
Research Statement Paul Apisa

1. Introduction

How does a billiard ball bounce around a polygonal billiard table? One approach to this problem
is the unfolding construction of Katok-Zemlyakov [ZK75]. Whenever the billiard ball strikes the
wall of the polygon, instead of bouncing off it continues in the mirror image of the reflected table.
When two reflected copies of the table agree with each other they are identified. If the polygon is
a rational polygon, i.e. all angles are rational multiples of π, the process terminates and produces
a flat surface. Flow in the flat metric corresponds to billiard flow.

Remarkably, the object created by the unfolding construction - a flat metric on a surface with
finitely many singularities and trivial linear holonomy - called a translation surface - is equivalent to
specifying a Riemann surface X and a holomorphic one-form ω. The collection of all holomorphic
one-forms on genus g Riemann surfaces - ΩMg - is a subbundle of the cotangent bundle of the
moduli space of genus g Riemann surfaces - Mg - an object of central importance to the study of
algebraic curves and surface bundles.

The spaceMg is endowed with a natural metric - called the Teichmüller metric - and Teichmüller
geodesic flow along with the complex structure ofMg induces a GL(2,R) action on ΩMg. Studying
the dynamics of the GL(2,R) action is a means of both understanding the geometry and topology
ofMg and of understanding lower dimensional dynamical systems like rational billiards! The deep
connections between algebraic geometry, surface bundles, and dynamics in this discipline makes
studying the GL(2,R) action on ΩMg worthwhile.

In the following, I will describe my past research accomplishments and outline projects that build
on that work to explore the geometry and dynamics of moduli spaces as well as related questions
in billiards and the theory of surface bundles. Specifically, I will describe the following work

• (Section 3) A positive resolution (and in fact strengthening) of a conjecture of Maryam
Mirzakhani on orbit closures in hyperelliptic components of strata of ΩMg.
• (Section 4) A finiteness result (joint with Alex Wright) on finite blocking problems in

rational billiards.
• (Section 5) A study of holomorphic sections of the universal curve over subvarieties of Mg

containing a Teichmüller disk and related work establishing uniqueness of new orbit closures
discovered by Eskin-McMullen-Mukamel-Wright and Kumar-Mukamel [KM16].
• (Section 6) An upper bound on the Hausdorff dimension of directions that deviate from

Birkhoff and Oseledets averages under Teichmüller geodesic flow that applies to every (not
just almost-every) point in ΩMg (joint with several coauthors).

At the end of each section I will outline a research proposal based on this work. The final section
outlines further research directions that are not directly connected to previously accomplished work.

2. Background

In the sequel, an element of ΩMg will be represented as (X,ω), where X is a Riemann surface
and ω is a holomorphic one-form on X. The moduli space ΩMg admits a GL(2,R)-invariant
stratification by specifying the number and order of vanishing of the zeros of the holomorphic
one-form. Periods of the one-forms (relative to the set of zeros) endow each stratum with a linear
structure, i.e. they provide coordinates with transition functions being constant linear maps.

Eskin-Mirzakhani [EM] and Eskin-Mirzakhani-Mohammadi [EMM15] proved that GL(2,R) or-
bit closures are linear submanifolds in period coordinates (this extended work of McMullen [McM07]
who established this fact in genus two and classified the orbit closures there). This fact is remarkable
since orbit closures in a general dynamical system need not have even integer Hausdorff dimen-
sion! In the sequel, the phrase “orbit closure” will refer to a GL(2,R)-orbit closure in a stratum of
holomorphic one-forms.
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3. The Dynamics and Geometry of the Hyperelliptic Locus

3.1. Past Accomplishment: Mirzakhani’s Conjecture on Orbit Closures. When does an
orbit closure in ΩMg “arise from geometry”? Mirzakhani conjectured (see Wright [Wri14]) that
for any measure with sufficiently large support, the answer should be always.

To make this conjecture precise, say that a translation surface (X,ω) is imprimitive if there is a
holomorphic map f : X −→ Y to a lower genus Riemann surface Y and a holomorphic one-form η
on Y where ω = f∗η. An orbit closure is said to be a locus of branched covers if every holomorphic
one-form in the orbit closure is imprimitive.

Mirzakhani’s conjecture for hyperelliptic components of strata, i.e. components in which all the
Riemann surfaces are hyperelliptic, says that every orbit closure of complex-dimension at least four
is a locus of branched covers. In Apisa [Apib] I proved this statement and in Apisa [Api17b] I
strengthened the conjecture to the following.

Theorem 1. In hyperelliptic components of strata of ΩMg for g > 2, every orbit is closed, dense,
or dense in a locus of branched covers.

The proof uses a “tree-like” structure of holomorphic one-forms in hyperelliptic components
discovered by Lindsey [Lin15] to build degenerations of linear submanifolds to the Mirzakhani-
Wright boundary (see [MW17]). This approach is fundamentally different from the approach used
by McMullen [McM07] to classify orbit closures in ΩM2.

3.2. Research Proposal 1: Hyperelliptic Translation Surfaces. To complete the classifica-
tion of orbit closures in the hyperelliptic components of strata, one may ask the following.

Problem 1. Classify the closed orbits of primitive translation surfaces in hyperelliptic components.

A solution to Problem 1 might combine the work of McMullen [McM05,McM06b], which resolved
the problem in genus two, with Eskin-Filip-Wright [EFW17], which established that there are only
finitely many such orbits in genus greater than two. More generally, one may pose the question:

Problem 2. Determine the surface subgroups of the braid group (and more generally the mapping
class group) that correspond to holomorphically embedded curves in Mg.

The second natural question to ask in light of Theorem 1 is to what extent hyperellipticity can
be used to constrain orbit closures. To pose the question, we must define the rank of a linear
submanifoldM. Any linear submanifoldM has its tangent space at a point (X,ω) identified with
a subspace of relative cohomology H1(X,Σ;C) where Σ is the zero set of ω. The rank of M is
defined to be half the complex-dimension of the projection of this subspace to absolute cohomology.
This number is always an integer by Avila-Eskin-Möller [AEM].M is said to be higher rank if its
rank is greater than one. One may then ask,

Problem 3. Do loci of branched covers account for all the higher rank linear submanifolds con-
tained in the hyperelliptic locus?

By Wright [Wri17], a positive resolution would imply that the only subgroups of braid groups that
correspond to totally geodesic submanifolds ofMg are braid and surface subgroups. The ingredients
needed to approach Problem 3 include constraining the flat geometry of hyperelliptic translation
surfaces (analogous to the work of Lindsey [Lin15]) and studying the boundary of linear subman-
ifolds of the hyperelliptic locus in both the Mirzakhani-Wright partial compactification [MW17]
and the compactification in [BCG+16].

In ongoing work, Kathryn Lindsey and I hope to extend the strata to which Theorem 1 applies
by showing the following.

Problem 4. Show that higher rank linear submanifolds in a component of a stratum with a
codimension one hyperelliptic locus must intersect the hyperelliptic locus.
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To study low rank, Duc-Manh Nguyen, David Aulicino, and I are adapting the techniques of
Apisa [Api17b] to classify the rank one orbit closures in genus three that are not closed orbits.

4. Rational Billiards

4.1. Past Accomplishment: The Finite Blocking Problem. Given a polygonal billiard table,
one may ask the following.

Problem 5 (Finite Blocking Problem). Given two points on the billiard table is there a finite
collection of points S so that all billiard shots between the two points pass through S?

In the case of billiards on rational polygons, Wright and I used the unfolding construction to
establish the following finiteness result in [AW17] for the finite blocking problem.

Theorem 2. If B is a rational billiard table with connected boundary, then

(1) If B is tiled by rectangles or by 30− 60− 90 or 45− 45− 90 triangles, then any two points
are finitely blocked from each other.

(2) If all angles in B are multiples of π
2 and B is not tiled by rectangles, then any point is only

finitely blocked from finitely many other points.
(3) Otherwise, only finitely many pairs of points are finitely blocked from each other.

Theorem 2 is often strong enough to completely solve the finite blocking problem on specific poly-
gons.

In [AW17], Wright and I used Filip’s result [Fil16] on algebraicity of linear submanifolds in
ΩMg to connect the finite blocking problem on a rational triangle to torsion in a factor of the
Jacobian of its unfolding. The unfolding is always a cyclic cover of a thrice-punctured sphere, and
torsion in the Jacobians of such Riemann surfaces was studied in Coleman [Col89] and Coleman-
Tamagawa-Tzermias [CTT98]. This allowed us to resolve the finite blocking problem for infinitely
many rational triangles.

4.2. Research Proposal 2: Unfolding Billiard Tables and Torsion in Factors of the
Jacobian. To solve the finite blocking problem for all rational triangles, I propose the following,

Problem 6. Extend Coleman’s p-adic integration technique to study torsion in factors of the
Jacobians of cyclic covers of the thrice punctured sphere. As a corollary, solve the finite blocking
problem in rational triangles.

A solution would contribute new tools to solving Diophantine equations while developing a connec-
tion between number theory and dynamics. Another approach to the finite blocking problem on
rational triangles is the following:

Problem 7. Classify all orbit closures of the unfoldings of rational triangles.

A solution could help determine the asymptotic number of closed billiard paths as in Veech [Vee89]
and Athreya-Eskin-Zorich [AEZ16]. A solution would likely use work of Mirzakhani-Wright
[MW16], McMullen [McM13], and the Ahlfors variational formula [Ahl60]. Using these tools
and ideas from Apisa [Apib], I have sketched a partial solution to Problem 7 for rational isosceles
triangles.

Finally, in the proof of Theorem 2, a new criterion for recognizing loci of branched covers was
developed. In ongoing work, Alex Wright and are using this method to study the following.

Problem 8. If a linear submanifold M has a locus of branched covers as a codimension one
component of its Mirzakhani-Wright boundary, then when is M itself a locus of branched covers?
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5. Holomorphic Sections of the Universal Curve Defined over Subvarieties and
Marked Points on Translation Surfaces

Given a holomorphically varying family of Riemann surfaces, is there a holomorphically varying
collection of points defined over the family? To precisely pose this problem, make the following
definition. For any cover of Mg corresponding to a torsionfree subgroup of the mapping class
group, the universal curve is the surface bundle whose fiber over a point is the Riemann surface to
which that point corresponds. We ask the following:

Problem 9. Given a finite index torsionfree subgroup Γ of the mapping class group and a subvariety
C of the cover of Mg corresponding to Γ, classify all holomorphic sections of the universal curve
restricted to C.

To provide a partial answer to this problem we define a periodic point p on a translation surface
(X,ω) to be any point (excluding zeros of ω) where the orbit closure of the marked translation
surface (X,ω; p) has the same dimension as the orbit closure of (X,ω). For example, if X is
hyperelliptic, then all Weierstrass points are either zeros of ω or periodic points.

5.1. Past Accomplishment: Classifying Holomorphic Sections of the Universal Curve.
In Apisa [Apia], I showed the following:

Theorem 3. Let C be as in Problem 9 and suppose that it contains the Teichmüller disk generated
by the translation surface (X,ω). Any holomorphic section of the universal curve defined on C
must mark periodic points or zeros of (X,ω) over X.

The proof uses Kobayashi hyperbolicity to promote a holomorphic section to a GL(2,R)-equivariant
one defined on the orbit closure of (X,ω). Theorem 3 is often enough to classify holomorphic
sections of the universal curve. For instance, in Apisa [Apia] I showed that,

Theorem 4. If (X,ω) has dense orbit in a component of a stratum of holomorphic one-forms, then
there is a periodic point p on (X,ω) if and only if (X,ω) is hyperelliptic and p is a Weierstrass
point that is not a zero of ω.

As a corollary, holomorphic sections of the universal curve defined over the projections of any stra-
tum of holomorphic one-forms toMg may be classified. Projections of strata have been considered
by various authors, for instance Gendron [Gen15], Mullane [Mul17], and Farkas-Verra [FV13].
The results of Apisa [Apia] were used to prove Mirzakhani-Wright [MW16, Theorem 1.1].

5.2. Past Accomplishment: Periodic points in genus two and two new orbit closures.
Given Theorem 4 one might be tempted to conjecture that the only periodic points on a primitive
translation surface in genus two are Weierstrass points. Indeed, Möller [Möl06] established this for
primitive genus two translation surfaces with closed orbits. However, Kumar-Mukamel [KM16]
discovered two periodic points, dubbed the “golden points”, on a family of primitive genus two trans-
lation surfaces that do not coincide with Weierstrass points. Shortly, thereafter, Eskin-McMullen-
Mukamel-Wright announced the discovery of a new higher rank nonarithmetic linear submanifold
in the minimal stratum in genus four. In Apisa [Api17a] I showed that these new orbit closures
were unique. Specifically, I extended Möller’s result to the following,

Theorem 5. The only periodic points on primitive genus two translation surfaces are Weierstrass
points or golden points.

In the same work, I showed that Theorem 5 resolves the finite blocking problem (Problem 5) in
genus two. Using degeneration arguments, I went on to use Theorem 5 to show,

Theorem 6. There is at most one higher rank non-arithmetic linear submanifold in the minimal
stratum in genus four.

By the work of Eskin-McMullen-Mukamel-Wright there is exactly one such submanifold.
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5.3. Research Proposal 3: Holomorphic Sections and Periodic Points. In light of Theo-
rem 3, it is natural to ask the following:

Problem 10. Under what conditions do the topological sections of the universal curve, defined
over a subvariety as in Problem 9, coincide with the holomorphic ones?

Similarly, what can be said about holomorphic sections of the universal curve defined over subva-
rieties that do not contain a Teichmüller disk? Building on the classification of non-generic points
in genus two, I propose to solve the following -

Problem 11. Can non-generic points be classified for the Prym eigenforms discovered by Mc-
Mullen [McM06a]? What new orbit closures in higher genus do these points lead to?

A solution would reveal constraints on holomorphic sections (making progress on Problem 9) and
potentially provide new examples of higher dimensional orbit closures, of which very few are known.

6. Deviations of Ergodic Averages

While results in ergodic theory are often stated for “almost every point”, a body of work stretch-
ing from Ratner’s theorems to Chaika-Eskin [CE15] has developed techniques to analyze the be-
havior of every point in a dynamical system. The work described in this section is joint with Hamid
al-Saqban, Alena Erchenko, Osama Khalil, Shahriar Mirzadeh, and Caglar Uyanik [aSAE+17].

6.1. Past Accomplishment: Deviations of Birkhoff and Oseledets Averages. Fix a unit-
area translation surface (X,ω) whose orbit closure is M and let M1 be the locus of unit-area
translation surfaces in M. Let (gt) be time t Teichmüller geodesic flow. The arguments in Ma-
sur [Mas82] and Veech [Vee82] show that Teichmüller geodesic flow onM1 is ergodic with respect
to normalized Lebesgue measure µ given by period coordinates. Fix a bounded Lipschitz function
f : M1 −→ R. The Birkhoff ergodic theorem says that for any almost any point x ∈ M1, the
average of f along (gtx)Tt=0 converges to

∫
M1

fdµ as T −→∞. But, for a given ε > 0, must the set

S :=

{
θ ∈ [0, 2π) : lim sup

T−→∞

1

T

∫ T

0
f
(
gt ·
(
X, eiθω

))
dt > ε+

∫
M1

fdµ

}
have measure zero? In other words, if the GL(2,R) orbit of (X,ω) is dense in M is it necessarily
the case that the Birkhoff averages of Teichmüller geodesic flow in almost every direction θ con-
verge to

∫
M1

fdµ? Chaika-Eskin [CE15] showed that this is indeed the case. In [aSAE+17] we
strengthened that result to show the following -

Theorem 7. The Hausdorff dimension of S is strictly less than one.

The work applies the height functions constructed by Athreya [Ath06] and Eskin-Mirzakhani-
Mohammadi [EMM15] and the integral inequality techniques of Eskin-Mozes-Margulis [EMM98].
Similar results also apply to Oseledets averages.

6.2. Past Accomplishment and Research Problem: Divergence on Average. In the same
work we studied the set of directions θ so that Teichmüller geodesic flow applied to (X, eiθω) spends
asymptotically zero percent of its time in any compact set. These directions are said to be directions
that diverge on average. Masur [Mas92] and Masur-Smillie [MS91] connected these directions to
directions of nonergodic flow on the translation surface. We showed the following in [aSAE+17].

Theorem 8. For any translation surface, the set of directions that diverge on average has Hausdorff
dimension bounded above by 1/2.

The result is sharp by Cheung [Che11] and strengthens a result of Masur [Mas92]. The proof
uses the techniques of Eskin-Mozes-Margulis [EMM98] to extend work of Kadyrov-Kleinbock-
Lindenstrauss-Margulis [KKLM14] to the setting of dynamics on moduli space. Conversely, I
propose studying the following question:
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Problem 12. Show that for all translation surfaces, the Hausdorff dimension of the set of directions
that diverge on average is exactly 1/2.

This work would likely use methods of Cheung [Che11] to compute lower bounds on Hausdorff di-
mension, the work of Minsky-Weiss [MW14] (as applied in Athreya-Chaika [AC15]), and Masur’s
results on complexes [Mas90].

7. Further Research Directions

7.1. Modular Forms and Translation Surfaces. Filip [Fil16] proved that every linear sub-
manifold of ΩMg is an algebraic variety consisting of holomorphic one-forms (X,ω) where ω is an
eigenform for the action of an order in a number field on the Jacobian of X. Since this structure
is reminiscent of the decomposition of the Jacobian of modular curves into Hecke-eigenspaces, it is
natural to ask the following.

Problem 13. What are the GL(2,R) orbit closures of translation surfaces corresponding to weight
two Hecke eigenforms?

To perform computer experiments, I implemented an algorithm in SAGE that takes a q-expansion
for a weight two cusp form and outputs a translation surface to arbitrary precision. This problem
could suggest a means of studying Teichmüller geodesics using positive characteristic techniques -
an approach also suggested by Mukamel [Muk17].

7.2. Density of Thurston-Veech surfaces in the collection of pseudo-Anosovs. The pseudo-
Anosov homeomorphims of the mapping class group correspond to closed geodesics in Mg. A
pseudo-Anosov homeomorphism is said to be Thurston-Veech if it is the product of two non-
commuting Dehn multi-twists. In ongoing work, Wright, Lanneau, and I have established the
existence of a dense collection of translation surfaces fixed by a Thurston-Veech homeomorphism
in every linear submanifold of ΩMg. It is natural to ask,

Problem 14. Is the typical pseudo-Anosov homeomorphism Thurston-Veech? Can Thurston-
Veech surfaces be used to compute volumes of orbit closures as in Eskin-Okounkov [EO01]?

7.3. Dynamics on Infinite Measure Systems. Quotients of Teichmüller space by infinite index
subgroups naturally arise in Teichmüller theory - for instance the quotient by the Torelli group arose
in the study of the isoperiodic foliation in Calsamiglia-Deroin-Francaviglia [CDF15]. However,
the techniques of Eskin-Mirzakhani [EM] do not apply to infinite measure dynamical systems.
Nevertheless, McMullen-Mohammadi-Oh [MMO17] established a version of Ratner’s theorem for
rigid acylindrical hyperbolic 3-manifolds of infinite measure. Let Teichg,n denote the Teichmüller
space of genus g surfaces with n punctures where 3g − 3 + n > 0.

Problem 15. For which infinite index subgroups Γ of the mapping class group do Ratner-type
results continue to hold for the GL(2,R) action on the strata of holomorphic one-forms over
Teichg,n/Γ?

Apart from the Torelli group, it would be interesting to determine whether Problem 15 could be
applied to subgroups of the mapping class group in the Johnson filtration.

7.4. Double Kodaira Fibrations. How many ways can a compact four-manifold be written as
a surface bundle over a surface where the base and fiber surfaces both have genus greater than
one? Johnson [Joh99] showed that the number of such fiberings is always finite and Salter [Sal15]
showed that for any n there is a four-manifold with at least n such fiberings. If the four-manifold
M is a complex surface and the projection to the base surface is a holomorphic map, then the
fibering is called a holomorphic-fibering. The following question is open:

Problem 16. Do examples of complex surfaces that holomorphically fiber in three ways exist?
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If E is a complex surface with holomorphic fiberings over curves pi : E −→ Bi for i = 1, 2, then
Chen [Che17] showed that E cannot fiber in three ways if (p1, p2)

∗ : H1,0(B1 × B2) −→ H1,0(E)
is an isomorphism. Since each element of H1,0(E) restricted to fibers is an isoperiodic family of
translation surfaces, this suggests an approach using work of [CDF15] on the isoperiodic foliation.

7.5. Dynamics on Character Varieties. In Benoist-Quint [BQ11], the stationary measures for
random walks on finite measure locally symmetric spaces are classified. Eskin and Mirzakhani [EM]
illustrated a method of recovering these results in a nonlinear setting - in particular for the SL(2,R)-
action on ΩMg. Goldman-Forni [FG17] showed that the SL(2,R) action on strata can be combined
with character varieties to build an SL(2,R) action on a combined dynamical system. One may
ask,

Problem 17. Can one establish a nonlinear Benoist-Quint theorem for the SL(2,R) action on the
dynamical systems constructed by Goldman-Forni.
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Ann. of Math. (2) 174 (2011), no. 2, 1111–1162. MR 2831114
[CDF15] Gabriel Calsamiglia, Bertrand Deroin, and Stefano Francaviglia, A transfer principle: from periods to

isoperiodic foliations, 2015, arXiv:1511.07635.
[CE15] Jon Chaika and Alex Eskin, Every flat surface is Birkhoff and Oseledets generic in almost every direction,

J. Mod. Dyn. 9 (2015), 1–23. MR 3395258
[Che11] Yitwah Cheung, Hausdorff dimension of the set of singular pairs, Ann. of Math. (2) 173 (2011), no. 1,

127–167. MR 2753601
[Che17] Lei Chen, The number of fiberings of a surface bundle over a surface, 2017, arXiv:1703.06952.
[Col89] Robert F. Coleman, Torsion points on abelian étale coverings of P1−{0, 1,∞}, Trans. Amer. Math. Soc.

311 (1989), no. 1, 185–208. MR 974774
[CTT98] Robert F. Coleman, Akio Tamagawa, and Pavlos Tzermias, The cuspidal torsion packet on the Fermat

curve, J. Reine Angew. Math. 496 (1998), 73–81. MR 1605810
[EFW17] Alex Eskin, Simion Filip, and Alex Wright, The algebraic hull of the Kontsevich-Zorich cocycle, 2017,

arXiv:1702.02074.
[EM] Alex Eskin and Maryam Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli

space, preprint, arXiv 1302.3320 (2013).
[EMM98] Alex Eskin, Gregory Margulis, and Shahar Mozes, Upper bounds and asymptotics in a quantitative version

of the oppenheim conjecture, Annals of Mathematics 147 (1998), no. 1, 93–141.



8

[EMM15] Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi, Isolation, equidistribution, and orbit closures
for the SL(2,R) action on moduli space, Ann. of Math. (2) 182 (2015), no. 2, 673–721. MR 3418528

[EO01] Alex Eskin and Andrei Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes
of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001), no. 1, 59–103. MR 1839286

[FG17] Giovanni Forni and William M. Goldman, Mixing flows on moduli spaces of flat bundles over surfaces,
2017, arXiv:1707.03099.

[Fil16] Simion Filip, Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. (2) 183
(2016), no. 2, 681–713. MR 3450485

[FV13] Gavril Farkas and Alessandro Verra, The universal theta divisor over the moduli space of curves, J. Math.
Pures Appl. (9) 100 (2013), no. 4, 591–605. MR 3102167

[Gen15] Quentin Gendron, The Deligne-Mumford and the incidence variety compactifications of the strata of Mg,
2015, arXiv:1503.03338.

[Joh99] F. E. A. Johnson, A rigidity theorem for group extensions, Arch. Math. (Basel) 73 (1999), no. 2, 81–89.
MR 1703674

[KKLM14] S. Kadyrov, D. Y. Kleinbock, E. Lindenstrauss, and G. A. Margulis, Singular systems of linear forms
and non-escape of mass in the space of lattices, arXiv:1407.5310.

[KM16] Abhinav Kumar and Ronen E. Mukamel, Real multiplication through explicit correspondences, 2016,
arXiv:1602.01924.

[Lin15] Kathryn A. Lindsey, Counting invariant components of hyperelliptic translation surfaces, Israel J. Math.
210 (2015), no. 1, 125–146. MR 3430271

[Mas82] Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982),
no. 1, 169–200.

[Mas90] , The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems 10
(1990), no. 1, 151–176. MR 1053805

[Mas92] , Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math.
J. 66 (1992), no. 3, 387–442.

[McM05] Curtis T. McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann. 333 (2005),
no. 1, 87–130.

[McM06a] , Prym varieties and Teichmüller curves, Duke Math. J. 133 (2006), no. 3, 569–590.
[McM06b] , Teichmüller curves in genus two: torsion divisors and ratios of sines, Invent. Math. 165 (2006),

no. 3, 651–672.
[McM07] , Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. (2) 165 (2007), no. 2,

397–456.
[McM13] , Braid groups and Hodge theory, Math. Ann. 355 (2013), no. 3, 893–946. MR 3020148
[MMO17] Curtis T. McMullen, Amir Mohammadi, and Hee Oh, Geodesic planes in hyperbolic 3-manifolds, Invent.

Math. 209 (2017), no. 2, 425–461. MR 3674219
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