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Several realizations of Fock modules for toroidal
Üq,d(sln)

Alexander Tsymbaliuk1

Abstract In this paper, we relate the well-known Fock representations of Üq,d (sln) to the
vertex, shuffle, and ‘L-operator’ representations of Üq,d (sln). These identifications general-
ize those for the quantum toroidal algebra of gl1, which were recently established in Feigin
et al. (J. Phys. A 48(24), 244001, 2015).
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1 Introduction

In the recent paper [9], authors proposed a shuffle approach to the Bethe ansatz problem
for certain modules over the quantum toroidal algebra of gl1, viewing the latter as the Drin-
feld double of the small shuffle algebra. The general idea behind a shuffle approach is that
it frequently allows to interpret complicated concepts in simple terms. As the representa-
tion theory of quantum toroidal algebras of sln is quite similar to that of quantum toroidal
algebras of gl1 (though technically it is more involved), it is desirable to generalize the
aforementioned construction for the former case.

In this article, we identify different families of representations of quantum toroidal alge-
bras of sln. This will be crucial for our arguments in [11], where we diagonalize the
commutative subalgebras of the quantum toroidal algebras of sln studied in [10].
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A. Tsymbaliuk

This paper is organized as follows:

• In Section 2, we recall the definition and key results about the quantum toroidal algebra
Üq,d (sln), n ≥ 3. In particular, we recall the relation to the shuffle algebra S (of A(1)

n−1-
type) studied in [10, 20].

We also discuss three different constructions of their representations:

– combinatorial representations τp
u,c̄ introduced in [8],

– vertex representations ρp
u,c̄ constructed in [21],

– shuffle representations πp
u,c̄ introduced in this paper.

Our construction of πp
u,c̄ is similar to that of [9] for the quantum toroidal algebra

of gl1. In particular, the underlying vector space S1,p(u) carries a natural S-bimodule
structure, while π

p
u,c̄ is the extension of the left S-action to the action of Üq,d (sln), see

Proposition 2.18.
• In Section 3, we relate the aforementioned three different families of representations:

– In Theorem 3.2, we show that πp
u,c̄ induces an action of Üq,d (sln) on the factor

of S1,p(u) by the right S′-action (here S′ ⊂ S denotes the augmentation ideal),
which is isomorphic to the τ

p
u,c̄-action. In Theorems 3.6, 3.7, we generalize

this result to some other families of representations.
– In Theorem 3.8, we show that Miki’s isomorphism� of the quantum toroidal

algebras intertwines the dual of the combinatorial representation τ
p
u,c̄ and the

corresponding vertex representation ρ
p

u′,c̄′ for appropriate parameters.

• In Section 4, we study the matrix elements of L operators associated to the vertex
representations ρ

p
u,c̄. In Theorem 4.5, we derive an explicit formula for the matrix

element Lp,c̄

∅,∅, whose shuffle realization was obtained in [10]. This allows us to iden-

tify the shuffle S-bimodule S1,p(u) with the S-bimodule generated by L
p,c̄

∅,∅, see
Proposition 4.7.

2 Basic Definitions and Constructions

2.1 Quantum Toroidal Algebras of sln for n ≥ 3

Let q, d ∈ C
× be two parameters. We set [n] := {0, 1, . . . , n − 1}, [n]× := [n]\{0}, the

former viewed as a set of mod n residues. Let gm(z) := qmz−1
z−qm . Define {ai,j , mi,j |i, j ∈ [n]}

by
ai,i = 2, ai,i±1 = −1, mi,i±1 = ∓1, and ai,j = mi,j = 0 otherwise.

The quantum toroidal algebra of sln, denoted by Üq,d (sln), is the unital associative
C-algebra generated by {ei,k, fi,k, ψi,k, ψ

−1
i,0 , γ

±1/2, q±d1 , q±d2}k∈Zi∈[n] with the following
defining relations:

[ψ±i (z), ψ±j (w)] = 0, γ±1/2 − central, (T0.1)

ψ±1i,0 · ψ∓1i,0 = γ±1/2 · γ∓1/2 = q±d1 · q∓d1 = q±d2 · q∓d2 = 1, (T0.2)

qd1ei(z)q
−d1 = ei(qz), qd1fi(z)q

−d1 = fi(qz), qd1ψ±i (z)q−d1 = ψ±i (qz), (T0.3)

qd2ei(z)q
−d2 = qei(z), qd2fi(z)q

−d2 = q−1fi(z), qd2ψ±i (z)q−d2 = ψ±i (z), (T0.4)

gai,j (γ
−1dmi,j z/w)ψ+i (z)ψ−j (w) = gai,j (γ d

mi,j z/w)ψ−j (w)ψ+i (z), (T1)
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ei(z)ej (w) = gai,j (d
mi,j z/w)ej (w)ei(z), (T2)

fi(z)fj (w) = gai,j (d
mi,j z/w)−1fj (w)fi(z), (T3)

(q − q−1)[ei(z), fj (w)] = δi,j

(
δ(γw/z)ψ+i (γ 1/2w)− δ(γ z/w)ψ−i (γ 1/2z)

)
, (T4)

ψ±i (z)ej (w) = gai,j (γ
±1/2dmi,j z/w)ej (w)ψ±i (z), (T5)

ψ±i (z)fj (w) = gai,j (γ
∓1/2dmi,j z/w)−1fj (w)ψ±i (z), (T6)

Symz1,z2
[ei(z1), [ei(z2), ei±1(w)]q ]q−1 = 0, [ei(z), ej (w)] = 0 for j �= i, i ± 1, (T7.1)

Symz1,z2
[fi(z1), [fi(z2), fi±1(w)]q ]q−1 = 0, [fi(z), fj (w)] = 0 for j �= i, i±1, (T7.2)

where we set [a, b]x := ab − x · ba and define the generating series as follows:

ei(z) :=
∞∑

k=−∞
ei,kz

−k, fi(z) :=
∞∑

k=−∞
fi,kz

−k, ψ±i (z) :=ψ±1i,0 +
∑
r>0

ψi,±r z∓r , δ(z) :=
∞∑

k=−∞
zk.

It will be convenient to use the generators {hi,k}k �=0 instead of {ψi,k}k �=0, defined by

exp

(
±(q − q−1)

∑
r>0

hi,±r z∓r
)
= ψ̄±i (z) := ψ∓1i,0 ψ

±
i (z), hi,±r ∈ C[ψ∓1i,0 , ψi,±1, ψi,±2, . . .].

Then the relations (T5,T6) are equivalent to the following (we use [m]q := (qm −
q−m)/(q − q−1)):

ψi,0ej,l = qai,j ej,lψi,0, [hi,k, ej,l] = d−kmi,j γ−|k|/2
[kai,j ]q

k
ej,l+k for k �= 0, (T5′)

ψi,0fj,l = q−ai,j fj,lψi,0, [hi,k, fj,l] = −d−kmi,j γ |k|/2
[kai,j ]q

k
fj,l+k for k �= 0. (T6′)

We also introduce hi,0, c, c
′ via ψi,0 = qhi,0 , γ 1/2 = qc, c′ = ∑

i∈[n] hi,0, so that c, c′
are central.

In Sections 2.3–2.4, we will also need to make sense of the elements q
hi,0
2n , γ

1
2n , q

d2
n . In

such cases, we formally add elements of the form q
hi,0
N , q

c
N , q

d1
N , q

d2
N for any N ∈ Z>0.

2.2 Hopf Algebra Structure, Hopf Pairing, and Drinfeld Double

Following [10], we recall some of the basic results on Üq,d (sln) which are relevant to us.

• Topological Hopf algebra structure on Üq,d (sln).
Following [6, Theorem 2.1], we endow Üq,d (sln) with a topological Hopf algebra

structure by defining the coproduct 	, the counit ε, and the antipode S as follows:

	(ψ±i (z)) = ψ±i (γ
±1/2
(2) z)⊗ ψ±i (γ

∓1/2
(1) z), 	(x) = x ⊗ x for x = γ±1/2, q±d1 , q±d2 ,

	(ei(z)) = ei(z)⊗1+ψ−i (γ
1/2
(1) z)⊗ei(γ(1)z), 	(fi(z)) = 1⊗fi(z)+fi(γ(2)z)⊗ψ+i (γ

1/2
(2) z),

(H1)

ε(ei(z)) = ε(fi(z)) = 0, ε(ψ±i (z)) = 1, ε(x) = 1 for x = γ±1/2, q±d1 , q±d2 , (H2)

S(ei(z)) = −ψ−i (γ−1/2z)−1ei(γ−1z), S(fi(z)) = −fi(γ
−1z)ψ+i (γ−1/2z)−1,

S(x) = x−1 for x = γ±1/2, q±d1 , q±d2 , ψ±i (z), (H3)

where γ(1) := γ ⊗ 1 and γ(2) := 1⊗ γ .
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A. Tsymbaliuk

• Sub/quotient-algebras of Üq,d (sln).
In what follows, we will need the following subalgebras of Üq,d (sln):

– Ü≥ is the subalgebra of Üq,d (sln) generated by {ei,k, ψi,l , ψ
−1
i,0 , γ

±1/2, q±d1 ,
q±d2}k∈Z,l∈−Ni∈[n] .

– Ü≤ is the subalgebra of Üq,d (sln) generated by {fi,k, ψi,l , ψ
−1
i,0 , γ

±1/2, q±d1 ,
q±d2}k∈Z,l∈Ni∈[n] .

– Ü+, Ü− are the subalgebras of Üq,d (sln) generated by {ei,k}k∈Zi∈[n] and

{fi,k}k∈Zi∈[n], respectively.
– Ü0 is the subalgebra of Üq,d (sln) generated by {ψi,k, ψ

−1
i,0 , γ±1/2, q±d1 ,

q±d2}k∈Zi∈[n].

We also define two modifications of Üq,d (sln):

– Let Ü ′q,d (sln) be obtained from Üq,d (sln) by “ignoring” the generator q±d2
and taking a quotient by the ideal (c′), i.e., setting c′ = 0. The subalge-
bras Ü ′≥, Ü ′≤, Ü ′±, Ü ′0 of Ü ′q,d (sln) are defined completely analogously to

Ü≥, Ü≤, Ü±, Ü0 above.
– Let ′Üq,d (sln) be obtained from Üq,d (sln) by “ignoring” the generator q±d1

and taking a quotient by the ideal (c), i.e., setting c = 0. The subalge-
bras ′Ü≥, ′Ü≤, ′Ü±, ′Ü0 of ′Üq,d (sln) are defined completely analogously to
Ü≥, Ü≤, Ü±, Ü0 above.

• Hopf pairing and a Drinfeld double realization of Üq,d (sln).

Analogously to the case of quantum affine algebras (see [12]), we have the following
result.

Theorem 2.1 (a) There exists a unique Hopf algebra pairing ϕ : Ü≥ × Ü≤ → C satisfying

ϕ(ei(z), fj (w))= δi,j

q − q−1
· δ
( z

w

)
, ϕ(ψ−i (z), ψ+j (w)) = gai,j (d

mi,j z/w), ϕ(qd2 , qd2 ) = q
n(n2−1)

12 ,

ϕ(ei(z), x
−) = ϕ(x+, fi(z)) = 0 for x± = ψ∓j (w), γ 1/2, qd1 , qd2 ,

ϕ(γ 1/2, qd1) = ϕ(qd1 , γ 1/2) = q−1/2, ϕ(ψ−i (z), qd2) = q−1, ϕ(qd2 , ψ+i (z)) = q,

ϕ(ψ−i (z), x) = ϕ(x,ψ+i (z)) = 1 for x = γ 1/2, qd1 ,

ϕ(γ 1/2, qd2 ) = ϕ(qd2 , γ 1/2) = ϕ(γ 1/2, γ 1/2) = ϕ(qd1 , qd1 ) = ϕ(qd1 , qd2 ) = ϕ(qd2 , qd1 ) = 1.

(b) The natural Hopf algebra homomorphism from the Drinfeld double Dϕ(Ü
≥, Ü≤) to

Üq,d (sln) induces the isomorphism

� : Dϕ(Ü
≥, Ü≤)/I ∼−→Üq,d (sln)with I := (x⊗1−1⊗x|x = ψ±1i,0 , γ

±1/2, q±d1 , q±d2)i∈[n].

(c) Analogously to (b), the algebras Ü ′q,d (sln) and ′Üq,d (sln) admit the Drinfeld double

realizations via Dϕ′(Ü ′≥, Ü ′≤) and D′ϕ(′Ü≥, ′Ü≤), where ϕ′ and ′ϕ are defined similarly
to ϕ.
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(d) The pairings ϕ, ϕ′,′ ϕ are nondegenerate if and only if q, qd, qd−1 are not roots of
unity.

(e) If q, qd, qd−1 are not roots of unity, then the algebras Üq,d (sln), Ü
′
q,d (sln) and

′Üq,d (sln) admit the universal R-matrices R,R′ and ′R, associated to the pairings ϕ, ϕ′
and ′ϕ, respectively.

2.3 Two Copies of Uq(̂sln) Inside Üq,d(sln)

Let Uq(ŝln) be the quantum affine algebra of sln presented in the new Drin-
feld realization, see [5]. This is the unital associative C-algebra generated by
{ei,k, fi,k, ψi,k, ψ

−1
i,0 , C

±1, D̃±1}k∈Z
i∈[n]× with the defining relations similar to those of

Üq,d (sln) (our notation follow [19]):

[ψ±i (z), ψ±j (w)] = 0, C±1 − central, (A0.1)

ψ±1i,0 · ψ∓1i,0 = C±1 · C∓1 = D̃±1 · D̃∓1 = 1, (A0.2)

D̃ei(z)D̃
−1 = qei(q

−nz), D̃fi(z)D̃
−1 = q−1fi(q

−nz), D̃ψ±i (z)D̃−1 = ψ±i (q−nz),
(A0.3)

gai,j (C
−1z/w)ψ+i (z)ψ−j (w) = ψ−j (w)ψ+i (z)gai,j (Cz/w), (A1)

ei(z)ej (w) = gai,j (z/w)ej (w)ei(z), (A2)

fi(z)fj (w) = gai,j (z/w)−1fj (w)fi(z), (A3)

(q − q−1)[ei(z), fj (w)] = δi,j
(
δ(Cw/z)ψ+i (Cw)− δ(Cz/w)ψ−i (Cz)

)
, (A4)

ψ+i (z)ej (w) = gai,j (z/w)ej (w)ψ+i (z), ψ−i (z)ej (w) = gai,j (C
−1z/w)ej (w)ψ−i (z),

(A5)
ψ+i (z)fj (w) = gai,j (C

−1z/w)−1fj (w)ψ+i (z), ψ−i (z)fj (w) = gai,j (z/w)−1fj (w)ψ−i (z),

(A6)
Symz1,z2

[ei(z1), [ei(z2), ej (w)]q ]q−1 = 0 if ai,j = −1, [ei(z), ej (w)] = 0 if ai,j = 0,
(A7.1)

Symz1,z2
[fi(z1), [fi(z2), fj (w)]q ]q−1 = 0 if ai,j = −1, [fi(z), fj (w)] = 0 if ai,j = 0,

(A7.2)
where the generating series ei(z), fi(z), ψ

±
i (z) are defined as before.

This algebra is known to admit a classical Drinfeld–Jimbo realization of [4, 15].
To state this explicitly, let UDJ

q (ŝln) be the unital associative C-algebra generated by

{x±i , t±1i , D±1}i∈[n] with the following defining relations:

D±1D∓1 = 1, DtiD
−1 = ti , Dx±i D−1 = q±1x±i ,

t±1i t∓1i = 1, ti tj = tj ti , tix
±
j t−1i = q±ai,j x±j ,

[x+i , x−j ] = δi,j · ti − t−1i

q − q−1
,

1−ai,j∑
s=0

(−1)s
[s]q ![1− ai,j − s]q ! (x

±
i )sx±j (x±i )1−ai,j−s = 0 (i �= j),

where [m]q ! := [m]q [m− 1]q · · · [1]q .
According to [5], there is a C(q)-algebra isomorphism 
 : UDJ

q (ŝln)
∼−→Uq(ŝln) given

by

x+i �→ei,0, x−i �→fi,0, t±1i �→ψ±1i,0 (1 ≤ i≤n−1), t0 �→ C ·(ψ1,0 · · ·ψn−1,0)−1, D �→ D̃,

x+0 �→ C(ψ1,0 · · ·ψn−1,0)−1[· · · [f1,1, f2,0]q , · · · , fn−1,0]q,
x−0 �→ [en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1(ψ1,0 · · ·ψn−1,0)C−1.
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Remark 2.2 (a) The above isomorphism was stated without a proof in [5]. The inverse

−1 was constructed in [1] by using the braid group action on UDJ

q (ŝln) due to G. Lusztig.
The direct verification of the fact that the above assignment gives rise to a C(q)-algebra
homomorphism 
 : UDJ

q (ŝln)
∼−→Uq(ŝln) was given in [16] by utilizing the technique of

q-commutators, which also plays a key computational role in the current paper. However,
proofs of injectivity of
−1 and
 in [1, 16] had a gap, which was only recently filled in [3].

(b) In the classical literature, the grading elements D, D̃ satisfy slightly different rela-
tions, while our conventions are better adapted to fit into the toroidal story and follow that
of [19].

Following [23], we introduce the vertical and horizontal copies of Uq(ŝln) inside
Üq,d (sln). Consider two algebra homomorphisms h, v : Uq(ŝln)→ Üq,d (sln) defined by

h : x+i �→ ei,0, x−i �→ fi,0, ti �→ ψi,0, D �→ qd2 ,

v : ei,k �→dikei,k, fi,k �→dikfi,k, ψi,k �→dikγ k/2ψi,k, C �→γ, D̃ �→q−nd1 ·q
∑n−1

j=1
j (n−j)

2 hj,0 ,

where we follow the conventions of Section 2.1 and add elements qhj,0/2 to Üq,d (sln).
According to [23], both h, v are inclusions. The images of h and v, denoted by U̇h

q (sln)

and U̇v
q (sln), are called the horizontal and vertical copies of Uq(ŝln) inside Üq,d (sln).

Remark 2.3 The injectivity of h, v was stated in [23] without a proof, and was used in
numeric literature afterwards. A simple way to see the injectivity is to use the double real-
ization of all algebras involved (here Uq(ŝln) is treated as in Theorem 2.1, while UDJ

q (ŝln)

is treated with respect to the Drinfeld-Jimbo Borel subalgebras, see e.g. [17]). Both Hopf
pairings on Uq(ŝln) and UDJ

q (ŝln) are known to be nondegenerate for q not a root of unity.
Since h, v respect the pairings, their injectivity follows.

2.4 Miki’s Isomorphism

We recall the beautiful result of K. Miki which provides an isomorphism
′Üq,d (sln)

∼−→Ü ′q,d (sln) intertwining the vertical and horizontal embeddings of quantum
affine algebras of sln.

To formulate the main result of this section, we need some more notation.

• Let Uq(Lsln) be obtained from Uq(ŝln) by “ignoring” the generator D̃±1 and taking
a quotient by the ideal (C − 1), i.e., setting C = 1. The algebra Uq(Lsln) is usually
called the quantum loop algebra of sln. Analogously to h and v, we have the following
inclusions:

′Üq,d (sln)
′h←↩ Uq(ŝln)

v′
↪→ Ü ′q,d (sln)

and
′Üq,d (sln)

′v←↩ Uq(Lsln)
h′
↪→ Ü ′q,d (sln).

• Let σ be the antiautomorphism of Uq(ŝln) determined by

σ : x±i �→ x±i , ti �→ t−1i , D �→ D−1.
• Let η be the antiautomorphism of Uq(ŝln) determined by

η : ei,k �→ ei,−k, fi,k �→ fi,−k, hi,l �→ −Clhi,−l , ψi,0 �→ ψ−1i,0 , C �→ C, D̃ �→ D̃ ·
n−1∏
i=1

ψ
−i(n−i)
i,0 .
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• Let ′Q be the automorphism of ′Üq,d (sln) determined by

′Q : ei,k �→ (−d)kei+1,k, fi,k �→ (−d)kfi+1,k, hi,l �→ (−d)lhi+1,l , ψi,0 �→ ψi+1,0, qd2 �→ qd2 .

• Let Q′ be the automorphism of Ü ′q,d (sln) such that it maps the generators other than

γ±1/2, q±d1 as ′Q, while

Q′ : γ 1/2 �→ γ 1/2, qd1 �→ qd1 · γ−1.
• Let ′Yj (1 ≤ j ≤ n) be the automorphism of ′Üq,d (sln) determined by

′Yj : hi,l �→ hi,l , ψi,0 �→ ψi,0, qd2 �→ qd2 ,

ei,k �→ (−d)−nδi,0δj,n−iδ̄i,j+iδi,j−1ei,k−δ̄i,j+δi,j−1 , fi,k �→ (−d)nδi,0δj,n+iδ̄i,j−iδi,j−1fi,k+δ̄i,j−δi,j−1 ,

where δ̄i,j =
{
1 if j ≡ i (mod n)

0 otherwise
.

• Let Y ′j (1 ≤ j ≤ n) be the automorphism of Ü ′q,d (sln) such that it maps the generators

other than ψ±1i,0 , γ
±1/2, q±d1 as ′Yj , while

Y ′j : γ 1/2 �→ γ 1/2, ψi,0 �→ γ−δ̄i,j+δi,j−1ψi,0,

Y ′j : qd1 �→ qd1 · γ− n+1
2n ·Kj with Kj =

j−1∏
l=1

q
l
n
hl,0

n−1∏
l=j

q
l−n
n

hl,0 ,

where we follow the conventions of Section 2.1 and add elements γ
1
2n , q

hj,0
2n to

Ü ′q,d (sln).

Theorem 2.4 [19, Proposition 1] There exists an algebra isomorphism

� : ′Üq,d (sln)
∼−→Ü ′q,d (sln)

satisfying the following properties:

� ◦ ′h = v′, � ◦ ′v ◦ η ◦ σ = h′, Q′ ◦ Y ′n ◦� = � ◦ ′Y−11 ◦ ′Q.

Remark 2.5 (a) LetU tor
q,d (sln) be obtained from Üq,d (sln) by “ignoring” the generators q±d1

and q±d2 . The construction of � in [19] was based on the previous work [18], where an
automorphism � of U tor

q,d (sln) was established.

(b) The generators x±i,k, hi,l , k
±1
i , C±1,D±1, D̃±1 from [19] are related to our generators

via
x+i,k ↔ dikei,k, x−i,k ↔ dikfi,k, hi,l ↔ dilγ l/2hi,l ,

k±1i ↔ ψ±1i,0 , C±1 ↔ γ±1, D±1 ↔ q±d2 , D̃±1 ↔ q∓nd1 · q±
∑n−1

j=1
j (n−j)

2 hj,0 ,

while the parameters q, ξ from [19] are related to our parameters q, d via

q ↔ q, ξ ↔ d−n.
(c) The aforementioned choice of generators from [19] is convenient as there is no need

to add elements

{
q

hj,0
N , q

c
N , q

d1
N , q

d2
N

}

N∈Z>0

. However, we prefer the current presentation

as it is more symmetric and suitable for the rest of our exposition.
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We conclude this subsection by computing images of some generators of ′Üq,d (sln)

under � .

Proposition 2.6 (a) We have

� : ei,0 �→ ei,0, fi,0 �→ fi,0, ψ±1i,0 �→ ψ±1i,0 for i ∈ [n]×,

� : ψ±10,0 �→ γ±1 · ψ±10,0 , q±d2 �→ q∓nd1 · q±
∑n−1

j=1
j (n−j)

2 hj,0 ,

� : e0,0 �→ d · γψ0,0 · [· · · [f1,1, f2,0]q, · · · , fn−1,0]q,
� : f0,0 �→ d−1 · [en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1 · ψ−10,0γ

−1.

(b) For i ∈ [n]×, we have

�(hi,1)= (−1)i+1d−i · [[· · · [[· · · [f0,0, fn−1,0]q , · · · , fi+1,0]q , f1,0]q , · · · , fi−1,0]q , fi,0]q2 ,

�(hi,−1)= (−1)i+1di · [ei,0, [· · · , [e1,0, [ei+1,0, · · · , [en−1,0, e0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−1 ]q−2 .

(c) For i = 0, we have

�(h0,1) = (−1)nd1−n · [[· · · [f1,1, f2,0]q, · · · , fn−1,0]q, f0,−1]q2 ,

�(h0,−1) = (−1)ndn−1 · [e0,1, [en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1 ]q−2 .
(d) We have

�(e0,−1) = (−d)ne0,1, �(f0,1) = (−d)−nf0,−1.

Proof of Proposition 2.6 (a) Follow straightforwardly by applying the equality � ◦ ′h =
v′ to the explicit formulas for 
(x±i ),
(ti),
(D) with 
 : UDJ

q (ŝln)
∼−→Uq(ŝln) from

Section 2.3.
(b) We will need the following formulas expressing hi,±1 in the Drinfeld-Jimbo

presentation:


−1(hi,1) = (−1)i[[· · · [[· · · [x+0 , x+n−1]q−1 , · · · , x+i+1]q−1 , x+1 ]q−1 , · · · , x+i−1]q−1 , x+i ]q−2 ,
(1)


−1(hi,−1) = (−1)i[x−i , · · · , [x−1 , [x−i+1, · · · , [x−n−1, x−0 ]q · · · ]q ]q · · · ]q2 . (2)

Formulas (1, 2) are proved by applying iteratively two useful identities involving q-
brackets:

[a, [b, c]u]v = [[a, b]x, c]uv/x + x · [b, [a, c]v/x]u/x,
[[a, b]u, c]v = [a, [b, c]x]uv/x + x · [[a, c]v/x, b]u/x,

compare to our proof of Theorem 4.5 (we leave verification of details to the interested
reader).

Applying the equality � ◦ ′v ◦ η = h′ ◦ σ−1 to formulas (1) and (2), we get the claimed
formulas for �(hi,−1) and �(hi,1), respectively.

(c) Applying the equalityQ′ ◦Y ′n◦� = � ◦′Y−11 ◦′Q to hn−1,±1 and using the formulas
for �(hn−1,±1) from (b), we obtain the formulas for �(h0,±1).

(d) It suffices to apply the equalityQ′ ◦Y ′n◦� = � ◦′Y−11 ◦′Q to en−1,0 and fn−1,0.
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2.5 Fock and Macmahon Modules

In this section, we recall two interesting classes of ′Üq,d (sln)-modules constructed in [8].
They depend on two parameters: 0 ≤ p ≤ n− 1 and u ∈ C

×. We also set

q1 := q−1d, q2 := q2, q3 := q−1d−1 and φ(t) := q−1t − q

t − 1
. (�)

Assumption In the rest of this paper, we assume that q1, q2, q3 are generic, that is,

qa
1 q

b
2q

c
3 = 1 for some a, b, c ∈ Z implies a = b = c. (G)

Given ν ∈ C
× and a collection of formal series φ(z) = {φ±i (z)}i∈[n], φ±i (z) ∈ C[[z∓1]],

a vector v of an ′Üq,d (sln)-module V is said to have weight (ν;φ(z)) if qd2v = ν · v and
ψ±i (z)v = φ±i (z) · v for any i ∈ [n]. The module V is called a lowest weight module if it is
generated by a weight vector v such that ′Ü−v = 0. Such v is called a lowest weight vector,
and its weight the lowest weight of V . Given ν ∈ C

× and φ(z) with φ+i (∞)φ−i (0) = 1 for
every i ∈ [n], there is a unique irreducible lowest weight module of that lowest weight. If
φ±i (z) are expansions of a rational function φi(z) at z = 0,∞, then we write (ν;φ(z)) =
(ν;φi(z))i∈[n].
• Fock modules F (p)(u).

The most basic lowest weight ′Üq,d (sln)-modules are the Fock modules F (p)(u)with the
basis {|λ〉} labeled by all partitions λ. Given such a partition λ = (λ1, λ2, . . .), we define
λ + 1l := (λ1, . . . λl + 1, . . .), |λ| := ∑

l λl , and we denote the transposed partition by
λ′ = (λ′1, λ′2, . . .). We use ∅ to denote the partition (0, 0, . . .). We also write a ≡ b if a − b

is divisible by n.

Proposition 2.7 [8, Proposition 3.3] The ′Üq,d (sln)-action on F (p)(u) is given by the
following formulas:

〈λ+ 1l |ei(z)|λ〉 = δ̄p+l−λl ,i+1
p+s−λs≡i∏
1≤s<l

φ(q
λs−λl−1
1 qs−l

3 )

p+s−λs≡i+1∏
1≤s<l

φ(q
λl−λs
1 ql−s

3 )δ(q
λl
1 ql−1

3 u/z),

〈λ|fi(z)|λ+ 1l〉 = δ̄p+l−λl ,i+1
p+s−λs≡i∏

s>l

φ(q
λs−λl−1
1 qs−l

3 )

p+s−λs≡i+1∏
s>l

φ(q
λl−λs
1 ql−s

3 )δ(q
λl
1 ql−1

3 u/z),

〈λ|ψ±i (z)|λ〉 =
p+s−λs≡i∏

s≥1
φ(q

λs−1
1 qs−1

3 u/z)

p+s−λs≡i+1∏
s≥1

φ(q
λs−1
1 qs−2

3 u/z)−1, 〈λ|qd2 |λ〉 = q |λ|,

while all other matrix coefficients are zero. F (p)(u) is an irreducible lowest weight module
of the lowest weight (1;φ(z/u)δi,p )i∈[n] and with |∅〉 being the corresponding lowest weight
vector.

Definition 2.8 For c̄ ∈ (C×)[n], let τp
u,c̄ be the twist of this representation by the automor-

phism χp,c̄ of ′Üq,d (sln) defined via ei,k �→ ciei,k, fi,k �→ c−1i fi,k, ψi,k �→ ψi,k, qd2 �→
q−

p(n−p)
2 · qd2 .

Given a collection {(pk, uk, c̄k)}rk=1 with 0 ≤ pk ≤ n − 1, uk ∈ C
×, c̄k ∈ (C×)[n], we

call it generic if for any pair 1 ≤ s′ < s ≤ r , there are no a, b ∈ Z such that b−a ≡ ps′ −ps

and us = us′q
−a
1 q−b3 . We have the following simple result (see [8, Lemma 4.1]).
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Lemma 2.9 For a generic collection {(pk, uk, c̄k)}rk=1, the coproduct 	 of (H1) endows
τ
p1
u1,c̄1
⊗ · · · ⊗ τ

pr

ur ,c̄r
with a structure of an ′Üq,d (sln)-module. It is an irreducible lowest

weight module generated by the lowest weight vector |∅〉 ⊗ · · · ⊗ |∅〉.

Remark 2.10 To see the irreducibility, one checks that the action of commuting series
ψ±i (z) is diagonalizable and has a simple joint spectrum (here we use q1, q2, q3 being
generic, see (G)).

• Macmahon modules M(p)(u,K).

For K ∈ C
×, set φK(t) := K−1t−K

t−1 . We call K generic if K /∈ qZdZ. For

such K , the unique irreducible lowest weight ′Üq,d (sln)-module of the lowest weight
(1;φK(z/u)δi,p )i∈[n] is called the Macmahon module, denoted by M(p)(u,K). They were
first studied in [8]. Recall that a collection of partitions λ̄ = {λ(r)}r∈Z>0 is called a plane
partition if

λ
(r)
l ≥ λ

(r+1)
l for all r, l ∈ Z>0 and λ(r) = ∅ for r � 0.

Proposition 2.11 [8, Theorem 4.3] For a generic K , the vector space M(p)(u,K) has a
basis {|λ̄〉} (labeled by all plane partitions) with |∅̄〉 being its lowest weight vector.

In this paper, we will not need explicit formulas for the ′Üq,d (sln)-action in the basis
{|λ̄〉}.

2.6 Vertex Representations

In this section, we recall a family of vertex Ü ′q,d (sln)-representations from [21] generalizing
the construction of [7] for quantum affine algebras. Let Sn be the generalized Heisenberg
algebra generated by {Hi,k|i ∈ [n], k ∈ Z\{0}} and a central element H0 with the defining
relations

[Hi,k,Hj,l] = d−kmi,j
[k]q · [kai,j ]q

k
δk,−l ·H0.

Let S+n be the subalgebra of Sn generated by {Hi,k|i ∈ [n], k > 0} � {H0}, and let Cv0
be the S+n -representation with Hi,k acting trivially and H0 acting via the identity operator.
The induced representation Fn := IndSn

S+n
Cv0 is called the Fock representation of Sn.

We denote by {ᾱi}n−1i=1 the simple roots of sln, by {�̄i}n−1i=1 the fundamental weights of

sln, by {h̄i}n−1i=1 the simple coroots of sln. Let Q̄ := ⊕n−1
i=1 Zᾱi be the root lattice of sln,

P̄ :=⊕n−1
i=1 Z�̄i =⊕n−1

i=2 Zᾱi ⊕ Z�̄n−1 be the weight lattice of sln. We also set

ᾱ0 := −
n−1∑
i=1

ᾱi ∈ Q̄, �̄0 := 0 ∈ P̄ , h̄0 := −
n−1∑
i=1

h̄i .

Let C{P̄ } be the C-algebra generated by eᾱ2 , . . . , eᾱn−1 , e�̄n−1 with the defining rela-
tions:

eᾱi · eᾱj = (−1)〈h̄i ,ᾱj 〉eᾱj · eᾱi , eᾱi · e�̄n−1 = (−1)δi,n−1e�̄n−1 · eᾱi .

For α =∑n−1
i=2 miᾱi +mn�̄n−1, we define eᾱ ∈ C{P̄ } via

eᾱ := (eᾱ2)m2 · · · (eᾱn−1)mn−1(e�̄n−1)mn .

Let C{Q̄} be the subalgebra of C{P̄ } generated by {eᾱi }n−1i=1 .
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For every 0 ≤ p ≤ n− 1, define the space

W(p)n := Fn ⊗ C{Q̄}e�̄p .

Consider the operators Hi,l, e
ᾱ, ∂ᾱi

, zHi,0 , d acting on W(p)n, which assign to every
element

v ⊗ eβ̄ = (Hi1,−k1 · · ·HiN ,−kN v0)⊗ e
∑n−1

j=1 mj ᾱj+�̄p ∈ W(p)n

the following values:

Hi,l(v ⊗ eβ̄ ) := (Hi,lv)⊗ eβ̄ , eᾱ(v ⊗ eβ̄ ) := v ⊗ eᾱeβ̄ , ∂ᾱi
(v ⊗ eβ̄ ) := 〈h̄i , β̄〉v ⊗ eβ̄ ,

zHi,0(v ⊗ eβ̄) := z〈h̄i ,β̄〉d
1
2

∑n−1
j=1〈h̄i ,mj ᾱj 〉mi,j v ⊗ eβ̄ ,

d(v ⊗ eβ̄) := (−
∑

ki + ((�̄p, �̄p)− (β̄, β̄))/2)v ⊗ eβ̄ .

The following result provides a natural structure of an Ü ′q,d (sln)-module on W(p)n.

Proposition 2.12 [21, Proposition 3.2.2] For any c̄ = (c0, . . . , cn−1) ∈ (C×)[n], u ∈ C
×,

and 0 ≤ p ≤ n− 1, the following formulas define an action of Ü ′q,d (sln) on W(p)n:

ρ
p
u,c̄(ei (z)) = ci exp

(∑
k>0

q−k/2u−k

[k]q Hi,−kzk
)
exp

(
−
∑
k>0

q−k/2uk

[k]q Hi,kz
−k
)
eᾱi

( z

u

)1+Hi,0
,

ρ
p
u,c̄(fi(z)) = (−1)nδi,0

ci
exp

(
−
∑
k>0

qk/2u−k

[k]q Hi,−kzk
)
exp

(∑
k>0

qk/2uk

[k]q Hi,kz
−k
)
e−ᾱi

( z

u

)1−Hi,0
,

ρ
p
u,c̄(ψ

±
i (z)) = exp

(
±(q − q−1)

∑
k>0

Hi,±k(z/u)∓k
)
q±∂ᾱi , ρ

p
u,c̄(γ

1/2) = q1/2, ρ
p
u,c̄(q

d1 ) = qd.

W(p)n is an irreducible Ü ′q,d (sln)-module if q, qd, qd−1 are not roots of unity.

Remark 2.13 (a) The irreducibility of ρp
u,c̄ follows from the irreducibility of the Sn-module

Fn and level one vertex Uq(ŝln)-modules of [7], established at [2].
(b) The factor (−1)nδi,0 in ρ

p
u,c̄(fi(z)) (missing in [10, 21]) is due to (eᾱi )−1 =

(−1)nδi,0e−ᾱi .

2.7 Shuffle Algebra

Consider an N[n]-graded C-vector space

S =
⊕

k=(k0,...,kn−1)∈N[n]
Sk,

where S(k0,...,kn−1) consists of
∏

Ski -symmetric rational functions in the variables

{xi,r }1≤r≤kii∈[n] . We also fix an n × n matrix of rational functions � = (ωi,j (z))i,j∈[n] ∈
Matn×n(C(z)) by setting

ωi,i(z)= z−q−2

z−1 , ωi,i+1(z)= d−1z−q

z−1 , ωi,i−1(z)= z−qd−1

z−1 , and ωi,j (z)=1 otherwise.

Let us now introduce the bilinear � product on S: given F ∈ Sk,G ∈ Sl , define F � G ∈
Sk+l by

(F � G)(x0,1, . . . , x0,k0+l0; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=

187



A. Tsymbaliuk

Sym∏
Ski+li

⎛
⎝F({xi,r }1≤r≤kii∈[n] )G({xi′,r ′ }ki′<r ′≤ki′+li′

i′∈[n] ) ·
i′∈[n]∏
i∈[n]

r ′>ki′∏
r≤ki

ωi,i′(xi,r/xi′,r ′)

⎞
⎠ .

Here and afterwards, given a function f ∈ C({xi,1, . . . , xi,mi
}i∈[n]), we define

Sym∏
Smi

(f ) :=
∏
i∈[n]

1

mi ! ·
∑

(σ0,...,σn−1)∈Sm0×...×Smn−1

f ({xi,σi (1), . . . , xi,σi (mi )}i∈[n]).

This endows S with a structure of an associative unital algebra with the unit 1 ∈ S(0,...,0).
We will be interested only in a certain subspace of S, defined by the pole and wheel
conditions:

• We say that F ∈ Sk satisfies the pole conditions if and only if

F = f (x0,1, . . . , xn−1,kn−1)∏
i∈[n]

∏r ′≤ki+1
r≤ki (xi,r − xi+1,r ′)

, where f ∈ (C[x±1i,r ]1≤r≤kii∈[n] )
∏

Ski .

• We say that F ∈ Sk satisfies the wheel conditions if and only if

F({xi,r }) = 0 once xi,r1/xi+ε,l = qdε and xi+ε,l/xi,r2 = qd−ε for some ε, i, r1, r2, l,

where ε ∈ {±1}, i ∈ [n], 1 ≤ r1, r2 ≤ ki, 1 ≤ l ≤ ki+ε and we use the cyclic notation
xn,l := x0,l , kn := k0, x−1,l := xn−1,l , k−1 := kn−1 as before.

Let Sk ⊂ Sk be the subspace of all elements F satisfying the above two conditions and
set

S :=
⊕

k∈N[n]
Sk.

Further Sk = ⊕r∈ZSk,r with Sk,r := {F ∈ Sk|tot.deg(F ) = r}. The following is
straightforward.

Lemma 2.14 The subspace S ⊂ S is �-closed.

Now we are ready to introduce one of the key actors of this paper:

Definition 2.15 The algebra (S, �) is called the shuffle algebra (of A(1)
n−1-type).

Recall the subalgebra Ü+ of Üq,d (sln) from Section 2.2. By standard results,1 Ü+ is
generated by {ei,k}k∈Zi∈[n] with the defining relations (T2, T7.1). We equip the algebra Ü+

with the N[n] × Z–grading by assigning deg(ei,k) = (1i; k), where 1i ∈ N
[n] is the vector

with the i-th coordinate 1 and all other coordinates being zero.
The following result is straightforward:

Proposition 2.16 There exists a unique algebra homomorphism � : Ü+ → S such that
�(ei,k) = xk

i,1 for any i ∈ [n], k ∈ Z. In particular, Im(�) ⊂ S.

The following beautiful result was recently proved by A. Negut:

1See [14, Theorem 4.2.1] for the case of finite quantum groups, [13, Theorem 3.2] for the case of quantum
affine algebras, and [22, Proposition 1.3] for the case of quantum toroidal of gl1.
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Theorem 2.17 [20, Theorem 1.1] The homomorphism � : Ü+ → S is an isomorphism of
N
[n] × Z-graded algebras.

2.8 Shuffle Bimodules

Following the ideas of [9], we introduce three families of S-bimodules.

• Shuffle modules S1,p(u).
For u ∈ C

× and 0 ≤ p ≤ n− 1, consider an N[n]-graded C-vector space

S1,p(u) =
⊕

k=(k0,...,kn−1)∈N[n]
S1,p(u)k,

where the degree k component S1,p(u)k consists of
∏

Ski -symmetric rational functions

F in the variables {xi,r }1≤r≤kii∈[n] satisfying the following three conditions:

(i) Pole conditions, that is,

F = f (x0,1, . . . , xn−1,kn−1)∏
i∈[n]

∏r ′≤ki+1
r≤ki (xi,r−xi+1,r ′ ) ·∏kp

r=1(xp,r−u)
, where f ∈ (C[x±1i,r ]1≤r≤kii∈[n] )

∏
Ski .

(ii) First kind wheel conditions, that is,

F({xi,r })=0 once xi,r1/xi+ε,l=qdε and xi+ε,l/xi,r2=qd−ε for some ε, i, r1, r2, l,

where ε ∈ {±1}, i ∈ [n], 1 ≤ r1, r2 ≤ ki, 1 ≤ l ≤ ki+ε and we use the cyclic
notation.

(iii) Second kind wheel conditions, that is,

f ({xi,r }) = 0 once xp,r1 = u and xp,r2 = q2u for some 1 ≤ r1, r2 ≤ kp,

where f ({xi,r }) :=∏kp
r=1(xp,r − u) · F({xi,r }).

Fix c̄ ∈ (C×)[n]. Given F ∈ Sk and G ∈ S1,p(u)l , we define F � G,G � F ∈
S1,p(u)k+l by

(F � G)(x0,1, . . . , x0,k0+l0 ; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=
∏
i∈[n]

c
ki
i ×

Sym∏
Ski+li

⎛
⎝F

(
{xi,r }r≤kii∈[n]

)
G
(
{xi′,r ′ }r

′>ki′
i′∈[n]

) i′∈[n]∏
i∈[n]

r ′>ki′∏
r≤ki

ωi,i′ (xi,r /xi′,r ′ )

kp∏
r=1

φ(xp,r/u)

⎞
⎠

(3)

and

(G � F)(x0,1, . . . , x0,k0+l0; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=

Sym∏
Ski+li

⎛
⎝G

(
{xi,r }r≤lii∈[n]

)
F
(
{xi′,r ′ }r

′>li′
i′∈[n]

) i′∈[n]∏
i∈[n]

r ′>li′∏
r≤li

ωi,i′(xi,r/xi′,r ′)

⎞
⎠ . (4)

These formulas endow S1,p(u) with a structure of an S-bimodule.
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Identifying S with ′Ü+ � Ü+ via � (see Theorem 2.17), we get two commuting ′Ü+-
actions on S1,p(u). Our next result extends one of these to an action of the entire algebra
′Üq,d (sln).

Proposition 2.18 The following formulas define an action of ′Üq,d (sln) on S1,p(u):

π
p

u,c(q
d2)G = q−

p(n−p)
2 +|k| ·G, π

p

u,c(ei,k)G = xk
i � G,

π
p

u,c(hi,0)G = (2ki − ki−1 − ki+1 − δi,p) ·G,

π
p

u,c(hi,l)G =
⎛
⎝1

l

∑
i′∈[n]

ki′∑
r ′=1
[lai,i′ ]qd−lmi,i′ xl

i′,r ′ − δi,p
[l]q
l

qlul

⎞
⎠ ·G for l �= 0,

π
p

u,c(fi,k)G = kic
−1
i

q−1 − q

(
Res
z=0
+ Res

z=∞

)
zkG({xi′,r ′ }|xi,ki �→z)

∏
i′
∏ki′−δi,i′

r ′=1 ωi′,i (
xi′,r′
z

)

dz

z
.

Here k ∈ Z, c̄ = (c0, . . . , cn−1) ∈ (C×)[n], G ∈ S1,p(u)k and |k| :=
∑

i∈[n] ki .

Remark 2.19 Formulas of Proposition 2.18 can be equivalently written in the following
form

π
p

u,c(q
d2)G = q−

p(n−p)
2 +|k| ·G, π

p

u,c(ei(z))G = δ

(
xi

z

)
� G, (5)

π
p

u,c(ψ
±
i (z))G=

⎛
⎝

ki∏
r=1

q2z−xi,r

z−q2xi,r
·
ki+1∏
r=1

z−qdxi+1,r
qz−dxi+1,r

·
ki−1∏
r=1

dz−qxi−1,r
qdz−xi−1,r

· φ(z/u)δi,p
⎞
⎠
±
·G,

(6)

π
p

u,c(fi(z))G= kic
−1
i

q−1−q
·
⎧⎨
⎩

⎛
⎝ G({xi′,r ′ }|xi,ki �→z)

∏
i′
∏ki′ −δi,i′

r ′=1 ωi′,i (
xi′,r′
z

)

⎞
⎠
+
−
⎛
⎝ G({xi′,r ′ }|xi,ki �→z)

∏
i′
∏ki′−δi,i′

r ′=1 ωi′,i (
xi′,r′
z

)

⎞
⎠
−⎫⎬
⎭ ,

(7)
where g(z)± denotes the expansion of a rational function g(z) in z∓1, respectively.

Proof of Proposition 2.18 We need to check the compatibility of the given assignment πp

u,c

with the defining relations (T0.1–T7.2). The only nontrivial of those are (T3, T4, T6, T7.2).

To check (T3, T6), we use formulas (6, 7) together with an obvious identity
ωi,j (z/w)

ωj,i (w/z)
=

gai,j (d
mi,j z/w) for any i, j ∈ [n]. The verification of (T7.2) boils down to the identity

Sym
z1,z2

(
ωi,i (z1/z2)

−1

ωi,i±1(z1/w)ωi,i±1(z2/w)
− (q + q−1)ωi,i (z1/z2)

−1

ωi,i±1(z1/w)ωi±1,i (w/z2)
+ ωi,i (z1/z2)

−1

ωi±1,i (w/z1)ωi±1,i (w/z2)

)
= 0.

Finally, the verification of (T4) is based on the observation that the ki +1− δi,j different
summands from the symmetrization appearing in π

p

u,c(ei(z))π
p

u,c(fj (w))G cancel the ki +
1−δi,j terms (out of ki+1) from the symmetrization appearing in π

p

u,c(fj (w))π
p

u,c(ei(z))G.

• Shuffle modules S(u).
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The above construction admits a “higher rank” generalization. For any r ∈ N
[n], consider

u = (u0,1, . . . , u0,l0; . . . ; un−1,1, . . . , un−1,ln−1) with ui,s ∈ C
×.

Define S(u) = ⊕k∈N[n]S(u)k completely analogously to S1,p(u) with the following
modifications:

(i′) Pole conditions for a degree k function F should read as follows:

F = f (x0,1, . . . , xn−1,kn−1 )∏
i∈[n]

∏r ′≤ki+1
r≤ki (xi,r−xi+1,r ′ ) ·∏i∈[n]

∏li
s=1

∏ki
r=1(xi,r−ui,s )

, f ∈ (C[x±1i,r ]1≤r≤kii∈[n] )
∏

Ski .

(iii′) Second kind wheel conditions for such F should read as follows:

f ({xi,r })=0 once xi,r1=ui,s and xi,r2=q2ui,s for some i ∈ [n], 1≤s≤ li , 1≤r1, r2≤ki,

where f ({xi,r }) :=∏
i∈[n]

∏li
s=1

∏ki
r=1(xi,r − ui,s) · F({xi,r }).

Let us endow S(u) with an S-bimodule structure by applying formulas (3) and (4) with

kp∏
r=1

φ(xp,r/u) �
∏
i∈[n]

li∏
s=1

ki∏
r=1

φ(xi,r/ui,s).

The resulting left ′Ü+-action on S(u) can be extended to the ′Üq,d (sln)-action, denoted
πu,c. The latter is defined by the formulas (5–7) with the following two modifications:

φ(z/u)δi,p �
li∏

s=1
φ(z/ui,s), q−

p(n−p)
2 � q

−∑n−1
p=0 lp · p(n−p)2 .

Let 1u denote the element 1 ∈ S(u)(0,...,0). The following is obvious:

Lemma 2.20 For X ∈ ′Ü+ · ′Ü0, we have πu,c(X)1u = 0 for all u, c if and only if X = 0.

• Shuffle modules SK
1,p(u) and SK(u).

Another generalization of S1,p(u) is provided by the S-bimodules SK
1,p(u). As a vector

space, SK
1,p(u) is defined similarly to S1,p(u) but without imposing the second kind wheel

conditions. The S-bimodule structure on SK
1,p(u) is defined by the formulas (3) and (4) with

the only change

φ(t) � φK(t) := K−1 · t −K

t − 1
.

The resulting left ′Ü+-action can be extended to the ′Üq,d (sln)-action on SK
1,p(u),

denoted π
p,K

u,c , defined by the formulas (5–7) with the only change φ � φK .

It is clear how to define the “higher rank” generalization SK(u), equip it with an S-

bimodule structure, and extend the resulting left ′Ü+-action to the ′Üq,d (sln)-action π
K

u,c on

SK(u).
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3 Identification of Representations

In this section, we establish relations between representations τ
p
u,c̄, π

p
u,c̄, ρ

p
u,c̄. As before,

we assume q1, q2, q3 are generic in the sense of (G).

3.1 Isomorphism π̄
p

u,c̄
� τ

p

u,c̄

Fix 0 ≤ p ≤ n − 1, u ∈ C
×, c̄ ∈ (C×)[n]. Recall the action π

p
u,c̄ of

′Üq,d (sln) on S1,p(u)

from Proposition 2.18. Define

S′ :=
⊕

k �=(0,...,0)
Sk ⊂ S.

Consider a C-vector subspace

V0 := S1,p(u) � S′ = spanC{G � F | G ∈ S1,p(u), F ∈ S′} ⊂ S1,p(u).

The following result is straightforward and its proof is left to the interested reader:

Lemma 3.1 The subspace V0 of S1,p(u) is invariant under the action π
p
u,c̄ of

′Üq,d (sln).

Let π̄
p
u,c̄ denote the corresponding ′Üq,d (sln)-action on the factor space S̄1,p(u) :=

S1,p(u)/V0.

Theorem 3.2 We have an isomorphism of ′Üq,d (sln)-modules π̄
p
u,c̄ � τ

p
u,c̄.

Corollary 3.3 If q1, q2, q3 are generic in the sense of (G), then π̄
p
u,c̄ is irreducible.

Proof of Theorem 3.2 By Proposition 2.7, τp
u,c̄ is an irreducible ′Üq,d (sln)-representation

generated by |∅〉. Moreover, both 1̄u ∈ S̄1,p(u) (the image of 1u) and |∅〉 ∈ F (p)(u) are the
lowest weight vectors of the same weight. Therefore, it suffices to estimate dimensions of
the graded components of S̄1,p(u):

|k|=m∑

k∈N[n]
dim S̄1,p(u)k = p(m) ∀ m ∈ N, (♥)

where p(m) stays for the number of size m partitions.

Descending filtration.
To prove (♥), we equip Sm

1,p(u) := ⊕
|k|=m

S1,p(u)k with a filtration {Sm,λ
1,p (u)}λ labeled

by all size ≤ m partitions λ. We define S
m,λ
1,p (u) via the specialization maps ρλ introduced

below as
S
m,λ
1,p (u) :=

⋂
μ�λ

Ker(ρμ) ⊂ Sm
1,p(u),

where � denotes the lexicographic order on the set of size ≤ m partitions.
Consider the [n]-coloring of the Young diagram λ by assigning c(�) := p − a +

b (mod n) ∈ [n] to a box � = (a, b) ∈ λ located at the b-th row and a-th column
(1 ≤ b ≤ λ′1, 1 ≤ a ≤ λb). Define

k
λ := (kλ0 , . . . , k

λ
n−1) ∈ N

[n], where kλi = #{� ∈ λ | c(�) = i}.
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Remark 3.4 We denote τ
p

u,(1,...,1) simply by τ
p
u . Note that the map |λ〉 �→ ∏

�∈λ cc(�) · |λ〉
induces an isomorphism of ′Üq,d (sln)-representations τ

p
u
∼−→τ

p
u,c̄ for any c̄ ∈ (C×)[n].

Let us fill the boxes of λ by entering qa−1
1 qb−1

3 u into the box (a, b) ∈ λ. For F ∈
S1,p(u)k , we would like to specialize k

λ
variables to the corresponding entries of λ. Such a

naive substitution produces zeroes in numerators and denominators, so we need to modify
it properly to get ρλ.

Specialization maps ρλ.

For F ∈ S1,p(u)k , we set ρλ(F ) = 0 if k − k
λ
/∈ N
[n]. If l := k − k

λ ∈ N
[n], we do the

following:

• First, we consider the corner box � = (1, 1) ∈ λ of color p and specialize xp,kp �→ u.
Since F has the first order pole at xp,kp = u, the following is well-defined:

ρ
(1)
λ (F ) := [(xp,kp − u) · F ]|xp,kp �→u.

• Next, we specialize more variables to the entries of the remaining boxes from the first
row and the first column. For every box (a+1, 1) ∈ λ (0 < a < λ1) of color p−a, we
choose an unspecified yet variable of the (p − a)-th family {xp−a,·} and set it to qa

1u.
Likewise, for every box (1, b + 1) ∈ λ (0 < b < λ′1), we choose an unspecified yet
variable of the (p + b)-th family {xp+b,·} and set it to qb

3u. We perform this procedure
step-by-step moving from (1, 1) to the right and then from (1, 1) up. We denote the

resulting specialization of F by ρ
(λ1+λ′1−1)
λ (F ).

• If (2, 2) /∈ λ, we set ρλ(F ) := ρ
(λ1+λ′1−1)
λ (F ). If λ contains (2, 2), we would like to

specify another variable of the p-th family, say xp,kp−1, to q1q3u. Due to the first kind

wheel conditions, the function ρ
(λ1+λ′1−1)
λ (F ) has zero at xp,kp−1 = q1q3u. Hence, the

following is well-defined:

ρ
(λ1+λ′1)
λ (F ) :=

[
1

xp,kp−1 − q1q3u
· ρ(λ1+λ′1−1)

λ (F )

]

|xp,kp−1 �→q1q3u

.

• Next, we start moving from (2, 2) to the right and then from (2, 2) up. On each step,
we specialize the corresponding x·,·-variable to the prescribed entry of the diagram.
However, due to the first kind wheel conditions, we have to eliminate order 1 zeros as
above.

• Performing this procedure |λ| times, we finally obtain ρ
(|λ|)
λ (F ) ∈ C

(
{xi,r }1≤r≤lii∈[n]

)
. Set

ρλ(F ) := ρ
(|λ|)
λ (F ).

Key properties of ρλ.
Tracing back the contribution of the first and second kind wheel conditions, we find that

ρλ : S1,p(u)kλ+l −→ Sl ·Gl,λ := {F ′ ·Gl,λ|F ′ ∈ Sl},
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where

Gl,λ =
lp∏

r=1

xp,r − q2u

xp,r − u

×
∏

�=(a,b)∈X+λ
∏lc(�)

r=1 (xc(�),r−qa−1
1 qb−1

3 u)·∏�=(a,b)∈X−λ
∏lc(�)

r=1 (xc(�),r−qa−1
1 qb−1

3 u)

∏
�=(a,b)∈λ

{∏lc(�)−1
r=1 (xc(�)−1,r−qa−1

1 qb−1
3 u)

∏lc(�)+1
r=1 (xc(�)+1,r−qa−1

1 qb−1
3 u)

} .

Here the setX+λ ⊂ Z
2 consists of those (a, b) ∈ Z

2 such that (a+1, b)&(a+1, b+1) ∈
λ or (a, b+ 1)&(a + 1, b+ 1) ∈ λ, while X−λ ⊂ Z

2 consists of those (a, b) ∈ Z
2 such that

(a − 1, b)&(a − 1, b − 1) ∈ λ or (a, b − 1)&(a − 1, b − 1) ∈ λ.

For F ∈ S
|λ|+|l|,λ
1,p (u)

k
λ+l , we further have ρλ(F ) ∈ Sl ·Gl,λQl,λ, where

Ql,λ =
lp−λ1∏
r=1

(xp−λ1,r − q
λ1
1 u) ·

λb+1<λb∏
b≥1

lp−λb+1+b∏
r=1

(xp−λb+1+b,r − q
λb+1
1 qb

3u).

Our next result establishes two crucial properties of ρλ.

Lemma 3.5 (a) If k − k
λ
/∈ N
[n], then ρλ(S1,p(u)k � Sl) = 0 for any l ∈ N

[n].
(b) We have ρλ(S

|λ|+|l|,λ
1,p (u)

k
λ+l ) = ρλ(S1,p(u)k

λ � Sl) for any l ∈ N
[n].

Proof of Lemma 3.5 (a) For F1 ∈ S1,p(u)k and F2 ∈ Sl , let us evaluate the ρλ-specialization
of any summand from F1 �F2. In what follows, we say that qa

1 q
b
3u gets into F2 in the chosen

summand if the x·,·-variable which is specialized to qa
1 q

b
3u enters F2 rather than F1. If u

gets into F2, we automatically get zero once we apply ρ
(1)
λ . A simple inductive argument

shows that if at least one of the variables {qa
1u}λ1−1a=1 ∪{qb

3u}
λ′1−1
b=1 gets into F2, we also obtain

zero after applying ρ
(a+1)
λ or ρ(λ1+b)

λ since the corresponding ω·,·-factor is zero. If q1q3u
gets into F2, but all the entries from the first hook of λ get into F1, then there are two zero

ω·,·-factors, and so we get zero after applying ρ
(λ1+λ′1)
λ , etc. However, not all the specialized

variables get into F1 as k−k
λ
/∈ N
[n]. Hence, the ρλ-specialization of this summand is zero,

and so ρλ(F1 � F2) = 0.
(b) For F1 ∈ S1,p(u)k

λ , F2 ∈ Sl , the specialization ρλ(F1 � F2) is a sum of ρλ-
specializations applied to each summand from F1 � F2. According to (a), only one

such specialization is nonzero and we have ρλ(F1 � F2) = ∏
i∈[n]

k
|λ|
i !li !

(k
|λ|
i +li )!

ρλ(F1) ·
F2({xi,r }1≤r≤lii∈[n] ) · P, where P denotes the product of the corresponding ω·,·-factors: P =∏

�=(a,b)∈λ
∏

i∈[n]
∏li

r=1 ωc(�),i (q
a−1
1 qb−1

3 u/xi,r ). It is straightforward to check that P =
ν ·Gl,λQl,λ with ν ∈ C

×. To complete the proof of (b), it remains to provide F1 ∈ S1,p(u)k
λ

such that ρλ(F1) �= 0. To achieve this, we set F1 = Kλ̄′λ1
� · · · � Kλ̄′1

·∏k
λ
p

r=1(xp,r − u)−1,
where λ̄′r ∈ N

[n] is prescribed by the coloring of the r-th column of λ and Km :=∏
i∈[n]

∏
1≤r �=r ′≤mi

(xi,r − q−2xi,r ′) ·∏i∈[n]
∏1≤r ′≤mi+1

1≤r≤mi

xi,r−q1xi+1,r′
xi,r−xi+1,r′ .
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Proof of (♥).
Now we are ready to deduce (♥), completing our proof of Theorem 3.2. Note that

dim Sm
1,p(u) =

∑
λ:|λ|≤m

dim grλ(S
m
1,p(u)), dim S̄m

1,p(u) =
∑

λ:|λ|≤m
dim grλ(S̄

m
1,p(u)),

where the filtration {S̄m,λ
1,p (u)}λ on S̄m

1,p(u) is induced by the filtration {Sm,λ
1,p (u)}λ on

Sm
1,p(u). The ρλ-specialization identifies grλ(S

m
1,p(u)) with ρλ(S

m,λ
1,p (u)). This observation

and Lemma 3.5 imply that grλ(S̄
m
1,p(u)) is zero if |λ| < m and is 1-dimensional if |λ| = m.

This proves (♥).

3.2 Generalizations to S(u) and SK(u)

The result of Theorem 3.2 can be generalized in both directions mentioned in Section 2.8.
Recall the ′Üq,d (sln)-action πu,c on the space S(u), which preserves the subspace S(u) � S′
(see Lemma 3.1). Let π̄u,c̄ denote the induced ′Üq,d (sln)-action on S̄(u) := S(u)/(S(u) �

S′). We call u = {ui,s}1≤s≤lii∈[n] generic if {(i, ui,s , (1, . . . , 1))} is generic in the sense of
Section 2.5.

Theorem 3.6 For a generic u = {ui,s}1≤s≤lii∈[n] , we have an isomorphism of ′Üq,d (sln)-
modules

π̄u,c̄ � ⊗n−1
i=0 ⊗li

s=1 τ i
ui,s

.

Proof of Theorem 3.6 The proof of this theorem goes along the same lines as for the case∑
li = 1 from above. According to Lemma 2.9, ⊗n−1

i=0 ⊗li
s=1 τ i

ui,s
is a well-defined,

irreducible, lowest weight representation generated by the lowest weight vector |∅〉u :=
⊗n−1

i=0 ⊗li
s=1 |∅〉. On the other hand, the vector 1̄u ∈ S̄(u) is the lowest weight vector of the

same weight as |∅〉u. Therefore, it suffices to compare the dimensions. This can be accom-
plished as above by using the specialization maps ρλ with λ = {λ(0,1), . . . , λ(n−1,ln−1)} (they
are defined similarly to ρλ, but the entry of � = (a, b) ∈ λ(i,s) is set to be qa−1

1 qb−1
3 ui,s ,

while its color is c(�) := i − a + b (mod n) ∈ [n]).

Another generalization of Theorem 3.2 establishes an isomorphism of π̄K

u,c̄ and tensor
products of Macmahon modules for generic parameters. For simplicity of our exposition,
we restrict attention to the case of πp,K

u,c for genericK (that is,K /∈ qZdZ). Let π̄p,K
u,c denote

the induced ′Üq,d (sln)-action on the factor space S̄K
1,p(u) := SK

1,p(u)/(S
K
1,p(u) � S′).

Theorem 3.7 We have an isomorphism of ′Üq,d (sln)-modules S̄K
1,p(u) � M(p)(u,K).

Proof of Theorem 3.7 We apply same proof as for Theorem 3.2, while now the filtration
is parametrized by plane partitions λ̄ = (λ(1), λ(2), . . .). Here, we fill the boxes of λ̄ by
entering qa−1

1 qc−1
2 qb−1

3 u into the box � = (a, b) ∈ λ(c) and define the specialization
maps ρλ̄ as before. Whence the arguments from our proof of Theorem 3.2 apply word by
word. Note that the only place where we used the second kind wheel conditions was the

appearance of the factor
∏lp

r=1(xp,r − q2u) in Gl,λ. This is now compensated by a change
of Ql,λ–the factor which keeps track of the filtration depth.
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3.3 Isomorphism ρ
p,�

v,c̄
� τ

∗,p
u

Given a representation ρ of an algebraB on a vector space V and an algebra homomorphism
σ : A → B, we use ρσ to denote the corresponding representation of A on V : ρσ (x) =
ρ(σ(x)). To simplify our notation, we define ′Üq,d (sln)-modules ρ

p,�
v,c̄ := (ρ

p
v,c̄)

� and

τ
∗,p
u := ∗(τp

u ). Actually, the left dual and the right dual modules of τ
p
u are isomorphic:

∗(τp
u ) � (τ

p
u )∗.

Theorem 3.8 For any 0 ≤ p ≤ n − 1, v ∈ C
×, c̄ ∈ (C×)[n], we have an isomor-

phism of ′Üq,d (sln)-modules ρ
p,�
v,c̄ � τ

∗,p
u , where u := (−1) (n−2)(n−3)

2 q−1d−p−(n−1)δp,0 ·
(c0 · · · cn−1)−1.
Corollary 3.9 For any 0 ≤ p ≤ n − 1, v, v′ ∈ C

×, c̄, c̄′ ∈ (C×)[n] with
∏

i∈[n] ci =∏
i∈[n] c′i , we have an isomorphism of Ü ′q,d (sln)-representations ρ

p
v,c̄ � ρ

p

v′,c̄′ .

Proof of Theorem 3.8 Our proof consists of three steps. First, we verify that both v0 ⊗
e�̄p and |∅〉∗ have the same eigenvalues with respect to the finite Cartan subalgebra
C[ψ±10,0 , . . . , ψ

±1
n−1,0, q±d2 ]. Second, we show that both vectors are annihilated by ei,k-action

for any i ∈ [n], k ∈ Z. Finally, we prove that they have the same eigenvalues with respect
to ψi,l-action for any i ∈ [n], l ∈ Z\{0}.

Step 1: Comparing weights with respect to C[ψ±10,0 , . . . , ψ
±1
n−1,0, q±d2 ].

According to Proposition 2.12, elements ψi,0, γ, q
d1 act on v0 ⊗ e�̄p via multiplication

by q〈h̄i ,�̄p〉, q, 1, respectively. Combining this with Proposition 2.6(a), we get

ρ
p,�
v,c̄ (qd2)v0⊗ e�̄p = q

p(n−p)
2 ·v0⊗ e�̄p , ρ

p,�
v,c̄ (ψi,0)v0⊗ e�̄p = qδi,p ·v0⊗ e�̄p ∀ i ∈ [n].

We also have τ
p
u (qd2)|∅〉 = q−

p(n−p)
2 · |∅〉 and τ

p
u (ψi,0)|∅〉 = q−δi,p · |∅〉. Therefore,

the vectors v0 ⊗ e�̄p ∈ ρ
p,�
v,c̄ and |∅〉∗ ∈ τ

∗,p
u have the same weights with respect to

C[ψ±10,0 , . . . , ψ
±1
n−1,0, q±d2 ].

Remark 3.10 This explains the appearance of q−
p(n−p)

2 in the formulas for
τ
p
u,c̄(q

d2), π
p
u,c̄(q

d2).

Step 2: Verifying an annihilation property with respect to ′Ü+.
First, we prove ρ

p,�
v,c̄ (ei,0)v0 ⊗ e�̄p = 0 for i ∈ [n]. For i �= 0, this is clear

as 〈h̄i , �̄p〉 + 1 > 0, while Hi′,kv0 = 0 for all i′ ∈ [n], k > 0. For i = 0,
�(e0,0) = dγψ0,0[· · · [f1,1, f2,0]q, · · · , fn−1,0]q by Proposition 2.6(a), and the equality

ρ
p,�
v,c̄ (e0,0)v0 ⊗ e�̄p = 0 follows from our next result.

Lemma 3.11 ρ
p
v,c̄([· · · [f1,1, f2,0]q, · · · , fn−1,0]q)v0 ⊗ e�̄p = 0.

Proof of Lemma 3.11 It suffices to show that any summand fin−1,rn−1 · · · fi1,r1 of the above

multicommutator (here {i1, . . . , in−1} = [n]× and rk = δik,1) acts trivially on v0 ⊗ e�̄p .

Since−〈h̄i , �̄p〉+1 > 0 for i �= p, we see that ρp
v,c̄(fi1,r1)v0⊗e�̄p = 0 unless i1 = p �= 1.

For i1 = p �= 1, we get ρp
v,c̄(fi1,r1)v0⊗ e�̄p = ±c−1i1

v0⊗ e�̄
(1)
p with �̄

(1)
p := �̄p− ᾱi1 . The
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key property of this weight is −〈h̄i , �̄
(1)
p 〉 + 1 ≥ 0. In particular, ρp

v,c̄(fi2,r2)v0 ⊗ e�̄
(1)
p = 0

unless i2 = p−1 �= 1 or i2 = p+1 �= 1. In the latter two cases, the result is±c−1i2
v0⊗e�̄

(2)
p

with �̄
(2)
p := �̄

(1)
p − ᾱi2 satisfying a similar property. Continuing in the same way, we

finally get to the k-th place with ik = 1 and rk = 1. As −〈h̄1, �̄(k−1)
p 〉 + 1 ≥ 0, we have

ρ
p
v,c̄(fik,rk · · · fi1,r1)v0 ⊗ e�̄p = 0.

This completes our proof of the equality ρ
p,�
v,c̄ (ei,0)v0 ⊗ e�̄p = 0 for any i ∈ [n].

According to (‡) from the next step, we have ρ
p,�
v,c̄ (hj,±1)v0 ⊗ e�̄p = 0 for j �= p.

Combining this formula with the relation (T5′) [hj,±1, ei,k] = d∓mj,i γ−1/2[aj,i]q · ei,k±1,
one gets

ρ
p,�
v,c̄ (ei,k)v0 ⊗ e�̄p = 0 for any i ∈ [n], k ∈ Z.

On the other hand, the identity S(ei(z))=−ψ−i (γ−1/2z)−1ei(γ−1z) combined with the for-
mulas of Proposition 2.7 imply a similar equality τ

∗,p
u (ei,k)|∅〉∗ = 0 for any i ∈ [n], k ∈ Z.

Step 3: Comparing weights with respect to ′Ü0.
Let us now prove that both v0 ⊗ e�̄p ∈ ρ

p,�
v,c̄ and |∅〉∗ ∈ τ

∗,p
u are eigenvectors with

respect to the generators {ψi,l}l �=0i∈[n] and have the same eigenvalues. By the definition of τp
u ,

we have

τ
∗,p
u (ψ±i (z))|∅〉∗ = φ(z/u)−δi,p |∅〉∗ ⇒ τ

∗,p
u (ψi,±r )|∅〉∗ = ±δi,p(q − q−1)(q2u)±r |∅〉∗

for any i ∈ [n], r ∈ Z>0. Therefore, it remains to show

ρ
p,�
v,c̄ (ψi,±r )v0 ⊗ e�̄p = ±δi,p(q − q−1)(q2u)±rv0 ⊗ e�̄p for any i ∈ [n], r ∈ Z>0. (‡)

Our proof of (‡) is based on the following technical result.

Lemma 3.12 We have the following equalities:

ρ
p,�
v,c̄ (fi,0)v0 ⊗ e�̄p = δi,pc

−1
p · λδp,0 · v0 ⊗ e−ᾱp e�̄p , (8)

ρ
p,�
v,c̄ (hi,−1)v0 ⊗ e�̄p = δi,pq

−1u−1 · v0 ⊗ e�̄p , (9)

ρ
p,�
v,c̄ (hi,1)v0 ⊗ e�̄p = δi,pqu · v0 ⊗ e�̄p , (10)

ρ
p,�
v,c̄ (hp,−1)v0 ⊗ e−ᾱp e�̄p = −q−3u−1 · v0 ⊗ e−ᾱp e�̄p , (11)

ρ
p,�
v,c̄ (hp,1)v0 ⊗ e−ᾱp e�̄p = −q3u · v0 ⊗ e−ᾱp e�̄p , (12)

where c := ∏
j ∈[n] cj , λ := (−1) (n− 2)(n− 3)

2 v−1 q−1 d−1c, u := (−1) (n− 2)(n− 3)
2 q−1

d−p−(n−1)δp,0c−1.

Proof of Lemma 3.12

• For i �= 0, we have �(fi,0) = fi,0 and −〈h̄i , �̄p〉 + 1 = 1− δi,p ≥ 0, so that

ρ
p,�
v,c̄ (fi,0)v0 ⊗ e�̄p = δi,pc

−1
p · v0 ⊗ e−ᾱp e�̄p . �

For i = 0, we apply the formula for �(f0,0) from Proposition 2.6(a) to get

ρ
p,�
v,c̄ (f0,0)v0⊗e�̄p = q−δp,0d−1 ·ρp

v,c̄([en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1)v0⊗e�̄p .

197



A. Tsymbaliuk

As ρp
v,c̄(ej,0)v0⊗e�̄p = 0 for j �= 0, we see (by rewriting the above multicommutator)

that

ρ
p
v,c̄([en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1 )v0⊗e�̄p = ρ

p
v,c̄(en−1,0) · · · ρp

v,c̄(e2,0)ρ
p
v,c̄(e1,−1)v0⊗e�̄p .

For p �= 0, the same argument as before implies ρp
v,c̄(ep,0) · · · ρp

v,c̄(e2,0)ρ
p
v,c̄(e1,−1)

v0 ⊗ e�̄p = 0, while for p = 0 we have

ρ
p
v,c̄(en−1,0) · · · ρp

v,c̄(e2,0)ρ
p
v,c̄(e1,−1)v0⊗ e�̄p = v−1(c1 · · · cn−1) ·v0⊗ (eᾱn−1 · · · eᾱ1).

Since eᾱn−1 · · · eᾱ1 = (−1) (n−2)(n−3)
2 e−ᾱ0 , we finally get

ρ
0,�
v,c̄ (f0,0)v0 ⊗ e0 = (−1) (n−2)(n−3)

2 v−1q−1d−1c · c−10 v0 ⊗ e−ᾱ0 . �
In what follows below, we assume p �= 0.

• Combining the formula for �(h0,−1) from Proposition 2.6(c) with

ρ
p
v,c̄(e0,1)v0 ⊗ e�̄p = ρ

p
v,c̄(e2,0)v0 ⊗ e�̄p = · · · = ρ

p
v,c̄(en−1,0)v0 ⊗ e�̄p = 0,

we get

ρ
p,�
v,c̄ (h0,−1)v0⊗e�̄p = (−1)ndn−1 ·ρp

v,c̄(e0,1)ρ
p
v,c̄(en−1,0) · · · ρp

v,c̄(e2,0)ρ
p
v,c̄(e1,−1)v0⊗e�̄p .

The latter is zero, since ρp
v,c̄(ep−1,0) · · · ρp

v,c̄(e1,−1)v0⊗e�̄p = ±v−1c1 · · · cp−1·v0⊗
e�̄p+ᾱ1+···+ᾱp−1 and 〈h̄p, �̄p+ᾱ1+· · ·+ᾱp−1〉+1 > 0. Thus ρp,�

v,c̄ (h0,−1)v0⊗e�̄p = 0
for p �= 0.�

For i �= 0, the formula for�(hi,−1) combined with ρ
p
v,c̄(ej,0)v0⊗ e�̄p = 0 (j �= 0)

implies

ρ
p,�
v,c̄ (hi,−1)v0 ⊗ e�̄p =(−1)i+1diρ

p
v,c̄(ei,0) · · · ρp

v,c̄(e1,0)ρ
p
v,c̄(ei+1,0) · · · ρp

v,c̄(en−1,0)ρ
p
v,c̄(e0,0)v0 ⊗ e�̄p .

If i < p, then 〈h̄p, �̄p + ᾱ0 +∑n−1
j=p+1 ᾱj 〉 + 1 > 0 and so

ρ
p
v,c̄(ep,0) · · · ρp

v,c̄(en−1,0)ρ
p
v,c̄(e0,0)v0 ⊗ e�̄p = 0⇒ ρ

p,�
v,c̄ (hi,−1)v0 ⊗ e�̄p = 0.

If i > p, then 〈h̄p, �̄p + ᾱ0 + ∑n−1
j=i+1 ᾱj + ∑p−1

j=1 ᾱj 〉 + 1 > 0 and hence

ρ
p,�
v,c̄ (hi,−1)v0 ⊗ e�̄p = 0. If i = p, then we get

ρ
p,�
v,c̄ (hp,−1)v0⊗e�̄p=(−1)p+1dp(c0· · · cn−1)v0⊗(eᾱp · · ·eᾱ1eᾱp+1 · · · eᾱn−1eᾱ0e�̄p )=
(−1) (n−2)(n−3)

2 dpc · v0 ⊗ e�̄p as eᾱp · · · eᾱ1eᾱp+1 · · · eᾱn−1eᾱ0 = (−1) n(n−1)
2 +p · e0. �

• Due to similar arguments (though this case is a bit more tedious), we have
ρ
p,�
v,c̄ (hi,1)v0 ⊗ e�̄p = 0 if i �= p. For i = p, we get

ρ
p,�
v,c̄ (hp,1)v0⊗e�̄p =(−1)n+p+1d−p(c−10 · · · c−1n−1)v0⊗(e−ᾱ0e−ᾱn−1 · · · e−ᾱp+1e−ᾱ1 · · · e−ᾱp e�̄p ) =
(−1) (n−2)(n−3)

2 d−pc−1 · v0 ⊗ e�̄p as e−ᾱ0e−ᾱn−1 · · · e−ᾱp+1e−ᾱ1 · · · e−ᾱp = (−1) n(n+1)
2 +p · e0. �

• Arguing as above, only one summand of the corresponding multicommutator acts
nontrivially:

ρ
p,�
v,c̄ (hp,−1)v0 ⊗ e−ᾱp e�̄p =
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(−1)p+1dp(−q−2)ρp
v,c̄(ep−1,0) · · · ρp

v,c̄(e1,0)ρ
p
v,c̄(ep+1,0) · · · ρp

v,c̄(e0,0)ρ
p
v,c̄(ep,0)v0 ⊗ e−ᾱp e�̄p =

(−1)1+ (n−2)(n−3)
2 dpq−2c · v0 ⊗ e−ᾱp e�̄p . �

• Arguing as above, only one summand of the corresponding multicommutator acts
nontrivially:

ρ
p,�
v,c̄ (hp,1)v0 ⊗ e−ᾱp e�̄p =

(−1)p+1d−p(−q2)ρp
v,c̄(fp,0)ρ

p
v,c̄(f0,0) · · · ρp

v,c̄(fp+1,0)ρp
v,c̄(f1,0) · · · ρp

v,c̄(fp−1,0)v0 ⊗ e−ᾱp e�̄p =
(−1)1+ (n−2)(n−3)

2 d−pq2c−1 · v0 ⊗ e−ᾱp e�̄p . �

The proofs of (9–12) for p = 0 are analogous and are left to the interested reader.

Proof of (‡).
Note that ρp,�

v,c̄ (ep,0)v0⊗e−ᾱp e�̄p = cpλ
−δp,0 ·v0⊗e�̄p . Combining this with the identity

[hp,±1, ep,±r ] = γ−1/2(q+q−1)ep,±(r+1) and the equalities (9–12) of Lemma 3.12, we get

ρ
p,�
v,c̄ (ep,±r )v0 ⊗ e−ᾱp e�̄p = cpλ

−δp,0(q2u)±r · v0 ⊗ e�̄p for r ∈ Z>0.

On the other hand, we have

ρ
p,�
v,c̄ (ψi,±r ) = ±(q − q−1)[ρp,�

v,c̄ (ei,±r ), ρp,�
v,c̄ (fi,0)] for r ∈ Z>0.

Since ρ
p,�
v,c̄ (ei,±r )v0 ⊗ e�̄p = ρ

p,�
v,c̄ (fi,0)v0 ⊗ e�̄p = 0 for i �= p, we get

ρ
p,�
v,c̄ (ψi,±r )v0 ⊗ e�̄p = 0 if i �= p. The equality (‡) follows now from

ρ
p,�
v,c̄ (ψp,±r )v0⊗e�̄p = ±(q−q−1)ρp,�

v,c̄ (ep,±r )ρp,�
v,c̄ (fp,0)v0⊗e�̄p = ±(q−q−1)(q2u)±r v0⊗e�̄p .

The irreducibility of ρp
v,c̄ and τ

p
u (which is guaranteed by the assumption (G), see Propo-

sitions 2.7, 2.12) implies that both ′Üq,d (sln)-representations ρ
p,�
v,c̄ and τ

∗,p
u are irreducible.

Moreover, they are generated by the vectors v0⊗e�̄p and |∅〉∗, which are the highest weight
vectors of the same weight, due to Steps 1–3. Theorem 3.8 follows.

4 Matrix Elements of L Operators

In this section, we study matrix elements of L operators associated to ρ
p
u,c̄. Let us denote

ρ
p

1,c̄ simply by ρ
p
c̄ . It suffices to work only with ρ

p
c̄ as ρ

p
u,c̄ � ρ

p
c̄ for any u ∈ C

×, due
to Corollary 3.9. We provide a new realization of the S-bimodule S1,p(u) as a bimodule

generated by L
p,c̄

∅,∅.

4.1 Matrix Elements

For any w ∈ W(p)∗n and v ∈ W(p)n, we consider

Lp,c̄
w,v := 〈1⊗ w|(1⊗ ρ

p
c̄ )(R

′)|1⊗ v〉,
the matrix element of the universal R-matrix R′ with respect to the second component. We
will mainly work with the cases v = |∅〉 := v0 ⊗ e�̄p ∈ W(p)n or w = 〈∅|–the dual of
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|∅〉. In what follows, we abbreviate |∅〉 and 〈∅| simply by ∅ when they appear as indexes of
matrix elements.

Lemma 4.1 For i ∈ [n], r ∈ Z>0, v ∈ W(p)n, we have

[hi,−r , Lp,c̄

∅,v ]q−r = (γ /q)r/2 · Lp,c̄

∅,ρp
c̄ (hi,−r )v

.

Proof of Lemma 4.1 We combine 	(hi,−r ) = hi,−r ⊗ γ−r/2 + γ r/2 ⊗ hi,−r with
R′	(hi,−r ) = 	op(hi,−r )R′ and apply 1 ⊗ ρ

p
c̄ to the resulting equality. Comparing the

matrix elements between 〈∅| and v (with respect to the second component) recovers the
claimed identity.

Our first goal is to compute explicitly L
p,c̄

∅,∅. The shuffle-type formula for L
p,c̄

∅,∅ was

obtained in [10, Theorem 4.8(a)]. To state the result, let �≥ : Ü ′≥ ∼−→S≥ be the natural
extension of the isomorphism � : Ü ′+ ∼−→S from Theorem 2.17.

Theorem 4.2 The image of Lp,c̄

∅,∅ under �
≥ has the following form:

�≥(Lp,c̄

∅,∅) =
∞∑

N=0
ap,N c

−Nq−d1q�̄p�0
p,N ,

where ap,0 = 1, ap,N ∈ C[q±1, d±1] and the shuffle elements �0
p,N ∈ S(N,...,N) are defined

via

�0
p,N =

∏
i∈[n]

∏
1≤r �=r ′≤N(xi,r − q−2xi,r ′) ·∏i∈[n]

∏N
r=1 xi,r∏

i∈[n]
∏

1≤r,r ′≤N(xi,r − xi+1,r ′)
·

N∏
r=1

x0,r

xp,r
.

Recall the Hopf pairing ′ϕ : ′Ü≥ × ′Ü≤ → C from Theorem 2.1(d). Clearly, the genera-
tors hj,r (r ∈ Z>0) are orthogonal to all generators of ′Ü≥ except for hi,−r . Moreover, we
have

′ϕ(hi,−r , hj,r ) = [rai,j ]qd
rmi,j

r(q − q−1)
.

Note that the matrix ([rai,j ]qdrmi,j )i,j∈[n] is nondegenerate if q, qd, qd−1 are not roots
of unity.

Definition 4.3 Let {h⊥i,r }i∈[n] be the basis of spanC〈h0,−r , · · · , hn−1,−r 〉, which is dual to

{hi,r }i∈[n] with respect to ′ϕ. In other words, ′ϕ(h⊥i,r , hj,s) = δi,j δr,s for any i, j ∈ [n], r, s ∈
Z>0.

Our next result provides the first insight toward the elements �−1(�0
p,N ).

Lemma 4.4 We have �−1(�0
p,1) = −(q−1 − q)−n�(h⊥p,1).

Proof of Lemma 4.4 Applying � to the formulas for �(hk,−1) of Proposition 2.6(b,c), we
find:

�(�(hk,−1)) = (q−1−q)n−1 ·
∏

i∈[n] xi∏
i∈[n](xi − xi+1)

·
{
(q + q−1)x0

xk
− d−1 x0

xk+1
− d

x0

xk−1

}
.
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Rewriting this as �(�(hk,−1)) = −(q−1 − q)n
∑

p∈[n] ′ϕ(hk,−1, hp,1)�
0
p,1, we get the

claim.

Now we are ready to state the main result of this section.

Theorem 4.5 Given 0 ≤ p ≤ n− 1, c̄ ∈ (C×)[n], define u ∈ C
× as in Theorem 3.8 via

u := (−1) (n−2)(n−3)
2 q−1d−p−(n−1)δp,0c−1 with c = c0 · · · cn−1.

(a) For any i �= p, we have

�(ei(z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(ei(z)),

�(fi(z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(fi(z)),

�(ψ±i (z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(ψ±i (z)).

(b) We have

(z− u) ·�(ep(z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(ep(z)) · (q−1z− qu),

(q−1z− qu) ·�(fp(z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(fp(z)) · (z− u),

�(ψ±p (z)) · Lp,c̄

∅,∅ = L
p,c̄

∅,∅ ·�(ψ±p (z)).

(c) We have the following explicit formula

L
p,c̄

∅,∅ = q−d1q�̄p exp

( ∞∑
r=1

[r]q
r

(qu)r�(h⊥p,r )
)
. ( )

Remark 4.6 An analogous computation for the representation τ
∗,p
u is much simpler. The

corresponding matrix element Lτ
∗,p
u

∅,∅ := 〈1⊗ ∅|(1⊗ τ
∗,p
u )(′R)|1⊗ ∅〉 equals

〈1⊗∅|(1⊗τ
∗,p
u )(q

1
n
(d2−∑n−1

j=1 �̄j )⊗c′+c′⊗ 1
n
(d2−∑n−1

j=1 �̄j )+∑n−1
j=1 �̄j⊗hj,0 ·exp(

∑
i∈[n]

∞∑
r=1

h⊥i,r⊗hi,r ))|1⊗∅〉,

since τ
p
u (′Ü−)|∅〉 = 0. As τ

∗,p
u (hi,r )|∅〉∗ = δi,p

[r]qqrur

r
|∅〉∗(r > 0), τ ∗,pu (hi,0)|∅〉∗ = δi,p|∅〉∗, we

get

L
τ
∗,p
u

∅,∅ = q
1
n
(d2−∑n−1

j=1 �̄j )+�̄p exp

( ∞∑
r=1

[r]q
r

qrurh⊥p,r

)
.

In particular, �(L
τ
∗,p
u

∅,∅ ) coincides with the right-hand side of ( ). However, we are not

aware of the conceptual reason for Lp,c̄

∅,∅ = �(L
τ
∗,p
u

∅,∅ ) (though it would immediately imply
Theorem 4.5).

4.2 Proof of Theorem 4.5

Our proof is based on the equality

〈1⊗ w|(1⊗ ρ
p
c̄ )(R

′	(x))|1⊗ v〉 = 〈1⊗ w|(1⊗ ρ
p
c̄ )(	

op(x)R′)|1⊗ v〉 (�)

for any x ∈ Ü ′q,d (sln), v ∈ W(p)n, w ∈ W(p)∗n.
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Notation Given a collection of elements β1, · · · , βN ∈ {±ᾱ0, · · · ,±ᾱn−1} and 0 ≤ p ≤
n−1, consider v0⊗eβ1 · · · eβN e�̄p–an element ofW(p)n. We will also use the same notation
for a dual element of W(p)∗n, when writing it in the matrix coefficients of L operators.

• Case p �= 0.

(a) We need to show that Lp,c̄

∅,∅ commutes with {�(ei,k),�(fi,k),�(hi,k)}k∈Zi �=p.

– Proof of [Lp,c̄

∅,∅,�(ei,0)] = 0 and [Lp,c̄

∅,∅,�(fi,0)] = 0 for i �= 0, p.
Due to (H1), we have

	(ei,k) = ei,k ⊗ 1+ ψ−1i,0 γ
−k ⊗ ei,k +

∑
r>0

ψi,−rγ−k−r/2 ⊗ ei,k+r ,

	(fi,k) = 1⊗ fi,k + fi,k ⊗ ψi,0γ
−k +

∑
r>0

fi,k−r ⊗ ψi,rγ
−k+r/2.

Evaluating both sides of (�) at v = |∅〉, w = 〈∅| and x = ei,0 or x = fi,0, we immedi-
ately get [Lp,c̄

∅,∅, ei,0] = 0 and [Lp,c̄

∅,∅, fi,0] = 0. It remains to use �(ei,0) = ei,0, �(fi,0) =
fi,0 for i �= 0.�

– Proof of [Lp,c̄

∅,∅,�(e0,−1)] = 0 and [Lp,c̄

∅,∅,�(f0,1)] = 0.
Evaluating both sides of (�) at v = |∅〉, w = 〈∅| and x = e0,1 or x = f0,−1, we

immediately get [Lp,c̄

∅,∅, e0,1] = 0 and [Lp,c̄

∅,∅, f0,−1] = 0, respectively. It remains to apply the
equalities �(e0,−1) = (−d)ne0,1 and �(f0,1) = (−d)−nf0,−1 from Proposition 2.6(d). �

– Proof of [Lp,c̄

∅,∅,�(hi,−1)] = 0 for any i ∈ [n].
It suffices to prove [�≥(Lp,c̄

∅,∅),�
≥(�(hi,−1))] = 0. According to Lemma 4.4,

�(�(hi,−1)) is a linear combination of �0
p′,1. On the other hand, �≥(Lp,c̄

∅,∅) is a linear

combination of q−d1q�̄p�0
p,N , due to Theorem 4.2. The commutativity of the elements

{�0
p′,m}m∈Np′∈[n] has been established in [10], while q−d1q�̄p obviously commutes with �0

p′,1.
The result follows. �

– Proof of [Lp,c̄

∅,∅,�(hi,1)] = 0 for i �= 0, p.
According to Proposition 2.6(b), it suffices to prove that E = 0, where E is defined via

E := [Lp,c̄

∅,∅; [fi,0, [fi−1,0, · · · , [f1,0, [fi+1,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−1 ]q−2 ]1. (13)

In what follows, we assume i < p ≤ n − 1 leaving the case 0 < p < i to the inter-
ested reader. Applying iteratively the q-commutator identity (mentioned in our proof of
Proposition 2.6(b))

[a, [b, c]u]v = [[a, b]x, c]uv/x + x · [b, [a, c]v/x]u/x (♦)
together with [Lp,c̄

∅,∅, fj,0] = 0 for j �= 0, p, we reduce to a stronger equalityE
(1)
1 +E(1)

2 = 0
with

E
(1)
1 := [[Lp,c̄

∅,∅, fp,0]q−1 , [fp+1,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]1,
E

(1)
2 := q−1[fp,0, [fp+1,0, · · · , [fn−1,0, [Lp,c̄

∅,∅, f0,0]q ]q−1 · · · ]q−1 ]1.
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Evaluating both sides of (�) for appropriate v,w, x step-by-step, we obtain an explicit
formula

E
(1)
2 = −(−q)p−n ·

ψp+1,0 · · ·ψn−1,0ψ0,0

cp · · · cn−1c0 · Lp,c̄

v0⊗eᾱp+1 ···eᾱn−1 eᾱ0 e�̄p ,v0⊗e−ᾱp e�̄p
.

Let us now compute E
(1)
1 . Evaluating both sides of (�) at v = |∅〉, w = 〈∅|, x = fp,0,

we find

[Lp,c̄

∅,∅, fp,0]q−1 = −q−1c−1p · Lp,c̄

∅,v0⊗e−ᾱp e�̄p
.

Evaluating both sides of (�) at v = v0 ⊗ e−ᾱp e�̄p , w = 〈∅|, x = fj,0, we find

[Lp,c̄

∅,v0⊗e−ᾱp e�̄p
, fj,0] = 0 for p + 1 < j ≤ n − 1. Applying iteratively (♦), we get

E
(1)
1 = E

(2)
1 + E

(2)
2 with

E
(2)
1 := −q−1c−1p [[Lp,c̄

∅,v0⊗e−ᾱp e�̄p
, fp+1,0]q−1 , [fp+2,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]1,

E
(2)
2 := −q−2c−1p [fp+1,0, [fp+2,0, · · · , [fn−1,0, [Lp,c̄

∅,v0⊗e−ᾱp e�̄p
, f0,0]q ]q−1 · · · ]q−1 ]1.

Evaluating both sides of (�) for appropriate v,w, x step-by-step, we obtain an explicit
formula

E
(2)
2 = (−q)p−n · ψp+1,0 · · ·ψn−1,0ψ0,0

cp · · · cn−1c0 · Lp,c̄

v0⊗eᾱp+1 ···eᾱn−1 eᾱ0 e�̄p ,v0⊗e−ᾱp e�̄p

− (−q)p−n · ψp+2,0 · · ·ψn−1,0ψ0,0

cp · · · cn−1c0 · Lp,c̄

v0⊗eᾱp+2 ···eᾱn−1 eᾱ0 e�̄p ,v0⊗e−ᾱp+1 e−ᾱp e�̄p
.

The first summand cancels E
(1)
2 , while the second summand is very similar to E

(1)
2 .

Evaluating E
(2)
1 , we get a similar formula E

(2)
1 = E

(3)
1 + E

(3)
2 with

E
(3)
2 = (−q)p−n · ψp+2,0 · · ·ψn−1,0ψ0,0

cp · · · cn−1c0 · Lp,c̄

v0⊗eᾱp+2 ···eᾱn−1 eᾱ0 e�̄p ,v0⊗e−ᾱp+1 e−ᾱp e�̄p

− (−q)p−n · ψp+3,0 · · ·ψn−1,0ψ0,0

cp · · · cn−1c0 · Lp,c̄

v0⊗eᾱp+3 ···eᾱn−1 eᾱ0 e�̄p ,v0⊗e−ᾱp+2 e−ᾱp+1 e−ᾱp e�̄p
.

Proceeding further in the same way, we see that all nontrivial summands in the formula
for E split into pairs of opposite terms. Hence, E = 0 and so [Lp,c̄

∅,∅,�(hi,1)] = 0 for
i �= 0, p. �

– Proof of [Lp,c̄

∅,∅,�(ei,k)] = 0 and [Lp,c̄

∅,∅,�(fi,k)] = 0 for i �= p and any k ∈ Z.
Choose j �= 0, p such that aj,i �= 0. Combining the commutator relations

[�(hj,±1),�(ei,k)] = d∓mj,i [aj,i ]q ·�(ei,k±1), [�(hj,±1),�(fi,k)] = −d∓mj,i [aj,i ]q ·�(fi,k±1)

with

[Lp,c̄

∅,∅,�(ei,−δi,0)] = 0, [Lp,c̄

∅,∅,�(fi,δi,0)] = 0, [Lp,c̄

∅,∅,�(hj,±1)] = 0

established above, we get [Lp,c̄

∅,∅,�(ei,k)] = 0 and [Lp,c̄

∅,∅,�(fi,k)] = 0 by induction
on k. �
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– Proof of [Lp,c̄

∅,∅,�(ψi,k)] = 0 for i �= p and any k ∈ Z.
For k �= 0, this follows immediately from the defining relation (T4) and the previous

step. For k = 0, it suffices to prove [Lp,c̄

∅,∅, ψi,0] = 0 for any i ∈ [n]. This equality follows
by evaluating both sides of (�) at w = 〈∅|, v = |∅〉, x = ψi,0. �

(b) The first two equalities of (b) are equivalent to the following identities:

[Lp,c̄

∅,∅,�(ep,k+1)]q = q2u · [Lp,c̄

∅,∅,�(ep,k)]q−1 ∀ k ∈ Z, (14)

[Lp,c̄

∅,∅,�(fp,k−1)]q = u−1 · [Lp,c̄

∅,∅,�(fp,k)]q−1 ∀ k ∈ Z. (15)

It suffices to check (14) and (15) for single values of k as we can derive the general
equalities by commuting further iteratively with �(hp+1,±1).

– Proof of [Lp,c̄

∅,∅,�(ep,1)]q = q2u · [Lp,c̄

∅,∅,�(ep,0)]q−1 .
Evaluating both sides of (�) at v = |∅〉, w = 〈∅|, x = ep,0, we find

[Lp,c̄

∅,∅,�(ep,0)]q−1 = cp · Lp,c̄

v0⊗e−ᾱp e�̄p ,∅. As �(ep,0) = ep,0, we finally get

q2u · [Lp,c̄

∅,∅,�(ep,0)]q−1 = q2cpu · Lp,c̄

v0⊗e−ᾱp e�̄p ,∅.

To compute [Lp,c̄

∅,∅,�(ep,1)]q , let us first evaluate �(ep,1). Due to (T5′), we have

[hp,1, ep,0] = (q + q−1)ep,1 ⇒ �(ep,1) = −(q + q−1)−1 · [�(ep,0),�(hp,1)],
where �(ep,0) = ep,0 and

�(hp,1) = (−1)n+pd−pqn · [fp,0, · · · , [f1,0, [fp+1,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]q−1 · · ·
]
q−2 .

Applying iteratively the equality (♦) together with the relation (T4), we finally get

�(ep,1) = (−1)n+p+1d−pqn−2ψp,0

[fp−1,0, · · · ,
[
f1,0, [fp+1,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]q−1 · · ·

]
q−1

Therefore, it remains to evaluate

E := [Lp,c̄

∅,∅, [fp−1,0, · · · , [f1,0, [fp+1,0, · · · , [fn−1,0, f0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−1 ]q .

Applying iteratively the equality (♦) together with [Lp,c̄

∅,∅, fj,0] = 0 for j �= 0, p, we get

E=[fp−1,0, · · · , [f1,0, [fp+1,0, · · · , [fn−1,0, [Lp,c̄

∅,∅, f0,0]q ]q−1 · · · ]q−1 ]q−1 · · · ]q−1 .

To compute this multicommutator, we apply the equality (�) with an appropriate choice
of v,w, x step-by-step. Leaving details to the interested reader, let us present the final
formula

E = (−1)nq3−n
∏
i �=p

ψi,0

ci
· Lp,c̄

v0⊗eᾱp−1 ···eᾱ1 eᾱp+1 ···eᾱn−1 eᾱ0 e�̄p ,∅.
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Since
∏

i∈[n] ψi,0 = 1 in Ü ′q,d (sln), we finally get

[Lp,c̄

∅,∅,�(ep,1)]q = (−1) (n−2)(n−3)
2 d−pqcpc−1 · Lp,c̄

v0⊗e−ᾱp e�̄p ,∅,

where we used the following identity in C{P̄ }
eᾱp−1 · · · eᾱ1eᾱp+1 · · · eᾱn−1eᾱ0 = (−1) n(n−1)

2 +pe−ᾱp .

The equality [Lp,c̄

∅,∅,�(ep,1)]q = q2u · [Lp,c̄

∅,∅,�(ep,0)]q−1 follows. �

– Proof of [Lp,c̄

∅,∅,�(fp,−1)]q = u−1 · [Lp,c̄

∅,∅,�(fp,0)]q−1 .
Evaluating both sides of (�) at v = |∅〉, w = 〈∅|, x = fp,0, we find

[Lp,c̄

∅,∅,�(fp,0)]q−1 = −1
qcp
· L∅,v0⊗e−ᾱp e�̄p . As �(fp,0) = fp,0, we finally get

u−1 · [Lp,c̄

∅,∅,�(fp,0)]q−1 = −q−1c−1p u−1 · Lp,c̄

∅,v0⊗e−ᾱp e�̄p
.

To evaluate [Lp,c̄

∅,∅,�(fp,−1)]q , let us first compute �(fp,−1). Due to (T6′), we have

[hp,−1, fp,0]=−(q + q−1)fp,−1⇒�(fp,−1)= (q + q−1)−1 · [�(fp,0),�(hp,−1)],

where �(fp,0) = fp,0 and

�(hp,−1) = (−1)p+1dp · [ep,0, · · · , [e1,0, [ep+1,0, · · · , [en−1,0, e0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−2 .

Applying iteratively the equality (♦) together with the relation (T4), we finally get

�(fp,−1)=(−1)p+1dp · [ep−1,0, · · ·, [e1,0, [ep+1,0, · · ·, [en−1,0, e0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−1 · ψ−1p,0.

Therefore, it remains to evaluate

E := [Lp,c̄

∅,∅, [ep−1,0, · · · , [e1,0, [ep+1,0, · · · , [en−1,0, e0,0]q−1 · · · ]q−1 ]q−1 · · · ]q−1 ]q .

Applying iteratively the equality (♦) together with [Lp,c̄

∅,∅, ej,0] = 0 for j �= 0, p, we get

E = [ep−1,0, · · · , [e1,0, [ep+1,0, · · · , [en−1,0, [Lp,c̄

∅,∅, e0,0]q ]q−1 · · · ]q−1 ]q−1 · · · ]q−1 .

To compute this multicommutator, we apply the equality (�) with an appropriate choice
of v,w, x step-by-step. Leaving details to the interested reader, let us present the final
formula

E = −c−1p c · Lp,c̄

∅,v0⊗eᾱp−1 ···eᾱ1 eᾱp+1 ···eᾱn−1 eᾱ0 e�̄p
· ψp,0.

Therefore,

[Lp,c̄

∅,∅,�(fp,−1)]q = (−1) n(n−1)
2 dpc−1p c · Lp,c̄

∅,v0⊗e−ᾱp e�̄p
.

The equality [Lp,c̄

∅,∅,�(fp,−1)]q = u−1 · [Lp,c̄

∅,∅,�(fp,0)]q−1 follows. �
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– Proof of [Lp,c̄

∅,∅,�(ψ±p (z))] = 0.

Define ψ̃p,N ∈ ′Ü q,d (sln) as the coefficient of z−N in ψ+p (z) − ψ−p (z), so that

[ep,a, fp,b] = ψ̃p,a+b
q−q−1 for any a, b ∈ Z. Set XN := [�(ψ̃p,N ), L

p,c̄

∅,∅]. Combining the
equalities

(�(ep,k+1)− u�(ep,k))L
p,c̄

∅,∅ = L
p,c̄

∅,∅(q
−1�(ep,k+1)− qu�(ep,k)),

(q−1�(fp,l+1)− qu�(fp,l))L
p,c̄

∅,∅ = L
p,c̄

∅,∅(�(fp,l+1)− u�(fp,l)),

we get the following recursive relation: q−1Xk+l+2 − u(q + q−1)Xk+l+1 + u2qXk+l = 0.
As X−1 = X0 = 0, we get Xk = 0 for any k ∈ Z. This proves [Lp,c̄

∅,∅,�(ψ±p (z))] = 0.�

(c) The unique element satisfying conditions (a,b) of Theorem 4.5 and whose shuffle
interpretation has a form as in Theorem 4.2 (we only need to know that it lives in
an appropriate completion and its ‘purely Cartan part’ equals q−d1q�̄p ) is given by
the right-hand side of ( ).

• Case p = 0.

Parts (a) and (c) are proved completely analogously to the case p �= 0. Since the last
equality in (b) follows from the former two, it suffices to check (14) and (15) for some
k ∈ Z.

– Proof of [L0,c̄
∅,∅,�(e0,0)]q = q2u · [L0,c̄

∅,∅,�(e0,−1)]q−1 .
According to Proposition 2.6(d), we have �(e0,−1) = (−d)ne0,1. Evaluating both sides

of (�) at v = |∅〉, w = 〈∅|, x = e0,1, we get [L0,c̄
∅,∅, e0,1]q−1 = (−1)nc0 · L0,c̄

v0⊗e−ᾱ0 ,∅.
Therefore

q2u · [L0,c̄
∅,∅,�(e0,−1)]q−1 = uq2dnc0 · L0,c̄

v0⊗e−ᾱ0 ,∅.

Next, we evaluate the left-hand side of the claimed equality. According to Proposi-
tion 2.6(a)

�(e0,0) = d(−q)n−2γψ0,0 · [fn−1,0, · · · , [f2,0, f1,1]q−1 · · · ]q−1 .

Applying iteratively (♦) together with [L0,c̄
∅,∅, ψ0,0] = 0 and [L0,c̄

∅,∅, fj,0] = 0 for j �= 0,
we get

[L0,c̄
∅,∅,�(e0,0)]q = d(−q)n−2γψ0,0 · [fn−1,0, · · · , [f2,0, [L0,c̄

∅,∅, f1,1]q ]q−1 · · · ]q−1 .

Evaluating this multicommutator step-by-step as before, we finally get

[L0,c̄
∅,∅,�(e0,0)]q = qdc0c

−1 · L0,c̄
v0⊗eᾱn−1 ···eᾱ1 ,∅ = (−1) (n−2)(n−3)

2 qdc0c
−1 · L0,c̄

v0⊗e−ᾱ0 ,∅.

The equality [L0,c̄
∅,∅,�(e0,0)]q = q2u · [L0,c̄

∅,∅,�(e0,−1)]q−1 follows. �
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– Proof of [L0,c̄
∅,∅,�(f0,0)]q = u−1[L0,c̄

∅,∅,�(f0,1)]q−1 .
According to Proposition 2.6(d), we have �(f0,1) = (−d)−nf0,−1. Evaluating both

sides of (�) at v = |∅〉, w = 〈∅|, x = f0,−1, we get [L0,c̄
∅,∅, f0,−1]q−1 = (−1)n+1

qc0
·L0,c̄
∅,v0⊗e−ᾱ0 .

Hence

u−1 · [L0,c̄
∅,∅,�(f0,1)]q−1 = −q−1d−nc−10 u−1 · L0,c̄

∅,v0⊗e−ᾱ0 .

Let us now evaluate the left-hand side of the claimed equality. According to Proposi-
tion 2.6(a)

�(f0,0) = d−1 · [en−1,0, · · · , [e2,0, e1,−1]q−1 · · · ]q−1 · ψ−10,0γ
−1.

Applying iteratively (♦) together with [L0,c̄
∅,∅, ψ0,0] = 0 and [L0,c̄

∅,∅, ej,0] = 0 for j �= 0,
we get

[L0,c̄
∅,∅,�(f0,0)]q=d−1 · [en−1,0, · · · [e2,0, [L0,c̄

∅,∅, e1,−1]q ]q−1 · · · ]q−1 · ψ−10,0γ
−1.

Evaluating this multicommutator step-by-step as before, we finally get

[L0,c̄
∅,∅,�(f0,0)]q = −d−1c−10 c · L0,c̄

∅,v0⊗eᾱn−1 ···eᾱ1 = −(−1)
(n−2)(n−3)

2 d−1c−10 c · L0,c̄
∅,v0⊗e−ᾱ0 .

The equality [L0,c̄
∅,∅,�(f0,0)]q = u−1[L0,c̄

∅,∅,�(f0,1)]q−1 follows. �
This completes our proof of Theorem 4.5 for any p ∈ [n].

4.3 Bimodule S(p, c̄)

Let ′Ü≥,∧ (resp. ′Ü+,∧) be the completion of ′Ü≥ (resp. ′Ü+) with respect to the Z–grading
on ′Ü≥ (resp. ′Ü+) defined by assigning deg(ei,k) = −k, deg(hi,k) = −k, deg(qd2) = 0.
Note that Lp,c̄

∅,∅ ∈ �(′Ü≥,∧), due to Theorem 4.5. Consider the ′Ü+-bimodule S(p, c̄)

defined as
S(p, c̄) := �(′Ü+) · Lp,c̄

∅,∅ ·�(′Ü+) ⊂ �(′Ü≥,∧),

where both ′Ü+-actions are in conjunction with � . We conclude this section with the
following result analogous to [9, Lemma 4.4].

Proposition 4.7 There exists an isomorphism of ′Ü+-bimodules

ι : S1,p(u) ∼−→S(p, c̄) with 1 �→ L
p,c̄

∅,∅,

where u = (−1) (n−2)(n−3)
2 q−1d−p−(n−1)δp,0(c0 · · · cn−1)−1 as before.

Proof of Proposition 4.7 Any element H ∈ S1,p(u) can be written as H = ∑
l Fl � 1 �

Gl with Fl,Gl ∈ S, due to Theorem 3.2. Set ι(H) := ∑
l �(al) · Lp,c̄

∅,∅ · �(bl), where

al := �−1(Fl), bl := �−1(Gl) ∈ ′Ü+. We must show that ι is well-defined. Applying
Theorem 4.5(a, b), we find

�(ei,k)·Lp,c̄

∅,∅=L
p,c̄

∅,∅·�(̃ei,k),where ẽi,k=
{
ei,k if i �=p

q−1ei,k+(q−1−q)
∑∞

r=1 ur · ei,k−r if i=p
.
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Let " be the automorphism of ′Ü+,∧ such that "(ei,k) = ẽi,k . Extending � to an iso-

morphism of completions � : ′Ü+,∧ ∼−→S∧, we use "̃ to denote the induced automorphism
of S∧. Clearly "̃(�(X)) = �("(X)) and Y � 1 = 1 � "̃(Y ) for any X ∈′ Ü+,∧, Y ∈ S∧.
Therefore
∑
l

Fl � 1 � Gl = 0⇔
∑
l

F̃lGl = 0⇔
∑
l

ãlbl = 0⇔
∑
l

�(al) · Lp,c̄

∅,∅ ·�(bl) = 0.

Thus, the linear map ι : S1,p(u)→ S(p, c̄) is well-defined and injective. It is clear that ι
is surjective and is an S-bimodule homomorphism. This completes the proof.
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979–1011 (2016). arXiv:1504.01696
11. Feigin, B., Tsymbaliuk, A.: Bethe ansatz for quantum toroidal Üq,d (sln) via shuffle algebras, in
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