PRACTICE MIDTERM - MATH 544A

INSTRUCTOR: PAUL APISA

The test will be graded out of 60 points and there are 63 possible points that can be earned.

Problem 1 (10 points): Compute the fundamental group of the following spaces:
(1) (5 points) Let T be the solid torus - i.e. T is homeomoprhic $S^{1} \times \mathbb{D}^{2}$ where $\mathbb{D}^{n}=\left\{x \in \mathbb{R}^{n+1}:|x| \leq 1\right\}$ - with its usual embedding in $\mathbb{R}^{3} \subseteq S^{3}$ (here S^{3} may be taken to be the one-point compactification of \mathbb{R}^{3}). Compute the fundamental group of $S^{3}-T$.
(2) (5 points) Take two copies of $X=S^{3}-\operatorname{int}(T)$ where int denotes the interior of the solid torus T. The boundary of X is homeomorphic to the boundary of T, which (the boundary) is homeomorphic to $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Since $\mathrm{SL}(2, \mathbb{Z})$ - the collection of 2×2 invertible matrices with entries in \mathbb{Z} - preserves \mathbb{Z}^{2}, it acts by homeomorphisms on $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Fix $A \in \mathrm{SL}(2, \mathbb{Z})$ and take this to be a homeomorphism of ∂T as described above. Let Y be the space formed by taking two copies of X and identifying their boundaries by gluing a point x in the boundary of the first copy to $A(x)$ in the boundary of the second copy. Compute the fundamental group of Y.
Problem 2 (10 points): How many conjugacy classes of index three subgroups of the free group on two generators $\left(F_{2}\right)$ are there? Choose a representative from each conjugacy class and write down a finite collection of elements of F_{2} that generate the subgroup.
Problem 3 (10 points): Let $G=\left\langle a_{1}, \ldots, a_{n} \mid w_{1}, \ldots, w_{m}\right\rangle$ be a finite presentation of a group. Recall that this notation means that G is the quotient of the free group F generated by a_{1}, \ldots, a_{n} by the smallest normal subgroup of F containing the elements w_{1}, \ldots, w_{m}.
(1) (3 points) Build a CW complex X_{G} with one 0-cell, n 1-cells, and m 2-cells so that X_{G} is path connected and has fundamental group isomorphic to G.
(2) (7 points) Take two copies of X_{G}. In each copy delete a disk from a 2-cell (this forms a circular boundary on each copy of X_{G}). Glue the two copies of X_{G} together along their circular boundaries. Compute the fundamental group of the resulting space (be careful! the answer may depend on the 2-cells that were chosen).
Problem 4 (5 points): Show that the only finite groups that act freely on S^{1} are cyclic.

Problem 5 (10 points):

(1) (5 points) Let X be a space for which all reduced homology groups vanish. Let x be a point in X with a neighborhood homeomorphic to \mathbb{R}^{n} for $n>1$. Show that there is an isomorphism $H_{k}(X-x) \cong H_{k}\left(S^{n-1}\right)$ for every integer k.
(2) (5 points) Let $f: X \longrightarrow X$ be a homeomorphism of a space X and let $M_{f}:=$ $X \times I /((x, 0) \sim(f(x), 1))$ be the mapping torus. Let X_{0} denote the image of $X \times\{0\}$ in the mapping torus. Compute the relative homology groups $H_{n}\left(M_{f}, X_{0}\right)$ in terms of $H_{n}(X)$.
Problem 6 (10 points): Let T be the unit square with opposite sides identified by translation (this is a concrete way of describing the torus $S^{1} \times S^{1}$). Let $f: T \rightarrow T$ be the map from the torus to itself given by rotating the unit square by 180 degrees. Let X be the mapping torus of $f: T \rightarrow T$ - i.e. the quotient of the space $T \times[0,1]$ under the equivalence relation $(x, 0) \sim(f(x), 1)$. Put a Δ-complex structure on X and compute its homology groups.
Problem 7 (5 points): Let $f: S^{n} \longrightarrow S^{n}$ and $g: S^{n} \longrightarrow S^{n}$ be continuous maps. Suppose that there is some point $y_{0} \in S^{n}$ so that $g^{-1}\left(y_{0}\right)=\left\{x_{1}, x_{2}\right\}$ and so that for $i \in\{1,2\}$ there are open neighborhoods U_{i} of x_{i} so that the restriction of g to U_{i} is a homeomorphism onto its image. Show that $g \circ f$ has a fixed point.
Problem 8 (3 points): Compute the fundamental group of $\mathrm{GL}_{2}(\mathbb{C})$.
Write answers and work in the test booklet

