
MODULARITY LIFTING THEOREMS

RONG ZHOU

1. Introduction

These are live-texed lecture notes from the MIT graduate class on Galois represen-
tations given by Sug Woo Shin in Spring of 2014. The class expanded on the notes of
Toby Gee’s course from the Arizona Winter School in 2014, which it closely followed.
The problem sets from the class contained some proofs of results which were stated in
class and some of these were later added to the notes. Any mistakes in these notes are
due to me and not the lecturer.

2. Lecture 1

Let F be a field and fix an algebraic closure F of F . We let Gal(F/F ) be the
absolute Galois group of F .

Definition 2.1. A Galois representation is a continuous group homomoprhismGal(F/F )→
GLn(R) where R is a topological ring.

Most of the time we will take R to be Ql where l is a prime, such a representation
will be a called an l-adic Galois representation. The first result we need about l-adic
representations is that up to conjugation, the image lands in GLn(OL) where L is a
finite extension of Qp. This follows from the next two lemma which actually hold in a
more general context:

Lemma 2.2. Let Γ be a compact topological group (in particular a Galois group is
such) and let

ρ : Γ→ GLn(Ql)

be a continuous homomorphism. Then there exists a finite extension L/Ql such that
ρ(Γ) ⊂ GLn(L).

Proof. ρ(Γ) is compact Hausdorff, hence by the Baire Category theorem, the intersec-
tion of a countable set of open dense subsets of ρ(Γ) is dense in ρ(Γ).

Now since

ρ(Γ) =
⋃

L/Ql finite

(ρ(Γ) ∩GLn(L))

1
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and each set ρ(Γ) ∩ (GLn(L) is closed in ρ(Γ), it follows from the above, that some
ρ(Γ) ∩GLn(L) contains an open subset, hence ρ(Γ) ∩GLn(L) itself is open. As Γ was
profinite, we have that [ρ(Γ) : ρ(Γ) ∩GLn(L)] is finite.

If we choose coset representatives α1, ..., αr for ρ(Γ), there exists Li/Ql a finite ex-
tension such that ρ(αi) ∈ GLn(Li). Taking L to be the compositum of the Li we obtain
the result. �

Lemma 2.3. Let Γ be a compact topological group, L/Ql a finite extension with ring
of integers OL and ρ : Γ → GLn(L) a continuous representation. Then there exists
g ∈ GLn(L) such that gρg−1 has image in GLn(OL)

Proof. It is enough to show that there exists a Γ invariant OL lattice Λ ⊂ Ln. Indeed
letting g be the change of basis matrix taking Λ to the standard basis of OnL we get
the result.

Define Λ0 := OnL to be the standard lattice. Observe that GLOL(Λ0) ⊂ GLn(L) is
open, so that ρ−1(GLOL(Λ0)) ⊂ Γ has finite index.

Let α1, ..., αr be a finite set of coset representatives in Γ. We then define

Λ := ρ(Γ)Λ0 =
r∑
i=1

αiΛ0

which is clearly a ρ(Γ) invariant lattice. �

Definition 2.4. Let R be a topological ring and Γ a topological group. Two continuous
representations ρ1, ρ2 : Γ → GLn(R) are said to be isomorphic if there exists and
isomorphism φ : Rn → Rn such that the following diagram commutes:

Rn ρ1(γ)
> Rn

Rn

φ

∨
ρ2(γ)
> Rn

φ

∨

for all γ ∈ Γ
As a consequence of the Lemma, a representation ρ : Γ→ GLn(Ql) with Γ compact

is isomorphic to one with image in GLn(OL)

Our next result will be the Brauer Nestbitt theorem, this gives a condition for when
the semi simplification of two representations are isomorphic and which we will need
for the study of the mod p reduction of a representation. We first need to define the
notion of semisimple representation and semisimplification. As before Γ is a compact
topological group.

Definition 2.5. Let k be a field, and ρ : Γ → GLn(K) ∼= GLn(V ). Then ρ is semi
simple if

ρ ∼= ⊕ri=1ρi
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for some irreducible ρi : Γ→ GLni(R).

Definition 2.6. Let ρ : Γ→ GLn(V ) and choose

0 ⊂ V1 ⊂ ... ⊂ Vr = V

where the Vi are Γ invariant subgroups with Vi/Vi−1 irreducible. The semi simplification
ρss is the representation induced by ρ on the vector space V ss = ⊕ri=1Vi/Vi+1

It can be shown that this is well defined and does not depend on the choice of the
Vi’s.

Example 2.7. Consider ρ : Γ→ GL2(k) given by

γ 7→
(
a(γ) b(γ)

0 d(γ)

)
Then ρss = a⊕ d

Theorem 2.8 (Brauer, Nesbitt). Let k be a field and Γ a (topological) group, n1, n2,≥
1. For i = 1, 2 and ρi : Γ→ GLni(k), assume either:

i) ∀γ ∈ Γ we have det(1− ρ1(γ)T ) = det(1− ρ1(γ)T ) or
ii) char k = 0(>> 0), and ∀γ ∈ Γ we have trρ1(γ) = trρ2(γ)
Then ρss1 = ρss2

We will need the following lemma:

Lemma 2.9. Let R be an associative k algebras (not necessarily commutative eg.
R = k[Γ]) and let M1, ...,Mr be non-isomorphic R-simple modules which are finite
dimensional over k. Then ∃e1, ..., er ∈ R such that

eimi = mi ∀i, ∀mi ∈Mi

eimj = 0 ∀j 6= i,∀mj ∈Mj

Proof. (Sketch) Upon replacing R by its image in Endk ⊕ri=1 Mi wlog. we can assume,
k is a finite dimensional semisimple k-algebra.

The Artin Wedderburn theorem then tells us that R ∼=
∏s

i=1Mni(Di) where Di is a
division algebra over k. One then deduces that r = s and R acts as Mni(Di) on Mi for
i = 1, ..., r (after reordering). Defining ei to be 1 on the ith component and 0 elsewhere
we obtain the result.

�

Proof of Brauer Nesbitt: Let ρi : Γ → GLn(V ), j = 1, 2. Since the conditions in
the theorem don’t change upon taking semisimplifications, we may assume the ρi are
semisimple.
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Let M1, ...,Mr be the distinct irreducible subrepresentations of V1 ⊕ V2. Let m1
i ,m

2
i

be the multiplicities of Mi in V1 and V2 respectively. It suffices to prove that m1
i = m2

i

for i = 1, ..., r.
Case i) Take ei as in Lemma 1.9, then the characteristic polynomial of ei on Mi is

(t− 1)dimMi and tdimMj when j 6= i. From the equality of characteristic polynomials of
ρ1(ei) and ρ2(ei) one finds the dimensions m1

i and m2
i match.

Case ii)For j = 1, 2, there exists a unique continuous map θj which makes the
following diagram commute:

Γ
ρj
> GLn(Vj)

tr
> k

k[Γ]
∨ θj

>

It can be shown that θ1(α) = θ2(α)∀α ∈ k[Γ]. Plugging in ei, we obtain θ1(ei) =
m1
i dimMi and θ2(ei) = m2

i dimMi.
�

3. Lecture 2

The Brauer Nesbitt Theorem allows us to define the reduction mod l of l-adic rep-
resentations. As before L is a finite extension of Ql with ring of integers OL
Definition 3.1. Let Γ be a compact group and ρ : Γ→ GLn(L) be a representation.
Choose a conjugate ρ′ of ρ such that ρ′ has image in GLn(OL) and let ρ′ be composition
with GLn(OL)→ GLn(kL). The reduction of ρ mod l is then defined to be

ρ := (ρ′)ss

Lemma 3.2. ρ is well defined (up to isomorphism), i.e. it does not depends on the
choice of ρ′

Proof. Let γ ∈ Γ. Observe that char(ρ(γ)) = char(ρ′(γ)) ∈ kL[T ], the Lemma then
follows by Theorem 1.8 �

We now recall some basic properties of number fields and local fields. In this course
a number field will be a finite extension of Q and local field will be finite extension of
Qp or R so we exclude the function field case.

Definition 3.3. Let F be a number field. A place of F is an equivalence class of
valuations on F (where two valuations are considered equivalent if they induce the
same topology on F ).

A place is finite if the valuation is non-archimedean, otherwise it is an infinite place.
A finite place is p-adic if |p| < 1.
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We state some basic facts about places:
1)There are 1-1 correspondences between the following sets

i) {prime ideals of OF dividing p}

ii) {p-adic places of F}

iii) Gal(Qp/Qp)\HomQ(F,Qp)

The first bijection is given by sending a p-adic place of F to the set {a ∈ OF : |a| < 1}.
The bijection between ii) and iii) is given by sending a φ ∈ Gal(Qp/Qp)\HomQ(F,Qp)
to the place |.|p ◦ φ.

2) The infinite places of F are in one to one correspondence with Gal(C/R)\HomQ(F,C),
and these are a disjoint union of of real places and complex places, where the real places
are the 1 element orbits of Gal(C/R)\HomQ(F,C) and the complex places are the two
elements orbits.

Now for a place v of F , let Fv to be the completion of F with respect to the topology
induced by v.

Definition 3.4. Let F ′ be an algebraic extension of F , w a place of F ′ and v a place
of F . We say w is above v (or w divides v), write w|v if the restriction of w to F is
equivalent to v.

Remark 3.5. From now, when talk about Galois groups of topological fields, we will
only consider continuous homomorphisms.

It is straightforward to show that there is a bijection between the places of F ′ above
v and the set Gal(F v, Fv)\HomF (F ′, F v). If F ′/F is Galois the group Gal(F ′/F ) acts
on both sides transitively and the bijection is Galois equivariant.

If w|v then Gal(F ′w/Fv)
∼= Gal(F ′/F )w := {σ ∈ Gal(F ′/F ) : σ(w) = w} where the

map is given by σ 7→ σ|F ′ . If we pick a different w, the subgroup obtained is conjugate
to the above by an element of Gal(F ′/F )

Let us now choose an F -algebra embedding iv : F ↪→ F v, which indues an map of
Galois groups Gal(F v/Fv) ↪→ Gal(F/F ) given by precomposition by iv. Since changing
iv changes the embedding of Galois groups by conjugation, we obtain a well defined
localization of Galois representations. More precisely, letting ρ : Gal(F/F )→ GLn(R)
be a Galois representations, then restricting to Gal(F v/Fv) we obtain a representation
of Gal(F/F ) up to isomorphism.

Now let F ′/F be a Galois extension of number fields. Recall F ′/F is unramified
at v if for all (equivalently any) w above v, the reduction map induces a canonical
isomorphism Gal(F ′w/Fv)

∼= Gal(kw/kv), where kw and kv are the residue fields of OF ′w
and OFv respectively.
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Thus picking a w we obtain an embedding Gal(kw/kv) ↪→ Gal(F ′/F ). The group
Gal(kw/kv) has a canonical generator; the arithmetic frobenius frobw which acts on
the residue fields by x 7→ x#kv . The geometric frobenius Frobw is the inverse of the
arithmetic frobenius.

By the above, the conjugacy class 〈Frobv〉 := {τFrobwτ−1 : τ ∈ Gal(F ′/F )} is well
defined, i.e. does not depend on w|v.

Consequently given ρ : Gal(F ′/F )→ GLn(R), if F ′/F is unramified, the character-
istic polynomial, trace, and determinant of the conjugacy class Frobv is well defined.

Definition 3.6. 1) Let K ′/K be an extension of non-archimedean local fields and IK′
the inertia subgroup of Gal(K ′/K). The representation ρ : Gal(K ′/K) → GLn(R) is
unramified if ρ(IK) is trivial, or equivalently, ρ factors through Gal(Kur/K) where Kur

is the largest unramified extension of K contained in K ′.
2) Let F ′/F be an extension of number fields. The ρ : Gal(F ′/F ) is unramified at v

if ρ|Gal(F v/F )
is unramified.

We will now state the Cebotarev density theorem, its proof involves class field theory
so we will omit it. It is an important result which allows us to deduce the equivalence
of two representations unramified outside a finite set of places S, by the equality of the
characteristic polynomials of Frobenius conjugacy classes for places outside S.

Theorem 3.7 (Cebotarev Density). Let S be a finite subset of the finite places of F
and FS the maximal extension of F in F which is unramified outside S.

1) Given F ′/F finite Galois, and C ⊂ Gal(F ′/F ) a conjugacy class, then ∃ infinitely
many v such that 〈Frobv〉 = C

2) Let S be a finite set of places of F , then⋃
v/∈S, finite

〈Frobv〉 ⊂ Gal(FS/F )

is dense.

Remark 3.8. In fact part i) can be strengthened to the statement that the density of
such v is equal to #C

#Gal(F ′/F )
(for a suitable notion of density).

Theorem 3.9. Let S be a finite set of places of F . Let ρ1, ρ2 : Gal(F/F ) → GLn(R)
be two continuous representations unramified outside S, and where R is a topological
ring. Assume either

i) The characteristic polynomials of ρ1(Frobv) and ρ2(Frobv) are equal for all v /∈ S
or

ii) char(k) = 0(> n) and the traces of ρ1(Frobv) and ρ2(Frobv) are equal.
Then ρss1 = ρss2
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Proof. By assumption ρ1, ρ2 factor through Gal(FS/F ). The coefficients of ρ2(γ) are
continuous as functions from Gal(FS/F ) to R, and by part 2) of Theorem 2.7, agree
on a dense open subset, hence are equal. Thus by the Brauer Nestbitt Theorem, the
two semisimplifications are equal. �

4. Lecture 3

Today we will try to understand l-adic Galois representations over local fields. We
begin by discussing the Weil group of a local field. For any field K we let GK be its
absolute Galois group Gal(K/K)

Let K be a finite extension of Qp with ring of integers OK be its ring of integers, $
a uniformizer and k its residue field. We normalize the valuations vK : K× → Z by
setting vK($) = 1

There exists an exact sequence

0 > IK > GK > Gk > 0

where GK → Gk
∼= Ẑ is also denoted vK . We normalize the sequence by letting 1 ∈ Ẑ

be the geometric Frobenius.

Definition 4.1. The Weil group is defined to be WK := v−1
K (Z). In other words

elements of the Galois group which induce an integral power of Frobenius

We then have an exact sequence

0 > IK >WK > Z > 0

Although WK is a subgroup of GK , we topologize by insisting WK is homeomorphic
to
∐

n∈Z v
−1
K (n) where the sets of the disjoint union are homeomorphic to IK as a

topological space. Indeed this topology is different from the subspace topology coming
from GK . The reason we consider WK comes from local Langlands; it has a much
richer representation theory than GK .

Let us briefly recall the notion of tamely ramified extension. Recall we have a tower
of extensions:

K ⊂ Kur ⊂ Ktame ⊂ K

where Ktame is the maximal tamely ramified extension of K and Kur the maximal un-
ramified extension of K. The extension K/Ktame is a totally ramified pro-p extension,
its Galois group is called the wild inertia group, and Ktame/Kur is a totally ramified
prime to p extension whose Galois group is called the tame inertia group. Tamely
ramified extensions are generally easier to study than wildy ramified extensions as one
can use Kummer theory to study tame extensions. In fact one can prove the following:

Ktame =
⋃

n≥1,(n,p)=1

Kur($1/n)
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There is a canonical isormorphism

Gal(Kur($1/n)/Kur) ∼= µn

given by σ 7→ σ($1/n)/$1/n and there is a non-canonical isomorphism of µn with Z/nZ
which depends on a choice of primitive root.

We have isormorphisms
(4.1)

Gal(Ktame/Kur) ∼= lim
←(n,p)=1

Gal(Kur($1/n)/Kur) ∼= lim
←(n,p)=1

µn ∼= lim
←(n,p)=1

Z/nZ ∼=
∏
p′ 6=p

Zp′

Composing the isomorphisms with the projections IK → Gal(Ktame/Kur) and
∏

p′ 6=p Zp′ →
Zp′ we obtain a map

tζ,p′ : IK → Zp′
where ζ = (ζn)(n,p)=1 is a compatible choice of nth roots of unity. This gives the
projection of IK onto its maximal pro-p′ quotient; we will show later that this map in
fact does not depend on the choice of ζ.

Let Frobk ∈ Gal(Kur/K), this acts by conjugation on I tameK . More precisely choose
a φ ∈ Gal(Ktame/K) a lift of Frobk, the action is then given by conjugation by φ, this
is well defined since I tameK = Gal(Ktame/Kur) is abelian. We have the following lemma:

Lemma 4.2. i) ∀τ ∈ I tameK , φ−1τφ = τ#k

ii)∀τ ∈ IK , σ ∈ WK , tζ,p′(σ
−1τσ) = #kvK(σ)tζ,p′(τ)

Proof. i) Let η = τ($1/n)

$1/n a primitive nth root of unity. If $′ is another uniformizer, we

have τ( $
1/n

$′1/n
) = $1/n

$′1/n
since (n, p) = 1, so Kur( $

1/n

$′1/n
) is an unramified extension, and

hence $1/n

$′1/n
∈ Kur. Thus τ($′1/n)

$′1/n
= η.

We have

φ−1τφ($1/n)

$1/n
= φ−1(

τφ($1/n)

φ($1/n)
) = φ−1(η) = η#k =

τ#k($1/n)

$1/n

Since the images of $1/n determines an element of Gal(Ktame/Kur) completely, this
completes the proof of part i).

ii) This follows from part i) since tζ,p′ factors through I tameK . �

An important theorem regarding l-adic representations is Grothendiecks l-adic mon-
odromy theorem, which loosely speaking says any l-adic representation is potentially
unipotent. More precisely we have

Theorem 4.3. l 6= p, L/Ql a finite extension, and ρ : GK → GLn(L) a continuous
representation. Then there exists K ′/K a finite extension such that ρ|IK′ is unipotent.
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Proof. Step 1: We may assume ρ(IK) is pro-l. Indeed choose a GK stable lattice in Ln

and consider
ρ : GK → GLOL(Λ)→ GL(Λ/$Λ)

Then ker(ρ) is open and has pro-l image, so we may replace K by K ′ = K
ker(ρ)

.
Step 2: Since the wild inertia subgroup of IK is pro-p, ρ has to factor through the

tame inertia quotient, in fact the pro-l part of it, which we denote by ρt : Gal(Ktame
l /K)→

GL(Λ). Indeed by (3.1) it is enough to show that any continuous homomorphism of a
profinite group prime to l to a pro-l subgroup must be trivial.

Step 3: Let τ ∈ I tamel
∼= Zl be the inverse image of 1 under the isomorphism given

by tζ,l. We show that all eigenvalues of ρt(τ) are l power roots of unity.
Taking φ a lift of Frobenius as in Lemma 3.2, equation ρt(φ−1τφ) = ρt(τ#k) =

ρt(τ)#k shows that the eigenvalues of ρt(τ) are the same as the eigenvalues of ρt(τ)#k

(with multiplicity) so that the roots are all roots of unity. The sequence ρt(τ), ρt(τ l), ρt(τ l
2
)

converges to 1 so we obtain the claim.
Step 4: Choose m ≥ 1 such that the eigenvalues of ρt(τ) are contained in µlm . We

claim that ∀σ ∈ I tamel , ρt(σ)l
m

are unipotent. We already know this is true for all
σ ∈ τZ, but the continuity of ρt and the fact that τZ ⊂ I tamel is dense, we obtain the
claim.

Step 5: Take K ′/K an extension such that lm|eK′/K where eK′/K is the ramification
index. Then the image of IK′ in Zl under the map IK → I tamel

∼= Zl is contained in
lmZl. By the above steps, K ′ satisfies the properties in the Theorem. �

Corollary 4.4. ∃!N ∈ End(V ) nilpotent, ∃K ′/K finite, such that

ρ(σ) = exp(tζ,p(σ)N),∀σ ∈ IK′

N satisfies: σ ∈ WK, ρ(σ)Nρ(σ)−1 = #k−vK(σ)N

Proof. Define N = log ρ(τ), where τ is the preimage of 1 in I tamel under tζ,p. The
second part follows from part ii) of Lemma 3.2. �

The point of this Theorem is that ρ|IK′ factors through a pro cyclic group like Zl.

4.1. Weil Deligne Representations. Motivated by the previous Theorem and Corol-
lary, we make the following definition:

Definition 4.5. A Weil-Deligne representations over a field Ω of characteristic 0 is
a triple (V, ρ,N) where V is a finite dimensional vector space, ρ : GK → GLΩ(V ) a
representation and a nilpotent N ∈ EndΩ(V ), such that the following two conditions
hold:

1) ρ(IK) is finite (equivalently ρ is continuous with respect to the discrete topology
on Ω, equivalently ker(ρ) is open in WK .

2) ∀σ ∈ WK , ρ(σ)Nρ(σ)−1 = #k−vK(σ)N
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The key consequence of this is that it allow us to define a functor WDζ,φ from GK

representations on a vector space over L to Weil-Degligne representations of WK on a
finite dimensional L vector space, by taking (V, ρ) to (V, r,N), where N is the nilpotent
element constructed in Corollary 3.4 and r : WK → GLn(L) is the representation given
by

r(τ) = ρ(σ) exp(−tζ,l(φ−v(τ)τ)N)

. In fact this is an equivalence of categories, the N encodes the action of some open
subgroup of the pro-l part of the tame inertia of IK , rest of the GK representation is
then encoded in the Weil representation ρ.

5. Lecture 4

5.1. Deformations of Galois representations. Motivation: We would like a bijec-
tion between the set of automoprhic forms and l-adic Galois representations. To show
the surjectivity of this map we use the following strategy.

Given an l-adic Galois representations ρ0, define ρ0 to be ρ0 mod l and show that
it comes from some ρf0 associated to some automorphic representations f0, this is the
content of Serre’s conjecture. We then study the map

{all f s.t. f ∼= f0 mod l } ⊂> {all ρ s.t ρ ∼= ρ0 mod l }

SpecT SpecR

i.e. the deformations paces of f0 and ρ0 and we would like to show that these are the
same The goal of the next few lectures is to study the right hand side of the above.

When deforming a ρ : Γ → GLn(k) where k is a finite field, we need to impose a
certain finiteness condition on Γ. Let l be prime and Γ a profinite group, and ∆ a
subgroup of Γ. Define ∆l = {gl : g ∈ ∆}, the condition we impose is the following

Hypothesis: ”l finiteness” ∀∆ ⊂ Γ a finite index subgroup.
i)∆/〈[∆,∆],∆l〉 is finitely generated.
ii) The maximal pro-l quotient of ∆ is topologically finitely generated,
(Recall that a group G is topologically finitely generated if it contains a finitely

generated dense subgroup)

Lemma 5.1. 1) i) and ii) are equivalent.
2) Γ topological finitely generated ⇒i), ii)

To prove part 1) of this Lemma, we will need the following version of Burnside’s
basis lemma:

Proposition 5.2. Let G be a finite group of l power order. If g1, ..., gr are elements of
G whose images in quotient G/〈[G,G], Gl〉 generate it, then the g1, ..., gr are a system
of generators for G.
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Proof. �

Proof of Lemma. 1) Note that condition ii) of the hypothesis is equivalent to the exis-
tence of elements g1, .., gr ∈ Γ such that if Γ→ G is a surjection onto an l-power group
G with open kernel, then the images of g1, ..., gr generate G.

To show i) ⇒ ii), let g1, ..., gr be a finite set elements whose images are a set of

generators for ∆/〈[∆,∆],∆l〉. Then if Γ → G is a surjection with open kernel onto
a l-power subgroup with open kernel, it follows that G/〈[G,G], Gl〉 is a quotient of

∆/〈[∆,∆],∆l〉, hence by Burnside’s lemma g1, ..., gr generate G.
For ii) ⇒ i) Let g1, ..., gr be elements in ∆ whose images topologically generate the

maximal pro-l quotient. Note that ∆/〈[∆,∆],∆l〉 is an abelian group which is killed by

l, hence is an Fl vector space, and suppose it is not finite dimensional. As 〈[∆,∆],∆l〉
is closed, the quotient group is profinte, in fact pro-l since every finite quotient is an l-
power group. Thus there exists an open subgroup H ⊂ ∆/〈[∆,∆],∆l〉 whose quotient
is a finite dimensional vector space over Fl of dimension greater than r. The projection
of Γ onto this group has open kernel and hence factors through the maximal pro-l
quotient, but the images of g1, ..., gr cannot generate this quotient.

2) Γ topologically finitely generated implies ii) and hence i) by part 1). �

Example 5.3. Local: K/Qp finite, (p = l or p 6= l), GK := Gal(K/K)
Global: F/Q finite S ⊂ {finite places of F} a finite subset. FS maximal extension

of F unramified outside of S. GF,S := Gal(FS/F )

Lemma 5.4. The hypothesis is satisfied for GK and GF,S. [In DDT, use GCFT]

Proof. For GK , i) can be rephrased as saying ∀K ′/K finite, there exists only finitely
many abelian extension of K ′ of exponent l. It is enough to show this for the case
K = K ′, and for this we can reduce to the case when µl ⊂ K. Kummer theory implies
there is a bijection

K×/(K×)l → {Z/lZ extension of K}
∐
{K}

given by α 7→ K(α1/l)
To see used why K×/(K×)l is finite, note that we have

K× ∼= $Z
K ×O×K

where O×K can be decomposed into µ(OK) × (1 + $OK). The statement then follows
since µ(OK) is finite and (1 + $OK) is isomorphic to OK via the exponential (note:
slightly different for p = 2). �

Suppose we are given a finite extension L/Ql with ring of integers O = OL, unifom-
rizer λ and residue field F = OL/λ. Define CO to be the category
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ob(CO) = {complete noetherian local O-algebras A such that A/mA
∼= F}

where complete means the canonical morphism

A→ lim
←n

A/mn
A

is an isomorphism.

Mor(CO) = {morphisms of local O-algebras}
Here a morphism of local O algebras A → B is local if f(mA) ⊂ mB, (in particular

this induces an iso. A/mA
∼= B/mB).

Now fix a continuous representation ρ : Γ→ GLn(F) .

Definition 5.5. R�ρ : CO → Sets given by

A 7→ {ρ : Γ→ GLn(A) such that ρ mod mA = ρ}

Remark 5.6. We do not mention isomorphism/ equivalence classes in the definition.

Proposition 5.7. The functor R�ρ is representable by some R�ρ ∈ CO, called the uni-
versal framed lifting ring.

More explicitly this means R�ρ ∈ CO satisfies one of the 2 equivalent conditions.

1) ∃ bijections R�ρ (A) ∼= HomCO(R�ρ , A) which are functorial in A. We let ρ�ρ be the

element in R�ρ (R�ρ ) which is the the inverse image of id on R�ρ .

2) ∃ρ�ρ : Γ→ GLn(R�ρ ) a universal lifting of ρ satisfying the universal property:

∀A ∈ CO and ρ : Γ → GLn(A) lifting ρ, ∃!fρ : R�ρ → A making the following
diagram commute

Γ
ρ
> GLn(A)

GLn(R�ρ )

fρ

∧
ρρ >

Warm up exercise: Γ = Ẑ, the l finiteness hypothesis is satisfied for Γ, then giving

ρ : Γ→ GLn(F) is equivalent to giving ρ(1) ∈ GLn(F). Fix a lifting ρ̃(1) ∈ GLn(O).
We have

R�ρ (A) = {ρ : Ẑ→ GLn(A) : ρ mod mA = ρ}
is in bijection with the set

ρ̃(1) + mA.Mn(A)

and this last set is in bijection with mn2

A , given by the map ρ̃(1)) + (aij) 7→ (aij).
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Therefore

R�ρ (A) ∼= mn2

A
∼= HomCO(O[[Xij]]

n
i,j=1, A)

The upshot of this is that O[[xij]]
n
i,j=1 represents the functor R�ρ

Proof of Prop. 5.7. Step 1: We may assume Γ is topologically finitely generated. Let
Γ0 := kerρ ⊂ Γ, and ∆ the kernel of the projection of Γ0 onto the maximal pro-l
quotient of Γ0

Claim: May replace Γ with Γ/∆. This is implied by the following
1) Γ/∆ is a profinite group
2) Γ/∆ is topologically finitely generated
3) Every lifting of ρ factors through Γ/∆.
proof of 1: This follows by definition of the maximal pro-l quotient which specifies

that the quotient needs to be pro-l, hence profinite, hence Hausdorff. This is equivalent
to the closedness of ∆.

proof of 2:

1 > Γ0/∆ > Γ/∆ > Γ/Γ0 > 1

The group on the left is topologically finitely generated, and the group on the right is
finite, hence Γ/∆ is topologically finitely generated.

proof of 3: Let ρ : Γ → GLn(A) be a lifting of ρ, so that the following diagram
commutes:

Γ
ρ
> GLn(A)

GLn(F)
∨ρ >

We have ρ(∆) ⊂ ker(GLn(A) → GLn(F)), which is a pro-l subgroup hence ρ(∆) =
{1}

Step 2: When Γ is topologically finitely generated, let s ≥ 1 and define Fs to be the
free group on generators g1, ..., gs and F̂s the pro finite completion of Fs

Choose s large enough so that we have

F̂s
ϕ
� Γ

Fs
∪

∧

ϕ0
> ϕ(Fs)

∪

∧
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Define H = kerϕ and H0 = kerϕ0. One checks that Ho ⊂ H is dense. Then giving
a lifting

Γ > GLn(A)

F̂s

∧
ρ̃

>

is equivalent to giving ρ̃(gi), i = 1, ..., s with the constraint ρ̃(γ) = 1 ∀γ ∈ H0. Thus
R�ρ is represented by

O[[x
(k)
ij ]]ni,j=1/relations coming from H0

�

6. Lecture 6

Some primaries on irreducible representations
Let k be a field, Γ is now an abstract group and ρ : Γ → GLk(V ) a representation

of Γ on a finite dimensional k-vector space V .

Lemma 6.1 (Schur). ρ irreducible imples End(ρ) is a finite dimensional division alge-
bra over k.

Proof. Let 0 6= α ∈ End(ρ). Since 0 6= αV ⊂ V is Γ stable, we have αV = V , hence
∃α−1. Finite dimensionality is clear. �

Lemma 6.2. If k = k, then for ρ1, ρ2 irreducible,

Homk[Γ](ρ1, ρ2) =

{
k if ρ1

∼= ρ2

0 otherwise

Proof. It is easy to see that any finite dimensional division algebra over k is equal to
k which shows the first case. When ρ1 and ρ2 are not isomorphic, the image of any
θ ∈ Homk[Γ](ρ1, ρ2) is Γ invariant, hence is 0 since ρ2 is irreducible. �

Remark 6.3. • ρ irreducible does not imply ρ⊗k k : Γ→ GL(V ⊗k k) irreducible.
• Endk[Γ](ρ) = k does not imply that ρ is irreducible. For example the standard

representation of the upper triangular Borel in GL2(k).

The above lemmas motivate the following definition.

Definition 6.4. A representation ρ is Schur if Endk[Γ](ρ) = k. It is absolutely irre-
ducible if ∀k′/k, ρ⊗k k′ is irreducible.
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We have the following fact which can be found in Curtis Reiner:

ρ absolutely irreducible ⇔ ρ⊗k k is irreducible ⇔ ρ irreducible and Schur

Let us now return to the set up of the last lecture so that L/Ql is a finite extension
with ring of integers O, uniformizer λ and residue field F. Γ will be a profinite group
and Hyp(l) is the l finiteness hypothesis. As be fore CO will be the category of com-
plete Noetherian local O algebras over A with an isomorphism A/mA

∼= F (which is
necessarily unique since O surjects onto F).

We define a slightly different deformation problem than last time which takes into
account isomorphisms.

Definition 6.5. Let ρ : Γ → GLn(F) a continuous representation which is Schur,
define the deformation problem Rρ to be given by

Rρ : A 7→ {ρ : Γ→ GLn(A)|ρ mod mA = ρ}/ ∼=

Note:

ρ1
∼= ρ2 ⇔ ∃a ∈ GLn(A), aρ1a

−1 = ρ2

⇔ ∃a ∈ ker(GLn(A)→ GLn(F)), aρ1a
−1 = ρ2

where the second equivalence relies on the fact that ρ1 and ρ2 reduce to the ρ mod mA.

Proposition 6.6. If ρ is Schur the Rρ is representable say by Runiv
ρ ∈ CO the universal

deformation ring of ρ.

Remark 6.7. For Galois representations, deformations were introduced by Mazur, later
liftings were introduced by Kisin in [6]

Sketch of Proof. • Mazur: Schlessinger’s criterion.
• Can argue as for R�ρ .

• Kisin: Runiv
ρ = Rρ/PGLn ([Boe] 2.1) �

As before we obtain a universal deformation ρunivρ :

ρunivρ : Γ > GLn(Runiv
ρ )

GLn(A)

∃!
∨

ρ

>

where the dashed line is induced by a unique map fρ : Runiv
ρ → A in CO and is such

that fρ ◦ ρunivρ
∼= ρ (so the diagram only commutes ”up to isomorphism”).

Lemma 6.8. ∃ a canonical map Runiv
ρ → R�ρ
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There are two ways to see this:
1) This map is induced by the map on functors given by R�ρ (A)→ Runiv

ρ (A) taking
a deformation ρ to its isomorphism class.

2) Viewing Γ→ GLn(R�ρ ) as a deformation of ρ we get an induced map Runiv
ρ → R�ρ

We now collect some linear algebraic lemmas that we’ll need.

Lemma 6.9. Let A ∈ CO, ρ : Γ → GLn(A) a continuous representation with ρ := ρ
mod mA absolutely irreducible.

1) (Schur’s lemma for A coefficients) a ∈ GLn(A), aρa−1 = ρ⇒ a ∈ A×
2) (Carayol’s Lemma)B ⊂ A closed, B ∈ CO, and trρ(Γ) ⊂ B⇒∃a ∈ ker(GLn(A)→

GLn(F)) such that aρa−1(Γ) lands in GLn(B) ⊂ GLn(A).

Proof. The general idea here is to use completeness to reduce to the case of artinian
local O algebras A, and then induct on the length of A. To do this, one proves the
base case A = F and then reduce the induction step to the case F[ε]/ε2.

1) We may assume A is artinian local. Choose a minimal non-zero ideal I ⊂ A, which
must be isomorphic to F as an O (or even A) module. Indeed 0 = me+1

A ( me
A ( ... ( A

with each quotient is an F vector space, then choose I ⊂ me
A a 1 dimensional subspace.

Let a ∈ GLn(A) commuting with ρ. The induction hypothesis implies

a mod I ∈ EndA/I(ρ mod I) ∼= (A/I)×

therefore we can write a = α1n + a0, where α ∈ A× and a0 ∈Mn(I).
Then for all γ ∈ Γ, we have

(α1n + a0)ρ(γ) = ρ(γ)(α1n + a0)

which implies
a0ρ(γ) = ρ(γ)a0 in Mn(I)

Since F = I and A surjects onto F we have

a0ρ(γ) = ρ(γ)a0 in Mn(F)

then Schur’s lemma implies a0 is a scalar.
2) Again assume A and B are local artinian, and take F ∼= I ⊂ mA as before. The

induction hypothesis implies that we may assume

ρ(Γ) mod I ⊂ GLn(B/I ∩B)

Then
I ∩B ⊂ I ∼= F⇒ I ∩B = I or 0

The first case is easy: ρ(γ) mod I ∈ GLn(B/I)⇒ ρ(γ) ∈ GLn(B)
For the second case consider the inclusion B⊕ Iε ↪→ A given by (b, iε) 7→ b+ i where

we consider Iε as a square zero ideal. We may assume that it’s an isomorphism by the
induction hypothesis.



MODULARITY LIFTING THEOREMS 17

Look for an a ∈ ker(GLn(A) → GLn(A/I)), aρa−1(Γ) ⊂ GLn(B). Suppose there
exists A ∈Mn(I) with

(1 + A)ρ(γ)(1 + A)−1 mod mB ∈ GLn(B/mB)

then
(1 + A)ρ(γ)(1 + A)−1 ∈ GLn(B)

Thus we reduce to the case A/mB
∼= F⊕ Fε = F[ε]/ε2 and B/mB

∼= F.
See 7.1 for the proof of this case.

�

Since we are now considering deformations up to isomorphism (read conjugation) it
should be possible to study them via their traces. In fact in the absolutely irreducible
case, this holds in a strong sense below, providing us with a generalization of Brauer
Nesbitt to more general coefficients.

Lemma 6.10 (Brauer Nesbitt for A coefficients). Let ρ : Γ→ GLn(F) be an absolutely
irreducible representation, and ρ1, ρ2 : Γ → GLn(A) are isomorphic to ρ mod mA.
Then

trρ1 = trρ2 ⇒ ρ1
∼= ρ2

(if ρ1 = ρ2 mod mA, ∃a ∈ ker(GLn(A)→ GLn(F), ρ1 = aρ2a
−1)

Proof. We can make similar reductions as in the previous lemma. Can use Lemma
6.9(2) when A = F[ε/ε2. �

Corollary 6.11. The ring Runiv
ρ is topologically generated over O by the elements

tr(ρunivρ (γ)) for γ in a dense subset of Γ.

Proof. Let S be the closure in Runiv
ρ of the subring generated by the tr(ρunivρ (γ)). Then

S is an element of CO with maximal ideal mS = mR ∩ S.
Since tr(ρunivρ (γ)) ∈ S for a dense subset of Γ, it follows that this is so for all of Γ

by continuity, hence by part 2) of Lemma 6.9,

∃a ∈ ker(GLn(Runivρ)→ GLn(Fp))
such that

aρunivρ (γ)a−1 ∈ GLn(S) ∀γ ∈ Γ

This induces a map Runiv
ρ → S which, since conjugation preserves traces, is a retract

of the inclusion S ↪→ Runiv
ρ .

Now the inclusion S ↪→ Runiv
ρ induces a morphism of functors Runiv

ρ → HomCO(S,−)
which is surjective by the last paragraph. It is also injective since a deformation is
determined by its trace on a dense open subset of Γ. It follows by Yoneda’s lemma
that the inclusion S ↪→ Runiv

ρ is an isomorphism in CO �
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7. Lecture 7

Recall last time we reduced Lemma 6.9 down to the following.

Lemma 7.1. Let ρ : Γ → GLn(F[ε]/ε2) a continuous representation of a profinite
group such that the reduction ρ of ρ mod ε is absolutely irreducible, and trρ ⊂ F.
Then there exists a ∈ 1 +Mn(F)ε such that aρa−1(Γ) ⊂ GLn(F)

Proof.

ρ : F[Γ]→Mn(F[ε]/ε2) = Mn(F)⊕Mn(F)ε

can be written in the following form

ρ(γ) = ρ(γ) + θ(γ)ε

The map θ : F[Γ]→Mn(F) has the following properties:
1) θ : F[Γ]→Mn(F) is F linear.
2) θ(γδ) = θ(γ)ρ(δ) + ρ(γ)θ(δ). (This follows from looking at the coefficient of ε in

ρ(γδ) = ρ(γ)ρ(δ))
3) tr(θ(γ)) = 0.
Claim: θ : F[Γ]→Mn(F) factors uniquely as

F[Γ]
θ
>Mn(F)

Mn(F)

θ′
∧

ρ �

Proof of claim: δ ∈ ker(ρ). 0 = trθ(γδ) = trρ(γ)θ(δ)

⇒ θ(δ) = 0

since ρ(γ) can be anything in Mn(F).
Thus we are looking for a ∈ 1 +Mn(F)ε, say a = 1 + a′ε, such that :

(1 + a′ε)ρ(γ)(1− a′ε) ∈Mn(F),∀γ

⇔ θ(γ) + a′ρ(γ)− ρ(γ)a′ = 0

the last expression is the coefficient of epsilon.
We have thus reduced the problem to the following:
Given θ′ : Mn(F)→Mn(F), F-linear and satisfying
•trθ′(γ) = 0 ∀γ ∈Mn(F)
•θ′(γδ) = θ′(γ)δ + γθ′(δ), γδ ∈Mn(F)

Then we can find an a′ ∈ Mn(F) such that θ′(γ) = γa′ − a′γ. In other words, that
every derivation on sln is by Lie Bracket. Can show: a′ =

∑n
d=1 θ

′(ej1)e1j works. �
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Before beginning to study the constructed deformation/lifting spaces, we record a
result which shows that the formation of the of R�ρ is compatible with base change.

Proposition 7.2. Let ρ : Γ→ GLn(F) and absolutely irreducible continuous represen-
tation of a profinite group satisfying Hyp(Γ). Suppose L′/L is a finite extension and
O′ the ring of integers of L′. Let F′ be the residue field of O′ and consider ρ′ : ρ⊗F F′,
(in other words the composition of ρ with the inclusion GLn(F) ⊂ GLn(F′). There
there is a canonical isomorphism

R�ρ′ = R�ρ ⊗O O′

in the category O′.

Proof. Let ρ′ : Γ→ A′ be a deformation of ρ′. Let A be the preimage in A′ of F under
the reduction map A′ → F′, in particular A is an element of CO. Since the reduction
of ρ mod m′A if actors through GLn(F), ρ′ factors through GLn(A), hence corresponds
to a lifting ρ : Γ→ GLn(A). Since A ∈ CO, we obtain a map of O algebras

R�ρ → A′

by composing with the inclusion A → A′, and by extension of scalars, a map of O′
algebras

R�ρ ⊗O O′ → A′

Conversely, given a map
R�ρ ⊗O O′ → A′

, we obtain a deformation of ρ′ to A′ given by the composition

Γ→ GLn(R�ρ )→ GLn(R�ρ ⊗O O′)→ GLn(A′)

It is easily check ed that these constructions are inverse to each other, and hence we
obtain a canonical isomorphism

R�ρ′
∼= R�ρ ⊗O O′

�

7.1. Tangent spaces. Let L be a finite extension of Ql with ring of integers O,
uniformizer λ and residue field F. Recall given a continuous mod l representation
ρ : Γ→ GLn(F), with Γ satisfying Hyp(Γ), we constructed the universal framed lifting
ring R� = R�ρ , an element of the category CO. We let m� denote the maximal ideal of

R�.
The adjoint representation is given by the composite

Γ > GLn(F)
ad
> End(Mn(F))

where the map ad is given by
g 7→ (φ 7→ gφg−1)
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adρ also denotes Mn(F) as an F[Γ]-module.

Lemma 7.3. There exists a natural bijection between:
1) HomF(m

�/(m�2, λ),F)
2) HomCO(R�,F[ε]/ε2)
3) R(F[ε]/ε2) = {liftings of ρ to F[ε]/ε2)}
4) Z1(Γ, adρ) continuous 1-cocycles.

Sketch of Proof. (2⇔3) is by definition.
(1 ⇔ 2) given f ∈ HomF(m

�/(m�2, λ),F), define a map a + x 7→ a + f(x)ε, where
a ∈ O and x ∈ m�. This is possible sinceO+m surjects onto R�, and sinceO∩m = (λ),
it is well defined.

Conversely given a map g ∈ HomCO(R�,F[ε]/ε2), note that g must map m to εF[ε]/ε2,
which we identify with F. This induces a map m�/(m�2, λ) → F since ε2 = 0 and
g(λ) = 0 being a map of O algebras. It is straightforward to check these constructions
are mutually inverse.

3)⇔ 4) The bijection is defined as follows. Given ρ : Γ→ F[ε]/ε2 a lifting of ρ, write
ρ as ρ(γ) = ρ(γ) + θ(γ)ε, where θ : Γ→Mn(F). Using

θ(γδ) = θ(γ)ρ(δ) + ρ(γ)θ(δ)

(cf. Lemma 7.1) it is easy to check that γ 7→ θ(γ)ρ(γ)−1 defines a 1-cocycle in
Z1(Γ, adρ). This inverse construction is then clear. �

Corollary 7.4. There are canonical bijections between the following sets:
1) HomF(m

univ
ρ /(muniv

ρ , λ),F)

2) H1(Γ, adρ)
3) Ext1(ρ, ρ)

Proof. The bijection between 1) and 2) follows from the previous lemma, since if ρ and
ρ′ are liftings to F[ε]/ε2, they are isomorphic if and only the corresponding elements in
Z1(Γ, adρ) differ by a coboundary. �

Define d : dimF Z
1(Γ, adρ) = dimFm

�/(m�2, λ)

Corollary 7.5. d = dimFH
1(Γ, adρ)− dimFH

0(Γ, adρ) + n2.

Proof. There exists an exact sequence of finite dimensional F vector spaces.

0 > (adρ)Γ > adρ > Z1(Γ, adρ) > H1(Γ, adρ) > 0

φ > (γ 7→ γφ− φ)

�

Consequently, one can choose φ : O[[X]] := O[[x1, ..., xd]] → R� such that φ(xi)m
�

generate m�/(m�2, λ) are F vector spaces, hence φ is onto.
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To further control R�, we analyze J = kerφ. Observe mJ ⊂ J ⊂ m, where m =
(λ, x1, ..., xd) is the maximal ideal of O[[X]]. We will construct a map

HomF(J/mJ,F)→ H2(Γ, adρ)

f 7→ [cf ]

which will turn out to be an injection, hence allow us to bound the dimension of the
deformation ring.

Consider

ρ� : Γ→ GLn(O[[X]]/J)← GLn(O[[X]]/mJ)

For each γ ∈ Γ choose a lift ρ̃(γ) ∈ GLn(O[[X]]/mJ) which lifts ρ(γ). ρ̃ may not be a
homomorphism.

Define

cf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)−1ρ̃(γ)−1 − 1n) ∈Mn(F)

We claim that cf ∈ Z2(Γ, adρ), i.e. it is a 2-cocycle.
Proof of claim: Need to show

g1cf (g2, g3)− cf (g1g2, g3) + cf (g1, g2g3)− cf (g1, g2) = 0

Observe Mn((J/mJ),+) ∼= (1 +Mn(J/mJ), .) given by a 7→ 1 + a, in particular it is
commutative. We need to check:

ρ(g1)f(ρ̃(g2g3)ρ̃(g3)−1ρ̃(g2)−1)ρ(g1)−1 + f(ρ̃(g1g2g3)ρ̃(g2g3)−1ρ̃(g1)−1)

= f(ρ̃(g1g2g3)ρ̃(g3)−1ρ̃(g1g2)−1 + f(ρ̃(g1g2)ρ̃(g2)−1ρ̃(g1)−1)

Write g̃ for ρ̃(g), and switching to multiplicative it suffices to show the following
equality in GLn(O[[X]]/mJ).

(g̃1g̃2g3g̃3
−1g̃2

−1g̃1
−1)(g̃1g2g3g̃2g3

−1g̃1
−1)

= g̃1g2g3g̃3
−1g̃1g2

−1g̃1g2g̃2
−1g̃1

−1

We can switch the order of the brackets since these elements lie in 1 + Mn(J/mJ),
so the left hand side becomes:

g̃1g2g3g̃2g3
−1g̃1

−1g̃1g̃2g3g̃3
−1g̃2

−1g̃1
−1

= g̃1g2g3g̃3
−1g̃2

−1g̃1
−1

which is visibly equal to the right hand side.
Exercise: cf is well defined independent of the choice of ρ̃
[cf ] = 0⇔ there exists a choice of ρ̃ : Γ→ GLn(O[[X]]/mJ) such that ρ̃ mod Jf is

a homomorphism where Jf := ker(J → J/mJ → F) ( so mJ ⊂ Jf ⊂ J)



22 RONG ZHOU

Lemma 7.6. The map

HomF(J/mJ, F )→ H2(Γ, adρ)

given by f 7→ cf is injective.

Proof. We show: ∃ρ̃ as above, which is a homomorphism modJf implies f = 0. By the
universal property of R�, we can complete the diagram:

Γ
ρ�

> GLn(O[[X]]/J)

GLn(O[[X]]/Jf )
∨>

We have the composition

O[[X]]/J ↪→ O[[X]]/Jf → O[[X]]/J

the first map being given by xi 7→ xi + ai
But ∀h ∈ O[[X]], h = η(g) for g(x) = h(x − a), hence η is onto which implies that

modJ the map is an isomorphism. Hence J = Jf and so f = 0 �

Recap:

0 > J > O[[x1, ...xd]] > R� > 0

HomF (J/mJ,F) ↪→ H2

# generators = d = dimH1 − dimH0 + n2

# relations = dimFJ/mJ ≤ dimH2

Corollary 7.7. i) H2 = 0 ⇒ R� ∼= O[[x1..., xd]]
ii) In general, dimR� ≥ d+ 1− dimH2

8. Lecture 8

Correction: situation mJ ⊂ Jf ⊂ J ⊂ (m, λ).

O[[x1, ..., xd]]/J ⊂
xi 7→xi+ai

> O[[X]]/Jf > O[[X]]/J

We want J = Jf .

∀g(x) ∈ J ⇒ g(x+ a) ∈ Jf
g(x) = g0 +

∑d
i=1 gixi + (deg ≥ 2), then g(x + a)− g(x) =

∑d
i=1 giai + (deg ≥ 2) ∈

mJ ⊂ Jf . The first term is in mJ and so is the second, therefore g(x) ∈ Jf ⇒ J = Jf .
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8.1. Generic fibers of universal lifting rings. Warm-up: Consider O[[x]] over
SpecO. Its geometric points are:

Spec(O[[X]])(Fl) = {0}
Spec(O[[x]](Ql) = {x ∈ Ql| |x| < 1}

Thinking about this geometrically, Spec(O[[X]]) is an open unit ball and the special
fiber is the point x = 0. The universal framed lifting ring R� is usually a power
series over O (quotiented by some ideal). Taking its generic fiber should give l-adic
representations lifting ρ.

Fact: 1)The closed points of R ∈ CO are Zariski dense, (eg. when R = R�ρ ).
2)

{max. ideals of R[1
l
]} ↔ {(φ′, l′) : L′/L finite, φ′ : R→ OL′ such that L′ = L(φ′(R))}

kerφ′[1/l] 7→ φ′

m 7→ R→ R[1/l]/m =: L′, φ′ is this map restricted to R

R
φ′

> OL′

R[1/l]
∨

φ′[1/l]
> L′
∨

∩

So x ∈ SpecR�[1/l] a closed point corresponds to (φx, Lx), where Lx is the residue
field at x.

Γ
ρ�

> GLn(R�)
φx
> GLn(OLx)⊂GLn(Lx)

Check that ρx is continuous with respect to the l-adic topology on Lx.

Lemma 8.1.
R�[1/l]hatx := lim

←j
R�[1/l]/(kerφx[1/l])

j

pro-represents the functor

R�ρx : CArtLx = {Artin local Lx- algebras with residue field Lx} → (Sets)

given by

A 7→ {ρ : Γ→ GLn(A), (A with the l-adic top.) such that ρ mod mA = ρx}

Remark 8.2. Hom(R�[1/l]hatx , A) is defined to be lim→j Hom(R�[1/l]hat/(kerφx[1/l])
j, A)

and the lemma says that this is equal to R�ρx(A), functorially in A. i.e. this functor is
pro-represented by the object.
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Sketch of proof: We explicitly construct the bijection above.
→ Given f : R�[1/l]hatx → A, we take the composition

ρ� : Γ→ GLn(R�)→ GLn(R�[1/l]hatx )→ GLn(A)

← Now given (ρ,A) ∈ R�ρx(A), ρ : Γ → GLn(A). Define to be the sub-algebra of

A generated by entries of ρ(Γ). Then one can show that A0 ∈ COLx and is finitely
generated as an OLx module.

One checks that the following diagram commute

ρ : Γ > GLn(A0)

GLn(Fx)

mod A0

↓↓ρx >

To construct the map R�[1/l]hatx → A use universal properties of localization and
completion:

R�[1/l]hatx > A

R�[1/l]

∧

Univ.prop.of [1/l]
> A0[1/l]

∪

∧

R�

∧

> A0
∪

∧

R�ρ ⊗O OLx
∨

≡≡≡≡≡≡≡≡≡≡≡≡≡R�ρx

∧

8.2. Deformation problems. We are often interested in liftings ρ which satisfy cer-
tain conditions. We would like to have a checklist of these conditions so that we can
construct subspaces of the full deformation space with nice properties.

Definition 8.3. Fix O and a continuous mod l representations ρ. A deformation
problem D is a collection {(A, ρ)} where A ∈ CO, ρ : Γ → GLn(A), lifting of ρ such
that:

1) (F, ρ) ∈ D
2) f : A→ B a morphism in CO, (A, ρ) ∈ D ⇒ (B, f ◦ ρ) ∈ D
3) f : A ↪→ B an injection in CO, then (A, ρ) ∈ D if and only if (B, f ◦ ρ) ∈ D.
4) A1, A2,∈ CO, with ideals I1 ⊂ A1, I1 ⊂ A2 and suppose there is an isomorphism

f : A1/I1
∼= A2/I2
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such that f(ρ1 mod I1) = ρ2 mod I2, then if (A1, ρ1), (A2, ρ2) ∈ D, so is ({(a1, a2) ∈
A1 ⊕ A2 : f(a1 mod I1) = a2 mod I2}, ρ1 ⊕ ρ2).

5) Suppose I1 ⊃ I2 ⊃ ... are a nested sequence of ideals of A ∈ CO such that
⋂
Ii = 0.

If (A, ρ) lifting of ρ, such that (A/Ii, ρ mod Ii) ∈ D, then (A, ρ) ∈ D.
6) (A, ρ) ∈ D, a ∈ ker(GLn(A)→ GLn(F)), ⇒ (A, aρa−1) ∈ D

Deformation problems in the above sense are related to the universal lifting ring
by the following lemma. Note that for γ ∈ ker(GLn(R�) → GLn(F)), the universal
property gives us an automorphism R� induced by the deformation γργ−1. In general
this is not a group action.

Lemma 8.4. There is a bijection

{deformation problems} ↔ {ker(GLn(R�)→ GLn(F))-invariant radical ideals of R�}

D > I(D)

D(I) < I

I(D) is characterized by the property that (A, ρ) ∈ D if and only if the map R� → A
inducing the lifting (A, ρ) factors through I(D).

The deformation problem D(I) associated to a ker(GLn(A)→ GLn(F)) is the set of
liftings induced by maps factoring through I.

Geometrically speaking, a deformation problem cuts out a closed subscheme of the
universal deformation space.

Proof. Once we show well-definedness of the above maps, and the characterization
property of I(D), the fact that the maps are inverse bijections will be clear.

First, given a ker(GLn(R�) → GLn(Fp)) invariant ideal I, the subspace of liftings
factoring through I clearly satisfies 1)− 5) in the definition of a deformation problem.

First let’s see why I(D) exists uniquely and is ker(GLn(R�)→ GLn(F))-invariant.
Define

J := {all ideals I ⊂ R� such that (R�/I, ρ� mod I) ∈ D}
this is non-empty by 1).

(A, ρ) ∈ D ⇔ (R�/ ker fρ, ρ
� mod ker fρ) ∈ D

Γ > GLn(R�) > GLn(R�/ ker fρ)

GLn(A)

ρ

∨ <

J is closed under finite intersection by property 4), and infinite nested intersections by
5) and hence there is a minimal element I(D). By part 2) any ideal J containing I(D)
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satisfies (R�/J, ρ� mod J) ∈ D, and I(D) is ker(GLn(R�) → GLn(F)) invariant by
property 6).

�

9. lecture 9

Last time we introduced the notion of deformation problem, and showed that such
an object corresponds to a ker(GLn(R�ρ )→ GLn(F)) invariant ideal of R�ρ .

For example given appropriate ρ : Γ → GLn(Fl), where Γ = Gal(K/K), for p = l
one could consider all liftings which satisfy of the hypothesis of Fontaine-Laffaile, or
liftings which are ordinary. For p 6= l, one can consider Taylor-Wiles liftings. See [2]
for several more examples.

For applications, it is important to understand the quotient R�ρ /I(D), i.e. know its
Krull dimension, no. of generators/relations etc). Consider

Z1(Γ, adρ) ∼= HomF(m
�/(m�2, λ),F) ⊃ Ann(I(D)) =: L̃(D)

Let L(D) be the image of L̃(D) in H1(Γ, adρ)

Lemma 9.1.

L̃(D) is the full pre image of L(D)

Proof. Suppose x ∈ Z1(γ, adρ) lies in the pre-image of L(D), then ∃y ∈ L̃(D), map-
ping to the image of x, in H1(Γ, adρ), i.e. the liftings ρx and ρy corresponding to
x and y under the bijection in Lemma 6.3 are isomorphic. Thus there exists a ∈
ker(GLn(F[ε]/ε2]→ GLn(F) such that aρxa

−1 = ρy, so that ρx ∈ D and x ∈ L̃(D). �

9.1. Fixing determinants. Let ρ : Γ → GLn(F) be a continuous representation,
χ : Γ→ O× the character such that χ⊗O F = detρ)

R�ρ (A) ⊃ R�ρ,χ(A) := {ρ : lifting of ρ to A, detρ = χ} is represented by R�ρ,χ ∈ CO.

R�ρ,χ is constructed as the quotient of R�ρ by detρ− χ.
When ρ is Schur, the existence of a universal deformation ring is also guaranteed:

Runiv
ρ → Runiv

ρ,χ . The previous discussion carries over to this setting.
The main change needed here is to replace adρ by the subspace ad◦ρ consisting of

the trace 0 subspace.

9.2. Global Galois deformations. F/Q finite, fixing F ↪→ F v, we obtain

GF := Gal(F/F )←↩ GFv := Gal(F v/Fv)

Let L,O,F as before, S a finite set of primes and GF,S the group Gal(FS/F ) where FS
is the maximal unramified extension outside S.
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Definition 9.2. A global Galois deformation problem is S = (F, S,O, ρ, χ, {Dv}v∈S)
where
• F, S,O are as above.
• ρ : GF,S → GLn(F) absolutely irreducible (can in fact relax this condition, see eg.

Skinner-Wiles, Thorne).
• χ : GF,S → O×. χ⊗O F = det ρ.
• Dv is a deformation problem for ρ|Gv.

Note that we are assuming Hyp(G) is true as is the case for GF,S. Using this data
one defines the following functor:

Definition 9.3. T ⊂ S (allow T = ∅), let R�,TS : CO → (Sets) be the functor given by

A 7→ {(ρ, {αv}v∈T )}/ ∼

where ρ : G→ GLn(A) is a lift of ρ and
• αv ∈ ker(GLn(A)→ GLn(F))
• det ρ = χ
• ρ|Gv ∈ D, v ∈ S.
Here the relation ∼ is generated by:

(ρ, {αv}) ∼ (βρβ−1, {βαv})
∀β ∈ ker(GLn(A)→ GLn(F))

Lemma 9.4. R�,TS is representable by R�,TS ∈ CO. (If T = ∅ write Runiv
S )

Idea of proof. D◦v := {all liftings of ρ|Gv} ⊃ Dv
S◦ := (....{D◦v}...), we know that R�,TS◦ is representable by R�,TS◦ ∈ CO = Runiv

ρ,χ if
T = ∅.

Then construct R�,TS as R�,TS◦ modulo the minimal ideal I such that ρ factors through

R�,TS◦ /I ⇔ ρ|Gv ∈ Dv,∀v ∈ S. �

9.3. Presenting R�TS over local lifting rings. R�,TS has a universal object

ρ�,TS : G→ GLn(R�,TS )

αv ∈ ker(GLn(R�,TS )→ GLn(F)), v ∈ T

Then α−1
v ρ�,TS αv ∈ Dv, v ∈ T , and so we an induced map by the universal property

R�ρ|Gv ,χ/I(Dv)→ R�,TS

We thus obtain the following diagram:
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G > GLn(R�ρ|Gv ,χ)

GLn(R�TS )
∨

<
∃
GLn(R�ρv ,χ/I(Dv)

↓↓

where ρv is defined to be the restriction of ρ to Gv. This induces a map from the
completed tensor product of the local lifting rings to R�,TS

Rloc
S,T :=

⊗̂
v∈T

(R�ρv ,χ/I(Dv))→ R�,TS

The completed tensor product is just the pushout in category of complete local O
algebras, in particular it satisfies the usual universal property for tensor products.

The goal of the next few lectures will be to understand this presentation, for example
what is the number of generators/ relations for presenting R�,TS over Rloc

S,T , to do this
we use the techniques already developed of studying the tangent spaces via Galois
cohomology.

First thought: Suppose Dv is the set of all liftings v ∈ S. Write m ⊂ R�,TS,T , mloc ⊂
Rloc
S,T for the respective maximal ideals.

HomF(m/(m
2, λ),F) ∼= R�TS (F[ε]/ε2) ∼= {ρ, (αv)v∈T}/ ∼∼= (Z1(G, ad◦ρ)⊕

⊕
v∈T

(1+εMn(F)))/ ∼

= coker :adρ
∂
> Z1(G, ad◦ρ)

⊕⊕
v∈T

adρ

⊕
v∈T resv

>

In general we need two modifications:
1) To consider ”the tangent space over Rloc

S,T”, replace m/(m2, λ) by m/(m2,mloc, λ),
this is tantamount to requiring the trivial lifting at v ∈ T .

More precisely, we require:

ρ ∈ ker(Z1(G, ad◦ρ)⊕
⊕
v∈T

adρ
⊕vresv⊕−∂

>
⊕
v∈T

Z1(Gv, ad◦ρ))

This follows from the following the fact that the maps R�ρ|Gv ,χ → R�,TS are given func-

torially by:

(ρ = (1 + φε)ρ, {αv = 1 + ψvε}) 7→ {α−1
v ραv}v∈T
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where ψv ∈ Mn(F) and φ is a 1 cocycle in Z1(G, ad◦ρ). Hence the requirement is
that:

αvρα
−1
v = (1− ψvε)(1 + φε)ρ(1 + ψvε)

= ρ+ (φρ− ψvρ+ ρψv)ε = ρ

φ− ψv + ρψvρ
−1 = 0⇒ φ− ∂ψv = 0

2) To allow general Dv at v ∈ S, we require

ρ ∈ ker(Z1(G, ad◦ρ)

⊕
v∈S\T resv

>
⊕
v∈S\T

Z1(Gv, ad
◦ρ)

L̃(Dv)
)

In other words, ρ|Gv ∈ Dv at v ∈ S\T .
The upshot of this is that

HomF(m/(m
2,mloc, λ),F) ∼=

H1(adρ > Z1(G, ad◦ρ) >
⊕
v∈T

Z1(Gv, ad
◦ρ)⊕

⊕
v∈S\T

Z1(Gv, ad
◦ρ)

L̃(Dv)
)

⊕⊕
v∈T

adρ

>

So we’re motivated to consider the complex of F[G]-modules.

C•S,T := C0(G, adρ) > C1(G, ad◦ρ) > C2(G, ad◦ρ)...

⊕ ⊕⊕
v∈T

C0(Gv, adρ) >
>

(
⊕
v∈T

C1(Gv, ad
◦ρ)⊕

⊕
S\T

C1(Gv, ad
◦ρ)/L̃(Dv)) >

> ⊕
v∈S

C2(Gv, ad
◦ρ)

>

with obvious coboundary maps and where Ci(G,M) = Hom(G× ...×G,M).
It will be convenient to break this complex into two parts denoted C•−1

S,T,loc and C•0 ,
where these complexes are defined as follows:

C0
S,T,loc =

⊕
v∈T

C0(Gv, adρ)

C1
S,T,loc = (

⊕
v∈T

C1(Gv, ad
◦ρ)⊕

⊕
S\T

C1(Gv, ad
◦ρ)/L̃(Dv))

CiS,T,loc =
⊕
v∈S

Ci(Gv, ad
◦ρ) for i > 1

C0
0 = Ci(G, adρ)



30 RONG ZHOU

and
Ci0 = Ci(G, ad◦ρ) for i > 0

Next time we will study H i
S,T (G, ad◦ρ) := H i(CS,T )

10. Lecture 10

Recall we were studying global deformations problems. We wanted to present the
global deformation ring R�TS over a completed tensor product of local deformation
rings denoted Rloc

S,T , in order to do this we introduced the complex above. We define

H i
∗(G, ad◦ρ) := H i(C•∗(G, ad◦ρ)).
Last time we saw

HomF(m/(m
2,mloc, λ),F) ∼= H1

S,T (G, ad◦ρ)

.
The same proof as in the local case gives us the following proposition.

Proposition 10.1. There exists a surjection Rloc
S,T [[x1, ..., xd]] → R�TS where d =

dimFH
1
S,T , and the number of relations is ≤ dimH2

S,T .

Next Goal: Compute H i
S,T (G, ad◦ρ), i = 1, 2, in terms of

• usual local/global cohomology
• dim of L(Dv) (⊂ H1(Gv, ad◦ρ)).
• dim of ”Dual Selmer group.”

10.1. computation of H1
S,T . Assume for technical reasons that:

•l > 2
•l - n which implies the exact sequence of G representations

0→ ad◦ρ→ adρ→ F→ 0

is split. Here G acts trivially on F.
•All places of F above l are in S
Fact: All cohomology are finite dimensional over F and vanish in sufficiently large

degree.
Recall the complexes C0, CS,T,loc and CS,T defined in the previous lecture. The Euler

characteristic of each of these complexes is defined to be

χ∗(G, ad◦ρ) :=
∑
i≥0

(−1)i+1 dimFH
i
∗(G, ad◦ρ)

which is well-defined by the above fact.
Strategy: Step 1 χS,T = χ0 − χS,T,loc
This follows from the exact sequence

0→ C•−1
S,T,loc → C

•
S,T → C•0 → 0
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which gives a long exact sequence in homology and so by our sign convention we obtain
the result.

Hence χS,T = χ(G, ad◦ρ)− χS,T,loc + dim(H0(G, ad◦ρ)) − dimH0(G, adρ). The last
term is −1; this follows from ad = ad◦ ⊕ F.

Step 2: Compute χS,T in terms of usual Galois cohomology. By definition,

χS,T,loc =
∑
v∈S

χ(Gv, ad◦ρ) +
∑
v∈T

(dimH0(Gv, ad◦ρ)− dimH0(Gv, adρ))

+
∑
v∈S\T

(dimH0(Gv, ad◦ρ)− dimL(Dv))

This implies
χS,T = χ− χS,T,loc − 1

= −1 + #T −
∑
v∈S

χ(Gv, ad◦)−
∑
v∈S\T

(dimH0(Gv, ad◦)− dimL(Dv)) + χ(G, ad◦)

Step 3: Apply local/ global Euler Poincare characteristic formulae to χ(G,−), χ(Gv,−)
to get the formula for χS,T .

Step 4:Cohomological vanishing implies H i vanishes for i > 2, so we need only
consider: H0

S,T , H
1
S,T , H

2
S,T , H

3
S,T , 0, 0, ..... In order to get H2 and H3 use duality and

Poitou-Tate to reduce to H0 and H1

Fact: Cohomological vanishing
1) Let K be non archimedan and GK := Gal(K/K) act on a module M , which is

finite as an F[GK ]-module. Then H i(GK ,M) = 0 for i > 2.
2) K = R, GR = {1, c} acting on M whose order is a power of l, then H i(G,M) =

for i ≥ 0, when l > 2.
3) K a number field, let G = GF,S act on a module M , then H i(G,M) = 0 for i > 2,

when l > 2.
Consequently, it follows directly from the long exact sequence that H i

S,T = 0 when
i > 3.

H2
S,T → H2(G, ad◦ρ)→ H2

S,T,loc

→ H3
S,T → H3(G, ad◦ρ)→ H3

S,T,loc

Fact 2: Euler Poincare characteristic.
1) K non archimedean (of characteristic 0)

Then χ(GK ,M) = dimF(O/#M) = dimFM. dimF(O/#F) =

{
0 l 6= p

dimFM [K : Ql] l = p

2) F a number field, S a finite set of places and l > 2.
χ(GF,S,M) = [F : Q] dimM −

∑
v|∞ dimH0(Gv,M)
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Back to Step 3: Thus since S contains all primes above l we have

χ(G,M)−
∑
v∈S

χ(Gv,M) = [F : Q] dimM −
∑
v|∞

dimH0(Gv,M)−
∑
v|l

dimFM [Fv,Ql]

=
∑
v|∞

dimH0(Gv,M)

Thus

χS,T = −1+#T −
∑
v∈S\T

(dimH0(Gv, ad◦ρ)−dimL(Dv))+χ(G, ad◦ρ)−
∑
v∈S

χ(Gv, ad◦ρ)

= −1 + #T −
∑
v∈S\T

(dimH0(Gv, ad◦ρ)− dimL(Dv))−
∑
v|∞

dimH0(Gv, ad◦ρ)

Step 4: We will need to introduce some notation: Let K be a local/ global field.
M a finite F[GK ]-module.
M∨ := HomF(M,F)
MD := M∨ ⊗Zl Zl(εl) = M∨(1), where εl : GK → Zl is the l-adic cyclotomic

character.

Example 10.2. M = ad◦ρ. M ×M → F given by (a, b) 7→ tr(ab) is a perfect pairing.
Then M∨ ∼= M,MD ∼= M(1)

Fact 3: Local duality, K non archimedean.
Hr(G,MD) ∼= H2−r(G,M)∨, r = 0, 1, 2
Application: H1(Gv,M

D)×H1(Gv,M)→ F. Gv = GFv , M = ad◦.
L(Dv) ⊂ H1(Gv,M) and let L(Dv)⊥ ⊂ H1(Gv,M

D) be the annihilator of L(Dv)
under the above pairing.

Fact 4: Poitou Tate theorem: Let G = GF,S and M = ad◦, there exists an exact
sequence:

0 > − > − > −

H1(G,MD)∨ <
⊕
v∈S

H1(Gv,M) < H1(G,M)
∨

H2(G,M)
∨

>
⊕
v∈S

H2(Gv,M) > H0(G,MD)∨ > 0

Back to step 4: 0→ CS,T,loc → CS,T → C0 → 0 gives us a long exact sequence
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→ H1(G,M)→
⊕
v∈T

H1(Gv,M)⊕
⊕
v∈S\T

H1(Gv,M)/L(Dv)

→ H2
S,T → H2(G,M)→

⊕
v∈S

H2(Gv,M)

→ H3
S,T → 0

We modify the appropriate part of the Poitou-Tate sequence as below:

H1(G,M) >
⊕
v∈S

H1(Gv,M)
γ1

> H1(G,MD)∨ > H2(G,M)

⊕
v∈S

H1(Gv,M)/N

∨
>

>

H1(G,MD)∨/γ1(N)
∨

>

where N =
⊕

v∈S\T L(Dv). The lower part of the diagram remains exact.

coker(N → H1(G,MD)∨) = coker(
⊕
v∈S\T

H1(Gv,M
D)∨

= ker(H1(G,MD)→
⊕
v∈S\T

H1(Gv,M
D)

L(Dv)

⊥

) = H1
S,T (G,MD)∨

Comparing the modified Poitou-Tate sequence and the original exact sequence we
obtain two exact sequences of the form:

1→ 2→ 3→ 4→ 5→ 6→ 0

1→ 2→ 3′ → 4→ 5→ 6′ → 0

This implies dimH2
S,T = dimH1

S,T (G,MD)

dimH3
S,T = dimH0(G,MD)

dimH0
S,T = dimH0(G, adρ) = 1

Using

χS,T = −1 + #T −
∑
v∈S\T

(dimH0(Gv, ad◦ρ)− dimL(Dv))−
∑
v|∞

dimH0(Gv, ad◦ρ)

we obtain the following formula

Proposition 10.3.

dimFH
1
S,T (G, ad◦ρ) = #T−

∑
v|∞

dimFH
1(Gv, ad◦ρ)+

∑
v∈S\T

(dimF L(Dv)−dimFH
0(Gv, ad◦ρ))

− dimFH
1(G, ad◦ρ(1))− dimFH

0(G, ad◦ρ(1))
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In particular, writing d for the above integer, there exists a surjection Rloc
S,T [[x1, ..., xd]]→

R�S,T

As above we can also bound the relations in the above presentation, in the special
T = ∅ we have the following:

Proposition 10.4. The Krull dimension of Runiv
S is at least

1 +
∑
v∈S

(Krull dim.(R�ρ|Gv ,χ/I(Dv))− n2)−
∑
v|∞

dimFH
0(Gv, ad◦ρ)− dimH0(G, ad◦ρ)

Proof. Let d be as in the previous proposition, let J be kernel of the surjection R :=
O[[x1, ..., xd]]→ Runiv

S we define a map

Hom(J/muniv
S J,F)→ H2

S,∅(G, ad◦ρ)

Pick a lift of ρunivS to GLn(R), denoted ρ̃ and define

cf (γ, δ) = f(ρ̃(γδ)ρ̃(δ)ρ̃(γ)− 1n)

Also for v ∈ S pick a lift ρ̂ of ρunivS |Gv and define

df,v(γ) = f(ρ̃ρ̂− 1n)

One shows that this gives a well defined element of H2
S,T (G, ad◦ρ) and the associated

f 7→ [(cf , df,v)] is injective. Hence setting T = ∅ in the formula in Proposition 9.4 we
obtain:

Krull dim.(Runiv
S ) ≥ 1−

∑
v|∞

dimFH
1(Gv, ad◦ρ) +

∑
v∈S

dimF L(Dv)− dimFH
0(Gv, ad◦ρ)

− dimFH
0(G, ad◦ρ(1))

where the 1 comes from the ideal (λ).
Noting that dimF L(Dv)−dimFH

0(Gv, ad◦ρ) = Krull dim.R�ρ|Gv/I(Dv)−n2 we obtain

the result. �

We now prove a proposition concerning maps between global deformation rings. Let
F , S and ρ be as above and let F ′ be a finite extension of F and S ′ a finite subset
of primes in F ′ containing the primes above those in S. Let G′ := GF ′,S′ , then by
restricting to G′, we obtain a map of deformation rings:

Runiv
ρ|G′ → Runiv

ρ

Proposition 10.5. The above map presents Runiv
ρ as a finite Runiv

ρ|G′
algebra.
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Proof. Write R for Runiv
ρ|G′

let m be its maximal ideal. By Nakayama’s lemma it suffices

to show that Runiv
ρ /mRuniv

ρ is a finite F module.

We first show that the image of G in GLn(Runiv
ρ /mRuniv

ρ ) is finite. Indeed we have

ker(ρunivρ mod m) ⊃ ker(ρunivρ |G′ mod m) ⊃ ker(ρunivρ|G′ mod m)

and the last group has finite index in G.
Let m the order of this image and γ1, ..., γm ∈ G generating this image. Define

f(T ) =
∏

(ζ1,...,ζn)∈µm(Fp)

(T − (ζ1 + ...+ ζm)) ∈ F[T ]

Let A be the quotient of the ring F[Xi,j]i,j=1,...,n be the equations (Xi,j)
m − In = 0

where (Xi,j) is the matrix with i, j entry Xi,j. For any prime ideal p of A, we have
the characteristic polynomial of Xi,j are mth roots of unity, hence f(trXi,j) = 0 for
all p, hence f(trXi,j)

a = 0 in A for some a ∈ N. Suppose now M is any matrix
over an F algebra S such that Mm = In, then we can find a map A → S such that
Xi,j 7→Mij ∈ S, and hence f(trM) = 0.

It follows that we have a map

F[T1, ..., Tm]/(f(T1)a, ..., f(Tm)a)→ Runiv
ρ /mRuniv

ρ

given by Ti 7→ tr(γi)
This map is dense since the values trγ topologically generated the ring Runiv

ρ over

O. But the source is finite, hence the map is surjective and this presents Runiv
ρ /mRuniv

ρ

as a finite module over F. �

11. Lecture 11

The notation is as above. K/Qp is a finite extension and ρ : GK → GLn(F) is a
continuous representations, and fix a character χ : GK → O×. which reduces to detρ.

We constructed the ring R�ρ,χ ∈ CO which represents the lifting problem for ρ with

fixed determinant χ. Its generic fiber R�ρ,χ[1/l] has closed points corresponding to l-adic
liftings of ρ with determinant χ.

The goal for the next week will be to study the properties (e.g. irreducible compo-
nents, dimension) of R�ρ,χ[1/l] (or R�ρ,χ), we split into the two cases l 6= p and l = p
(the second requires some background in p-adic hodge theory).

The motivation for this is as follows:
1) In order to control H i

S,T (i = 1, 2) or Krulll dimension of R�S,T , we saw last that

time that we need to know the dimF L(Dv) or the Krull dimension of R�ρv ,χ/I(Dv).
2) This information enters into the proof of automorphy liftings theorems.
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11.1. Local universal lifting rings l 6= p.

Proposition 11.1. SpecR�ρ,χ[1/l] has finitely many irreducible components and each

irreducible component is generically formally smooth (over L) and of dimension n2−1.

Remark 11.2. The same is true of R�ρ [1/l] (here the dimension is n2) and Runiv
ρ [1/l] if

ρ is Schur (with dimension =1).

Proof. Define a closed point of SpecR�ρ [1/l] corresponding to the l-adic representation

ρx : GK → GLn(Lx) to be smooth if H0(GK , ad◦ρx(1)) = 0. It is shown In [BLGGT]
(Lemma1.3.2) that the smooth points are Zariski dense. Thus it suffices to prove that
R�[1/l]∧x

∼= Lx[[y1, ..., yn2−1]]. (note this ring is the universal lifting ring for ρx with
coefficients in CArtLx

).
Idea: Mimic argument for liftings of ρ using tangent spaces and Galois cohomology.
Define

d := dimLx (tangent space at x)

which if we fix determinants is equal to

n2 − 1− dimH0(GK , adρ◦x) + dimH1(GK , ad◦ρx)

Hence there exists a surjection

φ : Lx[[x1, ..., xd]]→ R�[1/l]∧x

One shows in the same way as before that kerφ = 0 if H2(GK , ad◦ρx) = 0.
Thus it suffices to prove dimH0 = dimH1 and H2 = 0. This follows from the l-adic

version of local duality and the Euler Poincare formula. The first gives us

H2(GK , ad◦ρx) = H0(ad◦ρx(1))∧ = 0

(the second equality follows from smoothness), and the second gives χ(ad◦ρx) = 0 and
hence the two together implies dimH1 = dimH0. �

Definition 11.3. Let ∅ 6= C ⊂ {irreducible components of SpecR�[1/l]} and define
R�ρ,χ,C = R�C to be the largest quotient of R�ρ,χ which is
• reduced and l-torsion free
• SpecR�ρ,χ,C[1/l] ⊂ C

Here is a rough idea for the construction of this ring. Consider

R
�

:= R�/l-torsion ↪→ R�[1/l]

Then SpecR�[1/l] ⊂ SpecR
�

is open and dense and C is contained in the latter.
Then take the reduced closed subscheme structure on C.

Lemma 11.4. 1) IC := ker(R� � R�C ) then D(IC) is a deformation problem.
2) R�C is equidimensional of dimension n2. (Note R�IC = R�/IC = R�/I(D(IC))
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Proof. 1) The non-trivial part is to show that IC is ker(GLn(R�)→ GLn(F)) invariant
(this is [BLGGT] Lemma 1.2.2)

2) SpecR�[1/l] is open and dense in SpecR
�

. Let Z be an irreducible component

of SpecR
�

and define Z ′ := Z ∩ SpecR�[1/l]. One checks that Z ′ is an irreducible
component and is non-empty and dimZ = dimZ ′ + 1.

Let Z ′ = SpecY ′ and Z = SpecY and take a sequence of ideals:

0 ( p0 ( ... ( pn2−1 ( Y ′

then

0 ( p0 ∩R� ( ... ( pn2−1 ∩R� ( m� ( Y

since the quotient Y/pn2−1 is the ring of integers in a finite extension of L. �

Consdider the map which takes finite dimension Weil-Deligne representations of WK

on L vector space to triples (up to equivalence) (V, r0, N) where r0 : IK → GL(V ),
N ∈ End(V ) nilpotent, and r0 and N commute, given by restriction to IK .

Definition 11.5. An inertial type representation is any τ in the image.
A Weil-Deligne representation is of type τ if it lies in the preimage of τ

Remark 11.6. The map isn’t onto, cf. the next example.

Example 11.7. Suppose ψ1, ψ2 : IK → C× are two tame characters of GK , we will
prove a criterion for when ψ1 ⊕ ψ2 comes from a WD representation of WK , i.e. is
an inertial type. Suppose ψ1 ⊕ ψ2 is the restriction of a Weil representation ρ to IK .
First suppose that ρ factors through an abelian quotient of WK , (equivalently ρ(σ)
commutes with ρ(γ) for all γ ∈ IK . This occurs if and only if ψ1 = ψ2 or ρ(σ) factors
through the standard diagonal torus T of GL2.

But ∀γ ∈ IK the relation

ρ(γ) = ρ(σ)ρ(γ)ρ(σ−1) = ρ(γ)#k

implies that ψ1 = ψ#k
1 and similarly for ψ2, so that ψ#k−1

1 = ψ#k−1
2 = 1. It can then

be checked that if ψ1 and ψ2 satisfy these conditions, then ψ1 ⊕ ψ2 will come from a
representation of WK .

Suppose now that ρ does not factor through an abelain quotient of WK , in particular
ψ1 and ψ2 are distinct. Then since σγσ−1 ∈ IK for all γ in IK , it follows that ρ(σ) lies
in the normalizer of T . As ρ does not factor through an abelian quotient of WK , it
follows that wlog. we may assume

ρ(σ) =

(
0 1
a 0

)
In this case the commutativity relation gives the following:
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(
ψ#k

1 (γ) 0

0 ψ#k
2 (γ)

)
= ρ(γ#k) = ρ(σ)ρ(γ)ρ(σ−1) =

(
ψ2(γ) 0

0 ψ1(γ)

)
This implies ψ2 = ψ#k

1 and ψ1 = ψ#k
2 , in particular ψ#k2−1

2 = 1. For such char-
acters one checks they extend to representations of WK , in fact in this case, one can
extend to an irreducible representation of WK . In particular we see that restricting
WK representations to IK is not s surjective map.

Example 11.8. A representation is of unramified type if it is in the pre image of
τ = [(1, 0)] of any dimension.

Example 11.9. (classification, n=2) Say C coefficients (or Ql), there are four types:
1) Unramified up to character τ = [(ψ ⊕ ψ, 0)], ψ : IK → C× a character.

2) Steinberg: τ = [(ψ ⊕ ψ,
(

0 1
0 0

)
]

3) Split ramified: τ = [(ψ1 ⊕ ψ2, 0)] where ψ1 and ψ2 are two distinct characters of
IK .

4) Irreducible type: τ = [(r0, 0)] comes from an irreducible Weil-Deligne representa-
tions of dimension 2.

Theorem 11.10. ([Pil] Section 4) Suppose L is sufficiently large (or we can work with
geometrical irreducible components) then

i) Each irreducible component C of SpecR�[1/l] has associated type τC such that:
Case (1) (3) (4): Closed points corresponds to ρx such that WD(ρx) has type τC
Case (2): Closed points correspond to ρx which fit into an exact sequence

0→ ψ(1)→ ρx → ψ → 0

for some ψ : GK → L×x (type: (2) or (1))
ii) Each case of (1)-(4) occurs in at most one component with the following exception:

If ρ = ψ1⊕ψ2 with ψ1 and ψ2 distinct, and ψ1ψ
−1

2 is unramified, then ∃ 2 components
in case (3).

iii) Two components intersect only when: (see diagram)
When the two components are case (1) and case (2), the representations in the

component corresponding to case (1) are of the form ρ = ψ′⊕χψ′ (χ is the cyclotomic
character) and those of case (2) are

0→ ψ(1)→ ρ→ ψ → 0

WD(ρ) = (ψ(1)⊕ ψ,N =

(
0 a
0 0

)
)

As we approach the intersetion point a approaches 0 and ψ′ approaches ψ, the rep-
resentation at the intersection point is ρx = ψ(1)⊕ ψ.
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iv) Each component is formally smooth.

Heuristic for iii): Suppose x the intersection point, then it is not smooth and so the
proof of proposition 10.1 implies

H0(GK , ad◦ρx(1)) 6= 0

In other words

0 6= adρx(1)GK = HomLx(ρx, ρx(1))GK = HomLx[GK ](ρx, ρx(1))

This implies ρx is reducible and fits in an exact sequence

0→ ψ1 → ρx → ψ2 → 0

where ψ2 = ψ1(1) and ρx → ψ2 → ψ1(1)→ ρx(1), one then shows ρx is split, i.e.

ρx ∼= ψ1 ⊕ ψ(1)

11.2. Taylor-Wiles liftings. In this section we give an explicit description of the
deformation ring for a certain type of mod p representation, more importantly these
lifting rings are essential for the Taylor-Wiles-Kisin method. Let K be a finite extension
of Qp, write k for its residue field and suppose ρ is a continuous representation GK →
GLn(F) which is unramified. Suppose also that ρ has distinct eigenvalues, #k ≡ 1
mod l and that χ is unramified.

Proposition 11.11. Suppose #k is exactly divisible by lm. Then

R�ρ,χ
∼= O[[x, y, B, u]]/((1 + u)l

m − 1)

and ρ�(Frobp) is conjugate to a diagonal matrix.

Proof. Note that ρ� maps the wild inertia PK into the pro-l group

ker(GLn(R�ρ,χ)→ GLn(F))

hence has trivial image. Thus we may pick ϕ ∈ GK/PK a lift of Frobenius and σ a
topological generator of the tame inertia IK/PK ∼=

∏
l 6=p Zl satisfying the relation

ϕ−1σϕ = σ#k

Since
GK/PK ∼= 〈σ〉n 〈ϕ〉

the representation is completely determined by the images of σ and ϕ, in fact this is
true of any lift of ρ.

Let α, β be the eigenvalues of ρ(ϕ), and let α, β be lifts to O. Then we claim we can
write ρ� as

ρ�(ϕ) =

(
1 y
x 1

)−1(
α +B 0

0 χ(ϕ)/(α +B)

)(
1 y
x 1

)
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ρ�(σ) =

(
1 y
x 1

)−1(
1 + u 0

0 (1 + u)−1

)(
1 y
x 1

)
Let ρ : GK → GLn(A) be a lift of ρ, by Hensel’s lemma we can pick a, b ∈ mA such

that ρ(ϕ) has characteristic polynomial (X − (α+ a))(X − (β + b)). Then we can find
x, y ∈ mA such that

ρ(ϕ)

(
1
x

)
= (α + a)

(
1
x

)

ρ(ϕ)

(
y
1

)
= (β + b)

(
y
1

)
As ρ is unramified ρ(σ) reduces to the identity mod mA so we may write(

1 y
x 1

)−1

ρ(σ)

(
1 y
x 1

)
=

(
1 + u v
w 1 + z

)
where u, v, w, z ∈ mA.

Let n be largest such that v ∈ mn
A, it follows from the commutativity relation

ϕ−1σϕ = σ#k that

v ≡ v(α + a)/(β + b) mod mn+1
A

since α, β are distinct mod mA it follows that v ∈ mn+1
A so that v = 0. Similarly w = 0,

and since χ is unramified we obtain 1 + z = (1 + u)−1. Applying the commutativity
relation again, we obtain (1 + u)#k = 1 + u and since 1 + u is invertible, we have
(1 + u)#k−1 = 1.

Let γ = (1 +u)l
m

and r = (#k− 1)/lm, then (l, r) = 1, and so by Hensel’s Lemma γ
is the unique root of the equation Xr − 1 which is reducible mod mA and congruent
to 1 mod mA, i.e. γ = 1. Thus (1 + u)l

m
= 1 and in this way we get a map from

O[[x, y, B, u]] to A such that ρ is the pushforward of ρ�.
�

12. Lecture 12

Last time we studied local lifting rings when l 6= p. See[4] for 3.35 for Ihara avoidance.

12.1. Local lifting rings l = p. From now on all Galois representations are finite di-
mensional on L vector spaces. Let K/Qp be a finite extension, and L/Ql the coefficient
field.

The main difference in this case is that there are many more p-adic representations
of GK than l-adic representations (l 6= p). This is because GLn(O) is a mostly pro-l
hence any l-adic representations factors through the tame inertia (at least after a finite
extension) since wild inertia is pro-p.
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The main goal of p-adic Hodge theory is to understand p-adic representations of GK

through categories of (semi)-linear algebraic objects. There is the following hierarchy
of representations:

(Crystalline)⊂(Semistable)⊂(potentially Semistable=de Rham)

⊂(Hodge-Tate)⊂(all representations)

If we think of l-adic representations coming from smooth projective algebraic vari-
eties, the unramified representations ”corresponds’ to good reduction, representations
where IK acts unipotently corresponds to semistable reduction, potentially unipotent
correspond to potentially semistable reduction. By Grothendieck’s l-adic monodromy
all representations are potentially unipotent and it is conjecture that all smooth pro-
jective varieties have potentially semistable reduction.

Definition 12.1. ρ is potentially ”blah” it becomes ”blah” after a finite extension.

12.2. Langlands-Fontaine-Mazur philosophy. If ρ : GF → GLn(L) comes from
automorphic forms, then ρ|GFv for a place v of F dividing l is potentially semistable.
Fontaine and Mazur conjecture that the converse also holds if ρ is unramified at almost
all places.

To prove instances of this one imposes the potentially semistable condition as a
deformation problem so that so called ”R = T” theorems have a chance of being true.

In the rest of this lecture we will explain two important invariants attached to po-
tentially semistable representations and explain Kisin’s results on various potentially
semistable lifting rings.

12.2.1. WD functor for l = p. Recall we constructed such a functor using Grothendieck’s
l-adic monodromy theorem in the case l 6= p.

For a finite Galois extension K ′/K, let K ′0 denote the maximal unramified extension
of K contained in K ′ and write φ0 for the absolute frobenius on K ′0. We take L a
sufficiently large extension of Qp containing the Galois closure of K ′. We have the
following categories

W DK′/K := ( WD representations of WK such that (r,N) is unramified)

MOD := ((φ,N,Gal(K ′/K))-module D)

where D is finite free K0 ⊗Qp L module.
ϕ : D → D bijective and φ0 ⊗ 1 semi-linear (i.e. ϕ((k ⊗ l)d) = (φ0(k)⊗ l)ϕ(l))
N ∈ EndK′0⊗L(D) is a nilpotent operator
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The Gal(K ′/K) action on D is semi linear and commutes with ϕ and N , we have
the following relation between N and ϕ:

(12.1) Nϕ = pϕN

There exists the following functors:

(GKrepresentations ρ such that ρ|GK′ is semistable)
Dst,K′/K

> MODK′/K

WDK′/K
> W DK′/K

The functor Dst,K′/K is Fontaine’s functor, which is given by

V 7→ (V ⊗Bst)
GK′

where Bst is the semistable period ring of Fontaine (cf. [?]).
We will now define WDK′/K,σ0 for σ0 : K ′0 ↪→ L, then show that it is independent of

this embedding.
Define V := D⊗K′0⊗L L where K ′0 ⊗ L→ L is given by σ0⊗ 1. Then for w ∈ WK let

r(w) := wϕvQp (w)

where w acts via the Gal(K ′/K) action on D. This gives an action of the Weil group
on V and we extend this to a Weil-Deligne representation by defining N := N ⊗ 1.
The condition r(w)−1Nr(w) = #kN follows from the relation 12.1.

We have that

WDK′/K,σ0
∼= WDK′/K,τ0

for τ0 another embedding.
The upshot of this is that for L = Qp, we obtain a functor from potentially semistable

represtatnsion to WD representations of WK .
Let (r,N):=WD(ρ), we have the following properties.
ρ semistable ⇒ r unramified, if ρ is also crystalline, then N = 0.
ρ|G′K semistable ⇔ r|IK′ = 1, r(WK′) centralizes r(WK).

12.2.2. Hodge Tate weights. Let ρ : GK → GL(V ) with N = dimV and σ : K → L,
we obtain an unordered set of integers HTσ(ρ) ∈ Zn/Sn.

The recipe is given as follows: Each i ∈ Z in HTσ(ρ) has multiplicity dimL(V (i)⊗K,σ
Cp)GK , where V (i) := V ⊗Qp Qp(ε

i
p). Here εp is the p-adic cyclotomic character GK �

Z×p
If ρ is Hodge-Tate then the sum of these dimensions over i ∈ Z is equal to n.

Remark 12.2. {HTσ(ρ)} can also be read off from some natural filtration data attached
to Dst,K′/K(ρ)



MODULARITY LIFTING THEOREMS 43

Example 12.3. •ρ = εP : GK → Z×p , HTσ(ρ) = {−1}
• A/K an abelian variety ρ : GK → GLQl(TlA⊗ZlQl), HTσ(ρ = {0, ..., 0,−1, ...,−1}
• f an eigenform of weight k ≥ 1 ,then the associated Galois representations has

Hodge Tate weights {0, k − 1}.
• If ρ has finite image then all Hodge Tate weights are 0.

Remark 12.4. For ρ potentially semistable we obtain WD(ρ), {HTσ(ρ)}. A natural
question to ask then is can we recover ρ from this associated data, and what is the
image of this functor.

It turns out ρ can be recovered and the image of this functor corresponds to data
which admits an admissible filtration.

Theorem 12.5. 1) ∃! p-torsion free reduced quotient R�ρ,χ,{Hσ},K′sst(cris) of R�ρ,χ such

that for a closed geometric point x of R�ρ,χ[1/p] factors through the quotient if and only
if HTσ(ρx) = Hσ and ρx|G′K is semistable (cristalline).

2) Spec(R�ρ,χ,{Hσ},K′sst(cris)) is equidimensional of dimension =n2 + [K : Qp](n(n −
1)/2. and the generic fibre is generically smooth

13. Lecture 13

D central simple (division) algebra /K, K/Qp finite [D : K] = n2

The basic outline of the Jacquet Langlands correspondence is that there should be
a functor taking irreducible admissible representations of D× to irreducible admissible
representations of GLn(K). The Local Langlands correspondence then states that this
last set should be in 1 − 1 correspondence with n dimensional frobenius semisimple
Weil-Deligne representations of WK . We will discuss these two topics today as well as
touching on the Global Langlands correspondence.

Definition 13.1. A locally profinite group Γ is a topological group where every open
neighborhood of 1 ∈ Γ contains open compact subgroups.

Proposition 13.2. Locally profinite ⇔ locally compact and totally disconnected.

Proof. cf. profinite ⇔ compact and totally disconnected. �

Example 13.3. Local: GLn(K), D×, GLn(OK),O×D, (OD ⊂ D maximal order), or the
upper triangular Borel subgroup of GL2(K).

Global: GLn(Ẑ), GLn(A∞)

Our conventions will be that all representations are on complex vector spaces. In
fact we can take any algebraically closed field of characteristic 0

Definition 13.4. (π, V ) a representation of Γ means a vector space V/C (possible
infinite dimensional, and

π : Γ→ GLC(V )
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a homomorphism.
Vsm := {v ∈ V : stab(v) ⊂ Γ open}, i.e. the set of v ∈ V such that γ 7→ π(γ)v is

continuous.
We say V is
1) smooth if V = Vsm
2) admissible if for all compact open U ⊂ Γ we have dimV U <∞

Define also V ∗ = HomC(V,C) and equip it with the action of Γ given by

(π∗(γ)f)(v) = f(π(γ−1)v)

Definition 13.5. The smooth dual representation of a smooth representation (π, V )
is (π∨, V ∨) := (π∗, (V ∗)sm).

Fact: (π, V ) is admissible ⇔ (π∨∨, V ∨∨) ∼= (π, V )
(π, V ) 7→ (π∨, V ∨) is an exact functor.

Definition 13.6. C∞c (Γ) := {smooth compactly supported functions Γ→ C}
A left right invariant Haar measure is a C-linear functional

µ : C∞c (Γ)→ C

denoted

f 7→ µ(f) =

∫
Γ

fµ =

∫
Γ

f(γ)dµ

such that
∫

Γ
f(γ)dµ =

∫
Γ
f(γδ)dµγ =

∫
f(δγ)dµγ

Conceretely if we write

f =
r∑
i=1

ci1Ui

where ci ∈ C and Ui ⊂ Γ are compact open subsets. Then
∫

Γ
f(γ)dµ =

∑r
i=1 ciµ(1Ui) =∑r

i=1 civol(Ui)
Then we define the Hecke algebra to be

H(Γ) := C∞c (Γ)

with the product given by convolution:

(f ∗ g)(γ) :=

∫
Γ

f(δ)g(δ−1γ)dµ

This turn H(Γ) into an associative algebra, but in general it is not unital nor com-
mutative (unless Γ is abelian).

We say Γ is unimodular if ∃ a bi-invariant Haar measure, which if it exists is neces-
sarily unique up to scalar. Assume for now such a measure exists.
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Variant: H(Γ/U) = C∞c (U\Γ/U) consisting of the smooth compactly supported
functions which are bi-invariant under the compact open subgroup U .

For (π, V ) a smooth representation and f ∈ H(Γ) define π(f) ∈ EndC(V ) by

π(f)v =

∫
Γ

f(γ)π(γ)vdµ

if U ⊂ stab(v) and f is right U -invariant, this equals

=
∑
γ∈Γ/U

f(γ)(π(γ)v)µ(U)

Lemma 13.7. π(f ∗ g) = π(f)π(g)

Proof.

π(f ∗ g)(v) =

∫
Γ

f ∗ g(γ)π(γ)vdµγ

=

∫
Γ

(∫
Γ

f(δ)g(δ−1γ)dµδ

)
π(γ)vdµγ

Writing α = δ−1γ and changing the order of integration, we obtain:

=

∫
Γ

(∫
Γ

f(δ)g(α)π(δα)vdµα

)
dµδ

=

∫
Γ

f(δ)π(δ)π(g)vdµδ

= π(f)π(g)v

�

It follows that π gives a homomorphism H(Γ) → EndC(V ). In fact this extends to
a functor from smooth representations of Γ to H(Γ) modules.

Lemma 13.8. The functor constructed above is fully faithful

Proof. �

If f is left U -invariant, then π(f)v ∈ V U because

(π(u)(π(f)v) =

∫
Γ

f(γ)π(uγ)vdµ =

∫
Γ

f(u−1γ)π(γ)vdµ = π(f)v

Consequently: V U is H(Γ/U)-module
(π, V ) admissible implies dim(im(π(f)) < ∞ since any f is bi-invariant under a

small enough open compact subgroup U , in particular the trace of π(f) is well defined.
We have there is an equivalence of categories between smooth representations (π, V )

and ”smooth” H(Γ)-modules. Therefore in the theory of smooth admissible represen-
tations the Hecke algebra G(Γ) plays the role of the group algebra C[Γ].
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13.1. Representation theory of GLn(K). Now we specialize to the case Γ = GLn(K)
where K/Qp finite. Then GLn(K) is unimodular, and Schur’s Lemma holds, i.e. for
(π, V ) is irreducible admissible EndC ∼= C. To prove this, one uses the fact that
GLn(K)/U is countable for any open compact subgroup U . This allows us to define
the central character of (π, V ), ωπ : K× → C× given by

π(z) ∈ End(π, V ) ∼= C
Harish-Chandra proved that there exists a character Θπ : GLn(K)reg → C which is

locally constant and characterized by

tr(π(f)) =

∫
GLn(K)reg

Θπ(γ)f(γ)dµ

Here GLn(K)reg is the subset of regular semi simple elements. Some fundamental
problems in the subject are given below:

1) Construct and classify irreducible representations. We have the following coarse
classification:

{ irred. adm. } ⊃ { square int. } ⊃ { supercuspidal}
2) Relate the irreducible representations of G(K) and G′(K) where G ⊂ G′ or

G×G′ ⊂ H
Langlands functorialty, (”L-morphism” LG→ LG′)
Jacquet Langlands/ base change
3) Classify by Galois data (Local Langlands)

14. Lecture 14

Recall that we were studying the representation theory of GLn(K) for K/Qp finite.

14.1. Parabolic induction. r ≥ 1. n = (n1, ..., nr) such that
∑
ni = n

Let Pn ⊂ GLn be the block upper triangular parabolic subgroup whose blocks are
of size n1, .., nr. This contains the Levi subgroup Mn consisting of block diagonal
matrices of size n1, ..., nr, and define Nn to be the unipotent radical of Pn, this gives a
decomposition Pn = Nn nMn.
Pn has the modulus character δ(n) : Pn → R>0 modulus character given by

g 7→ |det(Ad(g)|Lie(Nn))|K
Example 14.1. n = 2, n = (1, 1)

Let g =

(
a b
0 d

)
, then

(
0 1
0 0

)
is a basis of Lie(Nn), and so since(

a b
0 d

)(
0 1
0 0

)(
a−1 −b/da
0 d−1

)
=

(
0 a/d
0 0

)
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Thus δ(d) = |a/d|

We now construct the parabolic induction functor which takes smooth representa-
tions of Mn to smooth representations of GLn(K), denoted by

(πn,Vn) 7→ (n− ind
GLn(K)
Pn(K) , V )

To construct n− ind
GLn(K)
Pn(K) , V ), we inflate πn from Mn to Pn, twist by δ

1/2
n and finally

induce the representation up to GLn(K).
Explicitly we have

V = {φ : GLn(K)→ Vn|φ(mng) = δ1/2
n (m)πn(m)φ(g),m ∈Mn, n ∈ Nn, g ∈ GLn(K)}

And the action by GLn(K) is given by right translation:

gφ(h) = φ(hg)

Fact: 1) n− ind is an exact functor (it has an exact left adjoint, the Jacquet module
functor)

2) πn finite length ⇒ n− indπn is also finite length.

Definition 14.2. πi ∈ Irradm(GLni(K)), i = 1, ..., r. Set πn := π1 ⊗ ... ⊗ πr ∈
Irradm(Mn(K)).

Then define

π1 × ...× πr := n− indGLnPn
πn

which is a finite length admissible representation of GLn(K).

Fact: JH(π1, ..., πr) = JH(πσ(1)×, ...,×πσ(r)) as a multi-set, where σ ∈ Sr.

Example 14.3. n = 2, n = (1, 1). π1 = |.|−1/2, π2 = |.|1/2, where |.| : K× → R×>0 is
the absolute value.

Then

π1 × π2 = {φ : GL2(K)→ C|φ(

(
a b
0 d

)
g) = δ

(
a b
0 d

)1/2

|a|−1/2|d|1/2φ(g)}

= {φ : GL2(K)→ C|φ is left invariant underP(1,1)}
We have the exact sequence

0 > {constant fns.} > π1 × π2 > Sp2(|.|−1/2) > 0

Can twist by any smooth character χ : K× → C× to get

0 > χ ◦ det > |.|1/2χ× |.|1/2χ > Sp2(χ|.|−1/2) > 0

Dualizing, |.|1/2χ× |.|−1/2χ has length 2 and the 1-dimensional quotient χ ◦ det



48 RONG ZHOU

14.2. Discrete series and supercuspidals.

Definition 14.4. (π, V ) ∈ Irradm(GLn(K)), V ∨ its smooth dual. A matrix coefficient
φv,f : GLn(K)→ C for v ∈ V, f ∈ V ∨ is defined to be the function φv,f (g) = f(π(g)v).
One can check that φv,f (zg) = ωπ(z)φ(g), z ∈ K×.

Definition 14.5. (π, V ) is supercuspidal if all matrix coefficients φv,f have compact
support mod K× and (π, V ) is square integrable (discrete series) if every φv,f is ”l2

mod center:” ∫
GLn(K)/K×

|φv,f (g)ωπ(det(g))−1/n|2dµ <∞

Observe: supercuspidal implies discrete series, however the converse does not hold
unless n = 1.

Define Irrsc(GLn) ⊂ Irr2(GLn) ⊂ Irradm(GLn)

Proposition 14.6. 1) π ∈ Irrsc(GLm),m, s ≥ 1, |det| : GLm(K)→ K× → C×
Then

π × π|det| × ...× π|det|s−1

has a unique irreducible quotient, which is a discrete series of GLms(K), we write
Sps(m) for this representation.

14.3. Langlands classification. For π ∈ Irr2(GLn), the modulus of its central char-
acter |ωπ(.)| is of the form |.|−aπnK for a unique real number aπ ∈ R. R×>0 valued
character on K×/O×K ∼= Z

Proposition 14.7. πi ∈ Irr2(GLni)i = 1, ..., r, aπ1 ≤ ... ≤ aπr . Then ∃! irreducible
quotient of π1 × ...× πr, which is called the Langlands quotient.

Remark 14.8. Without the condition aπ1 ≤ ... ≤ aπr , we must order πi suitably.

Definition 14.9. Write π1 � ...� πr for this unique quotient.

Fact: It’s well defined (if aπ,i = aπ,i+1 we can swap πi, πi+1)

Proposition 14.10. Irradm(GLn) is in 1-1 correspondence with

{(r, {πi}ri=1|r ≥ 1, πi ∈ Irr2(GLni),
∑

ni = n}

The correspondence is given by sending (r, {πi}) to �ri=1πi

Fact: (�πi)∨ = �(π∨i ) and � is associative

Example 14.11.

0 > χ ◦ det > χ|.|−1/2 × χ|.|1/2 > Sp2(χ|.|−1/2) > 0
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aχ|.|−1/2 = 1/2, aχ|.|1/2 = −1/2.

χ|.|1/2 × χ|.|−1/2 → χ ◦ det = χ|.|1/2 � χ|.|−1/2

14.4. Local Langlands Correspondences.

Definition 14.12. A Weil-Deligne representation is Frobenius semi-simple if ∀ lift of
(geometric) Frobenius φ, r(φ) is semi simple. (WK → WK/IK ∼= Z→ GL(V ))

Write
Repirrn (WDK) ⊂ Repindecn (WDK) ⊂ RepFssn (WDK)

Recall that Repindecn (WDK) is in 1-1 correspondence with

{(s, ρ) : s ≥ 1, s|n, ρ ∈ Repn/s(WDK)}
The correspondence being given by

(s, ρ) 7→ Sps(ρ) = (ρ⊕ ...⊕ ρ|.|s−1, N)

where N is the matrix with 1’s on the upper diagonal and 0’s elsewhere.
Then RepFss(WDK) is in 1-1 correspondence with

{(r, {ρi})|r ≥ 1, ρi ∈ Repindecni
(WDK),

∑
ni = n}

15. Lecture 15

Recall we were discussing the local Langlands correspondences, which relates smooth
admissible representations ofGLn(K) and Weil Deligne representations. More precisely
we have the following theorem.

Theorem 15.1. (Harris-Taylor, Henniart, Scholze) Let K/Qp be a finite extension.
Then ∃! bijection

recnK : Irr(GLn(K))→ Rep(WDK)Fss

such that rec1
K comes from local class field theory. i.e. for χ : K× → C×, rec1

K(χ) is
given by composition with the reciprocity map ArtK : WK → W ab

K → K×.
2) recnK preserves L and ε factors in pairs:

L(s, π1 × π2) = L(s, ρ1 ⊗ ρ2)

ε(s, π1 × π2) = ε(s, ρ1 ⊗ ρ2)

Fact: Further properties of recnK :
3) It preserves conductors
4) If π corresponds to ρ then
π∨ corresponds to ρ∨

The central character ωπ corresponds to detρ under rec1
K

(Compatibility with twisting)π ⊗ (χ ◦ det) corresponds to ρ⊗ rec1
K(χ)
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5) If πi and ρi correspond under recK , then π1 � π2 corresponds to ρ1 ⊕ ρ2

If π ∈ Irrsc(GLn(K)) corresponds to ρ, then Sps(π) corresponds to Sps(ρ) for all
s ≥ 1.

In fact,

Irr(GLn(K)) > RepFssn (WDK)

Irr2(GLn(K)) > Repindecn (WDK)

Irrsc(GLn(K)) > Repirrn (WDK)

The properties imply that that once we establish the correspondence Irrsc ↔ Repirr

satisfying 1) and 2), then we get the entire local Langlands correspondence once we
have checked 1) and 2) for all pairs. (Note that for any Weil Deligne representation
(r,N), kerN is a WK invariant subspace, if (r,N) is irreducible then N must be
0, so that supercuspidal representations should correspond to irreducible Weil group
representations).

15.1. The Satake Isomorphism. Let B = P (1, ..., 1) be the standard Borel subgroup
of upper triangular matrices of GLn, T the maximal torus of diagonal matrices and N
the unipotent radical of B.

We have the following isomorphism:

H(T (K)/T (OK)) ∼= C[x±1 , ..., x
±
n ]

which takes the characteristic function of diag($a1 , ..., $an)T (OK) to xa11 ....x
an
n . (Note

we are normalizing the Haar measure so that T (OK) = 1).
Fix also a Haar measure on GLn(K) such that GLn(OK) = 1

Definition 15.2. The Satake Transform is the map

S : Hur(GLn(K)) := H(GLn(OK)\GLn(K)/GLn(OK))→ H(T (K)/T (OK)) ∼= C[x±i ]

The map is given by f 7→ (t 7→ δ
1/2
B (t)

∫
N
f(tn)µn)

Theorem 15.3. S : Hur(GLn(K)) ∼= C[x±1 , ..., x
±
n ]Sn

Ti = qi(n−i)trΛidiag(x1, ..., xn), then the algebra on the right is isomorphic to C[T1, ..., Tn−1, T
±
n ]

and the isomorphism is given by:
S(1GLn(OK)diag($Ii,In−i)GLn(OK)) = Ti

See [4] Exercise 4.7 for a special case.

15.2. Unramified Local Langlands.

Definition 15.4. π ∈ Irr(GLn(K)) is unramified if πGLn(OK) 6= 0
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Observe π unramified implies dimπGLn(OK) = 1. Indeed π irreducible implies πGLn(OK) 6=
0 is irreducible as anHur module, but sinceHur is commutative, we have dimπGLn(OK) =
1.
Hur acts on πGLn(OK), since the latter space is isomorphic to C, we obtain a map

Sπ : Hur → End(πGLn(OK)) = C, such a map is called a Satake parameter.
Alternatively Sπ ∈MaxSpecHur = (C×)n/Sn

Remark 15.5. Sπ is determined Sπ(Ti), i = 1, ..., n.

Proposition 15.6. (Unramified Local Langlands) recnK induces a bijection between
Irrur(GLn(K)) and Repurn (WDK)Fss making the following diagram commute:

Irrur(GLn(K)) > Repurn (WDK)Fss

S 7→ �iχ(si) S 7→ ⊕σ(si)

(C×)n/Sn

><

where S = {s1, ..., sn} and χ(si) and σ(si) correspond via rec1
K

Note that in this correspondence the characteristic polynomial of Frobenius on ρ is
equal to the Hecke polynomial of π =

∏
(x− si)

Proof. �χ(si) is unramified, and irreducible if and only if si 6= q±sj,∀i 6= j, π 7→
πGLn(OK)

Using the Iwasawa decomposition, GLn(K) = B(K)GLn(OK) implies χ(s1) × ... ×
χ(sn)GLn(OK) is 1-dimensional =⇒ ∃! irreducible subquotient which is unramified and
identify as �χ(si) by induction. �

Irrur(GLn(K))→ {irred.Hur −mod}, π 7→ πGLn(OK) is a bijection.

15.3. Local Base Change. Let K ′/K/Qp be finite extensions. Fact: If K ′/Qp is
Galois, then K ′/K is solvable.

Corollary 15.7 (of Local Langlands). The following diagram commutes

Irr(GLn(K ′))
recK′> Rep(WD′K)Fss

Irr(GLn(K))

∧

recK
> Rep(WDK)Fss

∧

where the vertical maps are given by base change on the left and restriction on the
right.

n = 1 χ : K× → C× base changes to χ ◦NK′/K : K ′× → C×
n = 2 Langlands
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n > 2 Arthur-Clozel [1] ,the main tool for these proofs is the trace formula.
We actually need an alternative characterization of Base Change in terms of trace

characters. (Θπ and its twisted version)
When the extension K ′/K is cyclic, we have the following properties of the local

base change functor which follows from the properties of the Local Langlands corre-
spondence.

Proposition 15.8. Let Gal(K ′/K) ∼= 〈σ〉 and let BC denote the base change map

Irradm(GLn(K))→ GLn(K ′)

i) A representation π lies in the image of BC if and only if π ∼= π ◦σ, where π ◦σ is
the representation of GLn(K ′) with same underlying space as π, but with g acting via
π(σ(g))

ii) BC(π1) ∼= BC(π2) if and only if π1
∼= π2⊗χ◦det, for some χ : K× → C× smooth

character which factors through K×/NK′/K(K ′×)
iii) BC(π) is supercuspidal if and only if π is supercuspidal and π � π ◦ χ det for

some non-trivial χ as in part ii)
iv) ωBC(π) = ωπ ◦NK′/K

Proof. i)[TO DO]
ii) Let ρ1, ρ2 correspond to π1, π2 under recn, then ρ1, ρ2 have then BC(π1) ∼= BC(π2)

if and only if ρ1|WK′
∼= ρ2|WK′

. If π1
∼= π2 ⊗ χ ◦ det as in the statement, then by the

compatibility with twisting, property, we have ρ1
∼= ρ2 ⊗ rec1(χ) and hence their

restrictions to WK′ are isomorphic.
Conversely suppose BC(π1) = BC(π2), fix an isomorphism ρ1|WK′

∼= ρ2|WK′
. It

suffices to show that ρ1(σ)ρ2(σ)−1 is a scalar, since ρ
iii) Let recK(π) = (r,N), then recK′(BC(π)) = (r|WK′

, N) := (r′, N). Then π (resp.
BC(π)) is irreducible if and only if N = 0 and r is irreducible (resp. N = 0 and r′

is irreducible). Thus we need to show r′ is irreducible if and only if r is irreducible
and π 6= π ⊗ χ ◦ det for some χ in the statement. This last condition is equivalent to
r 6= r ⊗ χ for χ : WK → C× a character which is trivial on WK′ .

Suppose r′ is irreducible, then r is irreducible. Let V be the underlying space of r,
then suppose ϕ : r ∼= χ is an isomorphism. Then since χ is trivial on WK′ ϕ gives an
isomorphism r′ ∼= r′ which by Schur’s Lemma is a scalar. Then clearly ϕ : r ∼= χ can
only be an isomorphism if χ is trivial.

Conversely suppose r′ is irreducible. Let W ⊂ V be an irreducible subrepresentation
and let σ ∈ WK be a lift of the generator of Gal(K ′/K). Then σ(W ) is also an
irreducible representation of W ′

K and we have

V = W ⊕ σ(W )⊕ ...⊕ σn−1(W )
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where n divvies the order of Gal(K ′/K). Choose χ a non-trivial character of Gal(K ′/K)
which is trivial on σn. Now the map V → V given by

v0 + ...+ vn−1 7→ v0 + χ(σ)v0 + ...+ χ(σn−1)vn−1

where vi ∈ σi(W ) gives an isomorphism from r to r ⊗ χ.
iv) This follows immediately from property 4) of the Local Langlands correspon-

dences, i.e. that the central character ωπ corresponds to det(rec1(π)) and the explicit
description of the the base change map in the case n = 1. �

Remark 15.9. 1) There exists an archimedean analogue which was proved much earlier.
2) There exists a global analogue.
3) Similarly there exists automorphic induction if we replace resWK

WK′
by indWK

WK′
.

16. Lecture 16

Last time we talked about Local Base change, see PS8 for its properties.

16.1. Local Jacquet Langlands. Let D/K be a central division algebra with

[D : K] = n2

Consider the composition

D > D ⊗K K ∼= Mn(K)
det
> K

which we denote by ND the reduced norm, its image actually lies in K ⊂ K.
There exists a map which takes

D×reg/ ∼↪→ GLn(K)reg/ ∼

δ 7→ γ

such that char(δ) = char(γ) where regular means the eigenvalues are distinct and ∼ is
the equivalence given by conjugation. Note that for δ ∈ D, we have char(δ) ∈ K[X] is
of degree n.

The image of this map is

{γ s.t. char(γ) is irred /K}
we call these elliptic elements.

Theorem 16.1 (Jacquet-Langlands, Rogawski, Deligne-Kazhdan-Vigneras). There ex-
ists a unique 1-1 map

JL : Irr(D×) ∼= Irr2(GLn(K))

such that ∀δ, γ as above, ΘπD(δ) = (−1)n−1ΘJL(πD)(γ)

(Recall: Θπ was defined so that trπ(f) =
∫
GLn(K)reg

Θπ(g)f(g)dµg ∀f ∈ H(GLn(K)))
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Remark 16.2. When n = 2, JL(χ ◦ ND) = Sp2(|χ|.|−1/2), for χ : K× → C× a smooth
character. dim(πD) > 1⇔ JL(πD) is supercuspidal.

Fact: Every πD ∈ Irr(D×) is finite dimensional, this is because D×/K× is compact.

Example 16.3. (n = 2, χ = 1), suppose δ maps to γ ∈ GL2(K), char(γ) irreducible
/K.

0 > 1 > |.|−1/2 × |.|1/2 > Sp2(|.|−1/2) > 0

Remark 16.4. There exists a non-archimendean analogue, Irr(D×) ∼= Irr2(GL2(R)),
here D are the Hamiltonians over R

16.2. Global preliminaries. Let F be a finite extension of Q and S a finite set of
places of F , S∞ the infinite places.

Define

FS :=
∏
v∈S

Fv,OF,S =
∏
v∈S

OFv

ÔSF :=
∏

v/∈S∪S∞

OFv

For example, when S = ∅, ÔF is the profinite completion of OF

ASF :=
′∏

v/∈S

Fv = lim
→T fin.T∩S=∅

FT × ÔS∪TF

When (S = ∅), this is just the usual adeles AF .
Write A∞F = AS∞F , F∞ = FS∞
For D/F a central simple algebra /F , [D : F ] = n2, let

S(D) := {v places of F |D ⊗F Fv 6= Mn(F )}
it is a finite set.

Fact: (n = 2) Giving D is equivalent to giving S(D) s.t. S(D) is even., we view
G := D× = GL1(D) as an algebraic space over F , i.e. for all F algebras R, G(R) =
(D ⊗F R)×

Note: GD in [4] is ResF/QG.

G(ASF ) =
∏′

v/∈S G(Fv) = lim→T fin.T∩S=∅G(FT )×G(ÔS∪TF ).
Since G(ASF ) (with S ⊃ S∞) is a locally profinite group, admissible/ smooth repre-

sentations make sense.
Given {πv ∈ Irr(G(Fv)}v/∈S such that πv is unramified almost everywhere, define

Sram := {v /∈ S ∪ S(D)|πv ramified}
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again this is a finite set. Put σv := π
G(OFv )
v , a 1 dimensional space for v /∈ Sram.

Define
′⊗

v/∈S

πv := lim
→Tfin.T∩S=∅,T⊃Sram∪S(D)

(πT ⊗C σT∪S)

where πD := ⊗v∈Tπv, σT∪S = ⊗v/∈T∪Sσv (here we usually choose a basis 0 6= wv ∈ σv
to construct this tensor product). This space is equipped with an action G(ASF ).

The transition maps are given by πT ⊗ σT∪S → πT ′ ⊗ σT∪S for T ⊂ T ′ are induced
by σT ′\T ↪→ πT ′\T .

Fact: ([Flath] 1979) irradm(G(ASF )) are in 1-1 correspondence with the set of πv ∈
Irradm(G(Fv)) which are unramfieid almost everywhere, the correspondence being
given by {πv} 7→ ⊗′πv. (In fact this stays true without assuming S ⊃ S∞).

A key question that one could ask now is which representations on the left hand side
are automoprhic?

16.3. Automorphic forms on Quaternion algebras. Loosely speaking, the space
of automorphic forms on G(AF ) is equipped with an action of G(AF ) by right trans-
lations, and automorphic representations are the irreducible representations appearing
in this space.

Assume now that n = 2, F is totally real, and G = GL1(D)/F as before, and that
S(D) ⊃ S∞

Definition 16.5. 1)

SD := {G(F )\G(AF )→ C, smooth}

= lim
→U⊂G(A∞F ) open compact

{G(F )\G(AF )/U → C| smooth in real variables}

SD is acted on by G(AF ) by right translation.
2)Vector valued forms. Let (τ,W ) ∈ Irr(G(F∞)), W = ⊗v∈S∞Wv is a finite dimen-

sional space acted on by G(R) ∼= H×, the Hamiltonians.

SD,W := HomG(F∞)(W
∨,SD)

= {G(F )\G(AF )→ W |φ(gu∞) = τ(u∞)−1φ(g), u∞ ∈ G(F∞)}
The second equality is given by ϕ 7→ (g 7→ (w∨ 7→ ϕ(w∨)(g)))

Fact: G(F )\G(A∞F ) is compact, this follows from the fact that S(D) ⊃ S∞. This im-
plies that ∀U ⊂ G(A∞F ), G(F )\G(A∞F )/U is finite, and hence that SD,W = lim→U SUD,W
is admissible as a G(A∞F ) representation. It turns out that SD,W is a semi simple G(A∞F )
representations.
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Definition 16.6. A regular algebraic automorphic representation of G(A∞F ) is an ir-
reducible direct summant of SD,W for W of the form.

(τ,W ) =
⊗
v∈S∞

(Symkv−2(C2)⊗ det(C2)ηv)

such that kv, ηv ∈ Z, kv ≥ 2, and kv + 2ηv − 1 is same for all v ∈ S∞.
We say (k, η) := (kv, ηv)v∈S∞ is the weight. SD,k,η = SD,W

Remark 16.7. There exists a similar more complicated definition of the cusp forms
SD,k,η ⊂ MD,k,η without the assumption that S(D) ⊃ S∞. (For S(D) = ∅, we obtain
GL2/F ). See [4] for more details.

17. Lecture 17

Last time we introduced automorphic forms on Quaternion algebras. In the following
we provide classification of such.

For D/F a quaternion central simple algebra over a totally real field we let G =
GL1(D)/F . Recall S(D) was the set of places of F where D ramifies and we defined

(τ, wk,η) :
⊗
v∈S∞

(Symkv−2(C2)⊗ det(C2)ηv), kv ≥ 2, ηv ∈ Z

SD,k,η := HomG(F∞)(W
∨,SD)

where SD = {φ : G(F )\G(AF )→ C|φ smooth}. Then SD is equipped with an actions
of G(AF ) and this turns SD,k,η into a semi simple admissible G(A∞F ) representation.
We also made the following definition

Definition 17.1. For π ⊂ SD,k,η is regular algebraic if kv + 2ηv − 1 is independent of
v ∈ S∞

In fact a better definition would be to specify that kv mod 2 is independent of v,
these are in fact equivalent.

(Sketch of proof) Let us assume S(D) ⊃ S∞ for simplicity. Look at central character
χ of π ⊗W∨ (this is an automorphic representation of Z(AF ))

χ =
∏
v

χv : A×F/F
× → C×

Weil proved that χ = |.|−wA×F .finite character. Looking at χv for v|∞, we have w =

kv + 2ηv − 1,∀v|∞.
Let us see why this seemingly mysterious definition is actually a generalization of

the classical space of modular forms
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Example 17.2. Let F = Q, S(D) = ∅, kv = k ≥ 2, ηv = 0. Define the compact open
subgroup of GL2(A∞)

U1(N) = {g ∈ GL2(Ẑ)|g =

(
∗ ∗
0 1

)
mod N}

Let GL2(Q)+ denote the set of matrices in GL2(Q) with positive determinant, we first
show that GL2(Q)+ ∩ U1(N) = Γ1(N). The inclusion ”⊃” is clear.

For the reverse inclusion, suppose γ ∈ GL2(Q)+∩U1(N). Then since Ẑ∩Q = {±1},
we have det(γ) = 1, and hence γ ∈ SL2(Z) and so a fortiori det(γ) ≡ 1 mod N , thus

γ ≡
(

1 ∗
0 1

)
mod N

so that γ ∈ Γ1(N).

Lemma 17.3. GL2(A) = GL2(Q)U1(N)GL2(R)+

Proof. Since det(GL2(Q)U1(N)GL2(R)+) = Q×.Ẑ×.R>0 = A×, it follows that given
g ∈ GL2(A) we have find h ∈ GL2(Q)U1(N)GL2(R)+ such that det(h) = g, thus wlog.
we may assume det(g) = 1, ∈ SL2(A). By the strong approximation theorem for SL2,
we have SL2(Q) is dense in SL2(A∞), thus g can be modified to lie in SL2(R), and
hence g lies in GL2(A) = GL2(Q)U1(N)GL2(R)+. �

It now follows that S
U1(N)
D,k,η can be identified with a space of functions

Γ1(N)\GL2(R)+ → C
satisfying φ(gu∞) = j(u∞, i)

−kφ(g) for all u ∈ R×SO2(R).
Given a ϕ : GL2(Q)\GL2(A)→ C, we define φ : Γ1(N)\GL2(R)+ setting

φ(h) = ϕ(1, h) det(h)−1 where (1, h) ∈ GL2(A) = GL2(A∞)×GL2(R)+

For u ∈ R×SO2(R) we have

φ(gu) = ϕ(1, hu) det(hu)−1

= ϕ(1, h) deth−1j(u, i)−k

= φ(g)j(u, i)−k

To go in the other direction, suppose we have a φ as above. Let (g, h) ∈ GL2(A),
then from the above there exists g1 ∈ GL2(Q), g2 ∈ U1(N) such g = g1g2. We then set

ϕ(g, h) = φ(g−1
1 h) det(gh−1)

One checks that is well defined and satisfies the correct transformation property.
Since the stabilizer of i in GL2(R)+ is R×SO2(R), given φ as above we may define

a function
f : H → C
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by setting
hi 7→ φ(h)j(h, i)k

That this is well defined follows from the cocycle condition j(gu, i) = j(u, i)j(h, ui).
Then for g ∈ Γ1(N), we have

f(ghi) = φ(gh)j(gh, i)k = φ(h)j(g, hi)kj(h, i) = f(hi)j(g, hi)

but this is just the usual transformation formula for modular forms of level Γ1(N),
the conditions of holomorphicity and vanishing at infinity follow from the other two
conditions. The inverse construction is then clear.

Remark 17.4. The general definition of regular algebraic representations is due to Clozel
and Buzzard-Gee [5]

If kv mod 2 is not the same, we still have SD,k,η 6= 0 if we allows ηv ∈ 1
2
Z. Under the

Jacquet Langlands correspondence, these correspond to mixed parity Hilbert modular
forms.

Ara(G) ) Aracusp(G) := {πirred. ⊂ SD,k,η, kvsame parity}
For G = GL2, Aracusp(G) are just the Hilbert cusp new forms with weights of the same

parity.
We now briefly discuss the Multiplicity one Theorems. These comprise of the fol-

lowing statements
1) (Weak) For given k, η,D, π ⊂ SD,k,η has multiplicity one i.e. SD,k,η decomposes

as
π ⊕ (

⊕
6=π

irred.)

2) (Strong) Weak + if (π, k, η), (π, k′, η′) ∈ Aracusp(G) such that πS ∼= πS for a finite
set of finite places, then π ∼= π′, k = k′, η = η′

Remark 17.5. This is true for G = GLn over any fixed number field (or any inner form
of GL2).

17.1. Global Jacquet Langlands. n = 2, G = D× = GL1(D) for D a quaternion
algebra over a totally real field F .

Theorem 17.6 (Jacquet-Langlands, Badulescu). ∃! map

JL : Ara(D×) ↪→ Ara(GL2)

πD 7→ π, k, η 7→ k, η

Such that
1) dimπD = 1, πD,v = χv ◦ ND 7→ πv = χv ◦ det, note that πv 6= JL(πD,v) =

Sp2(χ|.|−1/2), this last representation is a discrete series and hence infinite dimensional.
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2) dimπD > 1 (Actually ∞-dimensional.)
πv = JL(πD,v), JL is the local Jacquet Langlands functor.

Fact: When S(D) ⊂ S∞ then Ara(D×) ∼= Ara(GL2). (In general, the image of JL
is characterised by local obstructions).

17.2. Global base Change.

Remark 17.7. This is known for GLn over any number field F ′/F such that F ′/F is
solvable ([1] 89).

Theorem 17.8. (Cyclic base change) Let E/F be cyclic extension of prime degree with
Gal(E/F ) = 〈σ〉 and let δ be a generator of the dual abelian group Hom(Gal(E/F ),C×).
Let π be a cuspidal automorphic representation of GL2(A∞F ) of weight (k, η), then there
is a cuspidal automorphic representation BCE/F (π) of GL2(A∞E ) of weight (BCE/F (k), BCE/F (η))
such that

i) For all finite place v of E, we have recEv(BC(π)v) = recFv(πv|F )|WEv
so that by

the Cebotarev density theorem we have rλ(BC(π)) = rλ(π)|GE (see next section for
definition of rλ).

ii) BC(k)v = kv|F , BC(η)v = ηv|F
iii) BC(π) = BC(π′) if and only if π ∼= π′ ⊗ (δi ◦ ArtF ◦ det)
iv) A cuspidal automorphic automorphic representation of GL2(A∞E ) is in the image

of BC if and only if π = π ◦ σ.

17.3. Global Langlands Correspondence. F/Q finite and l a prime, fix an isomor-
phism i : Ql

∼= C
Conjecture: There exists a unique bijection

{cusp. aut. reps of GLn(AF ) algebraic at ∞} ↔ {GF → GLn(Ql)algebraic at l (de Rham at all v|l)}
such that if π ↔ r:
(Local global compatibility) recFv(πv ⊗ |det|

1−n
2 ) ∼= WD(r|GFv )Fss, ∀v -∞

For all v|∞ parameter (like kv, ηv) for πv ↔ HTi−1v(r|GFv ), where v : F → C ∼= Ql

Remark 17.9. π ↔ r is pinned down by LGC at almost all v by the strong multiplicity
one theorems and the Cebotarev density theorem.

Apply to varying l, i we get a compatible system.

Definition 17.10. Let F and L be number fields, S a finite set of places of F and n a
positive integer. By a weakly compatible system of n-dimensional l-adic representations
of GF defined over L and unramified outside S we mean a family of continuous Galois
representations

rλ : GF → GLn(Lλ)
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where λ runs over the finite places of L such that:
1) For all v a finite place of F with v /∈ S and all λ no dividing the residue character-

istic of l. The representation rλ|GKv is unramified, and the characteristic polynomial
of Frobv lies in L[X].

2) Each representation rλ is de Rham at any place v above the residue characteristic
of λ and in fact crystalline if v /∈ S.

3) For each embedding i : F → L the i-HT weights of rλ are independent of L.

Best know results: In the forward direction:
Harris-Lan-Taylor-Thorne, Scholze (They proved it for all n, π regular algebraic and

F a totally real field, however missing LGC at bad places)
In the reverse direction there are many forefronts, BLGGT, Calegari-Geraghty. We

focus on the case n = 2 F totally real.
→ today, ← next 3-4 classes

17.4. GLC for GL2/F .

Theorem 17.11. (Carayol, Wiles, Taylor, Blasius-Rogawski, T. Saito, Skinner) (π, k, η) ∈
Aracusp(GL2) There exists a CM field Lπ with Lπ ⊂ C and

{rλ(π) : GF → GL2(Lπ,λ})
λ a finite place of Lπ such that ∀i : Lπ,λ ∼= C extending Lπ ⊂ C

i)LGC: ∀v - ∞, recK(πv ⊗ | det |−1/2) ∼= WD(rπ(λ)|GFv )Fss. Consequently ∀v - l, πv
unramified ⇔ rπ(λ) is unramfied at v.

char(rλ(π)(Frobv)) = Heckepoly(Sπv | det |−1/2)

= X2 − qvTv(Sπv | det |−1/2)X + Sv(Sπv | det |−1/2)

= X2 − Tv(Sπv)X + qvSv(Sπv)

ii) char(rλ(π)(Frobv)) ∈ Lπ[X]
iii) For all v|l, rλ(π)|GFv is de Rham with τ -HT weights ητ , ητ + ki − 1, where

τ : F → Lπ ⊂ C
is an embedding lying over v. Moreover rλ(π)|GFv is crystalline if πv is unramified.

iv) For all v|∞ det(rλ(cv)) = −1 where cv is the class of complex conjugation, i.e.
rλ is ”Totally odd”

Definition 17.12. A representation ρ : GF → GL2(Ql) is modular (of weight (k, η) if
it is over the form i◦ rλ(π)) for some cuspidal automorphic representation π (of weight
(k, η) and where i : Lπ → Ql

Proposition 17.13. Let E/F be a finite solvable extension, then r : GF → GL2(Ql)
is modular if and only if r|GE is modular.
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Proof. An easy induction allows us to reduce to the case E/F is cyclic of prime degree.
One direction then follows immediately from the cyclic base change theorem, (Thm
16.9).

Suppose that r|GE is modular with r|GE ∼= i(rλ(π)) with i : Lπ → Ql. [TO DO] �

18. Lecture 18

18.1. Integral Theory of automorphic forms. The goal of this section is to develop
the theory from the previous lecture but with O coefficients (rather than C). We must
first fix a set of data with which to define these objects. Let D/F be a quaternion
algebra over a totally real field, G = GL1(D) and Z ⊂ G its center. Assume that
S(D) = S∞, so that [F : Q] is even, and Ara(D×) ∼= Aracusp(GL2(F )) via the Jacquet
Langlands correspondence. Let L be a finite extension of Ql sufficiently large so that it
contains the images of all embeddings F → L, O its ring of integers with uniformizer
λ and residue field F.

For v -∞, G(Fv) ∼= GL2(Fv), and fix a subgroupG(OFv) corresponding toGL2(OFv),
then G(A∞F ) ∼= GL2(A∞F )

Fix also the following data, which should be thought of as the data of a level.
• An isomorphism i : Ql

∼= C
• A weight (k, η) = ((kv), (ηv)) where w = kv + 2ηv − 1 is independent of v.
• S ⊂ {finite places of F ,v - l} a finite set of places.
• U =

∏
v-∞ Uv = US.U

S ⊂ G(A∞F ) an open compact subgroup, assume that US =∏
v/∈S∪S∞ GL2(OF ).

• A central character χ0 : A×F/F× → C× such that χ0 unramified outside S, and
χ0|(F×∞)0(z) = z1−w

Note as in [4] 2.41, this defines character χ0,i : (A∞F )×/F×(F×∞)0 → L
×

:

χ0,i(x) = i−1(
∏

τ :F→C

τ(x∞)1−w)χ0(x)
∏
τ→L

τ(xp)
1−w

Let Λ be a representation of GL2(OF,l) :=
∏

v|lGL2(OF,v) on a finite free O module.
In practice we will take Λ to be the representation

⊗τ :F→CSymkτ−2(O2)⊗ (∧2O2)ητ

where the action of GL2(OF,l) on the τ factor is given by i−1τ .

Definition 18.1. Let A be a finitely generated O module (eg. A = O,F), define

S(U,A) = Sk,η,χ0,i(U,A)

= {φ : G(F )\G(A∞F )→ Λ⊗O A|φ(guz) = χ0,i(z)u−1
l .φ(g)}
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where g ∈ G(A∞F ), u ∈ U, z ∈ Z(A∞F ), and u−1
l .φ is the image of φ under the action

of u−1
l , for ul ∈ GL2(OF,l) =

∏
v|lGL2(OFv), the l component of U . Note also that

G(F )\G(A∞F ) ∼= D×\GL2(A∞F ), so we can consider functions on this set.

Lemma 18.2. 0) S(U,O) is a finite free O-module.
1) S(U,O) ⊗O C ∼= SUk,η,χ0

, the U invariants of the space of complex automorphic
forms with central character χ0).

2) S(U,A) ∼= S(U,O)⊗O A
3) V ⊂ U open, S(U,A) ↪→ S(V,A)

Proof. For simplicity assume that Λ = O (trivial representation).
Fact:

|D×\GL2(A∞F )/UZ(A∞F )| <∞
There fore we may pick a finite set of representatives gi, i ∈ I of these double cosets
and we have

GL2(A∞F ) =
∐
i∈I

D×giUZ(A∞F )

0) S(U,A) ∼=
⊕

i∈I A, given by φ 7→ {φ(gi)}.
1) Is routine, 2), 3) are obvious.
For a general Λ, we must consider when gi = δgiuz, since in this case we have

φ(gi) = φ(δgiuz) = χ0,i(z)u−1
l φ(gi)

so that the image of the map φ 7→ {φ(gi) lies in
⊕

i∈I(Λ⊗O A)U.Z(A∞F )∩g−1
i D×gi)/F× . In

fact it easy to see that this map is actually an isomorphism so we obtain

S(U,A) ∼=
⊕
i∈I

(Λ⊗O A)(U.Z(A∞F )∩g−1
i D×gi)/F×

Denote the term in the exponent by Gi (it is a finite group since D× is discrete in
GD(A∞)). Since l ≥ 5, we have (|Gi|, l) = 1, indeed let g−1

i δgi ∈ Gi for some δ ∈ D×,
then δ = giug

−1
i z for some u ∈ U and z ∈ Z(A∞). Since det z = z2 (here we identify

Z(A∞) with A× via the diagonal embedding), we have δ2/ det δ ∈ D× ∩ giUg−1
i detU

the intersection of a discrete set and a compact set, hence is finite. Thus δ2/ det δ is a
root of unity in D×, however any element of D generates and extension of degree at
most 2 and since we have assumed [F (ζl) : F ] > 2 it must be a root unity of order
prime to l, hence ∃N prime to l such that δN ∈ F×, so that g−1

i δgi has order prime to
l. It follows that (Λ⊗O A)Gi = ΛGi ⊗O A. �

18.2. Global Hecke algebra. (note this is not equal to the double coset action of
H(G(A∞F )//U)).

Keep the notation from before, consider

T̃ := O[Tv, Sv|v /∈ S, v - l]→ End(S(U,O))
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the natural maps, (for v /∈ S, v - l, the representation is unramfied and this map sends
Sv and Tv to the usual coset operators).

Let TU denote the image of T̃.
Observe: TU acts faithfully on S(U,O), it is a finite free O-module, and a commu-

tative O algebra.

Lemma 18.3.
TU ⊗O C ∼=

∐
π⊂Sk,η,χ0

C

where (for v /∈ S, v - l) the map is given by

Tv 7→ Tv(sπv), Sv 7→ Sv(sπv), (sπv a Satake parameter)

Another way to define this is to notice that {TU → C} is in 1-1 correspondence with
{π on RHS}

Proof.

S(U,O)⊗O C ∼= SUk,η,χ0
∼=

⊕
π⊂Sk,η,χ0 ,π

U 6=0

πUSS ⊗ (
⊗

v/∈S,v-∞

ΠGL2(OFv )
v )

TU acts on both sides (on the right hand side via (Tv(sπv), Sv(sπv)) and the map is
equivariant for this action.

Thus the lemma follows by strong multiplicity one. �

TU is a finite free over the complete discrete valuation ring O, hence it is semi-local
and there is a decomposition

TU ∼=
∏

m⊂TU

TU,m

Fix a maximal ideal m, let’s construct Galois representations

ρm : GF → GL2(TU/m)

and if ρm is absolutely irreducible, a lift

ρm : GF → GL2(TU,m)

Step 1) ρmod, construct

ρmod : GF → GL2(TU ⊗O L) ∼=
∏
π

GL2(L)

by first starting with π on D×, then applying JL to obtain a representation on GL2,
and we can associate to this a Galois representation GF → GL2(L) with

trρπ(Frobv) = Tv(sπv)

det(ρπFrobv) = qvSv(sπv)
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.
Observe that for v /∈ S, v - l,

trρmod(Frobv) = Tv

detρmod(Frobv) = Svqv

because they are equal in
∏

π L (use previous lemma).

Step 2) ρm, choose a minimal prime p ( m ( TU and an injection TU/p ↪→ L ∼= C,
then from the Lemma we get a π.

Associate ρπ : GF → GL2(L) as above and taking its mod l reduction we obtain
ρπ : GF → GL2(F) (in fact this is realized over a finite extension of F).

We have

tr(ρπ) ∈ TU/p ⊂ OL ⇒ trρπ ∈ TU/m ⊂ F

As the Brauer group of a finite field is 0, ρπ can be conjugated to

ρm : GF → GL2(TU/m)

Step 3) ρmodm when ρm is absolutely irreducible. Localising at the ideal m we obtain

ρmodm : GF → GL2(TU,m ⊗ L) ∼=
∏
π

GL2(L)

where the product is over π whose associated Galois representation reduces to ρm.
Then we may conjugate ρmodm to have image in

∏
π GL2(OL). Upon further conjugation

we may conjugate ρmodm to lie in the subring of elements whose reductions modulo m
lies in TU/m.

We have the diagram:

GF
ρmodm> GL2(TU,m ⊗O OL)=

∏
π

GL2(OL)

GL2(TU/m)
∨ρm >

We have that:
• trρmodm ⊂ TU,m ⊂ R := TU,m ⊗O OL
• ρmodm has coefficients in R by (2).
• ρm is absolutely irreducible.
It then follows from Carayol’s Lemma (Lemma 6.9) that we may conjugate ρmodm to

lie in GL2(TU,m)
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19. Lecture 19

19.1. Automorphy lifting theorem. Let F/Q be a totally real field, recall we have
a map:

Aracusp(GL2/F )→ (L/Q, {r(λ) : GF → GL2(Lλ)|λ a fin. place of L})
π 7→ (Lπ, {rπ(λ)})

Although the Lπ is not unique, the rπ(λ) are unique up to ∼=.

Definition 19.1. A semisimple ρ : GF → GL2(Ql) is automorphic if ρ ∼= rπ(λ) (or
ρ ∼= χ1 ⊕ χ2, it’s automorphic by CFT)

A semisimple representation ρ : GF → GL2(Fl) is automorphic if ρ ∼= (rπ(λ)
mod l)ss

Ideally, the sort of statement we’d like to prove is the following.

Conjecture 19.2. Suppose ρ : GF → GL2(Ql) is unramified almost everywhere and
de Rham (potentially semistable at all v|l) with distinct Hodge Tate weights for all
i : F → Ql (this is known as the regular algebraic condition).

If (ρ mod l)ss is automorphic, then ρ is automorphic. (i.e. for ρ, ρ0 as above, ρ ≡ ρ0

mod l (up to ss.) and ρ0 automorphic, implies ρ automorphic)

Remark 19.3. In reality, to prove such a result, we will need several additional hy-
potheses.

Definition 19.4. Let ρ, ρ0 : GF → GL2(L) be two Galois representations.
det(ρ) = det ρ0 =: χ
ρ mod λ ≡ ρ0 mod λ =: ρ
(ρ, ρ0 : GF → GL2(O), well-defined up to GL2(O)-conjugacy).
For v -∞, say ρv ∼ ρ0,v (”ρv connects to ρ0,v) if ρv, ρ0,v belong to the same irreducible

component of SpecR�ρv ,χ[1/l] (note we can remove if L sufficiently large).

The main theorem that we will prove in the next few lectures will be the following.

Theorem 19.5. (Minimal ALT)
[F (ζl) : F ] > 2 (so that l ≥ 5). Let ρ, ρ0 : GF → GL2(L) be unramified out-

side S
∐
Tl, such that ρ0 is automorphic, ρ mod λ ∼= ρ0 mod λ =: ρ is absolutely

irreducible and we have:
•HT (ρ) = HT (ρ0) =: HT are distinct integers for all embeddings F → Ql

•ρ, ρ0 are cystalline, for all v|l
•ρv ∼ ρ0,v for all finite places v ∈ S ∪ Tl (this is why its called minimal)
Then ρ is automorphic.

Remark 19.6. ρ0 is automorphic implies det ρ0(cv) = −1, where cv is the conjugacy
class of complex conjugation.
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19.2. Proof of minimal ALT. Some reductions: By Proposition 17.13, we know
that automorphy can be proved after a finite solvable base change. Together with the
following fact from class field theory we may impose some additional assumptions.

Proposition 19.7. Let F be number field, and S a finite set of primes of K. For each
v ∈ S let Lv be a finite Galois extension of Fv, then there is a finite solvable extension
M such that for each place w of M above v, there is an isomorphism Lv ∼= Mw of Kv

algebras.

We may thus make the following assumption:
• [F : Q] even
• ρ is unramified outside l.
• For all primes v - p both ρ(IFv) and ρ0(IFv) are unipotent.
• If ρ or ρ0 are ramified at some place v - l, then ρ|GFv is trivial and #k(v) ≡ 1

mod l.
• det(ρ) = det(ρ0) =: χ
Let us briefly mention how some of the above assumptions can be realized. To

assume [F : Q] even, we replace F with a totally real quadratic extension.
Now let S be the finite set of primes not dividing l at which ρ or ρ0 is ramified. For

v ∈ S, let Lv = F
ker ρ

v and for v|∞, let Lv := F . Replacing F by M as in Proposition
19.7, we see that ρ is trivial at any place w|v. In particular the second condition and
the first part of the fourth condition is satisfied. To get the last part of condition 4, we
may take an unramified extension of degree ord#k(v) at each v ∈ S where the order
is #k(v) considered as an element of (O/λ)× and apply 19.7 again.

The third condition follows easily from the l-adic monodromy theorem (Proposition
4.3).

Our setup now is as follows. On the Galois side we let

Tl := {v|l}

Tr := {v -∞, l : ρ or ρ0 is ramified at v}

Set T = Tl
∐
Tr.

Consider the global deformation problem (F, T, ρ, χ, {Dv}v∈T ), i.e. deformations
which are unramfied outside T with fixed determinant χ and satisfying the local de-
formation conditions Dv, where for v ∈ Tr, Dv is the set of all lifts of ρv with det=χv,
and for v ∈ Tl, Dv ↔ ker(R�ρv ,χv → R�ρv ,χv ,cr,{HT}). Here R�ρv ,χv ,cr,{HT} is the maxi-
mal quotient which is l-torsion free and reduced and whose characteristic 0 points are
representations with HT weights {HT}.
Runiv := Runiv

S = R�,∅S , the universal deformation ring for S, (cf. R�,TS T framed
version).
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On the automorphic side we use the integral theory of automorphic forms on D×,
where D is a quaternion algebra, such that S(D) = {v|∞} (this if fine since [F : Q] is
even).The idea is due to Diamond and Fujiwara.

We take our level to be

U :=
∏
v

Uv ⊂ GL2(A∞F )(= D×(A∞F ))

an open compact subgroup such that

Uv =

{
GL2(OFv) for a finite v /∈ Tr
Any compact open s.t. πUv0,v 6= 0 for v ∈ Tr

Here π0 is the automorphic representation corresponding to ρ0 (which exists since we
are assuming ρ0 is modular). By assumption π0 is unramified outside T .

We define our space of automorphic forms

S := S(U,O) = SUk,η,χ|.|A×
F

which is a finite free O module. This has an action of the Hecke algebra TU a commu-
tative O algebra which is reduced and finite free as an O module.

We have a 1-1 correspondence

{T→ C} ↔ {π ⊂ Sk,η,χ, s.t. πU 6= 0}
Let O0 : T→ C correspond to π0 under this correspondence.

T ⊃ m := 〈λ, trρ(Frobv)− Tv, det ρ(Frobv)− qvSv〉
This is a proper maximal ideal since it’s the kernel of

TU → O → F
Tv 7→ trρ0(Frobv)

Sv 7→ q−1 det ρ0(Frobv)

where the first map TU → O comes from π0. It follows from the definitions that ρm
∼= ρ.

Recall we constructed the representation

ρmodm : GF → GL2(TU,m)

which is a lift of ρ, and for which the trace of Frobv is Tv and the determinant of Frobv
is q−1

v Sv.
One can check that that ρmodm is of type S so that the universal property of Runiv

gives us a map
Runiv → TU,m

trρuniv(Frobv) 7→ Tv

det ρuniv(FRobv) 7→ q−1
v Sv
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These identies show that the map is onto.
If ρ is of type S deforming ρ is equivalent to giving a map Runiv → O, then to prove

the theorem, it suffices to show we may complete the diagram

R := Runiv > TU,m := T

O
∃Oρ

<
fρ >

Why is this sufficient? The map

Oρ : TU,m → O ⊂ C

gives us an element πρ ∈ Aracusp
It is then easy to see that the Galois representation attached to πρ is isomorphic to

ρ, since by definition, for v /∈ T , the eigenvalues of Frobv are equal to those of ρ and
hence we can conclude they are isomorphic by the Cebotarev density theorem.

Thus if we manage to prove that R � T induces an iso from Rred � T then the
proof will be complete. This is because O is reduced and hence any map R→ O must
factor through Rred and hence through T .

20. Lecture 20

Recall we were trying to prove the minimal ALT theorem:

Theorem 20.1. F (ζl : F ] > 2 (so that l ≥ 5). Let ρ, ρ0 : GF → GL2(L) be unramified
outside S

∐
Tl, such that ρ0 is automorphic, ρ mod λ ∼= ρ0 mod λ =: ρ (absolutely

irreducible) and such that:
• HT (ρ) = HT (ρ) =: HT are distinct integers for all embeddings F → Ql

•ρ, ρ0 are cystalline, for all v|l
•ρv ∼ ρ0, v for all finite places v ∈ S ∪ Tl Then ρ is automorphic.

We made the following reductions:
Reduction 1: We may assume F satisfies [F : Q] even, det ρ = det ρ0 = χ etc. (see

Lecture 19 for a complete list)
Reduction 2: We defined the deformation problem S = (F, T, ρ, χ{Dv}v∈T ) and

showed it suffices to prove that for every Galois deformation ρ to O corresponding to
fρ : Runiv

S → O we can complete the diagram:

R = Runiv
S � T := TU,m

O
∃

<
fρ >
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20.1. Reduction via Patching. The traditional method take surjections

J∞ > R∞ � T∞

R

↓↓
� T
↓↓

where J∞ is a power series ring over O and we show

R∞ ∼= T∞ ⇒ Rred ∼= T
The later approach is better described as a patching ”patching scenario:”
Let J∞ be a power series ring over O together with an ideal a∞ C J∞ and a map

J∞ → R∞ such that the R∞/a∞ ∼= R. Suppose S∞ is an R∞ module such that
S ∼= S∞/a∞ such that we have the following diagram.

J∞ > R∞
mod a∞ � R

acts on acts on

S∞ � S := S(U,O)

Suppose the following conditions are satisfied:
i) dim J∞ = dimR∞ =: d
ii) S∞ is a finite free J∞ module.
Once we are in this situation the proof of ALT will follow from pure commutative

algebra.

Definition 20.2. Let M be an A module. The support of M is defined to be

suppAM = {p ∈ SpecA : Mp 6= 0}
When A is noetherian and M is finitely generated, SuppAM consists of the ideals in
the closed subscheme defined the by ideal AnnA(M).

The output of the patching argument is the following:

Proposition 20.3. i) SuppR∞S∞ is a union of irreducible components of SpecR∞
ii) If SuppR∞S∞

∼= SpecR∞, then SuppRS = SpecR and hence obtain Rred ∼= T
Proof. i) Let p ∈ SuppR∞S∞ be a minimal prime. We want to show that p is a minimal
prime of SpecR∞

d = dimR∞ ≥ dimR∞/p ≥(1) depthR∞S∞ ≥
(2) depthJ∞S∞ = d

Inequality 1) follows is a general property of modules over a ring. If M is a module
over a Noetherian local ring A, we have

depthAM ≤ dimAM
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Recall, if m denotes the maximal ideal of A, depthAM is the maximal length of a
regular sequence x1, ...xr ∈ m for M , and dimAM is the Krull dimension of A/AnnAM
Thus equality holds throughout and p is a minimal prime of SpecR∞.

ii) The first part follows from the following commutative algebra result:

Lemma 20.4. Let M be a finitely generated module over a Noetherian ring R and I
an ideal of R, then

SuppR(M/IM) = V (Ann(M) + I)

Proof. The inclusion SuppR(M/IM) ⊂ V (Ann(M) + I) is clear. For the other direc-
tion, let p be a prime containing Ann(M)+I, then since p ⊃ Ann(M), we have Mp 6= 0.
We have (M/IM)p = Mp/IpMp, hence if (M/IM)p = 0, we have Mp/pMp = 0, and
hence by Nakayama’s lemma, we have Mp = 0 which is a contradiction. �

Applying this to R∞ and its ideal a∞ we obtain SuppRS = SpecR. We have ker(R→
T ) ⊂ Ann(M) and hence is contained in the nilradical of R. Conversely any x in the
nilradical of R must map to 0 in T since T is reduced, thus Rred ∼= T . �

Bad news: It’s rarely true that SuppR∞S∞ = SpecR∞. Major reason is that if take
the deformation problem to be Dv = {all lifts}, v ∈ Tr, the R∞ we construct is too
big. However we can still deduce the required result.

The idea is to introduce another global deformation problem:

S ′ = (F, T, ρ, χ, {Dv}v∈T )

.
v ∈ Tl (resp. Tr), D′v corresponds to the unique irreducible components ofR�ρv ,χv ,cr,{Hτ}

containing ρ0,v, ρv (resp. R�ρv ,χv), in same connected component.

Since ρ is of type S ′, it corresponds to a map f ′ρ : R′ := Runiv
S′ → O.

R′ < R > T

O

fρ

∨ <
f ′ρ >

We can deduce from the previous proposition that fρ factors through R→ T. Indeed
it suffices to prove SpecR′ ⊆ SuppR∞S∞, since then Lemma 20.4 implies we have

SuppR′S∞ ⊗R∞ R′ = SpecR′

Hence for x ∈ ker(R → T ), the image of x in R′ lies in the nilradical of R′, but O is
reduced so fρ(x) = 0 and hence fρ factors through T .
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Let us now explain the outline of the patching argument, the idea is encoded in the
following diagram which we will elaborate on below

J∞

R∞
<

J [∆Q] >

>

O[∆Q]

R⊗̂OJ
>

∼= R�Q

∨
> RQ

∨
> R

acts on acts on acts on

SQ⊗̂OJ∼= S�Q > SQ > S

Here Q is an auxiliary set of places of F , J := O[[Xv,i,j]]1≤i,j,≤2/(Xv0,1,1) for some fixed
v0 ∈ T and let a denote the ideal 〈Xv,i,j〉. Then R∞ and J∞ are fixed power series
rings over Rloc and J respectively. SQ, S

�
Q are finite free modules over O[∆Q], J [∆Q]

which are constructed using automorphic forms and the R�Q, RQ are certain framed
(resp. non framed) deformation rings. For certain sets of places Q (known as Taylor-
Wiles primes) we will construct such a diagram and let Q vary. The S∞ will then be
constructed using the S�Q as Q varies.

In order to do this we will need to consider each of the following:
1) Galois side
2) Automorphic side
3) Patching (i.e how to choose Q′s)
We start by discussing the Galois side and the deformation problems that we impose.

We let Q be a finite set of finite places of F such that T ∩Q = ∅ and such that ∀v ∈ Q
qv ∼= 1 mod l and ρ(Frobv) has distinct eigenvalues αv 6= βv. Consider the deformation
problem

SQ := (F, T ∪Q, ρ, χ, {Dv}v∈T∪Q)

where the local deformation problems are as follows. For v ∈ Tl, Dv = parametrizes
cystalline lifts, with HT weights {Hτ}, and for v ∈ Tr ∪Q we allow all lifts. Of course
all this is under the blanket assumption det ρ = χ.

We obtain the deformation rings

R�Q := R�TSQ → RQ := Runiv
SQ → Runiv

S∅ = Runiv
S = R

We have R�Q
∼= RQ⊗̂QJ induced by the T framed deformation of type SQ given by

(ρunivQ , {1 + (Xv,i,j)}v∈T )
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Lemma 20.5. 1)∀v ∈ Q, ρunivQ |GFv ∼= χα ⊕ χβ where χα, χβ : GFv → R×Q satisfies

χα mod mRQ(Frobv) = αv

χβ mod mRQ(Frobv) = βv

2) χα|IFv (also χβ|IFv ) factors through

IFv → I tameFv → k(v)× → ∆v

where ∆v maximal l-group quotient of k(v)×

Proof. 1) This follows from the proof of Proposition 11.11. Note that we have assumed
ρ is unramified at v so that modulo m, the Frobenius is well defined.

2) i) χα(IwildFv
) ⊂ ker(R×Q → (RQ/mQ)×) which is l-adic. �

The lemma implies that ∀v ∈ Q, we have a character χα,v : ∆v → R×Q, and hence we
obtain a map ∏

v∈Q

χα,v : ∆Q :=
∏
v∈Q

∆v → R×Q

We get a map

O[∆Q]→ RQ

defined by sending γ ∈ ∆v to χα,v(γ)− 1. Similarly we obtain a map

J [∆Q]→ R�Q
∼= J⊗̂ORQ

Lemma 20.6. 1) (RQ)∆Q
∼= R

2) (R�Q)a ∼= RQ

Proof. 1) It follows from the proof of 11.11 χα(σ)χβ(σ) = 1 for any σ ∈ IFv . Thus

GF,Q∪T → GL2(RQ)→ GLw(R/∆v)

is unramified at v ∈ Q. By the universal property of R we obtain a map R → R/∆v

which is an isomorphism.
2) This follow from definitions of the universal deformation/lifting rings. �

21. Lecture 21

Recall the outline from last time.
Let Q be a set of finite places of F such that
• Q ∩ T = ∅, (T = Tl

∐
Tr, where Tl = {v|l‖).

• ∀v ∈ Q, ρ(Frobv) has eigenvalue αv 6= βv
• qv ≡ 1 mod l
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21.1. Automorphic side. We need to choose level subgroups for v -∞
Consider the compact subgroups U(v) ⊂ U0(v) ⊂ GL2(OFv) where we define

U0(v) = {
(
a b
0 d

)
mod $v}

U(v){
(
a b
c d

)
∈ U0(v)|a

d
∈ (OFv/$)×maps to 1 in ∆v}

Furthermore we set

UQ :=
∏
v-∞

UQ,v ⊂ UQ,0 :=
∏
v-∞

UQ,0,v ⊂ GL2(A∞F )

For v /∈ Q,UQ,v = UQ,0,v = Uv = GL2(OF ). For v /∈ Tr, let UQv be any fixed open

compact with π
UQv
0,v 6= 0

For v ∈ Q,UQ,v := U(v) ⊂ UQ,0,v := U0(v) ⊂ Uv := GL2(OF )
UQ,0/UQ ∼= ∆Q the maximal quotient of k(v)×, the map being given by(

a b
c d

)
7→ a

d

21.2. Automorphic forms and Hecke Algebras. Fix a weight (k, η) the weight of
π0 and a central character χ.
UQ,0, UQ acts by right translation on S(UQ,O) ⊃ S(UQ,0,O) ⊃ S(U,O). The first

group also has an action of U$v and TUQ ⊃ mQ, these guys together give T̃Q ⊃ m̃. The
last space has an action of TU ⊃ m, where m is the maximal ideal corresponding to ρ.

Here we define

TUQ := 〈Tv, Sv|v /∈ T ∪Q〉 ⊂ End(S(UQ,O))

U$v := [U(v)

(
$ 0
0 1

)
U(v)]

T̃ := 〈TUQ , U$v , v ∈ Q〉
S(UQ,O)⊗O C = ⊕

π,wt (k,η),cent. char. χ(
⊗′

v/∈Q π
UQ,v
v )⊗ (

⊗
v∈Q π

Uv
v )

We want to show that there is a 1-1 correspondence between

{TUQ → C}
and

{πas in RHS + choice of U$v e-value}

Lemma 21.1.

Proof. Use local Global compatibility and explicit calculation cf [4] p 39. �
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Define mUQ := 〈λ, Tv − trρ(Frobv), Sv − q−1
v detρ(Frobv), v /∈ T ∪ Q〉, m̃UQ :=

〈mUQ , Uv − αv〉.
These are maximal ideals. (eg. m̃UQ = ker(T̃UQ → O → F)) T0 and U$v eigenvalues

reducing to αv.
SQ = S(UQ,O)m̃UQ , is acted on by TQ := T̃UQ,m̃U,Q . (Note Q = ∅,TQ = T, m̃U,Q =

mU,Q = m etc.)
As before we construct a representation

ρmodm̃U,Q
: GF → GL2(TQ)

which is a lift of ρ of type SQ. This allows us to define a map RQ → TQ.
We have two ∆Q actions.
(a) ∆Q = UQ,0/UQ acts of SQ by right translation, automorphic at Q.
(b) O[∆Q] → RQ → TQ acts on SQ the Galois action transferred via the Global

Langlands correspondence.

Lemma 21.2. 1) These two actions coincide
2) SQ is a finite free O[∆Q] module.

Proof. 1) Use Local Global compatibility and same choices (αv) made on both sides.
2) [4] Prop 5.3, need to use [F (ζl : F ] > 2 �

Recall ρmodm : GF → GL2(T) unramified outside T (Q = ∅ case)
v ∈ Q,

charρmodm (Frobv) ≡ (x− αv)(x− βv) mod m

By Hensel’s Lemma we can choose Av, Bv ∈ T reducing to αv, βv mod m such that

charρmodm (Frobv) = (x− Av)(x−Bv)

Lemma 21.3. 1) S(UQ,0,O)m̃Q
∼= (SQ)∆Q

2)
∏

v∈Q(U$v −Bv) : S ∼= S(UQ,0,O)m̃U,Q

Proof. Why it’s plausible- ”Same away from Q”. For v ∈ Q U$v acts on the LHS buy
Av, Bv and on the RHS by Av. �

Now lets finish step 2. Recall aQ ⊂ J [∆Q]→ R�Q.

R�Q/aQ
∼= (RQ)∆Q

∼= R

R�Q
∼= RQ ⊗ J → R�Q/aQ

∼= (RQ)∆Q
∼= R

This acts on

S�Q = SQ ⊗RQ R�Q → SQ ⊗ (R�Q/aQ) ∼= (SQ)∆Q
∼= S
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Observe J [∆Q] ∼= J ⊗O O[∆Q], these acts on S�Q
∼= J ⊗O SQ. The latter is finite free

by the previous lemma, and its rank is rankOS.
Summary: J [∆Q] → R�Q → R, these last two groups act on S�Q and S respectively,

and S�Q is finite free over J [∆Q] of rank rkOS.

21.3. Patching. Step 3. Presenting R�Q
Rloc :=

⊗̂
v∈TR

�
ρv ,χv

/I(Dv), v ∈ Tr, I(Dv) = 0.

We showed in section 3, that R�Q is a quotient of Rloc[[x1, ..., xhQ ]], (the quotient is

unnecessary if H2
S,T,Q(GF,T∪Q, ad◦ρ) = 0, where hQ = dimH1

S,T (ad◦ρ).

hQ = #T − 1−
∑
v|∞

dimFH
0(GFv , ad◦ρ) +

∑
v∈Q

(dimF L(Dv)− dimFH
0(GFv , ad◦ρ)

+ dimFH
1
SQT (GF,Sad◦ρ(1))− dimFH

0(GF,Sad◦ρ(1))

Everything in this is computable, in fact we find:∑
v|∞

dimFH
0(GFv , ad◦ρ) = [F : Q]

by totally odd. ∑
v∈Q

(dimF L(Dv)− dimFH
0(GFv , ad◦ρ)) = #Q

dimFH
0(GF,S, ad◦ρ(1)) = 0

The only mysterious term is then dimFH
1
SQ,T (GF,S, ad◦ρ(1))) := dQ.

Thus we obtain hQ = #T − 1− [F : Q] + #Q+ dQ

Lemma 21.4. dimRloc = 1 + 3#T + [F : Q]

t

Proof. From section 3, dimR�ρv ,χv/I(Dv) =

{
4 v ∈ Tr
4 + [Fv : Ql] v ∈ Tl

�

Proposition 21.5. (Taylor Wiles primes) r := max(d∅, [F : Q]−#T + 1).
∀N ≥ 1, ∃QN , |QN | = r such that
1) QN ∪ T = ∅
2) ∀v ∈ QN , ρ(Frobv) has distinct eigenvalues, and qv ≡ 1 mod lN

3) dQN = 0

Proof. [4] Proposition 5.9. �
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Define

R∞ := Rloc[[x1, ..., xh]]

where h := #T − 1− [F : Q] + r and

J∞ := J [[y1, ..., yr]]

Lemma 21.6. dimR∞ = dim J∞ = r + 4#T

Proof. dim J∞ = dim J + r = #T + r
dimR∞ = dimRloc + h = same. �

∀N ≥ 1, fix QN = {v1, ..., vr} fix ordering. Choose a surjection R∞ → R�QN . Choose
also a surjection J∞ → J [∆QN ] given by sending yi to γi− 1 where γi is a generator of
vi. Since J∞ is formally smooth, we may lift the composite

J∞ → J [∆QN ]→ RQN ⊗ J ∼= R�QN

to a map J∞ → R∞. Writing a∞ to be the ideal (a, y1, ..., yr) of J∞, we have R�QN/a∞ =

R, S�QN/a∞ = S. Let bN denote the kernel of J∞ → J [∆QN ], so that S�QN/bN is

free over J [∆QN ]. Since qv ≡ 1 mod lN for every v ∈ QN , it follows that bN ⊆
((1 + y1)l

N − 1, ..., (1 + yr)
lN − 1).

Let us choose open ideals cN of J∞ such that:
• cN ∩ O = (λN)
• cN ⊇ bN
• cN ⊇ cN+1

• ∩N≥1cN = 0

One can take cN = ((1 + XpN

v,i,j − 1, (1 + yi)
lN − 1, λN). Since cN ⊇ bN , we have

S�QN/cN is free over J∞/cN . Choose also open ideals dN such that:

• dN ⊆ ker(R→ S/λN).
• dN ⊇ dN+1.
• ∩NdN = 0
For M ≥ N , let SM,N := SQM/cN , then SM,N is finite free over J∞/cN of rank equal

to the O rank of S. We obtain a diagram of the form

J∞ > R∞ > R/dN

acts on acts on

SM,N > S/dN

Since cN and dN are open, SM,N , S/dN , R/dN are all finite, thus one can find a
subsequence of pairs Mi, Ni with Mi+1 > Mi and Ni+1 > Ni such that the diagram
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J∞ > R∞ > R/dNi

acts on acts on

SMi+1,Ni+1/cNi
> S/dNi

is isomorphic to the diagram for (Mi, Ni). Taking a projective limit over this subse-
quence we obtain the diagram:

J∞ > R∞ > R

acts on acts on

S∞ > S

where S∞ is finite free over J∞. This is precisely the situation that we needed to
construct. From here one can apply the commutative algebra arguments from before
to deduce the results of minimal ALT.

22. Lecture

22.1. Eichler-Shimura theory. We would like to associate to f a Hecke modular
form an abelian variety Af/Q a Galois representations TlAf with coefficients in Kλ/Ql.

Definition 22.1. A subgroup Γ ⊂ SL2(Z) is a congruence subgroup if Γ ⊃ ker(SL2(Z)→
SL2(Z/NZ) for some N ∈ Z≥1

Example 22.2.

Γ(N) = {
(
a b
c d

)
≡
(

1 0
0 1

)
mod N}

Γ0(N) = {
(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N}

Γ1(N) = {
(
a b
c d

)
≡
(

1 ∗
0 1

)
mod N}(

a b
c d

)
∈ SL2(Z) acts on H via z 7→ az+b

cz+d

Definition 22.3. Let f : H → C we say f is a modular form of weight k and level Γ
if...



78 RONG ZHOU

Notation we say f has levelN if it has level Γ0(N) in this case f(z+1) = f(

(
1 1
0 1

)
z) =

f(z), so f has a fourier expansion

f(q) = a0 + a1q + a2q
2...

where q = e2πiz.

Definition 22.4. The Hecke operator Tp acts on the space of modulars forms by taking
f to Tpf where Tpf has fourier coefficients

ak(Tpf) = akp(f) + pk−1ak/p(f)

One needs to check that Tpf is also a modular form.

Definition 22.5. Let f = q + a2q
2 + a3q

3..., we say f is a Hecke form if it is an
eigenform for each Tp. In this case we have Tpf = apf

Definition 22.6. Let ρ : GQ → GL2(Kλ) be a Galois representation, f a Hecke
eigengorm of level N , ρ is associated to f if for each p - lN the characteristic polynomial
ρ(Frobp) = X2 − ap(f)X + p.

Let f be a Hecke eigenform of level N .

Theorem 22.7. 1) Kf = Q(a1, a2, a3...)is a finite extension of Q
2) For each l place of Q λ|l a place of Kf , there is a representation ρf,λ associated

to f with coefficients in Kf,λ

3) There is an abelian variety Af/Q such that Vl(Af ) has a Kf × GQ action and
decomposes as a direct sum of the ρλ,f .

Corollary 22.8. dimAf = [Kf : Q]

Theorem 22.9. There is a canonical isomorphism

S2(Γ0(N))⊕ S2(Γ0(N)) ∼= H1(X0(N))

Proof.

S2(Γ0(N)⊕ S2(Γ0(N)) ∼= H0(X0(N),Ω1
Xo(N))⊕H1(X0(N),Ω1

X0(N))

H1(X0(N),C)

The first isomorphism comes from the interpretation of modular forms as sections
of line bundles on our modular curve, explicitly f 7→ f(z)dz. The second isomorphism
comes from the Hodge decomposition, this comes from integrating.

�
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Note we can integrate over cusps since f is a cusp form, this is good because we can
now apply Tp to H1(X0(N),Z)
Y0(N)an classifies elliptic curves together with a cyclic subgroup of order N . We can

also define Y0(N, p) triples (E,P,C) with (E,P ) ∈ Y0(N), and C a cyclic subgroup of
E of order N which intersects P trivially.

We obtain a diagram

Y0(N, p)

Y0(N)

(E,P,C)7→(E,P )

π1
<

Y0(N)

(E/C,P mod C)

π2 >

Since both maps are finite we have pull back and push forwards on H1(X0(N),Z).

Tp : H1(X0(N),Z)
π∗1> H1(X0(N, p),Z)

π∗2> H1(X0(N),Z)

Important fact: Under the the isomorphism

S2(Γ0(N))⊕ S2(Γ0(N))→ H1(X0(N),Z)⊗ C

Tp ⊕ Tp corresponds to Tp.
We can also extend this to an operator on the Picard group H1(X0(N),O×X). In fact

we can define such an operator on H1(X0(N),OX) using the same method, then the
long exact sequence applied to

0→ Z→ OX → O×X → 0

gives an isomorphism H1(X0(N),OX)/H1(X0(N),Z) ∼= Pic0(X0(N)). Thus we get
a Hecke operator on VlPic

0(X0(N)) ∼= H1(X0(N),Z)⊗Ql.
So if we define T0(N) to be the image of Z[{Tp}] in End(H1(X0(N),Z)) then T0(N)

acts on Vl(Pic
0(X0(N)) and we have a morphism T0(N) → Kf given by t 7→ tf/f .

Thus we have proven [Kf : Q] <∞ since T0(N) is finite over Z.
We would like to translate all of this into the algebraic world, to this end we consider

the functor from schemes over Z[1/N ] which takes S to pairs (E , P ) where E is and
elliptic curve over S and P ⊂ E(S) is a cyclic subgroup of order N .

22.2. The weight 2 Shimura isomorphism. Fact: This functor is representable as
a scheme (called Y0(N)) over Z[1/N ], and has a canonical copmactification X0(N).
This allows us to carry over the picture above into the algebraic setting so we obtain
operators Tp on Pic0(X0(N))Z[1/Np]. One can extend this to an operator over the
original base Z[1/N ].

Now we study the action of T0(N) and GQ on the Tate module of the Picard group.
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Definition 22.10. Let pf be the kernel of T0(N) → Kf T 7→ tf/f and define Af to
be Pic0(X0(N))⊗T0(N) Kf

T0(N) acts on Af via Kf , and hence it acts on its Tate module.
Vl(Af ) has a Ql⊗QKf vector space structure and decomposes into Kf,λ vector spaces

Vf,λ

Proposition 22.11. dimKf,λ Vf,λ = 2

This follows from the fact that VlPic
0 is free module of rank 2 over T0(N).

Now we’ve at least constructed these ρf,λ = (VlAf ) ⊗Kf⊗Ql Kf,λ. The previous fact
says that the dimension of this is 2. We now need to show that the characteristic
polynomial of Frobp is X2 − apX + p.

Let Jp = Pic0(X0(N))⊗ Fp.
Then we have the formula formula due to Eichler and Shimura:

Theorem 22.12. In End(Jp) we have

Tp = F + F∨ = F + pF

Now we have that F 2 = TpF − p, so that F satisfies X2 − TpX + p on Jp and hence
F satisfies X2 − apX + p on Af ⊗ Fp.

This proves ρf,λ is associated to f .

22.3. Extension to Γ1(N). Define Y1(N) to be H/Γ1(N), moduli theoretically this
classifies pairs (E,P ) where E is an elliptic curve over C and P is a point of order N .

The Shimura isomorphism holds in this case as well. In this case we also have the
diamond operators:

〈d〉 : Y1(N)→ Y1(N)

where for (d,N) = 1 this is given by (E,P ) 7→ (E, dP ). This lifts to an action of
S2(Γ1(N)) which acts with finite order and is semi simple.

S2(Γ1(N)) =
⊕

χ:(Z/NZ)0→C

S2(Γ1(N), χ)

where the subspace corresponding to χ is spanned by those f for which 〈d〉f =
χ(d)f . Let T1(N) = Z[Tp, 〈d〉] ⊂ EndS2(Γ1(N)) and let f ∈ S2(Γ1(N), χ) be a Hecke
eigenform, still Kf = Q[ap(f) : χ(d)]
Af is still an abelian variety over C, ρf,λ and Frobp satfies X2 − apX + pχ(p)
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23. Lecture 23

23.1. Fermat’s last theorem. The last two lectures will be devoted to explaining
how the results we have proved can be applied to prove Fermat’s last theorem.

Theorem 23.1. The equation

xn + yn = zn

has no integer solutions for n ≥ 3

We may reduce to the case n ≥ 5 as the cases n = 3, 4 have been proved by other
means. Note also that it suffices to prove the result for when n = l is prime, and that
wlog. we may assume x ≡ −1 mod 4 and that y is even.

The outline of the proof is as follows.
Step 1: Assuming a solution to the equation exists, we will construct an elliptic

curve of conductor N (with N even) with remarkable properties. This is due Frey
(1985-1986), in fact given a solution al + bl = cl, the elliptic is just the projectivisation
of the affine curve defined by the equation

Eal,bl : y2 = x(x− al)(x− bl)

Step 2: The techniques and results discussed in this course, originally proved by
Wiles, allows us to construct a weight 2 cusp form of level Γ0(N) with similar properties.

Step 3: A result of Serre and Ribet then provides a weight 2 cusp form of level Γ0(2).
Step 4: A computation of dimS2(Γ0(2) (the space of cusp forms of weight 2 and

level Γ0(2)) gives a contradiction.
Let us briefly mention the order in which these steps were proved. Step 4 was a

classical result, Step 1 came next, and once Ribet proved Serre’s ε conjecture (Step
3) the door was open to attacking FLT using the Taniyama-Shimura-Weil conjecture.
Wiles proved the conjecture for all semistable elliptic curves over Q which was enough
to prove the theorem.

Remark 23.2. The full modularity theorem was proved by Breuil-Conrad-Diamond-
Taylor around 1999-2000.

Freitas-Le Hung-Siksek (2013) proved STW for elliptic curves over real quadratic
fields.

23.2. Dimension formula for weight 2 cusp forms. Let h denote the upper half
plane, and h∗ = h ∪ P1(Q). Recall the the objects Γ0(N), Y0(N), X0(N) defined in
the previous lecture (here we are just considering these objects in the complex analytic
context). We have a bijection between Y0(N) and the set of isomorphism classes elliptic
curves /C together with a cyclic subgroup of order N given by

z 7→ (Ez := C/〈1, z〉, 〈1/N〉)
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We have natural projections

Y0(N) ⊂X0(N)

Y0(1)
∨
⊂ X0(1)

∨

and we may naturally identify Y0(1) (resp. X0(1)) with A1(C) (resp. P1(C)).
We have an isomorphism

S2(Γ0(N)) ∼= H0(X0(N),Ω1)

given by
f 7→ f(z)dz

Therefore dimS2(Γ0(N)) is just the genus of X0(N) := g0(N). The idea now is to
apply Riemann-Hurwitz to the projection X0(N)→ X0(1).

Proposition 23.3. g0(2) = 0

Define the Euler characteristic of a reasonable topological space X to be

χ(X) =
∑
i≥)

dimH i(X,C)

Facts:
•χ(pt.) = 1
•χ(X) = 2− 2genus(X) if X is a compact Riemann surface.
•χ(X

∐
Y ) = χ(X) + χ(Y )

• Riemann Hurwitz theorem: Let X → Y be an unramified covering of degree d,
then χ(X) = d(χ(Y ).

Consider the projection πN : X0(N) → X0(1) and for z ∈ X0(1), define nz =
#π−1

N (z).

Lemma 23.4. If z 6=∞ then

nz = #
{C ⊂ Ez[N ] cyclic order N }

Image(Aut(Ez)→ Aut(Ez[N ]))

Furthermore, if z 6= 0, 1728,∞ then

nz = #P1(Z/NZ) = N + 1

Proof. {C ⊂ E[N ] cyclic order N } is in bijection with the set of lines in (Z/NZ)2, i.e.
P1(Z/NZ). Since Aut(Ez) acts trivially on the set, we obtain the second result. When
z = 0, 1728,∞ need to calculate nz explicitly and we find that

n0(2) = 1, n2(3) = 2

n1728(2) = 2, n1728(3) = 2
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n∞(2) = 2, n∞(3) = 2

�

Proof. (of Prop) Let S = 0, 1728,∞, then X0(N)−π−1
N (S)→ X0(1)−S is an unramfied

covering of degree N + 1, hence

χ(X0(N)− π−1
N (S)) = (N + 1)χ(X0(1)− S)

⇒ 2− 2g0(N)− (n0 + n1728 + n∞) = (N + 1).(−1)

⇒ g0(N) =
1

2
(N + 3− nS)

Hence from the explicit calculations above we obtain g0(2) = g0(3) = 0 �

Remark 23.5. n0 ≈ 1
2
N , n1728 ≈ 1

3
N , n∞ ≡ 0 mod N , so g0(N) ≈ 1

12
N .

Remark 23.6. The first N such that g0(N) 6= 0 is 11.

23.3. Local Galois representations arising from elliptic curves. Let E be an
elliptic curve over k = Q,Qp.

Define rE,l := E[l](k), which has an action of Gal(k/k).

rE,l := TlE = lim←nE[ln](k)
ρE,l = H1

ét(Ek,Z/lZ) ∼= rE,l(−1)
ρE,l = H1

ét(Ek,Zl) ∼= rE,l(−1)

Proposition 23.7. Let E/Qp.
1) det rE,l = εl the l-adic cyclotomic character.
det ρE,l = ε−1

l

2) Suppose E has good reduction mod p, then for p 6= l ρE,l, ρE,l are unramified at l
and

char(ρE,l(Frobp)) = X2 − (1 + p−#E(Fp))X + p

and for p = l ρE,l is crystalline with Hodge Tate weight 0, 1.

Remark 23.8. In fact E has good reduction if and only if ρE,l is unramified for (l 6= p),
or ρE,l is crystalline for l = p.

There are 4 cases: Either E/Qp has good reduction or bad reduction. For the case
of good reduction, there two further cases corresponding to ordinary reduction and
supersingular reduction. In the ordinary case we have E(Fp)[p] = p, whereas in the

supersingular case E(Fp)[p] = 1. For the case of bad reduction, the reduction can
either be multiplicative or additive, the first case corresponds to when the reduction is
a nodal cubic, the second when there is a cusp.
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Proposition 23.9. ([3] 2.11, 2.12) We have the following for E/Qp

Conductor ρE,l ρE,l

Ordinary 1 p 6= l unramified p = l

(
λ ∗

ε−1
l λ−1

)
p = l

(
λ ∗

ε−1
l λ−1

)
Supersingular 1

Mult. p

(
1 ∗

ε−1
l

)
(δ)

(
1 ∗

ε−1
l

)
(δ)

Add. pn(n ≥ 2)

Where λ is an unramified character GQp → Q×l , and δ is trivial if E has split mul-
tiplicative reduction and the unique unramified quadratic character if E has non-split
multiplicative reduction.

Proof. For ordinary reduction at l = p, let us show rE,l has the form

(
εlλ ∗

λ−1

)
.

Let E/Zp be the integral model for E. The connected-étale exact sequence gives

0→ E[ln]0 → E[ln]→ E[lj]ét → 0

Since E is ordinary we have that rkE[ln]0 = rkE[lj]ét = ln. Taking the inverse limit
over the Ql points gives the result.

For mult. reduction, p = l or p 6= l. Use Tate uniformization theorem:

E(Qp) ∼= Q×p /qZ(δ)

as GQp representations with q ∈ pZp depending on E.

Hence E[ln](Qp) ∼= 〈ζln , q1/ln〉 ⊂ Q×p /qZ so that we obtain the exact sequence:

1→ 〈ζnl 〉 → 〈ζnl , q1/ln〉 → 〈q1/ln〉 → 1

with GQp acting on the final term trivially, since σ(q1/ln) ∼= q1/ln mod 〈ζln〉. �

24. Lecture 23

Definition 24.1. E is ordinary at p if E has good ordinary reduction or bad multi-
plicative reduction, it is semistable if it has good or bad multiplicative reduction. The
motivation behind this is that for p = l, E is ordinary/ semistable implies its associated
Galois representation is ordinary/ semistable.

The following is the key input for level lowering.

Proposition 24.2. E/Qp has bad multi. reduction, let ∆min
E be the minimal discrim-

inant in pZp.
1) p 6= l, l|vp(∆min

E )⇔ ρE,l is unramified.
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2) p = l, l|vp(∆min
E )⇔, ρE,l lifts to l-adic crystalline representation with HT weight

0, 1. (as opposed to 0, l).s

Proof. Recall there is a GQp equivariant isomorphism

E(Qp) ∼= (Q×p /qZ)(δ)

q = j−1 + 744j−2 + ... ∈ Z[j−1]

where j = j(E) the j−invariant.
We have vp(q) = −vp(j) = vp(∆

min
E ), since j∆ = c3

4 and E has multiplicative reduc-
tion implies vp(c4) = 0.

The representation ρE,l is isomorphic to the action of GQp on E[l]Qp.
By Tate’s uniformization theorem, this representation is unramified if and only if

the extension Qp(ζl, q
1/l) is unramified. This extension is a composite of an unrami-

fied cyclotomic extension and the Kummer extension Qp(ζl, q
1/l)/Qp(ζl), thus this is

unramified if and only if l|vp(q) = vp(∆
min
E ). This proves 1).

2) Due to Edixhoven (Invent. 92.) l|vl(∆) ⇔ ρE,l comes from a finite flat group
scheme over Zl. �

24.1. Frey curve. (Completing Step 1) Recall we made the following assumptions:
al + bl = cl, abc 6= 0, l ≥ 5 prime, a ≡ −1 mod 4, b ≡ 0 mod 2, (a, b) = 1 .
E := Eal,bl : y2 = x(x− al)(x− bl), we obtain ρE,l, ρE.l Galois representations of Q.

Proposition 24.3. 1) ∆min
E = 2−8(abc)2l

2) E is semistable (at every prime)
3) ρE,l is unramified outside 2l, irreducible and ρE,l|GQl

lifts to crystalline represen-
tation with Hodge Tate weight 0, 1.

Proof. (Sketch, see [3] 2.15) Eal,bl has minimal Weierstarss equation

y2 + xy = x3 +
bl − al − 1

4
x2 − albl

16
x

From this 1) follows and for 2), check that the equation doesn’t have cusps mod each
prime.

3) Irreducibility follows from a deep theorem of Mazur (77,78).
The unramifiedness and existence of the crystalline lift follows from the previous

proposition since ∀p ≥ 3, l|vp(∆min
E ). �

Remark 24.4. Note that the conditions in 3) are satisfied for Galois representations
coming from a cusp form of weight 2, level 2.

Also the existence of crystalline lift is part of Serre’s conjecture.
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24.2. Modularity lifting theorem.

Definition 24.5. ρ (resp. ρ) is weight 2 modular (of level N) if there exists an
eigenform f (level Γ0(N)) such that ρf,l ∼= ρ (resp. ρf,l

∼= ρ).

(MLT) l ≥ 3 Consdier ρ, ρ0 : GQ → GL2(Ql). The following hypotheses are com-
monly imposed in proofs of MLT.
• ρ0 is weight 2 modular.
• ρ|GQl

, ρ0|GQl
semistable, HT weights 0, 1.

• ρ := ρ mod l ∼= ρ0 mod l has ”big image”. (Almost sufficient: ρ|GQ(ζl)
is abso-

lutely irreducible (cf [3] 3.24, let’s ignore (harmless for us)).
E/Q is weight 2 modular if ρE,l is modular (∃l⇔ ∀l).
We use the following version of non-minimal MLT.
Further assume:
(ord) ρ|GQl

, ρ0|GQl
are ordinary (crystalline or semistable).

or (BT) ρ|GQl
, ρ0|GQl

are crystalline with HT weight 0, 1 (This is a special case of the

Fontaine Laffaile case).
Then ρ is weight 2 modular.

Theorem 24.6. (Wiles’ Theorem) E/Q is semistable ⇒ E is weight 2 modular of
some level. (Eg. Eal,bl).

Theorem 24.7. (Ribet’s theorem) E = Eal,bl, suppose that E is semistable, weight 2
of level N , ρE,l unramified outside 2l, ρE,l|GQl

has crystalline lift with HT weight 0,1.
The ρE,l is weight 2 and of level 2.

24.3. Proof of Ribet’s Theorem. (Original proof) Used a detailed study of the
Jacobian of modular curves, and doesn’t generalize to higher dimensions.

There is an alternative method due to Khare and Wintenberger.
Step 1) If l|N then can replace N by N/l.
Step 2) Now l - N , replace N by 2.
Khare-Wintenberger: find a Galois representation ρ of weight 2, ”lowered level,”

with prescribed local properties (*) rather than a modular form. Once this is done,
apply MLT, to show ρ is weight 2 modular.

Idea: Formulate a global Galois deformation problem S for (∗), and show that
Runiv
S (Q)l 6= ∅.
To do: dimRuniv

S ≥ 1 cf. [4] 3.24 or Pset 6, question 1.
Runiv
S is finite over O (this is proved by showing Runiv

S is isomorphic to some suitable
Hecke algebra T.

24.4. Proof of Wiles’ Theorem. Case 1: ρE,3 irreducible (⇒ abs. irreducible)
Step 1-1 ρE,3 is weight 2 modular. (Langlands-Tunnell and Deligne-Serre lifting

Lemma)
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Step 1-2: Apply MLT implies E is weight 2 modular.
Case 2: ρE,3 is reducible ⇒ ρE,5 is absolutely irreducible.
Step 2-1: (3-5) trick. Find semistable E ′/Q such that ρE′,5

∼= ρE,5, ρE′,3 abs. irre-
ducible.

Step 2-2: MLT implies ρE′,3 is weight 2 modular.
⇒ ρE′,5 is weight 2 modular.
⇒ ρE′,5

∼= ρE,5 is weight 2 modular.
⇒ ρE,5 ismodular.
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