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Abstract In this paper, we relate the well-known Fock representations of Uq,d(sl,,) to the
vertex, shuffle, and ‘L-operator’ representations of Uq,d(s[n). These identifications general-
ize those for the quantum toroidal algebra of gl;, which were recently established in Feigin
et al. (J. Phys. A 48(24), 244001, 2015).
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1 Introduction

In the recent paper [9], authors proposed a shuffle approach to the Bethe ansatz problem
for certain modules over the quantum toroidal algebra of gl;, viewing the latter as the Drin-
feld double of the small shuffle algebra. The general idea behind a shuffle approach is that
it frequently allows to interpret complicated concepts in simple terms. As the representa-
tion theory of quantum toroidal algebras of s, is quite similar to that of quantum toroidal
algebras of gl; (though technically it is more involved), it is desirable to generalize the
aforementioned construction for the former case.

In this article, we identify different families of representations of quantum toroidal alge-
bras of sl,. This will be crucial for our arguments in [11], where we diagonalize the
commutative subalgebras of the quantum toroidal algebras of s, studied in [10].
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178 A. Tsymbaliuk

This paper is organized as follows:

e In Section 2, we recall the definition and key results about the quantum toroidal algebra
Uq,d(s l,), n > 3. In particular, we recall the relation to the shuffle algebra S (of AS _) =
type) studied in [10, 20].

We also discuss three different constructions of their representations:

— combinatorial representations t,f z introduced in [8],

—  vertex representations pi & constructed in [21],

p

—  shuffle representations 7, - introduced in this paper.

Our construction of nu ; is similar to that of [9] for the quantum toroidal algebra
of gl;. In partlcular the underlying vector space S ,p(u) carries a natural S-bimodule
structure, while rr - is the extension of the left S-action to the action of Uq a(sly), see
Proposition 2.18. o

e In Section 3, we relate the aforementioned three different families of representations:

— InTheorem 3.2, we show that nu z induces an action of Uq 4(sl,) on the factor
of Si,p(u) by the right §'- act10n (here S’ C S denotes the augmentation ideal),
which is isomorphic to the 7, »actlon In Theorems 3.6, 3.7, we generalize
this result to some other famlhes of representations.

— In Theorem 3.8, we show that Miki’s isomorphism @ of the quantum toroidal

algebras intertwines the dual of the combinatorial representation rup ; and the
corresponding vertex representation pf, » Tor appropriate parameters.

e In Section 4, we study the matrix elements of L operators associated to the vertex
representations ,05 ;- In Theorem 4.5, we derive an explicit formula for the matrix

element Lg 5, whose shuffle realization was obtained in [10]. This allows us to iden-

tify the shuffle S-bimodule S; ,(u) with the S-bimodule generated by Lg”;, see
Proposition 4.7.
2 Basic Definitions and Constructions

2.1 Quantum Toroidal Algebras of s{,, for n > 3

Let g,d € C* be two parameters. We set [n] := {0, 1 — 1}, [n]* := [n]\{0}, the

former viewed as a set of mod n residues. Let g, (z) := z q’" Deflne {ai j,m; jli, j € [n]}
by
aji =2, ajj+1 = —1, m;j+1 = F1, and a; j; = m; j = 0 otherwise.

The quantum toroidal algebra of sl,, denoted by Uq,d(sln), is the unital associative

C-algebra generated by {e; k. fik, ik wi,_ol’ yE2, qidl’qidZ}{Fg[%] with the following
defining relations:

[V @, ¥ )] =0, y*!/2 — central, (TO.1)

wliol . wl}ol — ,)/:l:l/z . yq:l/2 — q:tdl . qZFdl — qzl:dz . qZFdz — 1, (TOZ)

qei (g™ = ei(q2), " [i(2q™N = fi(qD), ¢ VE@eN = ¥F(qz),  (T0.3)
q®ei(2)g7" = qei(2), ¢ f[i(a™ 2 =q7 fi(@), ¢V E@g? =y (),  (T0.4)
gar; (v A" /YT @Y (W) = gay ; (yd™ 2wy ()Y (), (T1)
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Several realizations of Fock modules for toroidal Uq_d (sly) 179

ei(2)ej(w) = g, (" z/w)ej(w)e;(2), (T2)

[ @ fiw) = ga,, @™ z/w) ™" f3(w) fi(2), (T3)

(@ = a7 lei(), ;)] =8 (50w ¢ 2w) = s(yz/wy ('), (T4
Yt (@ej(w) = ga, ; (yT2d™ 2/ w)e (W)Y (2), (T5)

V@) £ (W) = ga; (yF2d" iz /w) ™! ()Y (), (T6)

Sym, ., [ei(z1), [€i(z2), eix1(w)]gly-1 =0, [ei(2), ej(w)] =0for j #i,i +1, (T7.1)
Sym,, ., [fi(z1), [fi(z2), fix1(w)lgl,-1 =0, [fi(2), fj(w)] =0forj #i,i£1, (T7.2)
where we set [a, b], := ab — x - ba and define the generating series as follows:

c@i= Y ezt fi@ =) fur ™ V@ =Y+ D) i ™, 8@ =)y
k=—o00

k=—00 r>0 k=—00

It will be convenient to use the generators {/; x }x0 instead of {1}; x }x0, defined by

exp (i(q —q7 Zhi,irf’) =¥ (@) =YV @, hixr € CIYT) . Yitr. Yita. . ).

r>0
Then the re}ations (T5,T6) are equivalent to the following (we use [m], = (¢ —
g™ /(q—q "))
k ..
Yioejr =qej o, ik, el = dﬁk"”’j)/flk‘ﬂ%ejﬂk fork #0,  (T5)
—a ks [ka; ;]
Viofit=q ““ fiavio. ik, fiul=—d km"-’)/lk‘/z%fj,ﬁrk fork #0. (T6")

We also introduce ; o, c, ¢’ via ¥ 9 = ¢"0, y1/2 = ¢¢, ¢/ = Zie[n] hi o, so that c, ¢’

are central. i )
. . 10 €1 @
In Sections 2.3-2.4, we will also need to make sense of the elements g 2« , y 21, g . In
hio . d d
such cases, we formally add elements of the form ¢ IT, q v ,q s ,q ¥ forany N € Z-o.

2.2 Hopf Algebra Structure, Hopf Pairing, and Drinfeld Double

Following [10], we recall some of the basic results on Uq,d(sln) which are relevant to us.

e  Topological Hopf algebra structure on U'q,d(g [n).
Following [6, Theorem 2.1], we endow Uy 4(sl,) with a topological Hopf algebra
structure by defining the coproduct A, the counit €, and the antipode S as follows:

+1/2 1/2
AWEQR) = Wii()’<2)/ )® %//ii(V(T)/ 2), Ax) =x ®x forx = y=!/2 g g*h

Aer(@) = 1] ()82, AR = 18 i+ fi (o) ®U; (ry2).
(HI)

€(ei(2) = €(fi(2) =0, e (@) =1, e(x) = 1 forx = y /2 g* ¢ (H2)

Sei@) =—v; (v P ey ). S(fi@) = —fity vt P
S() =x""forx =y gFNh gF yE(@), (HI)
where y(1) ;=y @ land y2) := 1 ® y.
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180 A. Tsymbaliuk

®  Sub/quotient-algebras of Uq a(shy).
In what follows, we will need the following subalgebras of Uq d(sly):

+1/2  +d,

- UZisthe subalgebra of qud(ﬁl,,) generated by {e; ¢, Vi, Iﬁi_o Y

idz}keZ,lefN
ie[n]

_  U<isthe subalgebra of Uq 4(sl,) generated by { fi x, Vi, wl 0 J,1%/2 :i:d]’
+dy k€Z,1eN
4" icini
— U™*,U™ are the subalgebras of Uq d(sl,) generated by {e;
{fikYiE0 respectively.

— U%is the subalgebra of Uq,d(sln) generated by {V; k, ‘/’,‘Tol’ yi1/2, qidl,

ey ke
ieln]’

> q

}kEZ and

We also define two modifications of Uq,d(sl,,):

- LetU ‘;’ 4(5l) be obtained from l']'q,d(ﬁ[n) by “ignoring” the generator qid2
and taking a quotient by the ideal (¢’), i.e., setting ¢’ = 0. The subalge-
bras U=, U'=, U'*, U of U ;7 4(8ly) are defined completely analogously to
Uz, 0=, 0%, U above.

—  Let’ Uq,d(ﬁ[n) be obtained from Uq,d(sln) by “ignoring” the generator qid
and taking a quotient by the ideal (c), i.e., setting ¢ = 0. The subalge-
bras'U=,'U=,'U*,"U° of 'U, 4(sl,) are defined completely analogously to
Uz,0=, 0%, U above.

®  Hopf pairing and a Drinfeld double realization of Uq,d(ﬁln).

Analogously to the case of quantum affine algebras (see [12]), we have the following
result.

Theorem 2.1 (a) There exists a unique Hopf algebra pairing ¢ : Uz xU=— C satisfying

n(nz—l)

5.
Plei(@). SN =T 3 (1) 0 @ ¥ ) = g @2/, (g g = g

¢(ei(2),x7) = p(x*, fi(2) = 0 for x* = yF(w), "%, ¢4, ¢,
V2.4 = 0@, y"?) =72, o] (2. 9™) =g, 0@®, ¥ (2) = q.
oY (2),x) = p(x, ¥;7 (2)) = 1 forx = /2, ¢

164

o' q%) = p(q®, v = o' 2 1) = (@D, ¢M) = 0", ¢™) = 9(g®, q™) = 1.

! b) The natural Hopf algebra homomorphism from the Drinfeld double D(/,(U z U 10
Uy ,a(sly) induces the isomorphism
E: Dy(U=, U%)/1—>Uqa(sly) with I := (x@1—1@x|x = ¥, y =12, ¢, g) ;).

(c) Analogously to (b), the algebras Ué’d(sl,,) and /Uq’d(s[n) admit the Drinfeld double
realizations via DW/(U’E, U's) and D, (UZ,'U=), where ¢’ and’'¢ are defined similarly
to @.
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Several realizations of Fock modules for toroidal Uq_d (sly) 181

(d) The pairings ¢, ¢',/ ¢ are nondegenerate if and only if q, qd, qd~" are not roots of

unity.
(e) If q.qd,qd™" are not roots of unity, then the algebras qud(sl,,), U,;,d(ﬁln) and

! Uq,d(sln) admit the universal R-matrices R, R’ and 'R, associated to the pairings ¢, ¢’
and '@, respectively.

2.3 Two Copies of U, (;[,,) Inside U, ,d(sly)

Let Uq(;[n) be the quantum affine algebra of sl, presented in the new Drin-
feld realization, see [S]. This is the unital associative C-algebra generated by
{ei f,,k,lpi,k,wijol,cil,Dil}{fgé]X with the defining relations similar to those of

Uq,d(sl,,) (our notation follow [19]):

[ (2), ¥ (w)] =0, C*! — central, (AO.1)
v vk =ct . cF =D . DT =1, (A0.2)
De;()D™" = gei(q™"2), Dfi()D™" =q~' filg™"2), DY @D =y~ (g "),
(A0.3)
8a, (C™' 2/ WY @V 7 () = Y7 WY, (g, (C2/w), (A1)
ei(2)ej(w) = gq; ; (z/w)ej(w)e; (), (A2)
[i@fjw) = ga; , (2/w) ™" fj(w) fi 2), (A3)

(@ —q Dlei@), fj(w)] =8 ; (8(Cw/2)¥;" (Cw) — 8(Cz/w)y; (C2)), (A4)
Ui @ej(w) = ga,, @/we; ;T (D), ¥ (@ejw) = ga, (€' 2/w)e; (W)Y (),
(AS5)
Uit @ fj(w) = ga ; (C72/w) ™! Fi )Y (), ¥ @) fj(w) = ga; /)T ()Y (),
(A6)
Sym,, ., [ei(z1), [ei(22), ¢j(w)]gl,-1 = 0ifa; j = —1, [ei(2),ej(w)] =0ifa; ; =0,
(A7.1)
Sym, .. [fi(z1), [fi(z2), fi(w)lgl,-1 =0ifa; j = -1, [fi(2), fj(w)]=0ifa;; =0,
(A7.2)
where the generating series ¢; (z), fi(z), 1//,le (z) are defined as before.
This algebra is known to admit a classical Drinfeld—Jimbo realization of [4, 15].

To state this explicitly, let U;)J (;[n) be the unital associative C-algebra generated by

* it pF! }ie[n) With the following defining relations:

{'xi’l

DE'DF =1, DD =1, DxFD7! = ¢*'xF,
U =1, ity =1, t,»xftfl = qi“’?-fxf,
R (=D° Hys do ]

i K —a; j—S . .
—, ()X () T =03 # ),
qg—q! Z{; [s1g!l —a;j — sl 707 7
where [m],! := [m]y[m — 1], - - - [1],.

According to [5], there is a C(g)-algebra isomorphism ®: U, {?J (sl,)—> Uy (s1,) given
by

Freio. x7 e fro i oY) (1<i<n=1), to > C-Wr0- - ¥u10"". D D,
Xg = CWo Y107 [+ Lfi1s frolgs -+ 5 fa1.0lg,
xg = len-10.+ . lea0.er—1lg-1 -+ l-1 (1o Yno1,0C

+ —
[-x,‘ 7xj]:8i,j'

X
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182 A. Tsymbaliuk

Remark 2.2 (a) The above isomorphism was stated without a proof in [5]. The inverse
&~ ! was constructed in [1] by using the braid group action on U, DI (5[ ) due to G. Lusztig.
The direct verification of the fact that the above assignment glves rise to a C(g)-algebra
homomorphism ®: U;)J (;[,,);Uq (;[n) was given in [16] by utilizing the technique of
g-commutators, which also plays a key computational role in the current paper. However,
proofs of injectivity of ®~! and ® in [1, 16] had a gap, which was only recently filled in [3].

(b) In the classical literature, the grading elements D, D satisfy slightly different rela-
tions, while our conventions are better adapted to fit into the toroidal story and follow that
of [19].

Following [23], we introduce the vertical and horizontal copies of U, (2[,,) inside
Uq,d(sln). Consider two algebra homomorphisms 4, v: U, (sl,) — Uq,d(s [,) defined by

. - d
h: )cl.+ — ei0, X; > fio0, ti = Yio, D> g%

. . . ~ n— 1 w )
viepdeir, fixr>d fi, Vg d5 Yy, Croy, Dis g g X0 ol
where we follow the conventions of Section 2.1 and add elements ¢ hjo/? to Uq a(sly, )

According to [23], both &, v are inclusions. The images of /4 and v, denoted by U h(5[ )

and U V(s[ ), are called the horizontal and vertical copies of U, (5[ ) inside Uq a(shy).

Remark 2.3 The injectivity of A, v was stated in [23] without a proof, and was used in
numeric literature afterwards. A simple way to see the injectivity is to use the double real-
ization of all algebras involved (here U, (5[ ) is treated as in Theorem 2.1, while U, ;) (s [,1)
is treated with respect to the Drinfeld-Jimbo Borel subalgebras, see e.g. [17]). Both Hopf
pairings on Uy (sl,) and U, DI (5[ ) are known to be nondegenerate for ¢ not a root of unity.
Since h, v respect the palnngs their injectivity follows.

2.4 Miki’s Isomorphism

We recall the beautiful result of K. Miki which provides an isomorphism
¢ Uq,d(sl,,);)[] ;, 4(sly) intertwining the vertical and horizontal embeddings of quantum
affine algebras of sl,.

To formulate the main result of this section, we need some more notation.

® Let U,(Lsl,) be obtained from U, (;[n) by “ignoring” the generator D! and taking
a quotient by the ideal (C — 1), i.e., setting C = 1. The algebra U, (Lsl,) is usually
called the quantum loop algebra of sl,,. Analogously to 4 and v, we have the following
inclusions:
. 'h ~ v
"Ug.a(sly) <= Uy(sly) — Ut;’d(sfn)
and
. v noo..
'Uq,a(sly) <= Ug(Lsl,) — U(;yd(sl,,).
® Let o be the antiautomorphism of U, (sl,,) determined by

o: )cjE > xi, ti — ti_l, D+ DL,
® Let 5 be the antiautomorphism of U, (5 [,) determined by

n—1
n: ek = ek, fik > fik hig > —C'hi 1, Yio > ¥y, Cr—>C, D> D- H %T(;(nﬂ)-
i=1
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Several realizations of Fock modules for toroidal Uq_d (sly) 183

e Let’Q be the automorphism of ’ Uq,d(sl,,) determined by

"0t ek = (—dDreitik. fik > (D fiy1he hia > (=)' hit1e. Yio = Yigio. 42 - ¢

e Let Q' be the automorphism of U ; 4(8ln) such that it maps the generators other than
yE2 gFdas 0, while

Q/: y1/2 — yl/z’ qd1 — qdl . 7/_1-

e Let’Y; (1 <j <n)be the automorphism of ’ Uq,d(sln) determined by

) d d
"Vi:hig > hig, Yio > Yio, ¢ > g®

eix (—d)_nai'osj'n_iai'j+i8i'j71ei’kig ﬁ,k — (_d)n(s,'v[)ﬁjv,,-H(S,‘,/‘—its,;j,l ‘f[,k+g

i j+0ij—1° ij =0 j—1’

1if j=i (modn)

where §; j = { 0 otherwise
e Jet y} (1 < j < n) be the automorphism of U (; 4&ln) such that it maps the generators

other than wiiol, yE2 g% as 'Y}, while

Vi Y2 2 o V_Si’-’Jrsi"‘llﬂi,O’
» j—1 , n—1

y g > g y—ﬁlKjWitth=Hq2hz,ol_[qn hio
=1 I=j

. . 1 Mo
where we follow the conventions of Section 2.1 and add elements y2:,qg2n to

Uy ().

Theorem 2.4 [19, Proposition 1] There exists an algebra isomorphism
"Uyg.a(sl)—> Uy, 4(sly)
satisfying the following properties:

wo'h=v, mo'vonoa =h', Q oY, cm=wo'Y ' o'Q.

Remark 2.5 (a) Let U;"fl (sl,) be obtained from Uq,d(sl,,) by “ignoring” the generators qid

and qid2 The construction of zo in [19] was based on the previous work [18], where an

automorphism @ of U tor % (sl,) was established.
(b) The generators xi o Pl kiil, c*! pFl, D! from [19] are related to our generators
via
it o d®eip, x> d* fig, hig < d'y'Phi,

- W, 1ol bl pEL gt DE & g g SR ”h'.o’
while the parameters g, & from [19] are related to our parameters g, d via
q<q, E<d".
(c) The aforementioned choice of generators from [19] is convenient as there is no need

oo e d dy .
to add elements {g ¥ ,gN,gN,g N . However, we prefer the current presentation
N EZ>0

as it is more symmetric and suitable for the rest of our exposition.
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184 A. Tsymbaliuk

We conclude this subsection by computing images of some generators of ’ "q,d(sln)
under .

Proposition 2.6 (a) We have

: £1 £l
e eio, fiot> fio. Vig B> Vi fori € [n]*,
eS| 1+l dd FTE D D ALy

R Y R A Y B e e A L T o,
@:epot>d-yvoo-[--Lfi1, fa0lgs s fa-10lg

. -1 -1, -1
w: foor>d lea—1,0,- s [e20.e1,—1ly-1 - 1g-1 - Yo 0¥ -

(b) Fori € [n]*, we have

@ (hi)=(=D"a ([0 Lfo.0 fam1.0lgs + fir1.01gs F1.0)gs+ + fim1.0]g- fi0lge-

@ (hi ) =(=1)"""d" [eio, [+, [e10, [ei41.0, -+ » [en—10, €0.0]g1 -+ Tg=1]y=1 -+ -1 142

(c) Fori = 0, we have

@ (ho1) = (=1)"d" ™" [+ [fi.1. fr0lg: -+ + fao1.0)q- fo.—11,2.

@ (ho.—1) = (=1)"d" " -eo.1, [en—1.0. -+ [€2,0, €1, 1]y-1 -+ 1y-11,2.
(d) We have
w(eo,—1) = (=d)"eo,1. @ (fo,1) = (=d)™" fo,-1.

Proof of Proposition 2.6 (a) Follow straightforwardly by applying the equality @ o 'h =
v/ to the explicit formulas for <I>(xl.i), d(t;), (D) with O U(?J(;[n);Uq (;I,,) from
Section 2.3.

(b) We will need the following formulas expressing h; 41 in the Drinfeld-Jimbo
presentation:

O (hi) = (=D 10+ Ixg X, 1 ooxdm 2 e 10 1t
(1)
O (hi ) = (=D x e g g gy T2 ()

Formulas (1, 2) are proved by applying iteratively two useful identities involving ¢-
brackets:

la, [b, cluly = [la, by, C]uv/x +x-[b,[a, C]v/x]u/)m

[la, blu, clv = la, [b, C]x]uv/x +x - [[a, C]U/Xv b]u/Xa

compare to our proof of Theorem 4.5 (we leave verification of details to the interested
reader).

Applying the equality @ o’von = A’ o o~! to formulas (1) and (2), we get the claimed
formulas for @ (h; —1) and @ (h; 1), respectively.

(c) Applying the equality Q' o)) ow = @ o/yl—l o’ Q to hy—1 41 and using the formulas
for @ (h,,—1, +1) from (b), we obtain the formulas for @ (o +1).

(d) It suffices to apply the equality Q' o), o = @ o’y;I o'Qtoey—10and fr_10. O
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Several realizations of Fock modules for toroidal Uq_d (sly) 185

2.5 Fock and Macmahon Modules

In this section, we recall two interesting classes of / Uq,d(sl,,)—modules constructed in [8].
They depend on two parameters: 0 < p < n — 1 and u € C*. We also set
-1
_ -1 - q9 t—q
qi=q"'d, q2:=q% g3 =g d" and p(0) == T ——. (©)
Assumption In the rest of this paper, we assume that q1, 2, g3 are generic, that is,

a b _c

414,93 = 1 forsome a, b, c € Zimpliesa = b = c. (G)

Given v € C* and a collection of formal series ¢(z) = {¢ @) }iem, ¢ (z) € ClIzF'11,
a Vector v 0f an ’Uq 4(sly)-module V is said to have weight (v; ¢(z)) if qdzv = v-vand
w (v = ¢> (z) - vforany i € [n]. The module V is called a lowest weight module if it is
generated by a weight vector v such that’ U~v = 0. Such v is called a lowest weight vector,
and its weight the lowest weight of V. Given v € C* and ¢(z) with ¢>[+(oo)qbi_ (0) =1 for
every i € [n], there is a unique irreducible lowest weight module of that lowest weight. If
d)ii (z) are expansions of a rational function ¢;(z) at z = 0, co, then we write (v; ¢(z)) =

(v; ¢i(2))ieln]-
o  Fock modules FP) (u).

The most basic lowest weight ’ Uq,d (s1,,)-modules are the Fock modules F P (i) with the
basis {|A)} labeled by all partitions A. Given such a partition A = (A, A3, ...), we define
A+1p:= g, ...+ 1,...), |A] := Y, A, and we denote the transposed partition by

= (A, A, ...). We use # to denote the partition (0, 0, ...). We also writea = bifa — b
is divisible by n.

Proposition 2.7 [8, Proposition 3.3] The ’ "q,d(sl,,)-action on FP)(u) is given by the
following formulas:

pHs—hs=i ps—hs=i+l
s s—A—1 —hs Py
Ot e @) =8ppiain [ o@r ™ 'as™ [ @ d s ek u/2),
I<s<l I<s<l
pHs—As=i pHs—Ais=i+1
3 —r—1 —As A
MA@+ 1) =8 [ ¢@ ™ 'as™ ] e@ ™ d 8@ as /2,
s>1 s>l
pHs—Ais=i pHs—As=i+1
s—1 —1 —
avr@my =[] o6 e 'wo  [] el 'a w7 (lg®ia =4,
s>1 s>1

while all other matrix coefficients are zero. FP)(u) is an irreducible lowest weight module
of the lowest weight (1; ¢ (2/u)%7);c[n) and with |@) being the corresponding lowest weight
vector.

Definition 2.8 For ¢ € (C*)"], let r & be the twist of this representatlon by the automor-

phism x, z of/ Uq,d(ﬁl,,) defined via el,k = cieiks fik ¢ f,,k, Yik > VYik, q RN
_p=p)
2 . q 2.

Given a collection {(py, uk, ¢x)}_; WithO < pr <n—1,ur € C*, ¢ € (C9)]) we
call it generic if for any pair 1 < s’ < s < r,therearenoa, b € Z suchthatb—a = py — p;
and uy = uyq; “q; b We have the following simple result (see [8, Lemma 4.1]).
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Lemma 2.9 For a generic collection {(px, uk, Cx)};_,, the coproduct A of (H1) endows
rfl' & R ® ‘cp’ - with a structure of an ’Uq d(sly)-module. It is an irreducible lowest

weight module generated by the lowest weight vector |0) ® - - - @ |d).

Remark 2.10 To see the irreducibility, one checks that the action of commuting series
I/JZ-i (z) is diagonalizable and has a simple joint spectrum (here we use g1, g2, g3 being
generic, see (G)).

e Macmahon modules MP) (u, K).

For K e CX, set ¢X(t) = KI 1 We call K generic if K ¢ q%Zd”. For

such K, the unique irreducible lowest weight ’ q,d(sl,,)-module of the lowest weight
(1; ¢X (z /u)‘si-t')ie[n] is called the Macmahon module, denoted by M () (u, K). They were
first studied in [8]. Recall that a collection of partitions A= {A(’)},EZ>O is called a plane
partition if

A[(r) > ll(r+l) forallr,l € Z-g and A" =@ forr > 0.

Proposi_tion 2.11 [8, Theorem 4.3] For a generic K, the vector space M ") (u, K) has a
basis {|\)} (labeled by all plane partitions) with |?) being its lowest weight vector.

In this paper, we will not need explicit formulas for the ’ "q,d(sln)—action in the basis

{IA)}.
2.6 Vertex Representations

In this section, we recall a family of vertex U ; 4 (8ln)-representations from [21] generalizing
the construction of [7] for quantum affine algebras. Let S,, be the generalized Heisenberg
algebra generated by {H; «|i € [n], k € Z\{0}} and a central element Hy with the defining

relations
. [k]q : [kai,j]q
751«

[Hix, Hj 1 =d*mei —1 - Hp.

Let S+ be the subalgebra of S, generated by {H; «|i € [n], k > 0} u {Hp}, and let Cuvg

be the S+-representat10n with H; actmg trivially and Hy acting via the identity operator.
The induced representation F,, := Ind (Cvo is called the Fock representation of S,,.

We denote by {o; }"71 the simple roots of sl,, by {A,-}:,’:1 the fundamental weights of
sl,, by {h,}l.: | the simple coroots of sl,. Let 0 = @;’;11 Za; be the root lattice of sl,,,
P .= @;’;11 ZA; = @7;21 Za; ® Z.A,_1 be the weight lattice of sl,,. We also set
n—1
—Z&i €0, Ag:=0¢€ P, hy:=—
i=1

-~ =
i M |
Nk‘l

Let C{P} be the C-algebra generated by ¢%, ..., ¢%-1, eMn-1 with the defining rela-
tions: ) _ B
%L o% — (_1)<hi»&j>e&j . e&i’ % . phn-1 — (—1)8i~”"eA”’1 L%

For o = Z;:z] mi@; + myA,_1, we define @ € C{P} via
¥ = (eéz)mz . (edn—l)mn—l (e[\n—l)mn.

Let C{Q} be the subalgebra of C{P} generated by {e% }f’:_ll
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For every 0 < p < n — 1, define the space

W(p)n := F, ® C{Q}e™.

Consider the operators H; , e, a&,.,sz, d acting on W(p),, which assign to every
element

v®eP = (Hij —ky -+ Hiy —ky v0) ® ezlfl';i midj+hy o W(p)n
the following values:
H; (v ®eﬁ) = (Hjv) ® e’é e (v ®e’3) —v® %’ 80(,(1) ® e’s) = (h,, /3)1) ®e
Hio @ ef) = Z(”_liné)di S i m jajmi g ® P,
dw®eP) = (=Y ki+(Ap. Ap) = (B. B)/2v @ P
The following result provides a natural structure of an U (;y 4(&ln)-module on W(p),.

Proposition 2.12 [21, Proposition 3.2.2] For any ¢ = (co, ..., ca—1) € (C), u € C,
and 0 < p < n — 1, the following formulas define an action of U(;yd(sln) on W(p)n:

—k/2,,—k K2k & A
P g~ u 4 ke (2 a
(N — o L A ' ' ’
pu,c(e’ (@) €i eXp (Z [k]q ) o < k>0 [k]q lT ) ' <u)

k>0

( )mio q —k ‘ qk/2uk . i, & Z\1—Hio
P fi@) = ( > [k]q Hi i Jexp | 3 T Hina ™ | e =) .

k>0 k>0

Pl (Ui (@) = exp <i(q ) Hi,ik(Z/u)y‘) g%, pl (v =" pl (g™ = q°.

k>0

W (p), is an irreducible U{;,d(sln)—moa'ule ifq,qd, qd™" are not roots of unity.

Remark 2.13 (a) The irreducibility of ,o'f’ ; follows from the irreducibility of the §,,-module
F, and level one vertex U, (;[,,)-modules of [7], established at [2]. )

(b) The factor (—1)"%0 in ,o,f’c-,(f,- (z)) (missing in [10, 21]) is due to (%)~ =
(_ 1)n5i<0€_&i .

2.7 Shuffle Algebra

Consider an N"l-graded C-vector space

S= P s

k=(ko,....kn—1)eNM

where S, k, ) consists of [] &y, -symmetric rational functions in the variables

{x ,,}:2 ki We also fix an n x n matrix of rational functions Q = (@i,j(2)i,jen) €

Mat,, ., (C(z)) by setting

o ()= wii41(2) = d7lz=q. wiio1(2)= S LA w;.j(z)=1 otherwise.
z—1 z—1 z—1
Let us now introduce the bilinear » product on S: given F' € S, G € Sy, define F x G €
St47 bY
(Fx G)(X0,15 + - s X0,kgdlgs -+ Xn—T1,1s -+ - s Xn—1 ky_y+ly_y) =
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]r >k/
1 ki /(/ fkl/-‘rl/
Sympie,, ., | F(xirkidny DGl H H ;. (Xi.r /X7 p7)
i€[n] r<k;
Here and afterwards, given a function f € C({x; 1, ..., Xim, }ic[n]), We define
1
Sympje,, () = I1 ol Z F{Xi o 1), - - s Xi oy m) bieln))-

i-

i€[n] (“Ou-w”n—])semo X-~'><€’m",1

This endows S with a structure of an associative unital algebra with the unit 1 € S, .. 0)-
We will be interested only in a certain subspace of S, defined by the pole and wheel
conditions:

®  We say that F' € Sy satisfies the pole conditions if and only if
fxo1, .- Xn—1k, ;)
r' <kit1

l_[ie[n] l_[rf_k,- (-xi,r - X,’_H,,,/)
e We say that F € Sg satisfies the wheel conditions if and only if

F= . where f € (ClxE!; 55T

[n]

F({x;;}) = 0once x; r, /Xite; = qd® and x; ¢ 1/xi, = qd "€ for some €, i, 11, 72,1,

where € € {+1},i € [n],1 <r1,r2 <k;,1 <1 < kj+. and we use the cyclic notation
Xp,l 1= X0, kn = ko, x_1,1 := Xp—1,1, k—1 := k,— as before.

Let S; C Sg be the subspace of all elements F' satisfying the above two conditions and

set
= P st
keNlnl
Further S = Drez Sy, with SE,r = {F € Sgltot.deg(F) = r}. The following is
straightforward.

Lemma 2.14 The subspace S C S is x-closed.
Now we are ready to introduce one of the key actors of this paper:
Definition 2.15 The algebra (S, «) is called the shuffle algebra (of Afll_)l-type).

Recall the subalgebra U+ of Uq,d(s[n) from Section 2.2. By standard results,! U™ is
generated by {e;. k}keZ with the defining relations (T2, T7.1). We equip the algebra U+

lE n
with the NI x Z—grading by assigning deg(e; x) = (1;; k), where 1; € N is the vector
with the i-th coordinate 1 and all other coordinates being zero.

The following result is straightforward:

Proposition 2.16 There exists a unique algebra homomorphism U : Ut — S such that
W(e k) = xf‘lfor anyi € [n], k € Z. In particular, Im(¥) C S.

The following beautiful result was recently proved by A. Negut:

1See [14, Theorem 4.2.1] for the case of finite quantum groups, [13, Theorem 3.2] for the case of quantum
affine algebras, and [22, Proposition 1.3] for the case of quantum toroidal of gl;.
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Theorem 2.17 [20, Theorem 1.1] The homomorphism WV : Ut — Sisan isomorphism of
N x Z-graded algebras.

2.8 Shuffle Bimodules

Following the ideas of [9], we introduce three families of S-bimodules.

o  Shuffle modules Sy p(u).
Foru € C* and 0 < p < n — 1, consider an N"l-graded C-vector space

Sy pu) = b s,

k=(ko,....kn_1)eNI]

where the degree k component S, (1) consists of [ | &, -symmetric rational functions
1<r<k;

F in the variables {x; }; 2,

satisfying the following three conditions:

(i) Pole conditions, that is,

F&ot, - o Xn—t1,k,,)

F=
r' <k, k
Hze[n] Hr<k o (Xir —Xig1,7) - Hrp:1 (xp,r —u)

, where fe(((j[x;irl]l!é;]iki)ﬂ Sy

(i)  First kind wheel conditions, that is,
F({x;})=0once x; ,, /Xi1e1=qd* and x; 11 /X, =qd " for some e, i, ry, r2, 1,

where € € {£1},i € [n],1 < r;,rp < ki, 1 <1 < kit and we use the cyclic
notation.
(iii) Second kind wheel conditions, that is,

f{xi,}) =0oncexy, =uandxp,, = qzu for some 1 <ry,r < kp,
k)
where f({x;,}) :=[],2,(xp.r —u) - F({x; ,}).

Fix ¢ € (C*)!". Given F € Sy and G € Si ,(u);, we define F x G,G x F €
Sl,p(”)z.ﬂ by

ki
(F % G)(X0,15 + - X0,kgtos -+ 3 Xn—1,1s - o s Xn— L ky ey ) = 1_[ ¢;' X
ieln]
. i'eln] r'>k;r kp
ki r'>k;
sym]_[ (o ({xz r},r;[n]> <{xl r }, e[n]) 1_[ l_[ wi,i’(xi,r/xi’,r/) l_[ ¢(xp,r/u)
i€[n] r=<k; r=I1
3)
and
(G * F)(X0,1, -+, X0,ko+os -+ -5 Xn—1,1» -+ s Xn—T ky_14ly_1) ‘=
. i E[l’l] r >l/
1; r'>Ly
sympe .y, | G (irtig) F (e tae) T1 TT o Gin/xenn | @
i€[n] r<i;

These formulas endow Sy, (1) with a structure of an S-bimodule.
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Identifying S with 'U+ ~ U+ via W (see Theorem 2.17), we get two commuting U *-
actions on Sy, ,(u). Our next result extends one of these to an action of the entire algebra
ot

Ug.a(sly).

Proposition 2.18 The following formulas define an action of’ Uq,d(sln) on 81, ,u):

pn=p)
2

1:(q™G = ¢ 7 G ) (ei)G = x{ %G,

ﬂf;(hi,o)G = (ki —ki—1 —ki+1 —dip) - G,
p _ Im; [l]q 1.1 fi
7l (hi)G = Z Z a1 )gd ™" x], p = 8ip g’ | G forl £0,

i'e[n]r'=1

*G({xy, r Y xi g > 2) dz
ki —=8; i X

[T Tl ™ i (55) ©
Herek € Z,¢ = (co, ..., ca—1) € (CO, G € Sy, (w)g and k| := Y ki

p kici_]
7, (fi)G = T —q Res 4 Res

z=0 =00

Remark 2.19 Formulas of Proposition 2.18 can be equivalently written in the following
form

7l (q®)G =g TG, P <e,(z))G—s( )*G, )

ki q2z—x~ kit 2—qdxiv1 ki1 dz—qxio
7 Wit (@)G = el ] Bl [ o e ST I CIOREN IR 2

Sy o qz—dXipny o qdT—Xioy,

(6)

+ —
» kicfl G({x;y r’}|\', k.}—>7) G({x;, r’}\xlk F>z)
7, (fi(2)G =~ : Ky — a - X k=811 X ’
9 -4 H 1_[ j’ l(” 1_[ l_[, 1—1 (7 l(l’

)

where g(z)* denotes the expansion of a rational function g(z) in z¥', respectively.

Proof of Proposition 2.18 We need to check the compatibility of the given assignment n
with the defining relations (T0.1-T7.2). The only nontrivial of those are (T3, T4, T6, T7. 2)

To check (T3, T6), we use formulas (6, 7) together with an obvious identity w’ J Efv//";; =

8a; ; ( (d™-iz/w) for any i, j € [n]. The verification of (T7.2) boils down to the 1dent1ty

Sym

21,22

( oG/~ @+eMeuG/) wii(21/72)”! >=

;i i+1(Z1/Ww; ix1(z2/w) i ix1@1/Woir1i(W/22)  wix1i(w/z)wix1,i (w/22)

Finally, the verification of (T4) is based on the observation that the k; + 1 — §; ; different
summands from the symmetrization appearing in n" (e )P ( fi ] (w))G cancel the k; +

u,c
1-4; j terms (out of k; +1) from the symmetrization appearing in 72' ( fi (w))nu sei (z))G

o Shuffle modules S(u).
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The above construction admits a “higher rank” generalization. For any 7 € NI, consider
. . s X
U= (U0, 1, - s UO S -+ Up—1,1s -+ Up—1,1,_,) Withu; ; € C™.

Define S(u) = @gcymSu)g completely analogously to S ,(u) with the following
modifications:

(i")  Pole conditions for a degree k function F should read as follows:

F&o1, s Xn—1.ky_y)

F =
k
[Tictm l_[;r<<k'+l(xzr =Xit1.) [ licp 1_[5 11_[ oy (i =i s)

L f € @GO,

i€ln]

(iii")  Second kind wheel conditions for such F should read as follows:

f{xi D) =0once xi », =u; s and x; r, =q’u; ; for some i € [n], 1 <s<l;, 1<ri,r2<ki,

where f({x;r}) := Hie[n] l_[ii=1 l—l,]fizl(xi,r —uis) - F({xir}).
Let us endow S(u) with an S-bimodule structure by applying formulas (3) and (4) with

kp i
1_[¢’(xp,r/u) l_[ HH¢(xlr/“1s)

r=1 i€[n]s=1r=1

The resulting left ’ U -action on S (1) can be extended to the ’ "q,d(sln)—action, denoted
7y, The latter is defined by the formulas (5-7) with the following two modifications:

7(" ) _ -l pm—p)
¢<z/u)w~»1'[¢(z/ul DAV EE P M L

s=1

0)- The following is obvious:

Let 1, denote the element 1 € S(u) (o
Lemma 2.20 For X € 'U™ -'U°, we have 7u,c(X)1y, = 0 for all u, ¢ if and only if X = 0.

o Shuffle modules Sfp(u) and SE(u).

Another generalization of S ,(u) is provided by the S-bimodules Sf » (u). As a vector
space, S{f » () is defined similarly to Sy, ,(u) but without imposing the second kind wheel
conditions. The S-bimodule structure on § 1K » (u) is defined by the formulas (3) and (4) with
the only change

© Kl t—K
G@) ~ @7 (1) == -

The resulting left 'U*-action can be extended to the 'U

4,4 (8ly)-action on Sfp (u),
denoted nli ’EK, defined by the formulas (5-7) with the only change ¢ ~ ¢X.

It is clear how to define the “higher rank™ generalization Sﬁ() equip it with an S-
bimodule structure, and extend the resulting left ’ Ut -action to the’ 4.d (sl,)-action nﬁf on

SEw).
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3 Identification of Representations

In this section, we establish relations between representations r,f & n,f & p‘f s+ As before,
we assume ¢1, g2, g3 are generic in the sense of (G).

3.1 Isomorphism 7, .
Fix0 < p <n—1,ueC* e (C)M Recall the action 7} ; of 'Ug a(sl,) on Sy p(u)
from Proposition 2.18. Define

s= P scs.

k#(0,...,0)
Consider a C-vector subspace

Vo := 81 ,(u) * S' = spanc{G » F| G € Sy p(u), F € '} C 1 (w).

The following result is straightforward and its proof is left to the interested reader:

Lemma 3.1 The subspace Vo of S1,p(u) is invariant under the action 715’5 of/Uq,d(sln).
Let ﬁ;f - denote the corresponding ! U‘q,d(sl,,)—action on the factor space Sl, pu) =

S1,,w)/ V.

Theorem 3.2 We have an isomorphism of’ Uq,d(s l,)-modules ﬁup

p
ST -
,C u,c

Corollary 3.3 If q1, q2, g3 are generic in the sense of (G), then ﬁlz ; s irreducible.

Proof of Theorem 3.2 By Proposition 2.7, T,f, & is an irreducible ’ qud(sln)—representation
generated by |(J). Moreover, both 1, € S’L p(u) (the image of 1) and |J) € F (P) () are the
lowest weight vectors of the same weight. Therefore, it suffices to estimate dimensions of

the graded components of S‘ly p):

|k|=m
> dim Sy p(w)p = p(m) Ym €N, ©)
keN]
where p(m) stays for the number of size m partitions.

Descending filtration.
To prove (©), we equip 7" (u) := \E|® S1,p(u)g with a filtration {S'ff’p’\(u)}x labeled
=m
by all size < m partitions L. We define S;";\ (u) via the specialization maps p; introduced
below as
S;'f;j(u) == () Ker(pu) C ST, (),
A

where > denotes the lexicographic order on the set of size < m partitions.

Consider the [nr]-coloring of the Young diagram XA by assigning ¢(J) := p —a +
b (mod n) € [n] to abox L0 = (a,b) € A located at the b-th row and a-th column
(1<b<A\;,1<a<xip). Define

= (... k) e NP where k* = #{0 e & | ¢(0) = i}.
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Remark 3.4 We denote rli(l 7777 1 simply by 7L . Note that the map |A) = [[ge, ce@) - 1A)
induces an isomorphism of ‘U, 4 (sl,)-representations 7, ;rf’ - forany ¢ € (C*)l"l.

Let us fill the boxes of A by entering qi‘_qu_lu into the box (a,b) € A. For F €

. R . .

S1,p (), we would like to specialize k~ variables to the corresponding entries of A. Such a
naive substitution produces zeroes in numerators and denominators, so we need to modify
it properly to get p;.

Specialization maps p;..
A

For F € 81 (u)p, we set p(F) = 0ifk — k" ¢ NILIf 1 :=k — k" € NI"l, we do the
following:

e  First, we consider the corner box [J = (1, 1) € X of color p and specialize x pok, > U
Since F' has the first order pole at xp ¢, = u, the following is well-defined:

P (F) o= [Gp, =) - Fligy g eou-

e Next, we specialize more variables to the entries of the remaining boxes from the first
row and the first column. For every box (a+1, 1) € A (0 < a < A1) of color p —a, we
choose an unspecified yet variable of the (p — a)-th family {x, .} and set it to g{ u.
Likewise, for every box (1,6 +1) e A (0 < b < k’l), we choose an unspecified yet
variable of the (p + b)-th family {x,, .} and set it to q3b u. We perform this procedure
step-by-step moving from (1, 1) to the right and then from (1, 1) up. We denote the

. S F—1
resulting specialization of F' by pik'ﬂl )(F ).
F—1 . .
e If(2,2) ¢ A, weset pp(F) := ,o)(\/\l-H' )(F). If A contains (2, 2), we would like to

specify another variable of the p-th family, say x k,—1, to gig3u. Due to the first kind

. . AR, -1
wheel conditions, the function ,oi 1 )(F ) has zero at x p.k,—1 = q1q3u. Hence, the
following is well-defined:

(1)) 1 (2, —1)

o UF) = | e, (F) :
Xpkp—1 — q193U
[Xpkp—1>q193u

e Next, we start moving from (2, 2) to the right and then from (2, 2) up. On each step,
we specialize the corresponding x. .-variable to the prescribed entry of the diagram.
However, due to the first kind wheel conditions, we have to eliminate order 1 zeros as

above.
e  Performing this procedure |A| times, we finally obtain pilkl)(F) eC ({xi,r},-lef[zlfl’). Set
A
pi(F) = pV (F).
Key properties of p;.

Tracing back the contribution of the first and second kind wheel conditions, we find that

P Sl’P(”)EH-Z —> Sj~ GM = {F/ . G7,A|F/ € ST}’
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where
IP

2
Xpr—q-u
o p.r
Gl,k_ll

r=1 tpr —H

i I
i (m)) —1 _b—1 () —1 _b—1
nD:(a,b)eXZr LS ey r—at a3 w-[1ne (a,b)eX; [[S Geyr—ai a3 w)
X

le@y- 1 b 1 CD 1 _b—1
[To=.p)er {H,(zf "e@y—1r—ay gy W TS ey —at T a5 u)}

Here the set X;r C Z? consists of those (a, b) € Z? such that (a+ 1, ))& (a+1,b+1) €
Aror(a,b+1)&(a+1,b+1) € A, while X, C 72 consists of those (a, b) € Z? such that
(@a—1,b)&@—1,b—1)€eror(a,b—DN&@a—-1,b—-1) €

For F € SKLH”’A(M)EAJJ, we further have p; (F) € S; - GMQM’ where

Ip—1y Mot <Ap Ip=rpp1+b
A Ao+t b
Qi’)L = 1_[ (xpf)q,r —q, u) - l_[ l_[ (xpf)»h_Her,r —q, qsu).
r=1 b>1 r=1

Our next result establishes two crucial properties of p;,.

Lemma 3.5 (a) Ifk — k" ¢ NI", then p,(S1., () * ;) = 0 for any [ € NI,

RSP 7

(b) We have pr(S\" " @) ) = pa(S1,p ) + Sp) for any T € NI

Proof of Lemma 3.5 (a) For Fy € 81 ,(u)g and F, € S, letus evaluate the p, -specialization
of any summand from Fj = F>. In what follows, we say that qfqé’u gets into F, in the chosen
summand if the x. .-variable which is specialized to qfqg’ u enters F, rather than Fy. If u
gets into F,, we automatically get zero once we apply pil). A simple inductive argument

. . - -1 . .
shows that if at least one of the variables {qfu}::l:ll U {qé’ u} b‘:1 gets into F,, we also obtain

zero after applying p(aH) or p(’\1+b) since the corresponding w. .-factor is zero. If q1q3u

gets into F3, but all the entries from the first hook of A get into F, then there are two zero

A+ |)

w.,.-factors, and so we get zero after applylng o , etc. However, not all the specialized

variables get into F7 as k —k ¢ NI"1. Hence, the pj -specialization of this summand is zero,
and so p, (F1 x F») = 0.
(b) For F| € Sl,p(u)zx, F, € §&;, the specialization py(Fy * F2) is a sum of p;-
specializations applied to each summand from F; x F>. According to (a), only one
KM

icln] (k“‘+1)"0)‘( F) -

such specialization is nonzero and we have p,(F1 x F2) = []

F({x;, ,}ll :[::l’) P, where P denotes the product of the corresponding w. .-factors: P =

[o=w.ner [licm ]_[r L @i (@8 g2 u/x; ). It is straightforward to check that P =

v-Gj , 07, withv € C*. To complete the proof of (b), it remains to provide F} € S, P(M)F
A

3
such that p; (F1) # 0. To achieve this, we set Fj = K5/ % ---* K; L7 o — )L,
— 1
where 2. € NI"l is prescribed by the coloring of the r-th column of A and Kz :=
1<r'<mii1 Xir—q1Xiq41,
l_[ie[n] nlf"#”fmi (xir —q 2xl ) l_[zE[n] H1<:<m, LA i L O

Xir —=Xip1,0!
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Proof of (V).
Now we are ready to deduce (©), completing our proof of Theorem 3.2. Note that

dim Sy, ) = Y dimgr, (S',@)), dimS, @)= Y dimgr, (57", @),
AiA|<m AiA|<m
where the filtration {S;’f’p)‘(u)},\ on S’ff () is induced by the filtration {S;'f;‘ (1)}, on
Si’fp (u). The p;-specialization identifies gr, (Si'fp(u)) with p,\(S;'fﬁ(u)). This observation

and Lemma 3.5 imply that gr/\(S‘i'fp (u)) is zero if |A| < m and is 1-dimensional if |A| = m.
This proves (). O

3.2 Generalizations to S(x) and SX(u)

The result of Theorem 3.2 can be generalized in both directions mentioned in Section 2.8.
Recall the 4,4 (8ly)-action 7, z on the space S(u), which preserves the subspace S(u) » S’
(see Lemma 3.1). Let 7, z denote the induced /Uq,d(sl,,)-action on S(u) = Sw)/(S(u) *

. We call u = {ui,s}ilef[i]fl" generic if {(i, u; s, (1,..., 1))} is generic in the sense of
Section 2.5.
Theorem 3.6 For a generic u = {u,',x}gg[sn]il", we have an isomorphism of ’Uq,d(sln)-

modules

o~ ot i i
u,c — ®i=0 ®s=l rui,x'

Proof of Theorem 3.6 The proof of this theorem goes along the same lines as for the case
>l = 1 from above. According to Lemma 2.9, ®/—) ®ifz | Th;, is a well-defined,
irreducible, lowest weight representation generated by the lowest weight vector |#), =
®:‘:_01 ®ii:1 |@). On the other hand, the vector i£ € S(u) is the lowest weight vector of the
same weight as |¥),. Therefore, it suffices to compare the dimensions. This can be accom-

plished as above by using the specialization maps p, with A = (AOD A0 LoDy (they
are defined similarly to p,, but the entry of J = (a, b) € 15 ig set to be qf_lqé’_luiys,
while its coloris ¢((J) :=i — a + b (mod n) € [n]). O

Another generalization of Theorem 3.2 establishes an isomorphism of ﬁu% and tensor
products of Macmahon modules for generic parameters. For simplicity of our exposition,
we restrict attention to the case of mf ’CK for generic K (thatis, K ¢ quZ). Let ﬁ,ﬁ ’CK denote
the induced ‘U, 4(sl,)-action on the factor space Sl’fp(u) = Sffp(u)/(Sfp(u) *x S8).

Theorem 3.7 We have an isomorphism of’Uq,d(S[n)—modules S{(p ) ~ MP (u, K).

Proof of Theorem 3.7 We apply same proof as for Theorem 3.2, while now the filtration
is parametrized by plane partitions 2 = (A0, 1@ . ..). Here, we fill the boxes of A by
entering qi‘_lqg_qu ~!u into the box O = (a,b) € A© and define the specialization
maps pj; as before. Whence the arguments from our proof of Theorem 3.2 apply word by

word. Note that the only place where we used the second kind wheel conditions was the

appearance of the factor ]_[lr”: | Xpr — q%u) in Gj ;.- This is now compensated by a change
of Q5 ; —the factor which keeps track of the filtration depth. O

@ Springer



196 A. Tsymbaliuk

3.3 Isomorphism p?” ~ 7;°?
b

Given a representation p of an algebra B on a vector space V and an algebra homomorphism
o: A — B, we use p? to denote the corresponding representation of A on V: p?(x) =

p(o(x)). To simplify our notation, we define ’ Uq,d(sln)—modules ,ol')7 ’Ew = (pf 27 and
ol = *1h). Actually, the left dual and the right dual modules of 7} are isomorphic:

*(Th) >~ (Th)*.

Theorem 3.8 For any 0 < p < n—1,v € C*,¢ € (C)" we have an isomor-
; 0 p.@ *p . @=20=3) 1 - p—(n—1)s
phism of 'Uy 4(sl,)-modules Py =T, where u = (—=1)" 2 qg—'d7? PO .

—1
(co-+-cn-1)"".

Corollary 3.9 Forany0 < p <n—1, v,v' € C*, ¢,& e (CH" wirh ]_[l.e[”] ¢ =
[Ticpn) €i» we have an isomorphism of U(;’d(ﬁ[n)—representations ,05,5 ~ pf,’é,.

Proof of Theorem 3.8 Our proof consists of three steps. First, we verify that both vy ®
e™r and |@)* have the same eigenvalues with respect to the finite Cartan subalgebra
(C[wgt(l), ol l//ni_ll’o, qidl]. Second, we show that both vectors are annihilated by e; ;-action
for any i € [n], k € Z. Finally, we prove that they have the same eigenvalues with respect
to ¥; s-action for any i € [n], [ € Z\{0}.

Step 1: Comparing weights with respect to (C[woil, , w,f_]lyo, q*®].

According to Proposition 2.12, elements ; 9, y, g®! act on vg ® e™r via multiplication
by ¢g'4») g, 1, respectively. Combining this with Proposition 2.6(a), we get

- z pn=p) 5 - 5 _ 5 )
,05,5 (@ e@err =q~ 7 vy@elr, Pf,z- Wiovo®@err = g%r vy@elr Vi € [n].

p(n=p)

We also have ‘L'up(qd2)|0)) =gq 2z -|¥) and ‘L'f(l/fi,())m) = q“sivﬁ - |@). Therefore,

the vectors v ® e¢r € p”” and |#)* € 7,” have the same weights with respect to
£1 £1 +d
(C[wo’os-~~a‘/fn_17()vq 2].

Remark 3.10 This explains the appearance of q_p(n{ 2 i the formulas for

w7 (q®), 7l (g®).

Step 2: Verifying an annihilation property with respect to’ Ut.

First, we prove pfc-w (ei.0)vo ® efr = 0 fori € [n]. For i # 0, this is clear
as (i_z,-,[_\p) + 1 > 0, while Hyjvo = 0 for all i’ € [n],k > 0. Fori = 0,
@ (eo,0) = dyvo,ol -~ [f1,1, f2,0lg, -+, fu—1,0l4 by Proposition 2.6(a), and the equality
pi ’Ew (e0,0)vo0 ® eAr = 0 follows from our next result.

Lemma 3.11 p) o([- - [f1.1, f20lg -+ fa—1.0l9)v0 ® eMr =0,

Proof of Lemma 3.11 It suffices to show that any summand f;, | »,_, - - fi,.r, of the above
multicommutator (here {if,...,i,—1} = [#]* and rx = 8;,.1) acts trivially on vy ® ebr.
Since —(h;, 1_\,,)+1 > O fori # p, we see that pﬁé(ﬁl,rl)v()@e/\l’ =O0unlessi; = p # 1.

A A, - _
Fori; = p # 1, we get pii(ﬁl,,,)v()@e‘\v = :I:ci_llvo®eAP with Ag) = Ap—a;,. The

@ Springer



Several realizations of Fock modules for toroidal Uq_d (sly) 197

key property of this weight is —(/2;, 1_\5)1)) + 1 > 0. In particular, ,ofz,(f,‘z,rz)vo ® e]\(Pl) =0

. _ X
unlessip = p—1 # lorip = p+1 # 1. In the latter two cases, the result is j:cizlvo@e‘\!’

with [_\;2) = 1_\5,1) — @, satisfying a similar property. Continuing in the same way, we
finally get to the k-th place with iy = 1 and ry = 1. As —(l_zl, [\gﬁl)) + 1 > 0, we have
pif(ﬁk,rk "'fil.,r])U0®€A” =0. O

This completes our proof of the equality p]ﬁ ’Ew (ei,0)v0 ® eAr =0 for any i € [n].
According to (}) from the next step, we have pi’éw (hj,+1)vo ® eMr = 0 for j # p.
Combining this formula with the relation (T5') [h; 41, e; k] = dT"iy = 2[a; 1, - eijt1,
one gets
pi’gv(e,',k)vo ® A = 0 forany i € [n], k € Z.
On the other hand, the identity S(e; (z))=—v; (y ~1/?z)~e; (y ~'z) combined with the for-
mulas of Proposition 2.7 imply a similar equality 7" (e; x)|@)* = 0 for any i € [n], k € Z.

Step 3: Comparing weights with respect to 09,

Let us now prove that both vo ®ehr e pff and |9)* € ;P

are eigenvectors with

respect to the generators {v;, ;} and have the same eigenvalues. By the definition of 7.7,

we have
o’ WE@NN* = (/) | = o (i o)) = £8i (g — ¢~ (g w)E |9)*

for any i € [n], r € Z~g. Therefore, it remains to show

1E[nJ

Py s (Wi ar)vo ® €™ = £8; (g — g~ (g u)vo ® v forany i € [n],r € Zoo. (%)

Our proof of (%) is based on the following technical result.

Lemma 3.12 We have the following equalities:

oy (fi,0)vo ® err = 8ipcy ' A0 o ® e e, @®)

oy (hi—1)vo ® A =8 g7 v @ e, ©)

o7 (hi)vo @ M = 8ipqut - 1o ® e, (10)

Pfff(hp,—l)vo ® e el = —¢u @ e_&f’el_‘l', an

PLT ()0 @ el = —gPu - vo @ e~relr, (12)

where ¢ = [ ;cp ¢)» = (- 1)(" D gl le, w o= (- 1)<n 203 -

dfpf(nfl)sp,O cfl.

Proof of Lemma 3.12
e Fori # 0, we have w (f;0) = fi,0 and —(ﬁi, 1_\p) +1=1-4;, >0, sothat

P%v(ﬁ,o)vo ®etr = 51’,1)0;1 e Welr v
Fori = 0, we apply the formula for @ ( fo,0) from Proposition 2.6(a) to get

o) A —8p.0 7—1 A
oy (foovo®etr =g°r0d™" - pl (len—1.0, -+, [e2,0, €1, -1]y~1 -+ 1,-1 )vo®@e7.
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As pfi s(ej0)vo® eMr = 0 for J # 0, we see (by rewriting the above multicommutator)
that

oy e(en—1,0. -+ [e20, €1 —11y-1 -1~ ®@e™ = pl (en10) -+ p} z(e20)p) (e1,—1)vo@e™r.

For p # 0, the same argument as before implies p} z(ep.0) - - p} z(e2.0) 0, z(e1,-1)
vo ® efr = 0, while for p = 0 we have

Py &(en—1,0) - 'pig(ez,o)p,ig(m,—])vo®eA" =v7 (1 cnm1) v ® (€% e,
. 5 5 0=2=3) _ - .
Since e*n=1...e% = (—=1)" 2 e~ *, we finally get
(n=2)(n=3) 2)(11 ) _ _ 1 =
pvc(foo)vo®e = (=1 vigTla e gty @ e ™. v

In what follows below, we assume p # 0.
Combining the formula for @ (ko —1) from Proposition 2.6(c) with

1—\[’:..

A A
Py.z(€0.1)v0 ® e = p (e20)v0 ® e = p) s(en-1.0)v0 ® e"? =0,

we get
Pl (ho. Do ®@e™r = (=1)"d" ™" p! [(e0.1)p} s(en—1,0) - L 2(e2,00p ;(e1.—1)vo @ ™.

The latter is zero, since oy, C(ep 1,0) - pfc(m _Duo®etr = v~ l¢y ©Cp—1U0®

eMpHa+et@pn and (hp, Ap+ar+--+&p_1)+1 > 0. Thusp 7 (ho, ,1)vo®eAP =0
forp #0. v )
For i # 0, the formula for @ (h; —1) combined with pia(ej,O)UO ®err =0(j #0)
implies

o0 (hi )0 ® et =(=1)F1d pl (ei0) - pl 2(e1,0)p) z(eit1.0) -+ P} 2(en—1,0)p} z(e0.0)v0 ® €.

Ifl<p,then(hp,A +a0+>_,.,a;)+1>0andso

Jj= P+
Py ep.0) - Pl (en10)pY (e0.0)v0 ® €*r = 0= o7 (hi_1)vo ® e*r = 0.
If i > p,then (h,, A, + & + >z z+10‘1 + Z _loz] + 1 > 0 and hence

oy (hi—1)vo ® eMr = 0.1f i = p, then we get

pfz’” (hp,,l)v()@e‘/\f’ =(=D)PH AP (co- - cno1)vo® (€27 - - -1 e+ .. =180 Ap) =

(n—2)(n—3) e ~ ~ ~ ~ ~ nn—1)
(=) 2 dPc vy @ePr as e ... Mt 1680 — ()T 7 1P .0

Due to similar arguments (though this case is a bit more tedious), we have
ol (hi)vo ® err = 0if i # p.Fori = p, we get

pif’ (hp)vo@elr z(,l)"+l’+1d*f’(co_l ~~~c;_'1)v()®(e’5‘0e*6‘"*‘ Tt Ay =

(n=2)(n=3)
2

_ _ X = = = _= _ nn+1)
d7Pcl gy @etr as e e Wl g Tt e = ()" 2 1P .0

(=D
Arguing as above, only one summand of the corresponding multicommutator acts
nontrivially:

@ —a, A
oyE (hp 1o ® € el =
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—php —

(=D)PHaP (—g™)p! (ep-1.0) -+ pY (e1,0)p) :(epr1.0) -+ Y (€0.0)pY s(ep0)v0 ® €
(n— 2) n—3 - -
(=Dt ( )dpq 2oy @e et v

e Arguing as above, only one summand of the corresponding multicommutator acts
nontrivially:

PYE (hp v ® e ety =

(—1)1’“617"(—‘]2)/?5_5(& 004 &(f0.0) -+ Py (fpr1.0004 2(f1.0) -+ Y :(fp—1.0)v0 ® e et =

2)(n 3)

(n— - I
(DT APk g @ e et v

The proofs of (9-12) for p = 0 are analogous and are left to the interested reader. O

Proof of (). B _

Note that pf‘? (ep,o)v()@e_&ﬁ etr = cpk_ap»o voRelr. Combining this with the identity
[hp+1,ep+r] = y_l/z(q +q_1)ep,i(,+1) and the equalities (9—12) of Lemma 3.12, we get
,Ofc-w (ep,+r)v0 ® e_dpei\” = cl,,)n_‘sr'*o(qzu)lLr “vo ® ei\P forr € Z-y.

On the other hand, we have

Pl (i, ir)—i(q q D) T (eixr), pL7 (fi0)] for r € Zy.

Since ,ov”E (ei+r)v0 ® e Ap = pv”é (fi.0)vo ® edr = 0 for i # p, we get
oy (Wixr)vo ® etr = 0if i # p. The equality (f) follows now from

P

plT (Wp ) v0@e? = £(q—q~ )0l T (ep 2ol T (fp0)v0®e™r = £(g—q ) (g u)  vo@e’r.

The irreducibility of pf zand 72 (which is guaranteed by the assumption (G), see Propo-
sitions 2.7, 2.12) implies that both ’ Uq 4(sl,)-representations pv 5 “ and 1,;°? are irreducible.

Moreover, they are generated by the vectors vo ® ¢ and |#)*, which are the highest weight
vectors of the same weight, due to Steps 1-3. Theorem 3.8 follows. O

4 Matrix Elements of L Operators

In this section, we study matrix elements of L operators associated to pf & Let us denote

,o1 - simply by p . It suffices to work only with ,0 as ,0 x~ ,op for any u € C*, due
to Corollary 3.9. We provide a new realization of the S- brmodule S1,p(u) as a bimodule

generated by L 0.9
4.1 Matrix Elements

For any w € W(p);; and v € W(p),, we consider
LES = (1@ w|(1® p!)(R)I1 @ v),

the matrix element of the universal R-matrix R’ with respect to the second component. We
will mainly work with the cases v = |@) 1= vy ® e*r € W(p), or w = (f|-the dual of
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|#). In what follows, we abbreviate |#) and (#| simply by # when they appear as indexes of
matrix elements.

Lemma 4.1 Fori € [n],r € Z=o,v € W(p),, we have

X p.c r/2 p.C
[hl,fra L ]q*' (V/lI) LV) o (hz 7r)v

Proof of Lemma 4.1 We combine A(h;_,) = hj_r ® y_’/z + y’/z ® hi_, with
R'A(hi—y) = A°P(hj_,)R' and apply 1 ® p? to the resulting equality. Comparing the
matrix elements between (/| and v (with respect to the second component) recovers the
claimed identity. O

Our first goal is to compute explicitly Lg’ The shuffle-type formula for L(,J g was

obtained in [10, Theorem 4.8(a)]. To state the result, let ¥=: {/’Z—>S= be the natural
extension of the isomorphism W : U’+—> S from Theorem 2.17.

Theorem 4.2 The image of Lg S under W= has the following form:
(LG, Za,, neVgmhghero

whereapo=1,a, N € (C[qil, d*'1 and the shuffle elements Fg’N € Swv
via

N) are defined

,,,,,

0 _
Fp,N -

nie[n]nlgr;er'gN(xir q %) - nze l_[r 1Xi,r Al Xo,r
T1
r=1

l_[ie[n] ngr,r'gN(Xt,r = Xit1,r) _1 *p.r

Recall the Hopf pairing "¢ : ‘U= x 'U= — C from Theorem 2.1(d). Clearly, the genera-
tors 1 » (r € Zo) are orthogonal to all generators of ’ U= except for h; _,. Moreover, we
have
[ra; jlqd™™"i
rig—qhH
Note that the matrix ([ra;, j1,d"™"7); je[n] is nondegenerate if g, gd, qd_1 are not roots
of unity.

/(p(hi,fra hj,r) =

Definition 4.3 Let {hl },e[n] be the basis of spanc(ho,—,, - -+ , hy—1,—r), Which is dual to

{hi r}ie[n) with respect to ‘. In other words, "o(h-
Z~y.

i hjs) =36ijorsforanyi, j € [nl,r,s €

Our next result provides the first insight toward the elements W ~! (Fg N

Lemma 4.4 We have W~'(I') ) = —(¢7' =) @ (b ).

Proof of Lemma 4.4 Applying W to the formulas for @ (hx,_1) of Proposition 2.6(b,c), we
find:

l_[ie[n] Xi

H,’e[n](xi — Xit1)

1 %0

V(o (h,—1) = (g~ —g)" " -{(q+q—) —d” d—}
Xk Xk+1 Xk—1
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Rewriting this as W (@ (hy,—1)) = —(q ' =g Zpe[n] "o(hg.—1, hp,l)l"g’l, we get the
claim. O

Now we are ready to state the main result of this section.

Theorem 4.5 Given 0 < p <n — 1, ¢ € (C*)", define u € C* as in Theorem 3.8 via

(n=2)(n-3) 2)(n _ .
u:=(—1) g ld P~ D80 with e = ¢+ cpi.

(a) Foranyi # p, we have
w(ei(2) - Ly = L - @ (ei(2),
@ (fi@) - Ly =Ly - @ (fi2).
w(YE@) - Ly = Ly @ @)
(b) We have
@—u)-wlep() - Ly =Ly w(ep@) - (g2 — qu),

@ 2= qu) - (fp) Ly =Ly o (fp@) - (. —w),

o W)LY = LIS - o (yE Q).
(c) We have the following explicit formula

LG =q"%g" exp (Z [’;]q(q”)rw(h?r» : w

r=1

* P

Remark 4.6 An analogous computation for the representation 7,,’" is much simpler. The

corresponding matrix element L;“w =101t )R QB equals

n—1 n— l n—1
(181107 7)(gH T Apec ol @S ATl Ahio o S S ik oh i),

i€[n] r=1
since 7 (U)I0) = 0. As o (hi,)0)* = 8:.p L0y (- > 0), 1 (i) IV = 81,p10)", we
get
fu*'p La- -:1 Ap+A, S [}’]q rorpl
r=1
*,p
In particular, w(Lé“M ) coincides with the right-hand side of (#). However, we are not

_ “p
aware of the conceptual reason for Lg (fj = w(L;;‘(,J ) (though it would immediately imply
Theorem 4.5).

4.2 Proof of Theorem 4.5

Our proof is based on the equality
(1@ w|(1® p))(R'A)T®v) = (1@ w|(1® pf)(APKX)R)I1 S v) )
for any x € Ij;,d(ﬁln), ve W, we W(p)k.
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Notation Given a collection of elements By, --- , By € {*ag, -+, *dp—1}and0 < p <
n—1, consider vo®eP! - - - PV eAr—an element of W (p),,. We will also use the same notation
for a dual element of W (p)}, when writing it in the matrix coefficients of L operators.

e Casep #0.

(a) We need to show that Lg;} commutes with {w (¢; k), @ (fi k), w(h,-,k)}i.‘;%.

— Proof of [Ll}y. w (ei.0)] = 0 and LY. (fi.0)] = 0 fori # 0, p.
Due to (Hl) we have

Ali) =eix @1+ Y0y  @eix+ Y Viry @ einsr,

r>0

Afin) =18 fik+ fik ® Vioy ™ + D firer @ iy */2
r>0
Evaluating both sides of (x) at v = |ff), w = (#| and x = ¢; 0 or x = [ 0, we immedi-
ately get [L@ g €i.0] = 0 and [LQ e fi.o] = 0. It remains to use @ (e; o) = €;.0, @ (fi.0) =
fiofori # 0.v

—P}”OOfOf[L@ E ZD-(30 71)] =0and [L(A % w(fo,l)] =0.
Evaluating both sides of (x) at v = l@) w = (Al and x = ep,; or x = fo,_1, we

immediately get [Lg:g, ep,1] =0and [Lé)7 ’5, Jo.—1] = 0, respectively. It remains to apply the
equalities @ (ep,—1) = (—d)"ep,1 and @w (fo,1) = (—d)™" fo.—1 from Proposition 2.6(d). v/

—Proofof[LQ) V,, w (hi—1)] =0 foranyi € [n].

It suffices to prove [\I/Z(Lp’g) V= (w (hi—1))] = 0. According to Lemma 4.4,
W (zw (h;,—1)) is a linear combination of ro T On the other hand, W= (Lp @) is a linear
combination of q_d'qu’ Fg’ - due to Theorem 4.2. The commutativity of the elements

{Fg, m}’[’)‘,g?n] has been established in [10], while q’d‘q/_\ﬂ obviously commutes with Fg, I
The result follows. v*

—Proofof[LQ) V,, w(hi1)] =0fori #0, p.
According to Proposition 2.6(b), it suffices to prove that £ = 0, where E is defined via

E:= [Ls:g; [fi0, Ufi—r05 -+ L0, [fir1,00 -+ 5 Ufn=1,05 fo,0lg-1 -+ Tg=11g=1 - 1= 1211 13)

In what follows, we assume i < p < n — 1 leaving the case 0 < p < i to the inter-
ested reader. Applying iteratively the g-commutator identity (mentioned in our proof of
Proposition 2.6(b))

[a, [D, cluly = [la, bk, C]uv/x +x-[b,[a, C]v/x]u/x )

together with [Lg y» Jj.01 = 0for j # 0, p, we reduce to a stronger equality Egl)—i—Eél) =0
with
E = [ILy§
g Tp.olg=t: Lfp1,0. -+, [fa=1,0, fo,0lg=1 - 1g=111,

Eél) =g [ fp.0s [fpr1.00 - [fam1,0, [LS,’;, Jo0lglg-1 1111
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Evaluating both sides of (x) for appropriate v, w, x step-by-step, we obtain an explicit
formula

Vpt1,0° Yn—1,0%0,0 P ) ]
Cp - Cn—1€0 Ve PHL..e%n—180 2P yoRe

1 —
By = ()" "

~ap o Ap”

Let us now compute Efl). Evaluating both sides of (x) at v = |#), w = (#], x = fpo0,
we find

p.c _ _,—1.-1 _gpc }
(L Tpolg=r=—a"¢) L) o apoip
Evaluating both sides of () at v = vy ® e"ipe[‘l’, w = (#l,x = fjo, we find
(LP ¢ fiol = Ofor p+1 < j < n — 1. Applying iteratively (<>), we get

00~ ehp’

E{" = EP + E{Y with

2 -1 —
EY =—q"'c SHIL 55 I s Sprr0lg-1s Ufpt2,0. - s Lfa—1,0, fo.0lg-1 - 1g—111,
(2) . -2 -1 )28
Ey” = —=q ¢, [fp+1,0, [fp+2,0. - s [fu—1,0, [L B0p@e—5pchp” foolgly-1 -1~

Evaluating both sides of (x) for appropriate v, w, x step-by-step, we obtain an explicit
formula

ED = (—gyrn. Yptr1.0- - Yn-1.0¥00  pe
2 Cp < Cp—1C0 v0®eup+1 ...e&ﬂ*le&OgAp’v()@g_&peAp
Yp+2,0 - Yn—1,0%0,0 P ) 7 7
< Cp—1€0 vo®e*P+2 =180 gAp Jo®e “pl e~ ehp’

— (=)™ -
Cp ..

The first summand cancels E, a ), while the second summand is very similar to Eél).
Evaluating E| @ , we get a similar formula E(z) (3) + E, ® with

Vp+2,0** ¥n—1,000,0 e )
Cp -+ Cp—1€0 v®e Ip+2.. =180 oAp J®e Up+1e=@p Ap

B = o

1p17+3,0 e Ipn—l,Od’O,O . Lp,E ) i . ) ) )
Cp e Cno1C Vo PH3 %=1 %0 AP yy@e P2 Pt e~ A

— (=)

Proceeding further in the same way, we see that all nontrivial summands in the formula
for E split into pairs of opposite terms. Hence, E = 0 and so [Lg 5, w (hi;1)] = 0 for
i#0,p.v

- Proofof[Lw g @(eik)] = 0and [Lg;, @ (fix)] =0fori # p andanyk € Z.
Choose j ;é 0, p such thata;; # 0. Combining the commutator relations

[ (hj+1), w(ei)] =d i a)ily - @(eiks1), [@hj+1), @ (fix)] = —dT" [a)ily - @ (fikx1)

with

(LG @ (i) = 0. (LG @ (fia )] = 0. [LyG w (hjsn)] =0
established above, we get [L};. w(ei)] = 0 and [L], @ (fi)] = 0 by induction
onk. v
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204 A. Tsymbaliuk

—Proofof[Lw g @ Wi)]=0fori # pandanyk € Z.

For k # 0, this follows immediately from the defining relation (T4) and the previous
step. For k = 0, it suffices to prove [Lg:;, Y¥i0] = 0 forany i € [n]. This equality follows
by evaluating both sides of (x) at w = (4|, v = |9), x = ¥ 0.V

(b) The first two equalities of (b) are equivalent to the following identities:

[Lyg. @ (epas)lg = q*u - [Lyg. w(epi)l,1 Yk €L, (14)

[Lgfg’w(fn,kfl)]qzu_l M,W(fpk)] -1 Yk eZ. (15)

It suffices to check (14) and (15) for single values of k as we can derive the general
equalities by commuting further iteratively with @ (f 41, +1).

= Proof of [L}}'y, @ (ep.1)]g = q*u - [Lfj 5, @ (€p.0)],—
Evaluating both sides of (x) at v = |#), w = (@, x = epo, we find

[Ly) VL w(ep 0)] -1 =Cp- LPC

- JAsw(e = e, o, we finally get
vo®e~r el ( p,O) p.0 yg

q u - [LV)(/J’ @ (ep, o)] -1=gq cpu Lv0®e arehp g
To compute [Lg.’g, w (ep,1)]y, let us first evaluate @ (e),1). Due to (T5), we have
[hp1sepol =(q+q Dep1 = @(ep) =—(q+q )" - [@(epo), mhy )],
where @ (e 0) = ep,0 and

@(hp1) = (=D"Pd7Pg" [ fpo. o [fro: Uprros o oo foolg-1 o g-ilg-roo-] o

Applying iteratively the equality (<>) together with the relation (T4), we finally get

@(ep1) = (=D)"PHg=Pgn =2y

[fp-1.0, - [f1.0: 1,00+ s [fam1,05 fo.0lg=1 -+ Tg-1]g1 "']q—l

Therefore, it remains to evaluate

= [LS(} [fp—1,05 -5 [f1,0, Ufpr1,0s - -+ 5 [fu=1,05 fo,0lg-1 -+ 1g=11g-1 -+ - 1g-1]g-
Applying iteratively the equality (<>) together with [Lﬂ g [i.0l =0for j #0, p, we get
E=[fp-1,0.--+ . [f1,0. [fp+1,0, -+, [fu=1,0, [ng;}, foolgly-1 - Jg-1lg-1 - 1g-1.

To compute this multicommutator, we apply the equality (x) with an appropriate choice
of v, w, x step-by-step. Leaving details to the interested reader, let us present the final
formula

_( 1)n3n1_[1/[l PC

ci v0®e Gp—1...o%1 0Pt o1 680 Ap

i#p
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Since [];¢fp Vio = 1in U’A(ﬁ[,,), we finally get

i€ln
(n=2)(n=3) 2)()1 3) pc
[L@(/jaw(ep 1)]q = (=D d- quPC Lv Qe err ¢’
where we used the following identity in C{P}
n(n—1)
2

=1 .. ¥t L. g%n—1p%0 — (_1) TPe=ap,

The equality [L})5, @ (ep,1)]y = ¢u - [L}, @ (ep,0)],-1 follows. v

— Proof of ILY'g. @ (fp—Dlg =" - LY 5. @ (fp.0)],-1

Evaluating both sides of () at v = |#), w = (4, x = fpo, we find
(L @ (fp.0)],-1 = % "Ly v einehp- AS T (fp.0) = fp.0. we finally get
-1 _[7pé _ _ -1 -1, -1 5pc }
u [Lg’wa ZD_(fp,O)]q—l - q Cp u L@,U0®67&176Ap.

To evaluate [ngg, @ (fp,—1)]q. let us first compute @ (fp, —1). Due to (T6), we have

p—1, fpol=—(@+a DV fp-1=2T(fr-D=@+q )" [@(fp0), @y 1],
where @ (f),0) = fp,0 and

@ (hp,—1) = (=DPHd? ey o, -+ Tero, [epr1,0, -+ s [en—1,0, 00141 Tyt -+ Tg2.
Applying iteratively the equality (<>) together with the relation (T4), we finally get
@ (fp,—1)=(=DPTLdP e, 10, [e1,0, [ep+1,05 - s [en—1,0, €0,0ly-1++ Ig=11g-1 1y -lﬂ;_é).
Therefore, it remains to evaluate
E:= [ngg, lep—1,0, -5 [e1,0, [ept1,05 - -+ 5 [en—1,0, €0,0]4-1 - - - 1g=11g-1 -+~ 1y-1lg-
Applying iteratively the equality (<>) together with [LV, g €0l =0for j # 0, p, we get
=[ep—1,0,--- . [er,0, [ept1.0, -+, [en—1.0, [LS:;, €0,0lgly-1 -+ 1g-11y-1 -+ 1p-1.

To compute this multicommutator, we apply the equality (x) with an appropriate choice
of v, w, x step-by-step. Leaving details to the interested reader, let us present the final
formula

E=—clc. LPC . .z )
1’ B, 00@eP—1 .-.e@1 pH1 ..o%n—1 80 A p wp,O
Therefore,
! p.c
,ZU c-L
@@ (f]? P Vlv0®e o:pe/\[;

The equality [L (,J W w(fp —Dlg=u" [LP 9. W zzr(fp 0) _1 follows. v
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~ Proof of [Ly . & (W ()] = 0,
Define 1/f,, N € Uq 4a(sly) as the coefficient of z7" in 1//;(1) — 1//;(1), so that

lep.as fpp] = ZP"*” for any a,b € 7Z. Set Xy = w(l//p,N),Lg*g]. Combining the

equalities

(@ (epar1) —um(ep )Ly y = Liu(q~ @ (epis1) — qum (epr)),

@ '@ (fpas1) — qua (Fr) Ly = L (@ (fpas1) — uw (fp.)),

we get the following recursive relation: ¢ ' Xy 4740 — u(q + q_l)Xk+l+1 +u?q Xy = 0.
As X_| = X9 =0, we get X = 0 for any k € Z. This proves [L(,J 7 w(wlﬂf(z))] =0.v

(c) The unique element satisfying conditions (a,b) of Theorem 4.5 and whose shuffle
interpretation has a form as in Theorem 4.2 (we only need to know that it lives in

an appropriate completion and its ‘purely Cartan part’ equals g~ q]\!’) is given by
the right-hand side of ().
e Casep=0.

Parts (a) and (c) are proved completely analogously to the case p # 0. Since the last
equality in (b) follows from the former two, it suffices to check (14) and (15) for some
k e Z.

—PI’OOfOf[L(D @ ZD-((30 0)]q = f] u- [Lg %> w(eO 71)] —1.

According to Proposmon 2.6(d), we have @ (e, _1) = (—d)"ep,1. Evaluating both sides
of 0 atv = 0), w = (I, x = en1, we get [LyGeonly1 = (=D'co- Lyt o
Therefore

0,c

2 0. R
qu [Lw’ng(e&—])]q—l =ug-d"cy ng@e“;o,ﬂ'

Next, we evaluate the left-hand side of the claimed equality. According to Proposi-
tion 2.6(a)

@ (e0,0) = d(=q)" 2y Y00 [fa—1.0.+ - [f2.0. fialy-1 11

Applying iteratively (<) together with [Ly. 0,01 = 0 and [Ly;5. fj.0] = 0 for j # 0,
we get

[Lgi;, @ (e0.0)]y =d(=9)"*y¥00- [fui-10.- 20, [Lg;"f;, Sialglg-1---1g-1.

Evaluating this multicommutator step-by-step as before, we finally get

S -1 708
gdcoc 'Lu0®e*&0,ﬂ'

0,¢ _ -1 508
[Lg_g» w(eo,O)]q = quOc . Lv0®e&n*1 o = (- 1)

The equality [L{};. o (0.0)]g = q%u - [Ly)y. @ (e0,-1)],-1 follows. v
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- PrOOfOf[L@ g @ (f0.0)]g = ufl[Lg, g @ (fo,)1g-1.
According to Proposition 2.6(d), we have @ (o, 1) (—d)™" fo,—1. Evaluating both
. _ _ ( 1)n+1 0’*
sides of (x) atv = |#), w = (B], x = fo,—1, we get [L w o fo.—1] - % 'L@,f;o@e—%'

Hence

—1 0,¢ _ —1 3—n 0,¢
u : [L(/),Vjv w(f‘o,l)]q_l =—q d C L@ 'U()®€_m0

Let us now evaluate the left-hand side of the claimed equality. According to Proposi-
tion 2.6(a)

@ (fo.0) =d ™" len-10. . lexo.er—1ly-1-+ 1,1 -lﬁ(;éy_l-

Applying iteratively (<>) together with [L@ g Yo.0l = 0 and [LM g0 €j.01 = 0 for j # 0,
we get

[Ly 5 @ (fo)lg=d™" - Tea—10, - [e20, [Lygy €1 —1lgly1 -+ 1gm1 - W07~

0,9 0,0)lg = n—1,05 €2,0, LLg g» €1,-1lg14-1 YooY -

Evaluating this multicommutator step-by-step as before, we finally get

=2 3) ~1 71

L()c

0, vu®e_“0

0.c _ 1 ~1. 40, _
[Lyg> @ (fo0)lg =—d ¢y ¢ LM‘L@)H b = =D

The equality [L))5. @ (fo.0)lg = u™'[L{)5. @ (fo.1)],-1 follows. v
This completes our proof of Theorem 4.5 for any p € [n].

4.3 Bimodule S(p, ¢)

Let’U>" (resp.'U*") be the completion of 'UZ (resp. U T) with respect to the Z—grading
on U= (resp. 'U) defined by assigning deg(e; x) = —k, deg(h; ;) = —k, deg(q®) = 0.
Note that Lp@ € w(U>"), due to Theorem 4.5. Consider the ‘U *-bimodule S(p, )
defined as

S &) =w(U%) - Ly o (U o (T=1),

where both 'U*-actions are in conjunction with @. We conclude this section with the
following result analogous to [9, Lemma 4.4].

Proposition 4.7 There exists an isomorphism of 'U T -bimodules

1 S1p)—>S(p, &) with 1 LI,

(@=2n=3)
where u = (—1) _ld_p_("_l)‘sl”o (co -~ cn_1)~" as before.

Proof of Proposition 4.7 Any element H € S ,(u) can be written as H = Y ; Fj 1 %
G; with F;, G; € S, due to Theorem 3.2. Set t«(H) = >, w(a;) - Lgé - w (b;), where
a; == WU (F), b := W~ (G)) € 'UT. We must show that ¢ is well-defined. Applying
Theorem 4.5(a, b), we find

eik ifi#p

L= h = :
@ (€10 Ly =Liyip (@), where @i = {q_lei,k-l-(q_]—Q)Zfilu’ -ejj—r ifi=p
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208 A. Tsymbaliuk

Let o be the automorphism of ‘Ut " such that o(e; ;) = &; ;. Extending ¥ to an iso-

morphism of completions W : 'U*"—> S, we use J to denote the induced automorphism
of SN, Clearly 9(W (X)) = W(o(X))and ¥ x1 = 1xg(Y) forany X € UT", Y e S,
Therefore

Y Fx1+G=06Y FG =06 ab=06 Y w@) Ly o) =0.
! 1 ! I

Thus, the linear map ¢: S1,,(u) — S(p, ¢) is well-defined and injective. It is clear that ¢
is surjective and is an S-bimodule homomorphism. This completes the proof. O
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