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The first half of the paper has an expository role. However, the author feels that it
is worth recalling the geometric and representation theoretic aspects of the quantum
toroidal algebra of gl;, since in many cases they admit parallel counterparts for the case
of the affine Yangian of gl;.

The other source of motivation comes from the similarity between these theories for
the gl and sl,, cases. In particular, most of the results from this paper admit the corre-
sponding analogues for the quantum toroidal and affine Yangian algebras of sl,,. As such
analogues are generally much more technical, they will be addressed separately in the
forthcoming publications. Let us mention some new results of the current paper which
admit sl,-generalizations:

— We treat the sl,,-generalizations of Theorems 5.4, 5.5, 5.8, 5.9 in [22].

— We treat the sl,-generalization of Proposition 8.2 in [21].

— We treat the sl,-generalization of Proposition 8.3 in [9].

— We treat the sl,-generalizations of Proposition 4.4, Theorem 6.6, and Corollary 6.7
in [23].

o/

— We construct homomorphisms Uél’q%qs (aly) = Y, hyns(5ln) generalizing T in [23].

This paper is organized as follows:

e In Section 1, we recall the definition and discuss some basic properties of the quan-
tum toroidal algebra Uy, 4,.4,(gl1). A similar class of algebras was first considered in [4].
This algebra was rediscovered later by different groups of people in [2,8,12] (see Re-
mark 1.1).

We also introduce the key object of this paper, the affine Yangian th,hz,hs (gly). This
algebra was considered by the author and B. Feigin in an unpublished work, where
it was viewed as a natural “additivization” of Uy, 4,4, (gl;) in the same way as Y;(g)
is an “additivization” of U,(Lg). The only non-trivial relations (Y4’) and (Y5') were
determined from the requirement that this algebra should naturally act on the sum of
equivariant cohomology groups of the Hilbert schemes of points on A2. As pointed out
by the referee, this algebra also appeared in [1], where the authors proved that it is
isomorphic to the algebra SH from [20].

e In Section 2, we recall the Uy, 4, 4,(gl;)-action on the direct sum of equivariant K-
groups of the Hilbert scheme of points on A%, discovered simultaneously in [8,19]. We also
formulate a similar result about the th,h% ns (911 )-action on an analogous sum of equiv-
ariant cohomologies, discovered by Schiffmann—Vasserot in [20] and Feigin—Tsymbaliuk
(unpublished). We conclude that section by sketching our proof of this result, which is
completely parallel to [8] with only one modification (Lemma 2.4) required.

e In Section 3, we present the generalizations of the results from Section 2 to the
Gieseker moduli spaces M(r,n) (also known as the instanton moduli spaces). In the
r =1 case, we have M (1,n) ~ (A?)[") and we recover the actions from Section 2.

e In Section 4, we recall some series of Uql,q2,qs (gly)-representations discovered in [5,6].
Those are constructed from the simplest family of vector representations V(u) by using
the formal coproduct on Uy, 4,.4,(gl1). The simplest example of representations from
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the category O are the Fock representations F(u), whose basis is labeled by all Young
diagrams.

We introduce the analogous wvector representations “V(u) of Vi, n, ns(al;), as well as
the Fock representations ®F'(u), which are of particular interest for us. We also prove
that the representations of geometric origin from Section 3 are the tensor products
of the aforementioned Fock representations. We conclude that section by introducing
appropriate categories O and generalizing the standard result of [3] to the current set-

tings.
e In Section 5, we describe the limits of the appropriately renormalized algebras
Ul 4sas(@ly) and Y}Zl,hz,ha (gly) as g3 — 1 and hg — 0, respectively. The resulting limit

algebras are closely related to central extensions of the algebras of difference operators
on C* and C.

.. !
e In Section 6, we construct a homomorphism Y : Uy . (gly) = Y, 4, p.(gl). In
the limit h3 — 0, this homomorphism is induced by a natural isomorphism between the
completions of the aforementioned algebras of difference operators. This construction is

—

motivated by the corresponding homomorphism U,(Lg) — Y3 (g) from [10].

We also prove that the formal algebras Uéhq%% (gly) and Yhil,hz,hg (gly) are flat defor-
mations of their limits Uy .. .. (gl1)/(gs — 1) and Yy ;. (gl;)/(h3). In particular, this

implies that Y is injective. We also establish the faithfulness of the action of the two
algebras in interest on the sum of the representations from Section 3.

e In Section 7, we recall the definition of the small shuffle algebra S™ and its com-
mutative subalgebra A™, which played a crucial role in [8]. We introduce its additive
analogue S® and the corresponding commutative subalgebra A“.

e In Section 8, we discuss a horizontal realization of Uql,qz’qs (gl;), under which the
Fock representations F'(u) correspond to the vertex type representations p. from [7]. The
representations p. provide a new viewpoint towards the commutative algebra A™ (see [9]
for more details). We conclude that section by introducing and discussing properties of
the Whittaker vectors (see also [20] for the cohomological case).

e In Appendix, we present main computations.

1. Basic definitions

In this section, we introduce two associative algebras Uy, 4,.45(61) and i, n, 5, (aly),
which are the key objects studied in this paper.

1.1. Quantum toroidal algebra of gly
Let q1,q2,q3 = ¢* € C* satisfy q1¢aq3 = 1, while ¢/ # 1 for any m € N,i € {1,2,3}.

The quantum toroidal algebra of gl;, denoted by Uy, 45.4:(al1), is the unital associative
C-algebra generated by {e;, fi, 1, ¥y '|i € Z} with the following defining relations:

oy =gt o =1, [WF(2), 0T (w)] =0, [¥T(2),Y (w)]=0,  (T0)
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e(2)e(w)(z — rw)(z — gew) (2 — gzw) = —e(w)e(z)(w — q12)(w — g22)(w — g32), (T1)

FEf(w)(w = qiz)(w = g22)(w = g32) = = f(w) f(2) (2 = qw)(z = w)(z — gzw), (T2)

0(z/w)

(1—-q)(1—g2)(1 —q3)(1’/)+(w) —¢7(2)), (T3)

[e(2), f(w)] =

F(2)e(w)(z—qrw) (2 — qew) (z—gsw) = —e(w)™ (2)(w—q12)(w—q22) (w—qgs2), (T4)
PE(2) f(w) (w—q12)(w—qo2) (w—gs2) = — f(W)PT(2) (z— qw) (z— gaw) (2 —qzw), (T5)

Sym@g [eiw [ei2+17 eis—l]] =0, Sym63 [fiw [fi2+17 fiB—lﬂ =0, (T6)

where these generating series are defined as follows:

e(z) = Z ezt f(z) = Z fiz ™8 E(2) = ! +Z?/Jijz¢j, 0(z) == Z 2t

i=—00 i=—00 7>0 i=—00

The relations (T0-T5) should be viewed as collections of termwise relations which can be
recovered by evaluating the coefficients of z*w! (k,1 € Z) on both sides of the equalities.

Remark 1.1. The first reference of such algebras (but without the Serre relation (T6))
goes back to [4]. To distinguish, we refer to the algebra with the same collection of
generators and the defining relations (T0-T5) as the Ding—Iohara algebra, see [8]. These
algebras also appeared independently in the work of Burban and Schiffmann (see [2,
Section 6]) as a direct specialization of Kapranov’s theorem to the case of elliptic curves,
and later with the Serre relation in the work of Schiffmann (see [18]) on the Drinfeld
realization of elliptic Hall algebras. The algebra Uy, 4,.4;(gl;) was studied in [5,6] under
the name quantum continuous gl... We would like to thank the referee for pointing
out that the algebra Uy, 4,.4,(al;) also appeared independently in the work of Miki on
quantum deformations of Wi, see [12].

1.2. Some properties of Uy, 42.45 (011

Let U° be the subalgebra of Uy, 4,.4;(0l;) generated by {1;, %, " }icz. It is often more
convenient to use the generators {¢i!, t;}icz- of U (here Z* := Z\{0}), defined via

U (2) =Yg exp <3F > %mtimﬁm> , where B, := (1 —q1")(1 —g3")(1 — ¢3").

m>0

This choice of ¢; is motivated by the following two basic results.
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Proposition 1.1. The relations (T4,T5) are equivalent to
[wo,eﬂ =0, [ti,ej] = €j+j fO’f'i S Z*7 j €7, (T4t)

[w()afj]:()ﬂ [thfj]:*fi—i-j fOTiGZ*, ]GZ (T5t)

Proof. The proof of this proposition follows formally from the identity

log ((Z—ql_lw)(z—qilw)(z—q?,_ltlJ)) oy

(2 — qw)(z — qw)(z — gsw)
where the left-hand side is expressed as a Taylor series in w/z. O

Proposition 1.2. If the relations (T4t,T5t) hold, then (T6) is equivalent to

[eo, [e1,e-1]] =0, [fo,[f1, f-1]] = 0. (T6t)

Proof. Setting i1 = is = i3 = 0 in (T6), we get (T6t). Let us now deduce (T4t),
(T5t),(T6t)=(T6). We consider only the case with {e;} (the case with {f;} is completely
analogous). For any i € Z*, define the operator T; : Uy, .45 (011) — Ugy n.as (811) via
T;: X — [t;, X] = t;X — Xt;. Combining the relation (T4t) with the algebraic equality

[t, [a, [b, ]]] = [[t, al, [b, ¢]] + [a, [[¢, 0], ]] + [a, [b, [t, 1],

we get

TilTileia - Ti1+12Ti3 - ﬂ1+i3ﬂ2 - Ti2+isTi1 + 2Ti1+’i2+i3 : [607 [61’ 6_1]]

= Symg, [€i, [€iy11, €i5—1]],
where we set T := 3Id. This completes our proof. O

Let U~ and U* be the subalgebras of Uy, 4, (al;) generated by {f;} and {e;},
respectively. We conclude this section by the standard result (see Appendix A for a
proof):

Proposition 1.3. (a) (Triangular decomposition for Uy, 4 .q5(al1)) The multiplication map
m:U-eU°Ut — Uqhqz’qg (gly) is an isomorphism of vector spaces.

(b) The subalgebras U—, U+, U° are generated by {f;}, {ei}, {1, ¢y} with the defin-
ing relations (T2,T6), (T1,T6), and (T0), respectively.
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1.8. Affine Yangian of gl;

Let hq, ho, hs € C satisfy hy + ho + hg = 0. The affine Yangian of gl;, denoted by
Vi, hoohs (811), is the unital associative C-algebra generated by {e;, f;,v;|j € Z4} (here
Zy :=NU{0}) with the following defining relations:

[vhi, ¥5] = 0, (Y0)
[6i+3,€j] - 3[6¢+2,€j+1} + 3[€i+17 ej+2] - [eiv 6j+3] + 02([6i+17 ej] - [ei? 6j+1])
= 03{61',63'}7 (Y1)
[fi+3, [5] = Bl fit2, fi1) + 3 fix1, fi+2] — Lfis fis] + o2([fit1, f] — [fis fi+1])
= —a3{fi, i}, (Y2)
[eia f]] = ¢i+j7 (YS)

[Vita, €j] = 3[Yita, ejr1] + 3[Yit1, ej12] — [Yi, ej43] + o2([Yit1, €5] — [, €j41])
= 03{1/11" ej}a (Y4)

[Y0,e5] =0, [P1,e5] =0, [i2,e;] = 2ey, (Y4')

[Vits, fi] = 3[itas fj+1] + 3[isa, i) — [Wi, fits] + o2([Yiv1, ] — [ fi41])

= —os{i, fi}, (Y5)
[¢vaj] :07 [whfj] :07 [w%f]] = _2fj7 (Y5/)
SymGg[eil’ [eiw ei3+1]] =0, Sym63 [filv [fizvfierl]] =0, (Y6)

where i,j € Z and we set {a,b} := ab+ ba, o9 := h1hy + hi1hs + hohg, 03 := hihahs.

Remark 1.2. This algebra can be considered as a natural “additivization” of Uy, 4, 4, (g1)
in the same way as the classical Yangian Y3 (g) is an “additivization” of the quantum
loop algebra Uy(Lg). The relations (YO-Y6) were obtained jointly with B. Feigin in an
unpublished work. To the best of our knowledge, the first written reference goes back
to [1, Section 3.2] (with the particular choice {hq1,h2,hs} = {1, —k,x — 1}), where it
was shown to be isomorphic to the algebra SH® from [20]. The same algebra was also
implicitly considered in [11].

1.4. Some properties of Vi, hy.ns(6h)
Define the generating series

6(2) = Zejz_j—17 f(z) = ijz_j—17 w(z) =14 USZ"/JjZ_j_l.

j=0 j=0 j>0



A. Tsymbaliuk / Advances in Mathematics 304 (2017) 583—645 589

Let Y=, Y% Y+ be the subalgebras of Yi,, 4,.n;(gl;) generated by {f;}, {«;}, and {e;},
respectively. Let Y= and Y= be the subalgebras of th,hz,h3 (gl,) generated by YO, V+
and YO, Y, respectively. The following is analogous to Proposition 1.3:

Proposition 1.4. (a) Y° is a polynomial algebra in the generators {1;}.

(b)Y~ and Y+ are the algebras generated by { f;} and {e;} with the defining relations
(Y2,Y6) and (Y1,Y6), respectively.

(¢) Y= and Y= are the algebras generated by {1;, f;} and {1;,e;} with the defining
relations (Y0,Y2,Y5 Y5 Y6) and (Y0,Y1,Y4,Y4' Y6), respectively.

(d) Multiplication induces an isomorphism of vector spaces

m:Y~ ® Yo ® Y+;>Yh1,h2,h3 (g[l)
Let us consider the algebra homomorphisms
+ o> s )
o7 Y= = Y= determined by v; — 1, €; — €41
and
o~ :YS = Y= determined by Vi =5, fi— fit1.
These are well defined due to Proposition 1.4. Let

M th,hzﬁa (9[1)®2 - Yh17h27h3 (g[l)

be the multiplication. The following result is straightforward:

Proposition 1.5. Define Uﬁ)(a ®b) :=oF(a) @b and Ué)(a ®b) :=a® ot (b). We also
set P(z,w) := (z —w — hy)(z —w — ha)(z —w — h3). Then:
(a) The relation (Y0) is equivalent to [1(2), 1 (w)] = 0.

(b) The relation (Y1) is equivalent to
D3 u(P(z, U(E))e(z) ®e;+ P(G'(JE), z)e; @e(z)) =0 forjeZ;.
(¢) The relation (Y2) is equivalent to
u(P(05), ) (2) & f; + P(5,03))f; @ F(2)) = 0 for j € Zs.
(d) The relation (Y3) is equivalent to
a3 - (w = 2)[e(2), f(w)] = P(2) — Y (w).
(e) The relations (Y4,Y4') are equivalent to

P(z,0")(2)e; + P(oT,2)ejp(z) =0 forj € Zy.
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(f) The relations (Y5,Y5 ) are equivalent to

P(o™,2)¢(2) fj + P(z,07) fi1(2) =0 for j € Z.
2. Representation theory via the Hilbert scheme
2.1. Correspondences and fized points for (A%)"

Throughout this section X = A2. Let X[™ be the Hilbert scheme of n points on X.
Its C-points are the codimension n ideals J C Clz,y]. Let P[i] c ][, XM x xr+i
be the Nakajima-Grojnowski correspondence. For ¢ > 0, the correspondence P[i| C
[1, X" x X"+ consists of all pairs of ideals (J;, J2) of C[z,y] of codimension n, n+i
respectively, such that Jo C J; and the factor Ji/Js is supported at a single point. It is
known that P[1] is a smooth variety. Let L be the tautological line bundle on P[1] whose
fiber at a point (Ji,J2) € P[1] equals J;/Jo. There are natural projections p,q from
P[1] to X" and X"+ correspondingly.

Consider a natural action of T = C* x C* on each X[ induced from the one on X
given by the formula (t1,t5) - (z,y) = (tiz,t2y). The set (X")T of T-fixed points in
X[ is finite and is in bijection with size n Young diagrams. For such a Young diagram
A= (A1,..., M), the corresponding ideal Jy € (X[™)T is given by Jy = C[z,y]- (Cz*y°®
<@ CaxMeyh—L @ Cyk).

Notation. For a Young diagram ), let \* be the conjugate diagram and define [A| := > A;.
For a box O with the coordinates (¢, j), we define ax(0) := X; — 4, [,(O) := Af — j. The
diagram obtained from A by adding a box to its jth row is denoted by A+, or simply
by A+ .

2.2. Geometric Uy, 4,.45(0l1)-action I

Let ' M be the direct sum of equivariant (complexified) K-groups: 'M = @, KT (X").
It is a module over KT (pt) = C[ti!,t51]. Set t3 := t; ;" € C(ty,tz) = Frac(K"(pt))
and consider a quadratic extension F = C(t1,t2)[t]/(t*> — t3). We define

M = /M ®KT(pt) F

It has a natural grading: M = @, M,, M, = KT(X[]) ®k1(pt) F. According to
the localization theorem, restriction to the T-fixed point set induces an isomorphism
KXY @per ey F = KT((X)T) @ ger () F. The structure sheaves {A} of the T-fixed
points J (defined in Section 2.1) form a basis in @@, KT((X")T) ®@gr () F. Since
embedding of a point Jy into XM is a proper morphism, the direct image in the
equivariant K-theory is well defined, and we denote by [\] € M|y the direct image of
the structure sheaf {A}. The set {[A]} forms a basis of M.
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Let § be the tautological vector bundle on X" whose fiber at a point J € X" equals
the quotient C[z,y]/J. Consider the following generating series a(z),c(z) € M(z):

a(z) =A%,.(8) = Y IN@®I(-1/2)",

i>0

c(2) := a(zty)a(ztr)a(ztz)a(zt; ) ta(zty ) tazty )7L

Finally, we define the linear operators e;, f;,¥i, 1 * (i € Z) acting on M:

€ = q*(L®Z ® p*) : Mn — Mn+17 (1)
fi=—t"1p L2V @q*): M, — M,_1, (2)
0o ) T | +
o =i+ ve = (e e IImanl @)

where 7(2)* denotes the expansion of a rational function (z) in z¥!, respectively.

Theorem 2.1. The operators e;, fi, i, ", defined in (1-3), satisfy the relations (T0-T6)
with the parameters ¢; = t;. This endows M with the structure of Ug g0.q:(801)-
representation.

Remark 2.1. This theorem was proved simultaneously and independently in [8] and [19].
2.3. Geometric Yi, py.ns (gly)-action T

Let 'V be the direct sum of equivariant (complexified) cohomology: 'V = @, HH(X["]).
It is a module over H}(pt) = C[t] = C[s1, s2], where t is the Lie algebra of T. We define

V="V ®Hs (pt) Frac(HY.(pt)) ="V ®C[sy,50] C(51,82)-

It has a natural grading: V = @, V,,, V;, = H3(X ™) @ (pt) Frac(Hy(pt)). According
to the localization theorem, restriction to the T-fixed point set induces an isomorphism

H2 (X ) @piz (o) Frac(HA(pt)) =+ HA((X)T) @pa pr) Frac(Hi(pt)).

The fundamental cycles of the T-fixed points Jx form a basis in @, H$.((X ™! 1) @ks (pt)
Frac(H$(pt)). Since embedding of a point Jy into X! is a proper morphism, the direct
image in the equivariant cohomology is well defined, and we denote by [A] € V] the
direct image of the fundamental cycle of the point Jy. The set {[\]} forms a basis of V.

Consider the following generating series C(z) € V[[z7!]]:

C(z) :— Ch(gtl_l,*zfl)ch(gt;l,fzfl)ch(gtg—l,,zﬂ) +
) ._< ch(§t1, —271)ch(Fta, —271)ch(Fts, —271) ) ’

where ch(F, ) denotes the Chern polynomial of F. We also set s3 := —s1 — sa.
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Finally, we define the linear operators e;, f;,%; (j € Z4) acting on V:

ej =q«(c1(L)? -p*): Viy = Viga, (1)

fi=pucr(LY - q") s Vo= Voo, (2)

U(z) =1+ 515983 Yz 71 i= (1 - s3/2)C(2) € [[End(Vo)[[z7')).  (3)

=0

Theorem 2.2. The operators e;, fj,%;, defined in (1'-5"), satisfy the relations (Y0-Y6)
with the parameters h; = s;. This endows V with the structure of Yh17h27h3 (gly)-represen-
tation.

Remark 2.2. This result is a natural “cohomological” analogue of Theorem 2.1. It was
obtained jointly with B. Feigin in an unpublished work. The first written reference goes
back to [20] (to be precise, in [20] an action of an algebra SH® on the space V was
constructed, and in [1] it was shown that SH€ is isomorphic to the affine Yangian of gl;).

In the remaining part of this section, we explain how the proof of Theorem 2.1 from [8]
can be adapted almost automatically to the cohomological case of Theorem 2.2. We start
with an explicit computation of the matrix coefficients of e,, fp, ¢ (z) in the fixed point
basis {[A]} of V. For a linear operator A € End(V'), we use A|[5 ] to denote the coefficient
of [pu] in A([A]). We also set x(0; ;) := (¢ — 1)s1 + (j — 1)s2 for a box 0; ; located in the
jth row and ith column.

Lemma 2.3. (a) The only nonzero matriz coefficients of the operators e,, f, are as follows:

((>\z — 1)81 + (Z — 1)52);0 ) ()\] -\ + 1)51 + (] — 1+ 1)82
S1 + SQ)((Al — )\1 + 1)81 + (1 — 2)82) i>1 (>‘j+1 — )\1 + 1)51 + (j — 1+ 1)527

EplIA—i,A] = (

()\isl —+ (l — 1)82)1)(()\1 — )\1 —+ 1)81 —+ 7:82) H (/\1 — >‘j+1 —+ 1)81 —+ (Z — j)SQ

Tplnrin = 51+ 52 (N =X+ D)sp+ (6 —j)sa

Jj=1

(b) ¥(2) is diagonal in the fized point basis and the eigenvalue of 1 (z) on [A] equals

+
_((_% (z = x(0) + s1)(z = x(O) + 52)(z = x(O) + s3)
¢(2)|A—<(1 z)ljl_[a(z—x(m)—s s )—83)) '

This is a “cohomological” analogue of (8, Lemma 3.1, Proposition 3.1]. Using this
result, proof of Theorem 2.2 is reduced to a routine verification of the relations (Y0-Y6)
in the fixed point basis. The only non-trivial relation is (Y3). A similar issue in the case
of K-theory was resolved by [8, Lemma 4.1]. We conclude this section by proving an
analogous result:
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Lemma 2.4. Consider the linear operator ¢; ; = [e;, f;] acting on V.
(a) The operator ¢; ; is diagonal in the fized point basis {{\]} of V.
(b) For any Young diagram A, we have ¢; ;([A]) = Vitily - [A], where

~ QZy ﬁ —yits2)(y;—yitsitse) yitsit(l—k)sa
b "iZier Wimuly -yt s —yi + ks2
k ji
- m Yi —Yi+ S2 —Y; + 81+ S2 Yi + 281 + 1—k)so
5122(%4—81) H ( )i — j ) . ( ) )
i=1 1<j<k (i —vi)(yi —y; + s1) —yi — 851+ ksa

Here y; := (A; — 1)s1 + (i — 1)s2 and k is a positive integer such that A\, = 0.
(¢) For any Young diagram X\, we have

Yo, = —1/s182, M), =0, 72, =2[Al

Proof. Parts (a) and (b) follow from Lemma 2.3(a) by straightforward calculations.

Let us now prove part (c). For m > 0, the expression in the right-hand side of (f) is
a rational function in y; with the only possible (simple) poles at y; = y;, yi = y; + s1,
y; = ksa, y; = —S1 + ksa. A straightforward computation shows that the residues at
these points are in fact zero. Therefore, 7., |, € C(s1,52)[y1,¥2,...] for m > 0.

o Case 1: m = 0.

Since 7o, is a polynomial in y; of degree < 0, it must be an element of C(s1,s2)
independent of A. Evaluating at the empty diagram, we find o), = 70, = —1/s182.

o Case 2: m = 1.

The eigenvalue 71|, is a polynomial in y; of degree < 1. However, the limit of the
right-hand side of () with m =1 as y;, — oo while y; are fixed for all j # 4 is finite
for any index ig. Therefore, 71, must be a degree 0 polynomial. Hence, 71/, = 1), = 0.

o Case 3: m = 2.

Recall that 2|, is a polynomial in y; of degree < 2. Arguments similar to the above
show that 72, is actually a degree < 1 polynomial in y;. Let us now compute its principal
linear part. The coefficient of y;, equals the limit glg{.lo %72| , as yj; is fixed for j # ip and

Yi, = & — 00. By () this is just % Therefore, there exists F(s1,s2) € C(s1,s2) such
that 72|, = %@1 +y2+...)FF(s1,82) = 2|A|+ F(s1,82), where gj; :=y; — ((i—1)s2—$1)
(the sequence {y;} stabilizes to 0 as i — oo, unlike {y;}). Evaluating at the empty Young
diagram, we find F(s1, s2) = 72|, = 0. The equality 72|, = 2|A| follows. O

Arguments similar to those from [8] imply vy, = ¥m,, (see also Appendix B).

Remark 2.3. Due to Lemma 2.3(b), the next )-coefficient acts in the following way:

1/)3“—62 )+ 2(s1 + s2)|Al.

Oex
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In particular, %(1/}3 + s31)9) corresponds to the cup product with ¢;(F). This operator
was first studied by M. Lehn. It is also related to the Laplace—Beltrami operator (see [15,
Section 4]).

3. Representation theory via the Gieseker space

The purpose of this section is to provide generalizations of the results from Section 2 to
the higher rank r cases, that is, replacing (A?)["] by the Gieseker moduli spaces M (r, n).

3.1. Correspondences and fized points for M (r,n)

We recall some basics on the Gieseker framed moduli spaces M (r,n) of torsion free
sheaves on P? of rank r with co = n. Its C-points are the isomorphism classes of pairs
{(E,®)}, where E is a torsion free sheaf on P? of rank r with cy(E) = n, and which is
locally free in a neighborhood of the line lo = {(0 : 21 : 22)} C P?, while ® : E}, ;)Ol@o:
(called a framing at infinity).

This space has an alternative quiver description (see [14, Ch. 2] for details):

M(r,n) = M(r,n)/GL,(C), M(r,n) = {(B1, Ba,1,7)|[B1, B2] +ij = 0}°,

where By, Bs € End(C"),i € Hom(C",C"),j € Hom(C",C"), the GL,(C)-action is
given by g-(B1, Bo,i,j) = (9B1g~',gB2g~ 1, gi, jg~ 1), while the superscript s symbolizes
the stability condition “there exists no subspace S C C” such that B,(S) C S (a =
1,2) and Im(7) C S”. Let §, be the tautological rank n vector bundle on M (r,n).

Consider a natural action of T, = (C*)? x (C*)" on M (r,n), where (C*)? acts on P?
via (t1,t2) - ([20 : 21 @ 22]) = [20 : t121 : taza], while (C*)" acts by rescaling the framing
isomorphism. The set M (r,n)" of T,-fixed points in M (r,n) is finite and is in bijection
with r-tuples of Young diagrams X = (A, ..., \") satisfying || := [A\'| + ...+ |\"| = n,
denoted by A F n (see [16, Proposition 2.9]). For such A, the corresponding point &5 €
M (r,n)™r is represented by (Ey, ®y), where Ey = Jy1 & -+ @ Jy» and @5 is a sum of
natural inclusions Jy;|, < 0.

Following [13, Section 5], we recall the Hecke correspondences, which generalize P[1]
from Section 2.1 to the higher rank r cases. Consider M(r; n,n+1) C M(r,n) xM(r,n+1)
consisting of pairs of tuples {(B§’“), Bék), i), 5} for k = n,n41, such that there exists
£:C"T — C" satisfying

By = BIVE eBY = BYVE gttt =i, D = e,

The stability condition implies € is surjective. Therefore S := Ker & ¢ C*! is a
1-dimensional subspace of Ker j("*1) invariant with respect to BE”H), B§”+1). This pro-
vides an identification of M(r;n,n + 1) with pairs of (B§"+1),Bénﬂ),i("“),j(”“)) €
M(r,n + 1) and a 1-dimensional subspace S C C"*! satisfying the above conditions.
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Taking the latter viewpoint, we define the Hecke correspondence M (r;n,n + 1) as the

quotient M (r;n,n+1) = M(r;n,n+1)/GLy4+1(C). Let L, be the tautological line bun-

dle on M(r;n,n + 1), while p,,q, be the natural projections from M(r;n,n + 1) to

M(r,n) and M(r,n + 1), correspondingly. The set M (r;n,n + 1)T* of T,-fixed points in

M (r;n,n + 1) is in bijection with pairs of r-tuples of Young diagrams A - n, ji - n + 1

such that A/ C 7 for 1 < j <r; the corresponding fixed point will be denoted by &5 .
Our computations are based on the following well-known result (see [13,16]):

Proposition 3.1. (a) The variety M (r;n,n+1) is smooth of complex dimension 2rn+r+1.
(b) The T,-character of the tangent space to M(r,n) at the T,-fized point &5 equals

_ 0 " . _ O
7= 3 X | ST e @@ § e (1 e ©)
a,b=1 Oea Oeab

(¢) The map (pr,qr) : M(r;n,n+1) = M(r,n) x M(r,n+ 1) is a closed immersion
and the T,.-character of the fiber of the normal bundle of M (r;n,n+ 1) at &, €quals

s
- O (O o (O —1,, (0
M= tta 30 2 [ 3 GO L O D
a,b=1 Xa Oee Oeub

3.2. Geometric Uy, 4,.4:(81y)-action IT

Let 'M" be the direct sum of equivariant (complexified) K-groups: 'M"™ =
@, K™ (M(r,n)). It is a module over K™ (pt) = C[T,] = C[ti*, 3" xi", ..., x;.
Consider a quadratic extension F, = Frac(K™"(pt))[t]/(t* — t3), where t3 := t;'t;* €
Frac(K " (pt)). We define

M":="M" QKT (pt) F,.

It has a natural grading: M"™ = @, M}, M} = K" (M(r,n)) ®r, (p) Fr. By
the localization theorem, restriction to the T,-fixed point set induces an isomorphism
KT (M(r,n)) ®gere oy Fr — KT (M (r,n)") ® g, (pt) Fr. The structure sheaves {A} of
the T,-fixed points &5 form a basis in @,, K (M (r,n)") @ gr. (o) Fr. Since embedding
of a point &5 into M (r,|\|) is a proper morphism, the direct image in the equivariant

K-theory is well defined, and we denote by [\] € M/, the direct image of the structure

_ _ BY
sheaf {A}. The set {[\]} forms a basis of M".
Consider the following generating series a,(z),c,(z) € M"(z):

ar(2) =A%, .(3) =) IN@)I(-1/2)",

>0

c,(2) == a.(zt)a,(zta)a.(2t3)a, (2t 1) ta,(2ty 1) ta(st3 1) 7
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Finally, we define the linear operators e;, f;, ¥, ¥g ! (i € Z) acting on M":
ezzqr*(L?i(@p:): Mr_>M+17 (4)
fi= (=)o e (LT @ an) - My = My, (5)

+ _ apEl - e 12 1_tXa / - r F1
@) = v+ e = ([ 2 Leo) e [aonEr) ©

a=1 1/2

Theorem 3.2. The operators e;, fi, 1,0y ", defined in (4-6), satisfy the relations (T0-T6)
with the parameters q; = t;. This endows M7 with the structure of Uy, 4y.q5(811)-
representation.

Remark 3.1. This higher rank generalization of Theorem 2.1 first appeared in [19].

We refer the interested reader to Appendix B, where it is explained how the proof of
Theorem 2.1 from [8] can be easily adapted to the general rank r case. We conclude this
section by computing explicitly the matrix coefficients of e, f,, 9% (z) in the fixed point
basis of M".

Lemma 3.3. Consider the fized point basis {[\]} of M". Define X(a = t)"“ ltk ot

a
(a) The only nonzero matriz coefficients of the operators ey, f, are as follows:

l r oo a l
CplA-01 5] = o L=t /g
= — a l ’
: ' 1=tity oy 1-— thI(c )/xﬁ)

f (—t)2y Ly oL (tlx(”)p I ﬁ 1- t1t2X§l)/X§€a)
Ix+05.4 = 1T Ar 77' IEPNOTNCON
p J 1 tltg a1 ket 1— t1X§ )/ch )
where X + Dl denotes the r-tuple of diagrams (A,... N7 A 44, XHL A7),
(b) YE(z ) is diagonal in the fixed point basis and the ezgenvalue of 1/1i( ) on [\ equals
¢i(2)|x =
+
Ht 1—lfxal/zH H (1 -t 'x(O)/2) (1~ t3'x(O)/2) (1 — t5 ' x(O) /=)
e @) O/~ Bx O

where X(D;{j) zfZ lt] ! Xa ! for a box U3 ; located in the jth row and ith column of A®.
3.8. Geometric Yi,, ny ny(gly)-action IT

Let 'V" be the direct sum of equivariant (complexified) cohomology: V" =
D, Ht (M(r,n)). It is a module over H} (pt) = C[t,] = C[sy,s2,71,...,2,], where
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t, is the Lie algebra of T,.. We define
V= /VT ®H.Er(pt) FraC(Hﬁ.Tr (pt)) = IVT ®C[31732,m1,...,zr] C(Sh 52, L1y .- 7xr)~

It has a natural grading: V" = @, V;7, V7 = H} (M(r,n)) ®pe () Frac(Hy, (pt)).
According to the localization theorem, restriction to the T,-fixed point set induces an
isomorphism

Hy (M(r,n)) ®ns (o) Frac(Ht, (pt)) 5 HY (M(r,n)™) ®ms (pt) Frac(HE (pt)).

The fundamental cycles of the T,-fixed points {5 form a basis in €, Hy (M (r, n)tr)
®mue (pt) Frac(Hf (pt)). Since embedding of a point £y into M(r, |A\]) is a proper mor-
phism, the direct image in the equivariant cohomology is well defined, and we denote by

A\ € V5 the direct image of the fundamental cycle of the point ¢5. The set {[\]} forms

a basis of V.

Set s3 := —s1 — s2. Consider the following generating series C,.(z) € V"[[z71]]:

Co(2) = <Ch(3rt117—2_1)Ch(3rt21,—2_1)ch(Srt31,—z_1)>+
M TGt e e (@te 2 Deh(§ t—2 1) )

Finally, we define the linear operators e;, f;,%; (j € Z4) acting on V7:

ej = dre(ci(Ly) - py) 0 Vi = Vi, (4)

fi= (0" pra(ea(Le) - qf) Vi = Vi, ()

oo r +
$(2) =1+ 518983 bz 0 = <H Zti;‘ﬂ - Cr(2) € [] Bnd(V)[[=71]].
j=0 @ n
(6")

a=

Theorem 3.4. The operators ej, fj,v;, defined in (4 ~0"), satisfy the relations (Y0-Y6)
with the parameters h; = s;. This endows V" with the structure of th,h2,hs (gly)-represen-
tation.

Remark 3.2. This result is a natural “cohomological” analogue of Theorem 3.2. It was
obtained jointly with B. Feigin in an unpublished work (motivated by its K-theoretical
version from [19]): we sketch our proof in Appendix B. The first written reference goes
back to [20].

We conclude this section by computing explicitly the matrix coefficients of e, fp, (%)
in the fixed point basis {[A]} of V.
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Lemma 3.5. Define xffa) = (Ap=Dsi+(k=1)se—xa, x(OF;) := (i—1)s1+(j —1)s2— 4.
(a) The only nonzero matriz coefficients of the operators ey, f, are as follows:

(:c(.l))P T2 51+ 80+ x,(ca) - a:;l)

@0

a=lk=1 S1tTy
(s1+ w§l))” . ﬁ ﬁ $1 4 89 + x(l) — x,(ca)

a=lk=1 51 "'x(l) oy

foirtot 5 = (-t

(b) (2) is diagonal in the fived point basis and the eigenvalue of (z) on [N equals

P(z2)) =

X

<ﬁ Z+Tq — 83 H H —x(0) +s1)(z — x(O) + s2)(z — x(O) +

+
83)
a1 A% o = x(@) - 81)(Z—X(D)—82)(Z—X(D)—33)>'

Corollary 3.6. We have

rss 83y Tq+ (1)s3
e :1__+Z—2(2)

2= o~ (D5 S~ ()
23

+o(z73).
4. Some representations of Uy, 4,45 (611) and Yi, n, 0, (8l;)

In this section, we recall several families of Uy, 4, .4, (g, )-representations from [5,6] and
introduce their analogues for the case of Y}, n, 1, (gl;). We also establish the relation to
the representations from Sections 2—-3 and introduce the appropriate categories O.

4.1. Vector representations V(u) and *V (u)

The main ‘building block’ of all known Uy, 4, 4, (gl;)-representations is the family of
vector representations {V (u)}uec, whose basis is parametrized by Z (see [5, Proposi-
tion 3.1]).

Proposition 4.1 (Vector representation of U, .g0.45(811)). For u € C*, let V(u) be a
C-vector space with the basis {[u];}jcz. The following formulas define a Uy, 4545 (gl;)-
action on V(u):

e(2)[uli = (1 - q1)~'0(qiu/z2) - [ulisa,
f@)ul = (a7t = 1) 6(ai " u/z) - [uli-1,
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(= — gigu) (= — aiasw) \ *
vl = (CotenEda) oy,
(z—aqiu)(z —qi v
Define 6" (w) := 14w+ w? + ... = (12=)T. Our next result provides an analogous
construction of vector representations {*V (u)}uec for the case of Yy, n, 1, (gl1) (the proof
is straightforward and is left to the interested reader):

Proposition 4.2 (Vector representation of Yi, nyns(gly)). For u € C, let “V(u) be a
C-vector space with the basis {[u];}jez. The following formulas define a Vi, ny p,(aly)-
action on °V (u):

4
e(2)[u]; = h%zﬁ((ihl +u)/2)[u)iy1 = (W) “[uiy1,

_ +
POl = =6 (= D+ 0/ ludios = (e ) e

—il 2 u Z—il u +
w(z)[u}i:((z (ihy + ha +u))(z — (ihy + hs + ))> [l

(z = (thy + w))(z = ((i = Dh1 + u))

4.2. Fock representations F(u) and *F(u)

A more interesting family of Uy, 4,.4, (811 )-representations, whose basis is labeled by
Young diagrams {\}, was established in [5, Theorem 4.3].

Proposition 4.3 (Fock representation of Uy, 4,.45(0l1)). Foru € C*, let F(u) be a C-vector
space with the basis {|\)}. The following formulas define a Uy, 4,.45 (811 )-action on F(u):

i—j— 1)(1_q>\i*>\j+1qi—j+l)

ZH qlk(i\izg 3 :

3(ar gy 'u/2) :
VIS VS A+ 1),

o =g Ve (- g % ) L
A=At il Ajr1—Ni j—i
AN =g ﬁ (1—¢q" @HA =g g
=4 ( ;+1*>\i+1 j—it+1

S
i>1 j=i+1 q3 )(1_%'] ‘Z% l)

1_q1i+1—%‘ (5(q1 i—1 z 1u/z)

X o\, |)‘ - 7’>7
L—g M g gt 1
-1 -1 X o Aip1—1 i1 *
PE@)N) = gL 4 g u H (z —qi"gou)(z — ¢} 4 u) A
- ) Nor1 g :
—@tu =T gu)(z — g ey )

Remark 4.1. The Fock module F'(u) was originally constructed from V' (u) by using the

semi-infinite wedge construction and the formal coproduct structure on Uy, 4,.45(gl;)
defined by
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Ale(z) = e(z) @1+ 97 (2) ®e(2), Af(2)) = f(2) @97 (2) + 1@ f(2),
AW*(2) = ¢ (2) @ ¥ (2).

Remark 4.2. (a) According to [5, Corollary 4.5], there exist constants {cy} such that the
map [A] + cx|A) induces an isomorphism M-"5F (1) of Uy, 4,.4,(gl;)-representations,
where M is the representation from Theorem 2.1 and ¢; = ¢;.

(b) For u € C*, let ¢, be the shift automorphism of Uy, 4,.4,(gl;) defined on the
generators by

’(/}61 *—)wal, 1/1ir—>u7i-1/)i, eir—>u7i~ei, flr—>uﬂfl for i € Z.
Then the modules F(u) and V (u) are obtained from F'(1) and V(1) via a twist by ¢ /,,."

Let us analogously define Fock representations {*F(u)}yec for the case of
Yh17h2,h3(g[1)'

Proposition 4.4 (Fock representation of Yi, ny.ns(gl)). For u € C, let “F(u) be a
C-vector space with the basis {|\)}. The following formulas define a Ya, n,.n,(gl)-action
on *F(u):

Aj)hi + (i =5 = Dha)(Ai = Aj + DAy + (i — j + 1)ha)
;]Hl (6 9 T i W § vy 8 R
5+ (Aihl + (i ; 1)hy —|—u> A4,
_ =X+ Dhy+ (G =i+ Dh2)((Njp1 — Xi)ha + (j — i)ha)
flz)IN = hiz ;]111 Nt — A+ Db+ (G — i+ Dha) (g — A+ (j — D)ha) |

(/\i+1 — )\i)hl 5t ()‘z - l)hl + (Z — 1)h2 +u . ‘)\ — ’L>
()‘i+1 - /\z + 1)h1 + ha < ,

A = ﬁ )\ ihi +ihy +u))(z — (Nig1 — Dhy + (i — Dhy +u)) i
(z = (Nig1h1 +ihe +w)(z — (A — D)h1 + (i — 1)ha + u))

=1

z2— (A —Dhy —he+u)\ "
( 2z — (A1hy +u) ) -

The proof of this proposition follows from the following lemma;:

! For an algebra A and an automorphism o € Aut(A), the twist of an A-representation p: A — End(V)
is p7 : A — End(V) with p?(a) := p(o(a)).
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Lemma 4.5. (a) For u € C, there exists the shift automorphism ¢2 of Yi, n,.ns(gly) such
that

¢ e(z) = e(z+u), f(2) = fz+u), ¥(z) = d(z+u).

(b) The Fock representation ®F(u) is obtained from *F(0) via a twist by ¢,

(c) There exist constants {c$} such that the map [A] — c$|\) induces an isomor-
phism V-"32F(0) of Yi, hy.ns (811 )-representations, where V' is the representation from
Theorem 2.2 and h; = s;.

Proof. Parts (a) and (b) are straightforward.
We define c§ by the following formula:

>\-—1 i—1 A;
u . h1+(z—g+1)h2

It is a routine verification to check that the map [A] — ¢$|\) intertwines the formulas for
the matrix coefficients of ey, fi, ¥r (k € Z;4) from Lemma 2.3 and Proposition 4.4. O

Definition 4.1. We say that a th,hz,hs (gly)-representation U has a central charge
(co,c1) € C? if Yo|, = co - Idy and 1), = c1 - 1dy.

Thus “V(u) has a central charge (O, h%)’ while *F(u) has a central charge
<_L _L>

hihsg? hihs )°
4.3. Tensor products F (u;)

In this section, we relate the representation M" from Theorem 3.2 to the Fock mod-
ules F(u). Let A be the formal comultiplication on Uy, 4,.4;(gl;) from Remark 4.1. This
is not a comultiplication in the usual sense, since A(e;) and A(f;) contain infinite sums.
However, for all modules of interest “with general spectral parameters” these formulas
make sense (this is explained below in the particular case of Fock modules). The following
theorem can be viewed as a higher rank generalization of Remark 4.2.

Theorem 4.6. There exists a unique collection of constants {c5} from the field F, with
cg = 1 such that the map [N = [(AL,...,A")] = c5 - [AY) ® -+~ @ |\") induces an isomor-
phism M""5F(x71) @ -+ @ F(x; ') of Uy, gs.05 (811 )-representations with q; = t;.

Let us first make sense of the tensor product F(x1) ® F(x2) (the case r > 2 is
completely analogous). The action of e(z) and f(z) in the basis {|\)} of F(x) can be
written as follows:
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Zag§< )|/\+D Zb ( )|>\ 0),

where ay 0,bx0 € Fy, the first sum is over 0 ¢ A such that A + O is a Young diagram,
while the second sum is over 1J € X such that A — [ is a Young diagram.
According to the comultiplication formula, we have

Ale(2))(IA1) @ [A%)) = e(2)(]A1) @ [A) + 97 (2)(IA1) @ e(2)(IA%).

The first summand is well defined. To make sense of the second summand, we use the
formula

g9(2)6(a/z) = g(a)d(a/z) for any rational function g(z). (*)

Recall that ¥ (2)(|]A\)) = va(2)T - |\), where v,(2) is a rational function in z depending
on A. Combining this with (*), we find

5N S = X ar o ({9 (X(D)) Y@ A2 1O,

z

The action of f; on F(x1)®F(x2) is defined analogously. Finally, the formula A (1% (z)) =
¥ (2) ® ¥ (2) provides a well defined action of ¥; on F(x1) ® F(x2)-

Proof of Theorem 4.6. Due to Remark 4.2, we can identify F(Xlzl) ~ M%x« | the twist
of M by ¢y, . For any r-tuple of Young diagrams A= (AL,...,\"), Lemma 3.3(b) implies
that the eigenvalue of ¢)*(2) on [A\] € M" equals the eigenvalue of *(2) on A1) ®--- @
AT € F(x;') @ -+ @ F(x;'). Hence, the map [\] = c5 - [\) @ --- @ |\") intertwines
actions of ¢; and i ! for any constants cs.-

Consider constants ¢y such that ¢ =1 and cx gx/cx = dj gp with

th= Lty (—ty )7 1-— tlt%k) /xj’ /x(”
dx o = X1 X ’ H 1+ ' H 14! (k 0K
v iratesy 1= e /X;
(7)
)\mf

where X,()m) =1t," ltp_lxm as before and (I, j) < (k,¢) if and only if [ < k or I = k and
j < i. Since X(+)1 = tgx(m)

are actually finite. The existence of cy satisfying 5 qr /5 = dy or is equivalent to

for p > |\"™|, it is easy to see that the infinite products in (7)

_ _ — - _ : k l
d>\+|:|i;’|:|§ . d}\,D;" = d/\+|:|é"D§ . d)"‘:lé' for all pOSSlble Dl N D]

The proof of these equalities as well as verification that the map [A] = c5 - |\ @---®|\")
intertwines actions of e; and f; are left to the interested reader. The result follows. O
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4.4. Tensor products @ *F (u;)

In this section, we relate the representation V" from Theorem 3.4 to the Fock modules
@F(u). First we need to define the tensor product W7 @ Wy of th,hz,hs (gly )-represen-
tations Wy, Ws.

Definition 4.2. A th’h27h3 (gly)-representation W is called admissible if there exists a
basis {wq tacr of W such that

e (1/ d()( LYIl
o e(2)(wa) = Zo/el c,; 5+()‘a,a’/z)wa’vf(z)(woz) = Za”el > 5+(>‘a”,a/z)wa”
for some cq,0/, da,a’; Aa,or € C, so that both sums are finite for every o € 1.

o P(2)(wa) = Yw(a, 2)T - w, for a rational function vy (c, 2) defined by

d 1" 1" d !
’va(Oz,Z)ZI-i-ngia’a Ca ’a—ogzic L

a,a’
al'el Z = Aa”,a a'el z = )\a,a’

o For any oy # ao € I, there is a bijection between {a’ € I|co, o/da’.ar # 0} and
{a" € Ilda, .o Car 0y # 0} such that Ao, o = Aa.ap a0d Aay.0r = Aarr.a; -

Example 4.1. The modules *V (u) and *F(u) are admissible.
Let Wy and Wy be admissible Y}, p, n, (gl )-representations with the corresponding

bases {wg,}acr and {w3}se.. Define the operator series 1(z), e(2), f(2) from End(W; ®
Wa)[[z1]] by

U(2)(we ® w3) = Y(2)(we) ® 9 (2) (W),

1
Ca,o/
e(2)(wl ® wg) = E 75*()\,117&/2)10(1,/ ® wg
a’'el

R ACTRY D)
§ : 8,8 TW VBB
—+ 12 6+()\%76//Z)wé ®'LU%/,

Bed

d2 17
@ whouwd) =Y %mxﬁ,,ﬁ/z)w; ® wl,
ped

d}l ot YWy (ﬁ7
+ 2 ;

a’’el

Aé//

o) ST(AL 7a/z)wé/, ® w%

al’

Remark 4.3. These formulas are well defined only if 7w, (a,z) is regular at
{A3 gl 5 # 0} and yw, (B, 2) is regular at {\L, ,|d}, . # 0} for any a € I, § € J.

oo’

The following is straightforward:
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Lemma 4.7. If W and Wy are admissible th,hz,h_a (gly)-representations and the assump-
tions of Remark 4.3 hold, then the above formulas define an action of th,h2,h3 (gly) on
Wi ® Wa.

Remark 4.4. We refer the interested reader to [23, Section 1] for an alternative viewpoint.

It might be still possible to define an action of Vi, n, s, (gl;) on a submodule or a
factor-module of Wy ® W5 if the assumptions of Remark 4.3 fail, due to our next result:

Lemma 4.8. Let S be a subset of I x J such that e(z)(wh, @ w3), f(2)(wh, @ w3) are well
defined (in the sense of Remark 4.3) for any (o, B) € S and satisfy one of the following
conditions:

(a) For any (a,B) € S, (o/, ') ¢ S, the matriz coefficients, (w}, ® w3 |e(z)wl, @ w3)
and (wl, ® w%,|f(z)|wé ® w%) vanish.

(b) For any (o, B) € S, («/,B') ¢ S, the matriz coefficients, (w), @ wile(z)|wl, @ w3)
and (wl ® w%\f(z)\w}x/ ® w%,) vanish.

Then the above formulas define a Yu, ny n,(al;)-action on span {w) @ w%}(a,B)ES'

The key result of this section is proved completely analogously to Theorem 4.6:

Theorem 4.9. There exists a unique collection of constants {c(/{} from C(s1, 82,21, ...,%,)
with ¢§ = 1 such that the map [\] = (AL AN)] = et - M) @ -2 @ |\T) induces

an isomorphism V' —"5F(—x1) @ -+ @ “F(—x,) of Vi, hy.hs (0l;)-representations with
hi = S;.

Remark 4.5. As “F(0) ~ V by Lemma 4.5(c), we get V" ~ V%1 @ ... @ V.. In other
words, the representation of th,h2,h3 (g!;) on the sum of equivariant cohomology groups
of M(r,n) is a tensor product of r copies of such representations for M (1, m).

4.5. Other families of representations
We recall some other series of Uy, 4,.4;(gl;)-representations from [5,6]. All of them
admit straightforward generalizations for the case of Yh17h2,h3 (gly). These have the same
bases, while the matrix coefficients of e(z), f(z),%(z) in these bases are modified as
follows:
L= qig3a§u/z ~ 2 = (ihy + jha + khs + w),

L 1
S(didd5u/z) ~ £=04 (i + jha + Khs + u) /),

where the latter sign is “+” for e(z) and “=” for f(z).
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e Representations W (u).

Consider the tensor product VN (u) := V(u) @ V(ugs 1) @ V(ugz 2) @ --- @ V(ugz ™).
Define PV := {A = (A\1,...,An) € ZN A1 > - > A EPNF = (N € PV]Ay > 0}
Let W (u) € VN(u) be the subspace spanned by [u]y := [u]x, ® [ugz ]r,-1 @ -+ @
[ugs N an—nt1 for X € PV,

According to [5, Lemma 3.7, W (u) is a Uy, 4.4 (gl4)-submodule of VN (u). The
subspace W+ (u) € W (u) corresponding to PN:* is not a submodule. However, its
limit as N — oo is well defined (after a renormalization) and coincides with F'(u).

e Representations GE™.

Let q1,¢2 be in the (k,r)-resonance relation: ¢3¢ = 1iff a = (1 —7r)c,b = (k + 1)c for
some ¢ € Z (assume k > 1,7 > 2). In this case the action of Uy, 4,.4;(al;) on W (u) is ill
defined. Consider the set of (k,7)-admissible partitions S*"N 1= {\ € PV|\; — Nigp > 7
Vi< N -k}

Let W*™N(v) be the subspace of W/ (u) spanned by [u]y for A € SN According
to [5, Lemma 6.2], the comultiplication rule makes W™ (u) into a Uy, 4,.4, (gl; )-module.
We think of it as “a submodule of W (u) or V¥ (u)” even though none of them has a

Uy, 42,45 (811 )-module structure (we use an analogue of Lemma 4.8 there).

Let us fix a sequence of non-negative integers a = (aq, .. ., ax) satisfying Zle a; =r.
Define Pa" = {(A1 > Ao > -++)[\j = Ajyr =7 ¥ j > Land \; = A2 V j > 0}, where
we set /\Bk+i+1 = —ur — Z;zl a; for v e Z,,0 <i <k —1. One can define an action

of Uy, 40,45 (811) on the N — oo limit of W (u), yielding an action of Uy, 4, 45 (gl;) on
the space GE" whose basis is labeled by A € P& see [5, Theorem 6.5].

o Representations My p(u).

Consider the tensor product F(u1)®---® F(uy). It is well defined as a Uy, 4, 45 (a7 )-
module if q1,q2,u1,...,u, are generic, i.e., ¢iqgsuf' - uér =1 & a=b=1c = ...
=c, =0.

Consider the resonance case u; = uiﬂqi”ﬂqg"’“ for 1 < i < n-—1 and some
ai by € Zy. Set u = uq. Let Map(u) C F(u1) @ --- @ F(u,) be the subspace spanned
by AL A" = [u1]a @ -0 ® [up]an, where Young diagrams A!,..., \" satisfy
AL > )\iﬁ)i —a; for 1 <i <n-—1,s € N. According to [6, Proposition 3.3], the co-
multiplication rule makes Ma p(¢) into a Uy, 4,.4 (901 )-module for generic g1, g2, u.

e Representations Mglé’(u)

Assume further that ¢i, o are not generic: there exist p # p’ € N such that ¢¢¢} = 1
iff a = p'c, b = pc for some ¢ € Z. We require that a, :=p' — 1 — Z?;ll(ai +1),b, :=
p—1— Z?;ll (bi +1) are non-negative. In this case, the action of Uy, 4, 4, (gl;) on Ma p(u)
is ill defined.

Consider a subspace Mg:if(u) C F(u1)®---®@F(uy,) spanned by [Al,... A\") satisfying
the same conditions )\i, > )\iﬁ} —a; but for 1 < i < n, where we set \"*! := A\l. The
comultiplication rule makes it into a Uy, ¢,,4,(gl;)-module, due to [6, Proposition 3.7].
We think of Mif(u) as “a subquotient of F'(u1)®- - -® F(u,)”. Their characters coincide

with the characters from the W,-minimal series, according to the main result of [6].
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4.6. Categories O

We conclude this section by introducing the appropriate categories O for both algebras.

e Category O for Uy, 4,.45(811)-
We equip Uy, 4,.q5(8l1) with the Z-grading by assigning deg(e;) = —1, deg(f;) = 1,
deg(1;) = 0, deg(1y ) = 0.

Definition 4.3. We say that a Z-graded Uql’q%% (gly)-module L is in the category O if
(i) for any v € L there exists N € Z such that Uy, 4, 45(8l1)>n(v) = 0,
(ii) L is of finite type, that is, all graded components { L } ez are finite dimensional.

We say that L is a highest weight module if there exists vy € L generating L and such
that f;(vo) = 0, ¥;(vo) = pi - vo ¢51(v0) = pgl g for all 4 € Z and some p; € C with
po # 0. To such a collection {p;}, we associate two series pT(z) := poﬂ—ﬁ—zs;ozl PimzT™ €
C[[zF!]]. Given any two such series p*(z) € C[[zT!]], there is a universal highest weight
representation M+ ,-, which may be defined as the quotient of Uyy 40,05 (811) by the left
ideal generated by {f;, v — pi, g " — py ' Viez. Standard arguments show that Myt -
has a unique irreducible quotient V,+ ,-, which obviously satisfies the condition (i) of
Definition 4.3.

Our next result provides a criterion for Vj+ ,- to satisfy the condition (ii), or equiv-
alently to be in the category O.

Proposition 4.10. The module V,,+ ,— is of finite type if and only if there exists a rational
function P(2) such that p*(z) = P(2)* and P(0)P(c0) = 1.

Proof. Our proof is standard and is based on the arguments from [3]. Define constants
{Pi}iez as p; (for i > 0), —p; (for i < 0), and py —py ' (for i = 0). To prove the “only if”
part, we choose indices k € Z,1 € Z, such that {ex(vo), ..., ex+1(vo)} span the degree —1
component (Vy,+ ,-)—1 and ager(vo)+aiery1(vo)+. .. +areri(vo) = 0 for some complex
numbers ag, .. .,q; € C with a; # 0. Applying f,._ to the above equality and using the
relation (T3) in the form f;e;(vo) = —ﬁflﬁiﬂ' -vg, we get agDr+a1Pry1+. ..+ apr =0
for all » € Z. Therefore, the collection {p;};cz satisfies a simple recurrence relation.
Solving this recurrence relation and using the condition py = pg — py ! we immediately
see that p*(z) are extensions in 2¥! of the same rational function.

To prove the “if” direction, let us assume that p¥(z) = P(z)* for a rational func-
tion P(z). Reversing the above arguments, we get dim(V,+ ,-)_1 < oo. Combining this

with (T1), a simple induction argument implies that dim(V,+ ,-)—; < oo foralll € N. O

P
e Category O for Yi, n,.ns(al;)-
We equip th,h2,h3 (gl;) with the Z-grading by assigning deg(e;) = —1, deg(f;) =1,
deg(t);) = 0.
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Definition 4.4. We say that a Z-graded th,h2¢h3 (gly)-module L is in the category O if

(i) for any v € L there exists N € Z such that Yy, n,.n,(al;)sn(v) =0,
(ii) L is of finite type, that is, all graded components {Lyj}rez are finite dimensional.

We say that L is a highest weight module if there exists vg € L generating L and
such that f;(vo) = 0, ©j(vo) = pj - v for all j € Z; and some p; € C. Set p(z) :== 1+
> j>0Piz 771 € C[[z71]]. For any {p;}, there is a universal highest weight representation
M,,, which may be defined as the quotient of Y}, n, n,(gl;) by the left ideal generated by
{fj:¥; — pj}jez. . It has a unique irreducible quotient V},.

Module V,, obviously satisfies the condition (i) of Definition 4.4. The following criterion
for V,, to be in the category O is completely analogous to the one for V+ ,-:

Proposition 4.11. The module V,, is in the category O if and only if there exists a rational
function P(z) such that p(z) = P(z)" and P(o0) = 1.

5. Limit algebras

The goal of this section is to relate certain limits of our two algebras of interest to the
well-known algebras of difference operators on C and C*. Throughout this section, h is
a formal variable.

5.1. Difference operators on C*

Set ¢ = exp(h) € C[[h]]. The algebra of g-difference operators on C*, denoted by g,
is the unital associative C[[h]]-algebra topologically generated by Z*!, D*! subject to
the relations:

Z-Zl'=z1'.2Z=1,D-D'=D'. D=1, D-Z=qZ. D.

We will view 9, as a Lie algebra with the natural commutator-Lie bracket [, -]. It is easy
to check that the following formula defines a 2-cocycle ¢, € C2%(,, C[[h]]):

27,_:1—] qai+b(i+j) if _7 — j/ >0
$2(2°D7,2°D7") = § =S4 gbiteli=D it j =<0 .

0 otherwise

This endows 0, = 0, ® C[[h]] - ¢, with the Lie algebra structure.
5.2. Difference operators on C
The algebra of h-difference operators on C, denoted by ®j, is the unital associa-

tive C[[h]]-algebra topologically generated by x,0*! subject to the following defining
relations:
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9.0 =01 0=1,0-2=(x+h)-0.

We will view ©j, as a Lie algebra with the natural commutator-Lie bracket [-,-]. It is
easy to check that the following formula defines a 2-cocycle ¢ € C?(Dy,, C[[h]]):

S fR)g((L+ k) if r=5>0
0o (F(2)0",g(@)0™") = § = S, g(Uh) f((L=r)h) if r=5<0 .

0 otherwise
This endows Dj, = Dy, ® C[[h]] - co with the Lie algebra structure.
5.8. Isomorphism Yy

Let us introduce the appropriate completions of the algebras 9, and Dy

o 5Aq is the completion of 9, with respect to the powers of the two-sided ideal
Jo=(Z—-1,q-1);

o 35; is the completion of ®; with respect to the powers of the two-sided ideal
J@ = (CC, h)

In other words, we have:
0 = lim 0,/0,-(Z—1,q— 1), D) := lim D4/Dp - (2, h).

Remark 5.1. Taking completions of 9, and ©; with respect to the ideals J, and Jp
commutes with taking central extensions with respect to the 2-cocycles ¢, and ¢o.

The following result is straightforward:

Proposition 5.1. The assignment
D s 9FL ZH s ey s ep
extends to an isomorphism Y : gq%éh of C[[h]]-algebras.

Remark 5.2. Specializing h to a complex parameter hy € C, we get the classical
C-algebras of difference operators 9, and ®p, as well as their one-dimensional cen-
tral extensions 9, and Dy, where ¢ = exp(hg) € C*. In other words, we consider the
C-algebras given by the same collections of the generators and the defining relations.
However, one can not define their completions as above. This explains our preference to
work over C[[h]].
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5.4. Algebras U,’th%hB(g[l) and U,’L(gll)

Throughout this section, we let hs, hsy be formal variables and set hy := —hy — hs.
We define g; := exp(h;) € C[[ha, hs]] for i = 1,2, 3. In order to consider a formal version
of Uy, .40.q:(811), that is, the C[[hg, hs]]-algebra with the same generators and defining
relations, we need to modify (T3) in an appropriate way. First, we renormalize (T3) to
the following form:

[e(2), f(w)] = 0(2/w) (™ (w) — ¥~ (2)) /(L = gs)- (T3')

In the case of specialized values ¢; € C\{0,1}, this corresponds to rescaling e;, f; by
1 —q1,1 — qo. Next, we present T (2) in the form

§*(2) = exp (:F%Hh) - exp (i(l —q3) Y H:I:mZ:Fm> .

m>0

Switching from the generators {t;, 1 '} to {H;}, the relations (T4,T5) get modified to:

1—¢)(1—¢d)(1—¢gb
(Hove;] = 0, [Hye;) =~ QI)i((l q;))( 9o, foricZtjez,  (T4H)
— 43

[Ho, f;1 =0, [H;, fi] = (1= q“i((ll_qqi))(l — qé)fiﬂ- for i € Z*,j € Z. (T5H)

These relations are well defined in the formal setting since (1_‘11)(1:3?(1_‘1@ € Cllhz, hs]].

Note that the right-hand side of (T3’) is also a polynomial in H; with coefficients in
Cl[[h2, hs]]-

Definition 5.1. U}’ll’h%hg_ (gly) is the unital associative C[[hg, h3]]-algebra topologically
generated by {e;, fi, H;|i € Z} with the defining relations (T0,T1,T2,T3 / T4H,T5H,T6).

Finally, we define U7 (gl;) by

Up(gly) := Uihfhg,h,hg, (gly)/(h3).

It is a unital associative C[[h]]-algebra topologically generated by {e;, fi, H;|i € Z} sub-
ject to the relations (T1,T2,T6) and

(H,, H,] = 0, (TOL)
les, fi] = Hitj, (T3L)

[Hiej] = —(1—¢") (1 — ¢ ")eiry, (T4tL)
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[Hi, fi] = (1= a")(1 = ") firs, (T5tL)
where 4,7 € Z and ¢ = exp(h) € CJ[[h]].

Remark 5.3. For hg € C, define Uy, (gl;) as the C-algebra generated by {e;, f;, H;|i € Z}
with the same defining relations (TOL,T1,T2,T3L,T4tL,T5tL,T6), where ¢ = e"o € C*.

The following result is straightforward:
Proposition 5.2. The assignment
ei Z'D, fi— —D'Z' Hivs —(1—q¢ 2" - q
extends to a homomorphism 6 : U} (gly) — U(d,).

Proof. It suffices to show that all the defining relations of U;L(gll) are preserved under the
above assignment. This is a simple exercise, which we leave to the interested reader. O

Let 0 C d, be the free C[[h]]-submodule spanned by
{co,hZ*D° W= Z'D*|i € 7,k € Z*,j € N}.
Lemma 5.3. 0] is a Lie subalgebra of 04 and Im(0) C U(2)).
In fact, we have the following result:
Theorem 5.4. The homomorphism 0 provides an isomorphism 0 : U;L(gll)i)U(ﬁg).

Note that all the defining relations of U (gl;) are of Lie-type. Hence, U} (gl;) is an
enveloping algebra of the Lie algebra generated by e;, f;, H; with the aforementioned
defining relations. Thus, Theorem 5.4 provides a presentation of the Lie algebra 52 by
generators and relations.

Actually, we will prove a more general result in Appendix C:

Theorem 5.5. If hg € C\{Q - m\/—1}, then 6 induces an isomorphism of the C-algebras:
0: U, (g1,)—=U(2Y), where 0 = spanc{cs, Z'D7}(; j)2(0,0) s a C-Lie subalgebra of .

5.5. Algebras Y} , . (gl) and Y}(gl;)

Analogously to the previous section, let ho, hg be formal variables and set hy :=
—ha — hs. We view th’h%hg(gll) as a formal version of the corresponding alge-
bra introduced in Section 1.3. In other words, th,hz,hs (gly) is the unital associative
C[[h2, hs]]-algebra topologically generated by {e;, f;j,%;|j € Z4} subject to the rela-
tions (Y0-Y6).
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Let us renormalize the relations (Y4') and (Y5') to make them homogeneous:
[Vo,ej] =0, [¥1,e;] =0, [¥2,e;] = —2h1hse;, (Y4'H)
[0, f5]1 =0, [¥1, f5] =0, [W2, f;] = 2h1ha f;. (Y5'H)

Definition 5.2. Yél hs s (811) 18 the unital associative C[[ha, h3]]-algebra topologically gen-
erated by {e;, f;,%;|j € Z4} subject to the relations (YO-Y3,Y4,Y4'H,Y5,Y5'H,Y6).

We equip the algebra Y}{hhbhg (gl;) with the Z,-grading by assigning
deg(e;) = j, dea(f;) =, deg(y) == j, deg(h) =1 for j € Zy, k € {1,2,3}.

Finally, we define Y/ (gl;) by

Yyi(gly) = Yih—hg,mhg (ghy)/(h3).

It is an associative algebra over C[[h]]. Its specialization at ho € C is denoted by Y, (gl;)-
The following result is straightforward:

Proposition 5.6. The assignment
ej =20, fj =07 2l Yy (x—h) — 27 — (=h)ep
extends to an algebra homomorphism ¥ : Y} (gly) — U(Dy,).

Let ®) C D}, be the free C[[h]]-submodule spanned by {co, hx'd°, b/~ 12?9+ }5662.

Lemma 5.7. DY is a Lie subalgebra of D), and Im(9) C U(DY).
In fact, we have the following result:
Theorem 5.8. The homomorphism 9 provides an isomorphism ¥ : Y} (gl)—=U(DY).

Note that all the defining relations of Y} (gl;) are of Lie-type. Hence, Y} (gl;) is an
enveloping algebra of the Lie algebra generated by e;, f;,%; with the aforementioned
defining relations. Thus, Theorem 5.8 provides a presentation of the Lie algebra @% by
generators and relations.

Actually, we will prove a more general result in Appendix C:

Theorem 5.9. For hy # 0, ¥ induces an isomorphism of C-algebras ¥ : Yho (al) —
U(®p,)-
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6. Key homomorphism and flatness of deformations

Following [10], we construct an algebra homomorphism T : U,’ll’h%hs(g[l) —

o~/

Y, 1 ha.hs (811) and establish a compatible isomorphism of their faithful representations.
We also prove the flatness result (Theorem 6.6) for both U’/ll,hz,hg (gly) and Yi{l,hz,hg (gly).

6.1. Homomorphism Y

Let §;17h2,h3 (gly) be the completion of Y}il,hQ,hg (gly) with respect to the Z,-grading
from Section 5.5. To state our main result, we introduce the following notation (see [10]):
o Define ¢(2) as in Section 1.4: ¢(2) :==1—hg Y .5, Pz e Y,{l’hmhs(g[l)[[z*lﬂ.
s Define k; € Clth, 1, %o, ...] via 35,50 kjz 777" = k(2) := log(¢(2)).

o Define the inverse Borel transform:

=1 —1 = aj a;
B:z7'C[[z7"]] = Clw]] by Z;) Zjil = Z;) ﬁw]
J= I=

e Define B(w) € th,fbl)h%hS (g1y)[[w]] to be the inverse Borel transform of k(z).
o Define a function G(v) := log (#) € vQI[v])

ev/2 _o—v/2

e Define y(v) := —B(-09,)G'(v) € 5/;;11,h2,h3 (gt)[[v]]-

« Defi —Y eV [ b (s NP (2
efine g(v) = 32,50 807 € Y, nyn, (01)[[0]] Dy g(v) == ( 225 exp (2 ).

The identity B(log(1 —s/z)) = (1 — e**)/w immediately implies the following result:
Corollary 6.1. The equalities from Proposition 1.5(e,f) are equivalent to

3 viw _ ,—hiw 3 —hijw _ hijw
Bl = 2= ) oot (), ) = 2=l o

Now we are ready to state the main result of this section.

Theorem 6.2. The assignment

B _
Ho = o, Hin = (n;) L en = € g(0 e, fr = € g0V fo fork€Z,meZ (%)
— 43

extends to an algebra homomorphism

o/

T: Uflll,hg,hg (gly) — Y hohs (gly).

The proof of this theorem is presented in Section 6.6.
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6.2. Limit of T

Recall the isomorphisms from Theorems 5.4 and 5.8:

0 : U,—h—hg,h,hg (a1y)/(hs)—U(dY),

v Yihfhg,h,hg. (9[1)/(h3)L>U(352)-

—

Note that T factors through the factors by (h3), inducing Y|, _, : U(@)) — U(D}).
Proposition 6.3. The limit homomorphism T\h3=o is induced by Yg.

Proof. It suffices to compute explicitly the images of the generators under T hg=0"

°© T|h3:0(ca) =CD.

© Typya((0 =12 =47 e0) = Sy (o—h)* —a—(~)*en) s = (4™~ 1)e"—q "ea.

0 T, o(Z'D) =Yg 1y - 70 = €70
(

D Z) = =Yg 0 kb =~ e, O
6.3. Elliptic Hall algebra

We recall the elliptic Hall algebra studied in [2]. First, we introduce the following
notation:
o Define (Z2)* := Z*\{(0,0)}, (Z*)* := {(a,b)| £ a > 0 or a = 0, 4b > 0}.
o For x = (a,b) € (Z%)*, we define deg(x) := ged(a,b) € N.
o For x € (Z?)*, we define €5 := 1 if x € (Z*)" and ex := —1 if x € (Z?)~.
o For non-collinear x,y € (Z%)*, we define ey := sign(det(x,y)) € {£1}.
o For non-collinear x,y € (Z?)*, we denote the triangle with vertices {(0,0),x,x + y}
by Axy.
o We say that Ay is empty if there are no lattice points inside this triangle.

(1=gy")(A=a ")(1=g5 ")
n

e For n € Z*, we define o, := f%” =

Definition 6.1 (/2]). The (central extension of) elliptic Hall algebra € is the unital as-
sociative algebra generated by {ux, ry|x € (Z?)*,y € Z?} with the following defining

relations:
Kxky = Kx4y, K0,0 = 1, (E0)
Kx — kZ1
[Uy, Ux] = 0x,—y - X if x,y are collinear, (E1)
Odeg(x)

Ox
[uy, ux] = ex)yma(xyy)j if Axy is empty and deg(x) =1, (E2)
aq
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where the elements {0x|x € (Z%)*} are determined from the equality
Z Onx, " = exp (Z arumomr> for xo € (Z?)* with deg(xo) = 1, (E3)
n>0 r>0
while a(x,y) is defined by
ex(ExX + €yy — ex1y (X +y))/2 ifexy =1
a(x,y) = . :
ey(exX + &gy — exty(x +¥))/2 if exy = -1

The relation to the quantum toroidal of gl; is given in the following theorem:
Theorem 6.4. [18] The assignment
Ul 2 €5, U—1,4 > fia 00,:|:j = 'l/}:tj ! 1l)(:]‘zlv Ka,b — 1;[}8 fO’]" iaavb € Za] eN

extends to an isomorphism of algebras = : Fé/(m),l — 1)Uy, 40,05 (81).

Remark 6.1. This theorem was proved in [18] only for € := g/(ﬁy —1)yezz2, but the above
generalization is straightforward. According to [2], € is also isomorphic to the Drinfeld
double of the spherical Hall algebra of an elliptic curve over a finite field.

This result provides distinguished elements {ux|x € (Z?)*} of Ui/n,hz,hg (gly). Their
images in Uile (ghy) = UI—hz—he,,hz,hg (gl1)/(hg) will be denoted by ux.

Lemma 6.5. The isomorphism 6 maps these elements ux as follows:

1—¢H(1 - 1
ﬂo’rHsign(r)( 2 )(T a2) (ZT— Tca> forreZ*, (8)
1—¢q5 1—g3
= if(kl)l_q;Fl +1Nk—1 pl kS FE
Utp,+ = Eqy 7 ﬁ(lf(b VITHZE DT g2 " ? for ke Nl € Z, (9)
— 43

where d := ged(k,1) € N and f(k,1) = E=E=I=422 ¢ 7 (note that f(k,l) equals the
number of lattice points inside the triangle with vertices {(0,0), (0,1), (k, 1)} if k,1 > 0).

Proof. Considering the “hg — 0 limit” of the relation (E2), we find

« X —
Muxﬂ, if Axy is empty and deg(x) = 1. (E2)

[ﬂyv ax] = &)y

In particular, we get g, = sign(r)St[u_1,0,u1,-]. Applying 6 to both sides of this
equality, we recover (8).

We prove (9) by an induction on k; we will consider only the sign “+” case. Case k = 1

is trivial. Given (k,l) € Z~1 X Z, choose unique x = (k1,11),y = (k2,12),0 < k1, ko < k,



A. Tsymbaliuk / Advances in Mathematics 304 (2017) 583—645 615

such that x +y = (k,1), ex,y = 1, deg(x) = deg(y) = 1, and Ay is empty. Combining
the formula (E2) with the induction assumption on 6(ux) and 6(uy ), we find

-~ _ (1 — q2)(1 — qgl) Flkuli)+f(k2,l2)  koli  kilo _ k1+ka—2 r7l1+l2 1yk1+k2
O(ur,) = —ay 42 (45 a5 °)(1 —q2) Z D .
(1-¢5)(1—q)

Our choice of x,y and the Pick’s formula imply that kils — koly = d. As a result, we have
57" — g5 = 5> (1= gf) and f(k1, 1) + f (ko) + kaly = f(k1+ ko, la +1o) = f(k,1).
This completes the induction step. 0O

6.4. Flatness and faithfulness

The main result of this section is:

Theorem 6.6. (a) The algebra Ui/n,hz,hg (gly) is a flat C[[hs]]-deformation of U,’L2 (gly) =~
U(0g,)- ) . 7
(b) The algebra Yy, .. .. (gly) is a flat C[[h3]]-deformation of Yy (gl;) =~ U(D),).

Proof. To prove Theorem 6.6, it suffices to provide a faithful U(0d)),)-representation
(respectively U (@22)—representation) which admits a flat deformation to a representa-
tion of Uy, . 4.(gly) (vespectively Yy , ., (gly)). Let R be a localization of C[[hz, h3]]
by the multiplicative set {(ha — vihg)---(ha — vsh3)|s € N,v; € C}. Note that
R := R/(h3) ~ C((hz)). The ring R is needed to make use of the representations from
Sections 2—4, therefore, we define

UJ’%(QH) = U}/thg,hg (ohh) @c[fhz,ha)) B Y}%(QH) = Yél,h27h3 (ol4) ®cihz,ha]) B-

Consider the Lie algebra

g[oo = Z (]JivjEZ‘,j|(li,j S (CHhQH and Qi 5 = 0 for |’L —j| >0
1,JEZL

Let gl = gl., @ C[[h2]] - & be the central extension of this Lie algebra via the 2-cocycle

%[(E @i Bijs ) bi,jEi,]): > aigbii— Y aigbii
i<0<j <0<

For u € 1+ hyCl[hy]], consider the homomorphism 7, : Uz(09,) = Uz (gl,,) induced by

1 — ghub

k for (k1) e (Z?)*.
e for (kD) € (2

co— —k and ZFD!— Z’U/kqglii)kEi,ifl —do,l
IE€EZL

Let w,, : U;—%(gll) — Up(gl) be the composition of 6 : Ué(g[l) — Ux(9,) and 7,. Then
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wu(e(z)) = Zé(quU/z)EiH,i, wu(f(2)) = — Z&qgiu/z)EuH.

1€L €L

Let F., be the fundamental representation of gl . It is realized on A®/2C> with the
highest weight vector wg Aw_1 Aw_o A--- (here C* is a C-vector spaces with the basis
{w;}iez). Comparing the formulas for the Fock Up(gl; )-module Fjy(u) with those for the
gl.-action on Fl,, we see that F'f; (u) degenerates to @} (F,) (the intertwining linear map
is given by |A) — wx, Awx,—1 Awrs—2 A---). Moreover, it is easy to see that any legible
finite tensor product Fp(u1) @ -+ ® Fg(uy) degenerates to wy (Fuoo) ® --- @ @y (Fioo)-

It remains to prove that the module @, @, .. 7o, (Foo)®: @7 (Fx) is a faithful
representation of U(0),), where the sum is over all collections uy, . .., u, € 1+ haC[[hs]]
which are not in resonance. This follows from the faithfulness of the 9] -action on each
Ti(Fs) for any u € 1+ hoC[[h2]], which is a simple exercise left to the interested reader.

In part (b), for any v € haoC[[hs]], we consider the homomorphism ¢, : UR(@?LZ) —
Ug(gly,) induced by

o — —k and 270" — Z(v + (L —i)ho)"E; -1 + do,icnk, forn € Zy, l € Z
1€EZ

where ¢, € R are determined recursively from

<71L> hQCn_l — <Z> h%cn_g + ...+ (71)n+1h727'00 - (7h2)n -+ " = 0.

The rest of the arguments are the same. This completes our proof of Theorem 6.6. O

Corollary 6.7. (a) The following is a faithful Ul’z(gll)—representation:

w=ED D Fp(u) ® - @ Fp(un).

n€Nwuy,...,up €14+h2C[[h2]]—not in resonance

b) The following is a faithful Y} (gl,)-representation:
r\G4

"Fri=D D “FR(v1) @ - ® “Fp(vn).

n€Nwvy,...,v, ERC[[h2]]—not in resonance

As another consequence of Theorem 6.6 and Proposition 6.3, we have:
Corollary 6.8. The homomorphism Y is injective.

Remark 6.2. In contrast to [10], T does not induce an isomorphism of appropriate com-

pletions, since the homomorphism T — does not induce an isomorphism of 522 and @22.
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6.5. Compatible isomorphisms of representations
Given n € N, consider two n-tuples
v = (vi,...,05) € ((h2,h3)Cl[ha, h3]])", w = (u1,...,un) € (1 + (h2, h3)C[[h2, h3]])".

Associated to this data, we have Fock Up(gl,)-representations {Fp(u;)}, and Fock
Y} (gly)-representations {*Fy(v;)}7 ;. Consider the tensor products

Fp(u) := Fp(u1) ® Fp(us) @ - - ® Fp(u,) — representation of Uk (gl ),
CFR(V) = “Fp(v1) @ “Fr(va) @ - - - @ “Fg(v,) — representation of Y(gl,),
whenever these representations are well defined, i.e., {u;}{, and {v;}!", are not in
resonance. Both of these tensor products have natural bases {|\)} labeled by n-tuples of

Young diagrams . Our key result establishes an isomorphism of these tensor products
compatible with T.

Theorem 6.9. For any v as above, define u; := eVi. There exists a unique collection of
constants cx € R such that cy = 1 and the corresponding R-linear isomorphism of vector
spaces

I, : Fp(u)—5Fp(v) given by |\) = c - |A)
satisfies the property
L(X(w)) = Y(X)(Iy(w)) for allw € Frp(u) and X € {H;, e;, fi}icz- (1)
We say that I, is compatible with Y if (1) holds.

Proof. By straightforward computation, one can see that (1) holds for all w = |)),
X = H; and an arbitrary choice of c;5. On the other hand, the equalities

L(e:(12)) = T(e) (I (V) and L (fi(]A)) = T(f)(IL (X)) for all A,i

are both equivalent to

CX4+0k
Cx

= d5 o, (10)

where

. hy g —1\"?
dSMDf' = qk? 1 /2 . (1—_ qfl . h2 X
1

(a,5)
o € .
I 0 = @) 0™ — asx™) @ — )@ — 2§ + ) " an
) o =N =@ ') )\ @ = 2§ = ho) @ — 2l — hg)
a,j 5T
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In this formula, we use the following notation:

/2 if(a,g) - (ki)
~1/2 if(a,j) < (k, i)

x§a) = (A = Dh1 + (j — Dha + v, Xga) = exp(:c;a)), egzz)) = {
The uniqueness of c3 € R satisfying the relation (10) with the initial condition ¢ = 1

is obvious. The existence of such cj is equivalent to

dxyoroy - dior = dsjo o - ds oy
for all possible \, 0k, Dé». The verification of this identity is straightforward. O
6.6. Proof of Theorem 6.2

Recall the faithful Uj(gl,)-representation F, and Y4 (gl;)-representation “F’, from
Corollary 6.7. Note that exp : (ha, h3)C[[ha, hs]] = 1 + (he, h3)C[[h2, hs]] is a bijective

map and {v;}}_; are not in resonance if and only if {eV*}?_; are not in resonance.
According to Theorem 6.9, we have an R-linear isomorphism I : F,—“F/, compati-

ble with T in the following sense:
I(X(w)) = Y(X)(I(w)) for all w € F; and X € {H;, e;, fi}icz.

For any X € {H;, e;, fi}icz, consider the assignment X — Y(X) with the right-hand side
defined via (f). Then Theorem 6.2 is equivalent to saying that this assignment preserves
all the defining relations of Uj(gl;). The latter follows immediately from the faithfulness
of “F’, combined with an existence of the compatible isomorphism I.

Remark 6.3. One can directly check that the aforementioned assignment given by (f)
preserves all the defining relations of U}’Ll’hQ,hS (gly), except for the Serre relations (com-
pare with [10]). In particular, the compatibility with the relations (T4H,T5H) follows
from Corollary 6.1. Actually, we used this approach to determine the formulas in ().
However, the arguments of [10] on the compatibility with the Serre relations are not ap-
plicable in our settings. Instead, one can prove this compatibility by utilizing the shuffle
approach from the next section. We refer the interested reader to [23], where we discuss
this in the greater generality.

7. Shuffle algebras S™ and S¢

We introduce the small multiplicative and small additive shuffle algebras. Their re-
lation to Uy, g5.45(811) and Vi, p, n,(gl;) is recalled. We also discuss their commutative
subalgebras.
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7.1. Small multiplicative shuffle algebra S™

Consider a Z-graded C-vector space S™ = @, -, Sy, where S} consists of rational

functions H with f € Clzf', ...,z % and A(z1,...,2,) == [Tizj (i — ;).
Define the star product % Spt x §7 — Si; by
J>k
m
(Fx G)(x1,...,Tpy1) = Symeg, ., F(xy,...,26)G (g1, -« Thtt) H w(xj, x;)
i<k
with
W (2, y) = (z — qy)(z — qzyg)(:v —ay)
(z —y)
This endows S™ with a structure of an associative unital C-algebra with the unit 1 € Sg*.
We say that an element % € S satisfies the wheel conditions if f(x1,...,zy)

= 0 once x;, /x;, = q1 and x;,/x;; = g2 for some 1 < iy,49,i5 < n. Let S™ C S™ be
a Z,-graded subspace consisting of all such elements. The subspace S™ is closed with
respect to %.

Definition 7.1. The algebra (Sm,T) is called the small multiplicative shuffle algebra.

Recall that q1,q2,qs are called generic if qi‘ngg =1 <= a = b = c. We have the
following result:

Theorem 7.1. [17, Proposition 3.5] The algebra S™ is generated by ST for gemeric
q1,92,93-

The connection between the algebras S™ and & was established in [19]:

Proposition 7.2. [19] The map u1; — 2% extends to an injective homomorphism
T — S™, where &1 is the subalgebra of & generated by {u; ;|i € N,j € Z}.

Combining this result with Theorems 7.1 and 6.4, we get:
Theorem 7.3. The algebras E*, U+, 8™ are isomorphic.
7.2. Commutative subalgebra A™ C S™
Following [7], we introduce an important Z.-graded subspace A™ = €P, o A}’ of S™.

Its degree n component is defined by A7 = {F € S7|0OFF = 9(>*F V1 <k < n},
where
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OOR .= Hm F (21, .oy Tk, & Tkt 1y -+ -5 & T )y
£—0
ook = Elim F(z1, . Tk, & Tttty & Tp).
— 00

This subspace satisfies the following properties:

Theorem 7.4. [7, Section 2] We have:

(a) Suppose F € ST and 9'°*) F exist for all 1 < k <n, then F € A7,
(b) The subspace A™ C S™ is % -commutative and % -closed.

(c) A™ is a polynomial algebra in {K}nen with K" € S defined by

K" (z1) = x(l) and K (x1,...,2,) = H (i — o)) (@) — i) forn > 2.

1<i<j<n (@i — ;)

Remark 7.1. These elements { K" },,en played a crucial role in [8], where they were used
to construct an action of the Heisenberg algebra on the vector space M from Section 2.2.

Our next result provides an alternative choice of generators for the algebra A™ ex-
plicitly expressed via S7*. We use the following notation: [P, Q],, = P % Q-—Q % P for
PQeS™.

Proposition 7.5. The algebra A™ is a polynomial algebra in {L7"},en defined by

LM(zy) =29 and L™ = [z, [2° [2°,..., [z 27 m .. J]im]m € ST forn > 2.

n factors

We refer the reader to Appendix D for the proof of this result.
7.8. Small additive shuffle algebra S¢

Consider a Z-graded C-vector space S* = (P, 5, S}, where S§ consists of rational

functions H with f € Clz1,...,2,]9". Define the star product  : SExSF — Sy,
by
j>k
a
(F*G)(@1,. o, ppr) = Symew F(ay, .. 20)G @k, o Tgt) H w*(x;, i)
i<k
with

a _(r—y—h)(@—y—h)(x—y—h3)
w ($,y) T ((L‘—y)3 .

This endows S* with a structure of an associative unital C-algebra with the unit 1 € S§.
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We say that an element H € S¢ satisfies the wheel conditions if f(x1,...,xy)

= 0 once x;, — x;, = hy and x;, — z;, = hs for some 1 < 41,495,453 < n. Let §¢ C S be
a Z4-graded subspace consisting of all such elements. The subspace S® is closed with
respect to *.

Definition 7.2. The algebra (S, %) is called the small additive shuffle algebra.
The following result is proved analogously to Theorem 7.1:
Theorem 7.6. For generic hy, ho,hs (that is ahy + bhe 4+ chg = 0 for a,b,c € 7 <~

a=>b=c), the map e; — xi extends to an isomorphism Y+-—"55%. In particular, S is
generated by SY.

7.4. Commutative subalgebra A® C S*

Let us introduce an additive version of A™: a Z.-graded subspace A* = @, - A%
of §°. Its degree n component A? consists of those I’ € S% such that the limits

9k = Elim F(z1,.. ., Tp—p, Tn—py1 + &, ooy Tn + &)
— 00

exist for all 1 < k < n. The following is an additive counterpart of Theorem 7.4:

Theorem 7.7. We have:

(a) The subspace A® C S8 is %-commutative and *-closed.
(b) A% is a polynomial algebra in {K%},en with K& € S defined by

a a ((Eifl"fh,l)(ﬂf'*xi*hl)
K(x1) =29 and Kn(:cl,...,xn)—l<g<n ] (xi—x;)Q form > 2.

Analogously to Proposition 7.5, the commutative subalgebra A® admits an alternative
set of generators explicitly expressed via S{. Define [P, Q], := PiQ—QiP for P,Q € S°.

Proposition 7.8. The algebra A® is a polynomial algebra in {L%}nen defined by

Li(zy) =2 and L% = [2°[2° ..., [2% 2" Y. . Ja]a € ST forn > 2.

n factors

Remark 7.2. The commutativity of {L} and {L%} was shown in [19], [20, Appendix E].
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8. Horizontal realization and Whittaker vectors
8.1. Horizontal realization of Uy, 4 45(0l1)

Recall the distinguished collection of elements {uy, sy} C Uy, 40, (8l) from The-
orem 6.4. Note that there is a natural SLs(Z)-action on Uqhq,“,q3 (gh)/(WE — 1) ~
&/(ry— 1)yezz. In particular, we have a natural automorphism of &Ky — 1)yeze2 induced
by wg,; — u_s . Although there is no such automorphism for e /(ko1 — 1), but we 5t111
have a nice presentation of this algebra in terms of the generators {u; +1,uj 0, K+1 O}ZEZ

rather than {ut1;,u0j, K41 O}'LGZ )
To formulate the main result, we need to introduce a modification of the algebra
Uql’qgﬁ% (gly). The algebra I"thqz’q_g is the unital associative C-algebra generated by

{€, fi, 1/Jj,'yi1/2}ggzz* with the following defining relations:

V)T (w) = ()t (2), g(v 2/ w) T (2)d (w) = g(vz/w)dT (w)e (2), (TTO)

e(z)e(w) = g(z/w)e(w)e(z), (TT1)

F2)f(w) = g(w/z) f(w) f(2), (TT2)

Br - [E(z), f(w)] = 6(yw/2)d (/*w) = 6(yz/w)d™ (v?z), (TT3)
UE(2)E(w) = g(v 2z fw)e(w) g (2), (TT4)

U (2)f(w) = g(y" Pw/z) flw)d* (=), (TT5)

Syme, [€irs [Eia+1, 1]l = 0, Syme, [fir, izt fi—1]] = 0, (TT6)

where these generating series are defined as follows:

= > &l S Z fir ' () =14 Y ey

1=—00 i=—00 7>0

: __Qa- qu)(l qzy)(l qsy) —1\—1
while g(y) := (e i) (—a: '5)(1—az T9)" Note that g(y) = g(y~") .

The following result is analogous to Theorem 6.4:
Theorem 8.1. The assignment

+1/2

”1,0/

s ATY2 0 0 gy w2 s AR E forieZ,5 e 2

extends to an isomorphism of algebras Ep, : E[mféﬂ]/(mql — 1)U, g0.as-



A. Tsymbaliuk / Advances in Mathematics 304 (2017) 583—645 623

Following [4], we equip the algebra ﬂqhqg,qg with a formal coproduct Ay defined by
~ n ~
Ap(VE2) = 2 @y H 2 AL (E (2)) = 05 (05 P 2) @ 9 (1) P2,

An(E(2)) = &(2) @ 1+ 9 (11)2) @ &yw)2),

An(f(2)) =18 f(2) + Fly2) @ 6 (14, ),

where v(iSm =~4*/2® 1 and ’y(i;/ =1®yTY2

Remark 8.1. According to Theorems 6.4 and 8.1, the algebras Uy, 4,.45(90)] j[1/2]
and Uy, 4,.4, are isomorphic. This allows to view Ay, as a horizontal coproduct on
Uyy o5 (g[l)[zbéd/?], providing a monoidal structure on the category O from Section 4.6
(the category O for the bigger algebra with the central elements d)gt /2 added is defined
as before). For two Uy, g,.45 (011)[%5 £1/2 J-
tensor product by L G}? L.

modules L1, Lo, we denote the corresponding

8.2. Horizontal realization of F(u),V (u)

Identifying Uy, 40,05 With Uy, 405 (811)] Oil/ ], let us describe how €(z), f( ), wi( )
act on the Fock module F'(u). Consider the Heisenberg algebra b generated by {a, }nez-
with the defining relation

[ams an] = m(1 = ™) /(1 = 45" -

Let b™ be the subalgebra generated by {a}nen and F := Inder(Cl be the Fock
h-representation. On the other hand, note that {u;o}jeze C € also form a Heisen-
berg algebra and the highest weight vector |()) € F(u) is annihilated by {u;o};<o. The
following is straightforward:

Proposition 8.2. There exists a unique isomorphism F(u)-——F such that |@) +— 1
and action of &(z), f(2), vE(2), Y2 gets intertwined with pe(€(2)), pe(f(2)), pe(bE(2)),

pe(YEY?) acting on F in the following way:

+ s 1- qIn ny,— n
Pc(’Yil/Q) =43 1/47 pC(wi(z)) = exp (ZF Z Tz(l —q3)q; n/4ainZ:F > )

n>0

~ 1—q3 n 1—q" —n
pe(€(z)) = cexp (Z n% G_nZ ) exp ( Z %anz ) ,

n>0 n>0
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—1 n
= —(q1g2¢ Z 1—q5 n .
pC(f(Z)) = -2 )2 eXp <_ n : ds /Za/fnz L)

a2 (1 —
(I-q¢)*(1—gq =

1—

n>0
where ¢ = —u/(1 —q1)(1 — go2).

These Uy, ., 4s-representations {p.} (acting on F) were constructed in [7, Proposi-
tion A.6]. Likewise, computing the action of &(2), f(z), ¥+ (z) on the vector representation
V (u), one recovers the formulas for the Uy, 4, 4,-representations 7. (acting on Clz,z~1])
with ¢ = —u/(1 — g1)(1 — g2) considered in [7, Proposition A.5].

8.8. Correlation functions

For a Uy, 4,.4;-module L and a pair v € L,w € L*, we define the correlation function

mw,v(zla s azn) = <U}|€(Zl) T ’é(zn)"l}> : me(zivzj)‘

The relation (TT1) implies that my, (21, ..., 2,) is &,-symmetric.

Proposition 8.3. For L = p. andv=1 € L, w = 1* € L*~the dual of 1, we have

. (g n(n=1)/2n — 43%) (2 — 432
mq ,1(2’1,---57«%) ( CIS E ZZ_ZJ)2 .

Proof. For n > 0, we have

exp(u - an) exp(v-a_n) = exp(v - a_p)exp(u - an)exp(uv - n(l —q¢) /(1 — ¢ ")).

Therefore

pulEN)) = - el - [T exo (- EZ I ).

n>0

It remains to use the equality [ ], , exp ( m( i/z)" ) = Liznliany) g

T (zi—q125)(2i—q225)

In the more general case of p., ® - - - ® p, , we have the following result:
h h

Proposition 8.4. For L = p., ® -+ ® p, consider 1:=1®---®1 € L and its dual
h h
1* € L*. Then mi- 1(z1,...,2n) € A™.
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Proof. Combining the formulas from Proposition 8.2 with the formulas for Ay, we find

mi« (215, 2 Zcf -cf(n)HWf(zi,zj)me(zi,zj),

i<j i<j

where the sum is over all maps f : {1,...,n} — {1,...,k} and Wy(z;,z2;) equals 1 (if
FG) > £()), Gl niezy (if (i) = FG), and g(zi/25) (if £() < £(7)). The claim

follows. O

Remark 8.2. (a) This approach provides a Bethe algebra realization of A™ (see [9]).

(b) According to [7, Proposition A.10], the correlation functions of 7., ® - - - ® 7, are
h  h
identified with the classical Macdonald difference operators.

8.4. Whittaker vector in K-theory
Consider the Whittaker vector vX = ano [OM(TW)] € M\T, where M" := [, M.

To state our main result, we introduce a family of the elements {KT(Lm;j )}flee%\r of S™
defined by

m;j o m J j
KU (2, xy) = K™y, ... an)a) - 2d)
(Ta — qup) (w6 — qlxa ;
- I I1 =
Ty — X
1<a<b<n @ b 1<s<n

Let {K " )}j be analogous elements in the opposite algebra (S™)°PP. The name
Whittaker is motlvated by the following result (see Appendix E for a proof):

Theorem 8.5. The vector vE is an eigenvector with respect to {K(_n:jj)|0 <j<rn>0}
More precisely: K ])( KY=Cj_p - vE, where

(_1)nt(7'—2)n(_t1)n(n—l)/2

Co_n= , Cl_n=..
ST -t —k) (1 —-8) (1 —tg)

- =Ur—1,—n — Oa

(7t)(r72)n(7t1t2)n(n71)/2
(L=t (L =)A= 13) - (L= t5) - (xa - xn)™

Cr,—n =

Remark 8.3. The subalgebra of (5™)°PP generated by {K7}°SIS™ corresponds to

the subalgebra of U~ generated by {f;, [fit1, fi—1ls [fj1, [fjs Fi—1lls- }i—o under the
identification (S™)°PP ~ U/~ due to Proposition 7.5.
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8.5. Whittaker vector in cohomology

Consider the Whittaker vector v = Y onsolM(r,n)] € V", where V" := [, Vr. To

state our main result, we introduce a family of the elements {K,(La;j )}] €%+ of 57 defined

neN
by
Kff“j)(zl, cey X)) = K (21, .. ,xn)le i xj
- 11 (wa—xb—hl)(xb—xa—hl 1T =
1<a<b<n (€a — )2 1<s<n

Let {K; (e:9) }fLGEZN* be analogous elements in the opposite algebra (S%)°PP. The following
result has been already proved in [20] (we refer the interested reader to Appendix E for

an alternative proof).

Theorem 8.6. The vector v is an eigenvector with respect to {K(_a;j)\() <j<wrmn>0}
More precisely: K(a])( HY = Dj _p - v, where

(_1>n(n—1)/2 S
DO,fn =...= Dr72,7n =0, D'r‘fl,fn = T Jen.n Dr,fl = La
N 5189 S1592 )

and D, _,, is a degree n polynomial in x,.

Remark 8.4. The subalgebra of (S%)°PP generated by {K* (asd )}O<j =" corresponds to the
subalgebra of Y~ generated by {f;, [f;, fit1l [fi» [fi» Firall, - - }j—o under the identifi-
cation (S%)°PP ~ Y~ due to Proposition 7.8.
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Appendix A. Proof of Proposition 1.3

We follow a standard argument. Consider a unital associative C-algebra Vg, 4,.4; (al1)
generated by {e;, fi, i,y i € Z} subject to the relations (T0,T3,T4,T5). Let
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V=, V9 V+ be the subalgebras of V, ,, 4 (gl;) generated by {f;}, {vi,v "'}, and {e;},
respectively. Let It and I~ be the two-sided ideals of 1../(117(127(13 (gly) generated by the
quadratic and cubic relations in e; and f;, respectively, arising from the relations
(T1,T2,T6). Explicitly, I is generated by

Ajj = ei13€; —Glei42€j11 + 26416512 — ;€543
—€€i+3 +S2€j11€i42 —G1€512€i41 + €436,
Bihiz,is = SymGg [61'17 [eiz—i-l, 6i3_1]],

where ¢1 ;= q1 +q2 +q3, S 1= ql_l —|—q2_1 +q3_1 and i, j,41,12,13 € Z. Let J* stay for the
corresponding two-sided ideals of V. Our next result implies Proposition 1.3.

Lemma A.1. (a) Multiplication induces an isomorphism of vector spaces
m: V_ ® VO ® V+;>v;1h¢12,q3 (9[1)‘

(b) V= and V* are free associative algebras in {f;} and {e;}, respectively, while V°
is the algebra generated by {1;, vy '} with the defining relations (T0).
(c) We have IT =m(V- @ V@ Jt) and I- =m(J- @V e V).

Proof of Lemma A.1. Parts (a) and (b) are standard.

The first equality in part (c¢) is equivalent to V-vost being a two-sided ideal
of Vi aas(0ly). To prove this, it suffices to show [A;j,t.], [Biyiniisstrls [Aigs fr,
[Bi in.is» [+] € VOJT. The first two commutators are just the linear combinations of A,/ j
and By i i1, respectively, due to (T4t). Also [A;j, f] = 0, due to (T3) and (T4).

To prove [Bi, iy.iss fr] € VOJ*, we work with the generating series. The relation (T3)
implies

P - [e(z1)e(z)e(zs), f(w)] =

Z1 21

(%) vleelzetz) +8 (32) wllelen)elz)g (‘) +
5 (%) P(23)e(z1)e(22)g <j_;> g <z_§> ’
where 9(z) = 1) (2) — ¥~ (z). Hence, we have

{Sym% {(Z ca2_n_ Z‘”’) 6(21)6(22)e(z3)} ,f(w)} _

Bt (8(z1/w)ip(21)Ch (22, 23) + 6(22/w)1(22) Ca23, 21) + 6(23/w)(23)Cs (21, 22))
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where C' (22, 23) = e(z2)e(23)C23 + e(z3)e(22)C32 and

z2 Z3 z3

The equality Cy32 = —g(22/23)C123 implies that C (22, 23) is proportional to the generat-
ing function of A; ;. The same holds for Cy(z3, 21), C3(21, 22). This yields [By, iy iz, fr] €
VOJt for any iy, 49, 3,7 € Z.

The second equality in part (c) is proved analogously. O

Appendix B. Proofs of Theorems 3.2, 3.4
B.1. Sketch of the proof of Theorem 5.2

We generalize the key technical result of [8], required to prove Theorem 3.2 (all other
arguments stay the same). Verification of the relations (T0,T1,T2,T6t) is straightforward
and is based on Lemma 3.3(a). Likewise, it is easy to check that the operators [e;, f;]
are diagonal in the fixed point basis and depend on i + j only: [e;, f;]([]) = Yitjls * [\

Lemma B.1. We have

— -t
Yol = (1 —t1)(1 —t2)(1 —t3)’

=t <(1 0 Zx -3 X(D)> :

a=1[0e)\e

Proof. Fix positive integers L, > (A%*); for 1 < a < r. Applying Lemma 3.3(a), we find

Tslx =

. ! , - ! ! !
ZZ (D) =t ) .kﬁl( X = tatax ) () — tax ")
— tl X( ) na ( @ _ 1X§gl))(X1(¢l) - X;l))

1
llyl j 2 X k#j X

H X;l)( X( )t1t2 f[ (l) —t tQX( ))(cha) _ tQXEI)) B
o _ _v®
X X )

a#l j t5ex =1 -1 X(a))(XI(ca)
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r l l _ I l ! l

3T 0 Xy (01— xg it Sl O = tataxg”) 0" — tax”)
2\l ’ l 1 1 l

=1 j—1 (1—t1) ! () — 1y 'ty X! ktj (Xé) - t1x§»))(x§) Xé))

1 < X - (l)tgté ba Xa) . ﬁ (0 — titax ) () —hx:@)) ©)

l a l a
a#l ()_tl tz Xa ' k=1 (ng)_thg‘))( 2 Xl(c))

where T' = (—t)"~2x;'---x7* and X,(f) = ti‘z 1tk !
(i) For s = 0, the rlght—hand side of (V) is a degree 0 rational function in the vari-
ables X(a) It is easy to check that it has no poles, in fact. Therefore, it is an element of

x5 ! as before.

k
F, independent of \. It suffices to compute its value at (Z) the r-tuple of empty Young
diagrams. For A = @ we can choose L1 = ... = L, = 1, while X(a) =17 tk 1xg1.

Applying (©V), we get

Yolx = Y0l
S o (7 = i )0~ fixag )
__(1—t)221 oy g 11_[ I P AV DU e
1 1 1 Xi 2ty Xz al 1Xl 1 Xa )t Xa X )
_ 2 ZH Xi —t1t2xa _ 2 1ty
(I—t1)(1—to) T (I—t)(1—t2) I—tity

I=1 a#l
t—T_tT‘
(1 —t) (1 —ta)(1 —t3)’

where we used the identity Y ;_, I, 21 ﬁ = % The first equality follows.
(ii) For s = 1, the right-hand side of (V) is a degree 1 rational function in the

variables X,(C ) Tt is easy to check that it has no poles Therefore, it is a linear function

—1
with the leading linear part T+ (—1)"x1 .. Xr 1 2 DY ZJL’ 1 le) Hence, we have

ZZ””

=1 j=1

Tl5 =

for a constant C' € F, independent of \, where )Zg-) = Xgl) tfltgflxlfl. Note that

Mt 4.4+ ) Zzlf;;

Il Mv

XT:ZX( 2::

a=10exe

On the other hand, we have C' = ;. Applying (©), we find

¢ = Ml

A 1—t1 (txat —tax; D = tixax; )
Ztl—r H 1 a l [
1

(1 —t1)? ty xl Vet A g -t e D e = Y
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tr— Qtr 1 'r

(1*t1)(1*t2) lle by (1=t l—tg X

(1—t1 1—to) le ’

where we used Y5, - [T,y X2 = w1 351, x; . The second equality follows. O

Next, we introduce the operator series ¢*(2) = >0 ¢ 2F € End(M")[[zF1]], diag-
onal in the fixed point basis with the eigenvalues given by

So, =17 0, =17 0y, = E(L = 11)(1—t2)(1 — t3)7ay); for j € N.
The following is a consequence of Lemma B.1:
Corollary B.2. We have

6(z/w)

(1—t1)(1 —t2)(1 — t3) (@7 (w) — ¢ (2)).

[e(2), f(w)] =

Our next result follows from the explicit computations in the fixed point basis.

Lemma B.3. The series ¢¥(2) satisfy the following relations:

dF(2)e(w)(z — tiw)(z — taw)(z — taw) = —e(w)dpT (2)(w — t12)(w — tg2)(w — t32),
(12)

dE(2) f(w)(w — ty12)(w — toz)(w — t32) = — f(w)pT (2)(2 — tw) (2 — taw) (2 — taw).
(13)

Relation (12) implies the following identity:

(1=t "'x(0))/2) (1 = t5'x(3))/2) (1 = t5 ' x () /=)

¢t (2)
(1 —t1x(05)/2) (1 — t2x(05) /2) (1 — tax(0]) /2)

= ¢+(z)\; '

[5. 0t
)\+Elj
Therefore, we get

0T (2)), = 67 (), - e (2

Applying (V) once again, we find

¢t (2), = (¢g + D (1 —t2)(1 = t2)(1 — ta)yiz ™),

i>0

- X ttx (1 —titaxiz +
__ 4T 4T _ [ — t1t2 a _ur — U1l2X1
=" —t"(1 tltg)zl 1_1H tH<7lxlz ) ,

=1 X1 atl ~ Xa =1
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where we used the identity

1 Xt~ :T“—ﬁ
1-(1 “)21—1/><le l];[ll_L.

=1 X1z

This proves ¢ (z) = ¥ (z). Analogous arguments also imply ¢~ (z) = ¥~ (2).
The relation (T3) follows from Corollary B.2, while the relations (T4,T5) follow
from (12, 13). This completes our proof of Theorem 3.2.

B.2. Sketch of the proof of Theorem 3.4

The proof of Theorem 3.4 is completely analogous to its K-theoretical counterpart.
Verification of the relations (Y0,Y1,Y2,Y6) is straightforward. Likewise, it is easy to
check that [e;, f;] are diagonal in the fixed point basis and depend on i + j only:
e, £i1(IN]) = Yitjls * [A]. To verify the remaining relations, we will need the following
generalization of Lemma 2.4:

Lemma B.4. We have vo; = 7=, M5 = ﬁ (X1 xa— (5)(s1+s2)),

_ 1 T T r
Yol = 2|Al - 515 <Z 22— (r—1)(s1+52) Y wa+ (3) (s1+ 52)2> :
a=1 a=1

Proof. Fix positive integers L, > (A**); for 1 < a < r. Applying Lemma 3.5(a), we find

()+sl+(1—Ll)52—+—xl
X

Yoly = ZZ

=1 j=1 —335-)+Ll82—9€l

kﬁl (x;-l) — .Z‘g) — 51 — 52)(xg) — xy) — $9) y
i @) =) - s1><x(” ;)
mgl) +s14+(1-L 82+xa La ) ( ) _ s —52)(x,(€a) —a:gl) — 59)
};[l < a:() L,ss + x4 Pl (l) ;Ca) = 51)(3:,(;1) - m§l)) > -

=D 4 281+ (1 — Ly)sy + ay
X

-
ZZ l)+51 P -

== —;" + Lisy — 51 —ay
i ) e )y

l l l l

v @ —al —a)E - o))

H S) + 281+ (1= Ly)sa + x4 . ﬁ (ac,(:) - acg»l) — 81 — 52)(x§l) — a:,(:) — S9) >
( ) ’
J

o (l) — Lgsa + 81+ 24 paie (a:gca) — 2 - s1) ()
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where :r](:) = (A{ —1)s1 + (k —1)sy — x4 as before. The right-hand side of (#) is a degree

s rational function in the variables x,(ca). It is easy to see that it has no poles for s > 0.

(i) For s = 0, we therefore see that Yoj; must be an element of C(s1, s2,1,. .. , 1)
independent of \. Evaluating (#) at (), we find Yolx = Yol; = —r/s182.
(ii) For s = 1, we therefore see that v, is a linear function. But its leading

linear part is zero. So 71, = 71),- Evaluating () at 0, we find Ny = N =

81132 (2221 La — (;) (81 + 52))'

(iii) For s = 2, we therefore see that V2|5 is a quadratic function. But its leading

quadratic part is zero. So 79|, is a linear function. Similarly to the proof of Lemma 2.4,
we find that the leading linear part is actually % PRSP N(a) = 2|)\|, where a:( 9=
x,(ca) — (=s1+ (k — 1)s2 — xq). Hence, v, = 2|A| + 72;- Applymg (&) once again, we
recover the last formula. O

Define ¢; := [e;, fo] € End(V"). Explicit computations in the fixed point basis show
that {¢;,e;, fi}jez. satisfy the relations (Y3,Y4,Y4',Y5,Y5') with v; replaced by ¢;.
This implies

(z = x(8)) + s1)(z = x(0)) + s2)(z — x(Tj) + s3)
(z = x(0)) = s1)(z — x(0)) = s2)(z — x(0)) — s3)’

P(2)), 0 = 225 -

a0
|A+D].

where ¢(2) := 1403 3,5 ¢;277 " Therefore, ¢(2); = ¢(2)|; - Cr(2)|;. Applying (),
we find

0, =1~ 2T 3 i [ e

S
152 5301 a#l
1 T] — XTq + S3
S — 11 :
z X xry — I
=1 Loz L7 ta

Combining this with the identity 1+ u ) o7 [, ®52e= = [[j_, 2T, we

T —Tq z+x;

finally get ¢(z) = ¢(z). This completes our proof of Theorem 3.4.

Appendix C. Proofs of Theorems 5.5, 5.9
C.1. Proof of Theorem 5.5

As pointed out in Section 5.4, all the defining relations of the algebra Uy, (gl;) are of
Lie-type. Therefore, it is a universal enveloping algebra of the Lie algebra iip, generated

by {e;, fi, Hi }icz with the same defining relations. Moreover, i, is a C- Hyp-central ex-

mezZ”

ie7 with the following defining

tension of the Lie-algebra i, generated by {e;, fi, H.
relations:

[Hy, Him] = 0, (u0)
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i3, €] — (L+q+q Dleira, i) + (L+q+q leir, ej2] — [ei i8] =0, (ul)

[fis, fi] — A+ q+a D fixa, fix]l + L+ qa+q D[fisr, fire] = [fis fi+3] =0, (u2)

lei, f5] = Hiyj for j # —i, [ei, f-i] =0, (u3)
[Hm,ei] = —=(1=¢")(L = ¢ ™)eitm, (ud)
[Hr, fi] = (1= ¢")(1 = q7™) fism, (u5)
[eo, [ex,e-1]] = 0, [fo, [f1, f1]] = 0, (u6)

where ¢ = " € C*. Note that hg ¢ Q- 7v/—1 <= ¢ # /1 (¢ is not a root of 1). Hence,
it suffices to check that the corresponding homomorphism 6 : i, — 02 defined by

0:e;— Z'D, fi——-D'Z' H, +— (¢™—1)Z™ fori € Z,m e Z*

is an isomorphism of the C-Lie algebras for ¢ # v/1.

The Lie algebra i, is Z*-graded via deg(e;) := (i,1),deg(f;) := (i, —1), deg(Hp) =
(m,0). The Lie algebra 0 is also Z?-graded via deg(Z'D7) = (i,j). Note that 6 is
Z?-graded and surjective. Since dim(d9); ; =1 for (4, ) # (0,0), it suffices to show that
dim(d, );; < 1. This is clear for j = 0, while the proof for j > 0 will occupy the rest of
this section (the case j < 0 is completely analogous).

Let @i) be the Lie algebra generated by {e;, H,, %%Z* with the defining relations
(u0,ul,ud,u6). It suffices to show that dim(@fo)mv <1 forie€Z, j € N. We prove this
by an induction on j.

o Case j =1.

It is clear that (Qi))N’l is spanned by exn.

e Case j =2.

It is clear that (@%O)N’g is spanned by {[e;,, e;,]|i1 + i2 = N}. However, (ul) implies
=gk 2 — gk

[€i+2 , €i+1] s [€i+2+k , €iflc] =

[Citoth, Citi—k] = (]771 ﬁ[ei+2v ei-

These formulas can be unified in the following way:

qiz _ qil o ) qi+1 _ ql—i
[60, ei1+i2] if 11 + 22 # 0, [61', 6_1'] =

e —1 q24_1[61,€—1]~ (14)

[61'1 ) eiz] =
Therefore, (Q%O)N,Q is either spanned by [eg,en] (if N #0) or [e1,e_1] (if N =0).
e Case j = 3.

Let us introduce the length n commutator:

[a1;a2; ... an)n = la1, (a2, [ . - [an-1,an] . . ]]]
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(we will omit the subscript n when the length is clear). The space (gi}) ~,3 is spanned
by {[ei;; €iy; €i5]|i1 + @2 + i3 = N}. Using the automorphism 7 of the Lie algebra @Eo
determined by e; — e;41, Hy — Hp,, we can assume i1,42,73 € N. Due to the above
j = 2 case, it suffices to show that [eg; eo; €;] is a multiple of [e; eo; ex4i] for any k, 1 € N.

For m € Z*, define h,, := _(1—11’”1;{(—71"—:1*””)’ so that ad(h,,)(e;) = ;4. for any i. Set
Ay :=ad(hy). Then

A ([exr; eos er]) = [eny1;€o; €] + [ex; er; €] + [ex; €os €141].

Assuming [eg;ep; €] is a multiple of [eg; eq; ex+1], We get [ext1;€0; €] is a linear com-
bination of [eg; €o; €xti1+1], [€1;€0; €xt1], due to (14). It remains to consider the k = 1
case.
. . Chl S C Y|

We prove by an induction on N > 1 that [e1; eg;en—1] = CLESIE [eo; €0; €N ]

This is equivalent to [e1; ep; en—1] being a multiple of [eg; eg; en], since we can recover
N-1_,2y,N-1_1 .

the constant Ay 3 = (@ (q‘fv)_(f)z ) by comparing 0(le1; eo; en—1]) and 0([eo; eo; en])-

o Case N = 2.

Analogously to Proposition 1.2, the relation (u6) combined with (u4) imply

Symg,[€i,; €iy 115 €iz—1] = 0 for any iy, 1a,43 € Z. (u6")

Plugging ini; = 1,is = 1,43 = 0, we get [e1; e2;e_1]+][e1; e1; eo]+][eo; e2; eo] = 0. Combin-
2
ing this with (14), we find [eg; eo; e2] = —%[el;eo;el] = [e1; e0;e1] = A2 3[eo; eo; €2].
o Case N = 3.

Plugging in iy = 1, ia = 2, i3 = 0 into (u6’), we get
le1;esse_1] + [ea;ese_1] + [e2; €15 €0] + [eo; €35 €0 + [eo; e2; 1] = 0.

2_
Applying (14), we get —(q+2+¢~")[e2; eo; e1] = (g+q7)[e1; eo; e2] — (1+ E&={)[eos eos €3]
= 0. Meanwhile, applying A; to the above equality (q + 1)?[e1; eq; e1] + qleo; eo; e2] = 0,
2 3

we find (q+1)%[e2; eo; e1] + (¢% +3q+1)[e1; eo; 2] + (¢ — L5=1)[eo; eo; €3] = 0. Combining
these two linear combinations of [es; eo; 1], [e1; €o; €2, [eo; €o; €3], we get [e1; eq;e2] =0 =
As3,3le0; eo; e3].

o Case N=k+2, k> 1.

By the induction assumption [e1; eo; ex] — Ag+1,3[€0; €0; €x+1] = 0. Applying A;, we get

([e2; eos ex] + e ers ex] + [e1; €o; ext1])
— Ait1,3([e1; €0; ex+1] + [eo; €15 ext1] + [eo; €o; ex2]) = 0.
Consider the linear operator As := %(ad(h;)? — ad(hy)) acting on gfﬂ Then
As([eirs €ins €ig]) = [€iy413 Cigt15 €ig) + [€i1 415 €ins Cigt1] + [€i15 €int15 Cigg1)-

By the induction assumption [e1; eo; ex—1] — Ak,3[€0; €0; ex] = 0. Applying As, we get



A. Tsymbaliuk / Advances in Mathematics 304 (2017) 583—645 635

([e2; €15 ex—1] + [e2; eo; ex] + [e1; e1; ex])
— A 3(ler;er; en] + [e1; eo; ext1] + [eo; ex; eny1]) = 0.

Applying (14), we find two linear combinations of [es; €q; ex], [e1; €o; €x+1], [€0; €0; €k+2]
which are zero. It is a routine verification to check that they are not proportional for
q # /1. Therefore, we can eliminate [es;eo;ex], which proves that [eq;eo;ersi] is a
multiple of [ep; €o; ex+2]-

e Case j =n > 3.

Analogously to the previous case, it suffices to show that [e1;ep;...;e0;en—1]n is a
multiple of [ep;. .. ;eo0; en]n. This is equivalent to
le1;€05...5€0eN—1]n = ANn - [€0;- .. ;€05 eN]n With
N—1 n—2(,N—1 _ n-1
g -1 ¢ —q
IV st i et o}
(¢ —1)"

where Ay ,, is computed by comparing the images of these length n commutators under 6.
We will need the following generalization of (u6), which follows from Proposition 7.5:

[eos €13 €05 - -5 €0;e—1]n = 0. (u7n)
Analogously to Proposition 1.2, one can see that (u7n) combined with (u4) imply
Symgn [€i1; €int15€isse - 5€i_13€i—1|n =0 for any iy,...,i, € Z. (u7'n)

Now we proceed to the proof of the aforementioned result by an induction on N > 1.
o Case N = 2.
Applying A, to the equality (u7n), we get

le1, Ar([ers eo; - - - ;€05 e—1]n—1)] + [e0; A2([e1; €05 - - - ;€05 €-1]n—1)] = 0.

By the induction assumption on length n — 1 commutators, this can be simplified to

an - [e15€0; ... ;€05 €1]n +bn - [€0; ... ;€05 e2]n = 0. Computing the images under 6, we find
_ 1\ (1 _,n—1\2
An = ( ;i—(zl(lzq)z) # 0.
o Case N = 3.

Applying A; to the equality [e1;e0;...;€0;€1]n = Az2n€0;- .. ;€0; €2]n, We get

lea;€0;- .. €0 €1]n + [e1, A1([eos .. .5 e05€1]n—1)] =

Ao (lers€os. .5 eosealn + [eo, Ai([eos - . .5 eo; €2ln—1)])-

By the induction assumption on length n — 1 commutators, this can be simplified to

[e2;€0;-..1€0;€1]n + Cn - [€15 €05 . . .5 €05 €2]n + dp - [€0; €03 - - . s €05 €3], = 0.

n—2 n—1 n
Computing the images under 0, we find ¢, = (1=9) ((112222‘1):2? —a"),
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Define the linear operator Az := ad(h;)ad(hy)—ad(hs). Applying A3 to (u7n), we get

lea,ad(hi)[er;eo;. .. ;€0;€—1]n—1] + [e1,ad(ha)[e1; €0 . . .5 €05 —1]n—1] +

[60,A3([€1;60; .- -;60;6—1]n—1)] =0.
By the induction assumption on length n — 1 commutators, this can be simplified to
al - [ea;eo;. .. €0;€1]n + - [e15€05 . -5 €05 €aln + d., - [eo; €0; - - -5 €0; €3], = 0.
Computing the images under 6, we find the following formulas

p_ (=DM —gm ), (DM —g)" (g (g7

a, = , C

T2l T g2 (1 —¢*)"
It remains to notice that ¢/, # a/,c,, for ¢ # /1. Therefore, eliminating [es; €q; . - - ; €0; €1]n,
we see that [eq;eq;...;ep; €], is a multiple of [eg; eq;. . .;ep; e3]n-
o Case N=k+2, k>1.
By the induction: [e1;e€0; .. .;€0; €kln = Akt1,n[€0;---;€0; €kt1]n. Applying A;, we get
[e2; €05 - - -5 €03 exln + [e1, A1 ([eo; - - - €05 ex]n—1)] =
Mie+1,n([€15 €05 - -5 €os ext1]n + [eos A1([eos - - -5 €0 €xt1]n—1)])-

By the induction assumption on length n — 1 commutators, this can be simplified to

[e2;€05. . ;€05 €k]n + Vn - [€15€05- -5 €05 €ht1ln + Wn - [€0; ... ;€05 €ptaln = 0.

— (1=g")" (" —2g T —2¢" T g g 1)
- (1=g*t1)"=1(1-q)
Meanwhile, by the induction assumption [e1;...;ep;€k—1]n = Aknl€0;---;€0; €kln-

Computing the images under 6, we find v,

Applying A5 to this equality, we find
le2, A1([eo; - - -5 €05 €r—1]n—1)] + [e1, Aa([eo; - - - s €0; €x—1]n—1)] =
Men(le1, A1([eo; - - -5 €05 ekln—1)] + [e0, A2([eos - - - 5 €05 €x]n—1)])-
By the induction assumption on length n — 1 commutators, this can be simplified to
ul, - [e2; €0 .. 5e0;€k)n + U, - [€15€0; .- €05 €pr1ln + W, - (€05 -5 €05 €kpa)n = 0.
Computing the images under 8, we find

;=g H(A =g
" (I—g)(I—gh)n2

,Ul _ (1 _ qk—l)n—Q(l _ qn—l) q- qn—l qk—l _ qn—l
T (=g 2 (1-9) 1-¢? 1—g*

U
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Since v/, # ul,v, for ¢ # /1, eliminating [e2; €o; . . . ; €0; €x]n, We see that [e1;eo;. . . ; €o;
€k+1]n 18 a multiple of [eg;...;ep; €xt2]n. This completes our proof of dim(@i))i,j <1
for j > 0.

C.2. Proof of Theorem 5.9

As pointed out in Section 5.5, all the defining relations of the algebra Y3, (gl;) are of
Lie-type. Therefore, it is a universal enveloping algebra of the Lie algebra §jp, generated
by {ej, fj,¥;}jez, with the same defining relations. Moreover, i, is a C-1)g-central ex-
tension of the Lie-algebra gho generated by {e;, fj, ¢jy1};ez, with the following defining
relations:

[¢ok,401] = 0, (y0)

[ei+3, €5] = Bleita, ej1] + 3leirs, eji2] — [ed, ejva] — hi(leir, e5] = [ei, ej41]) = 0, (¥1)
[firs, fi] = 3L fivzs Fial 4 3[fivn, fiaa] = Ui, fival = B ([firr, 5] = [fis fi+a]) = 0, (y2)
[eo, fol =0, [es, f] = iy; for i+ j >0, (v3)

[Wivs, €] =3[ir2, €1l +3[Yir1, €j12] = (Wi €53 = h§ ([Wir, e5] = [V, ej1]) =0, (y4)
[¥1,¢65] = 0, [t2,¢5] = 2hge;;, (y4')

[Wivs, fi]=3[ie, fir1]+3irn, fiel=[Wi, fival=h§([Wirr, fi] =i fin]) =0, (¥5)
[1. fi] =0, 2, fi] = —2h5f;, (¥5)

Syme, [€ir; [€i, €is 1]l = 0, Syme,[fir, [fiz, fista]]l = 0. (¥6)

Hence, it suffices to check that the corresponding homomorphism 9 : ¥, — D,
—Io
defined by

Viej 2?0, fj— -0 2!, i = ((x—ho) T —27TH3° for j € Zy

is an isomorphism of the C-Lie algebras for hg # 0. The surjectivity of ¢ is clear.

The Lie algebra jj, is Z-graded via degy(e;) := 1,degy(f;) == —1,degy(¢jq1) := 0
and Z.-filtered as a quotient of the free algebra C(e;, f;,1j41) graded via deg; (e;) = j,
deg, (f;) := j, degy(¥j1+1) := j. The Lie algebra Dy, is also Z-graded via deg,(z'97) = j
and Z, -filtered as a quotient of C(z,0*!) with deg, (x) = 1, deg; (0*') = 0. Note that
is Z-graded and preserves the Z-filtration, while dim(®Dp,)<;; = dim(Dp,)<i—1,; + 1.
Hence, it suffices to prove dim(gho)gm - dim@ho)ﬁi—l’j < 1. This is clear for j = 0,

while we consider j > 0 below (the case j < 0 is completely analogous).
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Let yi) be the Lie algebra generated by {e;,%;j+1};>0 subject to the relations
(y0,y1,y4,y4’,y6). It suffices to prove dim(g}i)gi’j - dim(g}i)gi,w < 1. Let W(n; N)
be the subspace of gi} spanned by {[eo;...;e0;er]n|0 < M < N}. Let V(n; N) be the
subspace of gi spanned by {[e;,;...;€i, |nli1 + ... +in < N}. Given x,y € V(n; N), we
write x ~yif z —y € V(n; N —1). Given x € W(n; N), we write z = v+ [eg;...;€0; eN]n
ifx—v-[eg;...;e05en]n € W(n; N —1).

The required estimate on dimensions of (gi))gz ; follows from the following result:

Proposition C.1. We have V(n; N) = W(n; N) for any n, N € N.

Proof. It is clear that W (n; N) C V(n; N). We prove V(n; N) C W(n; N) by an induc-
tion on n.

e Casen =1,2.

The case n = 1 is obvious. Let us now consider the case n = 2. The relation (y1)
implies

[Citotk,€it1—k] ~ (2k + 1)[eiyo, eir1] and [e;roqk, €imr) ~ (K + 1)[eit2, €]

These formulas can be unified in the following way:

J—i -
lei, ej] ~ i—i—j[eo’ eit+;] fori,jeN. (15)

Assuming by induction V(2;i4+j5—1) C W(2;i4+j—1), we find V(2;i+75) C W(2;i+ ).
e Casen = 3.
Define h; := (;/}T%v h, = WIQZ‘Q%W, so that [hi,e;] = ejt1, [ho,e;] = €12, due to
(v4, y4"). Consider the linear operators 4; := ad(hy), Ay = %(ad(hl)2 —ad(hy)) €
End(j=).

By the induction assumption for n = 2, it suffices to prove [ex;ep;e;] € W(3;k + 1).

Assuming by induction on k that [e;eq;e;] = Zﬁio v leo; eo; enr] and applying A
to this equality, we find (as in Appendix C.1) that [er11;€0; €] can be expressed as a
linear combination of {[eo; eo; enr]} m<kti+1 U{[e1; €o; enr|}ar<p+i- Therefore, it remains

to prove [eq;ep;en—1] € W(3; N). This is equivalent to [e1;ep;en—1] = %[60;60;61\7]7
where the constant fy3 = % can be recovered by comparing 9([e1;ep;en—1]) and

Y([eo; eo; en])-

o Case N =1,2.

We have [e1; eq;e9] = 0 = [eo; eo; e1]. Applying A; to the latter equality, we also find
[e15 €05 €1] = —[eo; €o; ea].

oCase N=k+1, k> 1.

By the induction assumption: [e1;ep; ex—1] = Bk 3leo; €o; ex]- Applying A, we find

lea; €0 en—1] + [e1; €1 ep—1] + [e15 €o; ex]) = Br,3([e1; €o; ex] + [eos €15 ex] + [€0; €0; €xt1])-
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Applying (15), we get [e2; eo; ex—1] + 2 2[e1; €05 ex] € W(3;k + 1). On the other hand,
applying As to [e1; eo; ex—2] = Br—1,3[€0; €0; ex—1], we find

lea;e1; en—a] + [e2; €0 ep—1] + [e15 €15 €—1]
= Br-1.3([erser; en—1] + [ex; eo; ex] + [eo; €15 ex))-

Applying (15), we get 2(::12) [e2; eo; ek_l]—l—%[el; eo; ex] € W(3;k+1). Comparing those
two linear combinations of [es; eg; ex—1], [e1; €o; ex], we find [e1; eo; ex] € W(3; k+1) unless
k = 3. The latter case will be considered in the greater generality below.

o Case n > 3.

Analogously to the previous case, it suffices to show [e1;ep;...;e0;en—1]n € W(n; N),
which is equivalent to [e1;...;€0;eN—1]n = BNn - [€0;---;€0;eN]n With Sy, = %

We will need the following generalization of (y6), which follows from Proposition 7.8:
[eo;-..;e0;€n—2]n =0. (y7n)

Now we proceed to the proof of the aforementioned result by an induction on N.
o Case N <n—1.

If N <n—1,then [eg;...;e0;en—1]n—1 =0=[eo;...;€0;€N]n-

Applying A; to [eg;...;e0;en—2]n =0, we find [e1;...;€0; €n—_2]n € W(n;n —1).
oCase N=k+1,k>n—2.

Applying A; to [e1;€0;...;€0;€k—1]n = Brnleo;. - ;€o0; €xln, we find
[e2; €0 - .. €0; €h—1ln + [e1, A1([eo; . . .5 €05 €k—1]n—1)]
= Brn(lerseos. .5 eosexln + [0, Ai([eos . . .5 €05 €x]n—1)])-

Combining this with the induction assumption for length n — 1 commutators, we get

klea;eo;. .. e0;ek—1]nt+((n—2)k—(n—1)(n—4))[e1;€0; ... ;€05 €kln € W(n;k+1). (16)

Applying As to [e1;e0;. . .; €05 €kh—2]n = Br—1,nl€0;- - -; €0; ek—1]n and using the induction
assumption, we find Pleg;eg;. .. ;€05 €k—1]n + Qle1;€0;. - -;€o; exln € W(n; k + 1), where
pP= W,Q = ijl)(lﬁ(n —4) — k(2n? — 13n + 12) + (n® — 9n? + 18n — 8)).
Comparing those two linear combinations, we get [e1;eq;...;€e0;ex]n € W(n;k + 1) for
k #n.

It remains to consider the case k = n. Define hz := 27’0[’}512 — %, so that [hg, e;] = ejy3.

Applying ad(hy) ad(hy) — ad(hg) to [eo;...;€0; €n—a]n = 6, we find
nlea; €o; -5 €0 €n_1ln + 2[e1;€0; - - -5 €0; €nln € W(n;n + 1).

Combining this with (16), we get [e1;€q;...;€0;enln € W(n;n + 1). This completes our
proof. O
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Appendix D. Proof of Proposition 7.5

Proposition 7.5 follows from Theorem 7.4(c) and the following two lemmas:
Lemma D.1. The elements {LI" }nen belong to A™.
Lemma D.2. The elements {L"} en are algebraically independent.

Proof of Lemma D.1. According to Theorem 7.4(a), it suffices to prove that 9(>*) L™
exist for all k. We have

Ty —
1=0 et i<j

(17)

Our goal is to show that the right-hand side of (17) has a finite limit as z,_g41 —
§ Ty ity ..,y > &2, with € — oco. Note that "E;i has a finite limit as & — oo
unless o(j) < n —k < o(i), while it has a linear growth in the latter case. On the
other hand, w™(z;, ;) has a finite limit as £ — oo for any 4, j. Moreover: w™ (¢ - x,y) =
14+ 0™, wn(y,&-2) =1+ 0(E71) as € — oo. Therefore, it remains to prove the
equality A; = As, where Aq, As are given by

A1 = Z

X _
s=n—k+1 c€&, o(n—I)
i<n—k n—k<i
X H wa ($j7xi) H wo (1'3,1'2)7
1<J 1<j

o(n)=so(n—l-1)<n—k

M= Y Y > (")

s=n—k+1 c€S,

i<n—k n—k<i
X H wo (x5, ;) H wo' (x5, ;).
i<j i<j

Here we set w™(z;,z;) = w™(zj,2;) if 071(i) < o71(j) and Wi (z;,7;) = W™ (x4, 7;)
otherwise.

If k =1, then s = n in both sums and the map (o,1) — (¢’,1) with ¢'(i) := (i + 1)
(for 1 < i < n—1) establishes a bijection between equal summands in 4; and As, so that
A1 = AQ.

For k > 1, there is no such bijection. Instead, we prove A; = 0 (the proof of Ay =0
is analogous). Let us group the summands in A; according to s, o(n — ) and also the
ordering of {c71(1),..., 07 (n—k)} and {o7*(n —k+1),...,07(n)}, which are given
by elements 01_1 € 6,,_; and 02_1 € 6. Define
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ji<n—k n—k<i
wf,’im(xl;...;xn) = H wo' (x5, ;) - H woh (x5, 2;).
i<j i<j

Then A; can be written in the form

Toy(1 .
Al = Z Z Z At7al702 Uzt( )wg7;702 ($17 e (I,'n) Wlth At70—170-2 € Z

x
t<n—ko1€6,_ 0266
We claim that all these constants A; », -, are zero. As an example, we compute Az 1, , 1,:

At 1,1, = ”fl (—1)f (n ; 2) (n — i; — t) <n t_—lI 2)

l=n—k—t
(1) Ft(n —2)1(1 — 1)*-L
t—D k- (n—k-—10)! "~

Thus A¢n, 1, = 0 since & > 1. Analogously A: s, s, = 0 for any t,o1,0,. Hence,
A =0. O

Proof of Lemma D.2. The elements L correspond to nonzero multiples of 8, o via the
identification S™ ~ £T. An algebraic independence of {6, o } nen follows from an analogue
of Proposition 1.3(b) for ﬂq1,qz,qs~

Alternatively, note that {eg} U {[e1;e€0;...;€0;€—1]n 524 correspond to nonzero mul-
tiples of {D"}°%, via the identification Uy (gl;) ~ U(d7). The result follows from the
PBW theorem applied to U(ﬁg). O

Appendix E. Proofs of Theorems 8.5, 8.6

E.1. Proof of Theorem 8.5

In the fixed point basis, we have vX = 3" a5 - [A] with a5 = H’wET;M('f,I;\\)(]' —w)

Hence, it suffices to prove the following equality for any r-tuple of diagrams A:

_ ay (m;4)
Cion =2 o KL sy (18)
;\/

where the sum is over all r-tuples of diagrams A’ such that A C X" and |[\| = |\| + n.
For such a pair (A, \'), define a collection of positive integers

Jii<j12< <y J21<Je2 < <doiys s Jra Sgr2 <o <grg. (19)
with S°"_. I, = n) via the following equality:
a=1 g

3 3 1 1 2 2
)\/ =\ + Dj1,1 + .+ Djl,ll + Dj2,1 + .4 Dj2,z2

_|_..._A,_|:|;ml_|_...+|:|7f

ety "
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We also consider the sequence of r-tuples of diagrams A = A% c Al ¢ ... c Al = N/,
where M9 is obtained from \ by adding the first q boxes from above. For 1 < q < n, the
qth box from above has a form D ©and we denote its character by x(q).

For any F' € (SI*)°PP, we have the followmg formula for the matrix coefficient Fyj5, y:

F(x(1),...,x(n .
i = ],y O oo

In particular, we get

1)
—
>
=
\
~
S
>
—
S
N~—

i) (x(a) = x()( D T Toe o
0= I =i - oy @ ooz

1<a<b<n q

i7)
[, 2]
same row of its ith component, 1 < i < r. Therefore, the sum in (18) should be taken

As an immediate consequence, we find K* (m = 0 if M\ contains two boxes in the

only over those X’ which correspond to collections { J1,1s -5 Jr, t from (19) with strict

inequalities.
a” into the product over consequent pairs: ?f = HZ 1o [*[q] Accord-
s —

We also split
ing to the Bott— Lefschetz fixed point formula, we have

axla]

- oy sty = T+ €zt sty where T = (=) 7x7 - x;
a/\[q—l]
For two r-tuples of diagrams (f, i’) such that g’ = /H—D the matrix coefficient e_,.(z a1
is computed by Lemma 3.3(a):

r KSLe ()

1 1
C—r|li,p'] = 11—t H ) Lo. —1 H (l) (a) 7

a=1 TIXG — 1" Xa " (amyzg) X5 T Xk

where {L,}"_, are chosen to satisfy L, > (u®*); + 1.
Combining these formulas together, we finally get

ax (m3j)
Y
(—tit2)d™ ! x(q) — titax (Y ;
=1 ]] 11 -] “x(a) ¢,
1<q<n{ L=t 5 x(a) - tz Xa ' x(a) — tix”

with the last product taken over pairs (a,k) ¢ {(Sq,Jsq.iq) g1, & < Lo with L, >
(A%*)1 +n.

Let us denote the RHS of this equality by Cj, where j = {j11,...,Jrs,} is defined
n (19). Note that Cj = 0 if the corresponding )’ fails to be a collection of 7 Young
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diagrams. Hence, (18) is reduced to C; _,, = ) Cj, where the sum is over all j from (19)
with strict inequalities.

It is easy to check that ) Cj is a rational function in X,(f) with no poles for 0 < j <r.
The degree estimate implies that > Cj is an element of I, independent of A. Thus v
is indeed an eigenvector with respect to K (_":LJ ). To compute its eigenvalue, we evaluate

> Cjat A = (. This sum is actually taken over all partitions (l1,...,1;) of n with j, 5 = b,
and it equals

Tn(itltZ)n(nfl)/Q 1
(1 _tl)n Z H 1. -1

l lg . —1
A —thxa ) (g -t xa )

n(n—1)

(—t)““‘””(—tltz) 2
(I —tq)m

lb(lb 1)

,lb>

x H
1 T LUp—1)
X Z H ™ _tla—lb+1 H(tQ b g 1 Xéh) j,
2

Li+..+l-=nab= 1 — 13 Xb) (Xa Xb) =1

It is straightforward to check that latter expression is a rational function in x, with no
poles for 0 < j < r — 1. Together with the degree estimate, we see that it is independent
of x,. To compute this constant, we let x; — oo. Then the only nonzero contribution
comes from the collection (I1,12,...,1;) = (n,0,...,0) and the result equals C; _,,.

For j = r, the product of the above expression and (1 ---X,)™ is a rational function
in x, with no poles and of total degree 0, hence, it is independent of x,. To compute this
constant, we let x; — oo. The only nonzero contributions come from (l1,...,1,) with
I3 = 0. For these terms, we let yo — 00, etc. The result follows from straightforward
computations.

E.2. Sketch of the proof of Theorem 8.6

In the fixed point basis, we have v = 3"5 by -[\] with by = HweT;M(r,m) w~t. Hence,

it suffices to prove the following equality for any r-tuple of diagrams A:

by (a;5)
Dj,fn = F ’ K—n I[A,A] (20)
s, 5\

where the sum is over all 7-tuples of diagrams A’ such that A € X and || = |A| + n.
Analogously to the K-theoretical case, we have

by (a;3)
By T v

1) [ 1 — 2@ 5 s, 4
- 1 {%.HX(Q)—LQSQ—&-JJQ.HX((D : @ -x(q)ﬂ},

1<q<n
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with the last product taken over pairs (a,k) ¢ {(Sq;Jsq.iq) g1, & < Lo with L, >
(A")1 + n.
Let us denote the RHS of this equality by D;. Then Zj Dj is a rational function

in xéa) and it has no poles for j > 0. The degree estimate implies that it is independent

(a) n>0
k

of ;" for 0 < j < r. Thus v is indeed an eigenvector with respect to {K(_a;j)}0<j<7,.

To compute the corresponding eigenvalues, we evaluate Zj Dj at A = ). This sum equals

(_1)n(n+1)/2

st
r Iy oy
x> IT TI (e — 2 — (=& +1)s2) " TT TT(Ck — 1)s2 — )7
li+...+l,=n | a,b=1k=1 b=1k=1

It is straightforward to check that this sum is a rational function in x, with no poles.
Together with the degree estimate for j < r — 1, we see that it is independent of z,. To
compute this constant, we let x1 — oo. For j < r — 1, all the summands tend to 0. For
j = r — 1, the only nonzero contribution comes from (Iy,l2,...,l;) = (n,0,...,0) and
equals Dy_1,_,.

Remark E.1. An explicit formula for the eigenvalues D, _,, (n > 1) was first obtained
in [20].
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