = z−1
n Yi −

∑
j<n

z−1
n zjEi,j + zi∂n,

Ψ0(xj) = −∂j +Xj , Ψ0(xn) = −∂n −
∑
i<n

z−1
n ziXi − z−1

n

(
ζ0 +

∑
i<n

Ei,i

)

define an isomorphism Ψ0 : H�,0(gln)
∧vn

∼−→ H
′
�,1(gln−1)

∧0⊗̂C[[�]]W
∧vn

�,n .

Proof. These formulas provide a homomorphism

H�,0(gln)
∧vn → H

′
�,1(gln−1)

∧0⊗̂C[[�]]W
∧vn

�,n

if and only if Ψ0 preserves all the defining relations of H�,0(gln). This is quite
straightforward and we present only the most complicated verifications, leaving
the rest to an interested reader.

◦ Verification of [Ψ0(ei,n),Ψ0(ei′,j′ )] = −�2δij′Ψ0(ei′,n):

[Ψ0(ei,n),Ψ0(ei′,j′)] = [z−1
n Yi −

∑
p<n

z−1
n zpEi,p + zi∂n, Ei′,j′ + zi′∂j′ ]

= �2
(
−δij′z

−1
n Yi′ − z−1

n zi′Ei,j′ + δij′
∑
p<n

z−1
n zpEi′,p

+ z−1
n zi′Ei,j′ − δij′zi′∂n

)
= −�2δij′Ψ0(ei′,n).

◦ Verification of [Ψ0(ei,n),Ψ0(xj)] = −�2δjiΨ0(xn):

[Ψ0(ei,n),Ψ0(xj)] = [z−1
n Yi −

∑
1≤q≤n−1

z−1
n zqEi,q + zi∂n,−∂j +Xj ]

= −�2z−1
n Ei,j + δji �

2∂n + δji �
2
∑
q<n

z−1
n zqXq + z−1

n [Yi, Xj]

= −�2z−1
n Ei,j + δji �

2

(
∂n +

∑
q<n

z−1
n zqXq

)

+ �2z−1
n

(
Ei,j + δji

∑
i<n

Ei,i + δji ζ0

)
= −δji �

2Ψ0(xn).

◦ Verification of [Ψ0(ei,n),Ψ0(xn)] = 0:

[Ψ0(ei,n),Ψ0(xn)] = [z−1
n Yi −

∑
p<n

z−1
n zpEi,p + zi∂n,

− ∂n −
∑
j<n

z−1
n zjXj − z−1

n

(
ζ0 +

∑
j<n

Ej,j

)
]

= �2
(∑

p<n

z−2
n zpEi,p − z−2

n Yi + ziz
−2
n ζ0 + ziz

−2
n

∑
j<n

Ej,j

+ z−2
n Yi −

∑
j<n

zjz
−2
n [Yi, Xj ]

)
= 0.
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Once homomorphism Ψ0 is established, it is easy to check that the map

zk �→ yk, ∂k �→ y−1
n en,k, Ei,j �→ ei,j − yiy

−1
n en,j , ζ0 �→ −

∑
k≤n

ykxk −
∑
k≤n

ek,k,

Xj �→ xj + y−1
n en,j , Yi �→

∑
1≤q≤n

yq(ei,q − yiy
−1
n en,q)

provides the inverse to Ψ0. This completes the proof of the lemma. �
• Decomposition isomorphism H�,−1(sp2n)

∧v ∼= H
′
�,0(sp2n−2)

∧0⊗̂C[[�]]W
∧v

�,2n

HereH
′
�,0(sp2n−2) is defined similarly toH�,0(sp2n−2) with an additional central

parameter ζ0 and the main relation being [x, y] = �2ζ0r0(x, y), whileH�,−1(sp2n):=
U�(sp2n � V2n).

Notation: We use yk, uk,l := ek,l + (−1)k+l+1e2n+1−l,2n+1−k when referring to
the elements of H�,−1(sp2n) and Yi, Ui,j := Ei,j +(−1)i+j+1E2n−1−j,2n−1−i when

referring to the elements of H
′
�,0(sp2n−2). Note that {uk,l}k+l≤2n+1

k,l≥1 is a basis of

sp2n, while {Ui,j}i+j≤2n−1
i,j≥1 is a basis of sp2n−2. We use indices 1 ≤ k, l ≤ 2n and

1 ≤ i, j ≤ 2n− 2. Finally, set v1 := (1, 0, . . . , 0) ∈ V2n.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 29. Define ψ1(uk,l) := zk∂l + (−1)k+l+1z2n+1−l∂2n+1−k for all k, l. We
also define

ψ0(u1,k) = 0, ψ0(ui+1,1) = Yi, ψ0(ui+1,j+1) = Ui,j, ψ0(u2n,1) = ζ0.

Formulas Υ−1(yk) = zk,Υ(uk,l) = ψ0(uk,l) +ψ1(uk,l) give rise to an isomorphism

Υ−1 : H�,−1(sp2n)
∧v1

∼−→ H
′
�,0(sp2n−2)

∧0⊗̂C[[�]]W
∧v1

�,2n.

The proof of this lemma is straightforward and is left to an interested reader.

• Finally, we have the case of g = sp2n, m = 0.

There is also a decomposition isomorphism

Υ0 : H�,0(sp2n)
∧v ∼−→ H�,1(sp2n−2)

∧0⊗̂C[[�]]W
∧v

�,2n.

This isomorphism can be made explicit, but we find the formulas quite heavy and
unrevealing, so we leave them to an interested reader.
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