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Abstract. We study the special fiber of the integral model for Shimura varieties of Hodge type

with parahoric level structure constructed by Kisin and Pappas in [KP]. We show that when the

group is residually split, the points in the mod p isogeny classes have the form predicted by the
Langlands–Rapoport conjecture in [LR87].

We also verify most of the He–Rapoport axioms for these integral models without the residually
split assumption. This allows us to prove that all Newton strata are non-empty for these models.

The verification of the axioms in full is reduced to a question on the connected components of affine

Deligne–Lusztig varieties.
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1. Introduction

An essential part of Langlands’ philosophy is that the Hasse–Weil zeta function of an algebraic
variety should be a product of automorphic L-functions. In [Lan76], [Lan77], [Lan79], Langlands
outlined a program to verify this for the case of Shimura varieties for which an essential ingredient
was to obtain a description of the mod-p points of a suitable integral model for the Shimura variety.
Such a conjectural description first appeared in [Lan76], and was later refined by [LR87], [Kot97] and
[Rap05]. To explain it we first introduce some notations.

Let (G,X) be a Shimura datum and Kp ⊂ G(Qp) and Kp ⊂ G(Apf ) compact open subgroups where

Apf are the finite adeles with trivial component at p. We assume Kp is a parahoric subgroup of G(Qp).
For Kp sufficiently small we have the Shimura variety ShKpKp(G,X) which is an algebraic variety over
a number field E known as the reflex field. We will mostly be considering Shimura varieties of Hodge-
type in which case ShKpKp(G,X) can be thought of as a moduli space of abelian varieties equipped
with some cycles in its Betti cohomology (at least on the level of its complex points). Let p be a prime
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and v|p a prime of E, then conjecturally there should exist an integral model SKpKp(G,X)/OE(v)

for ShKpKp(G,X) satisfying certain good properties. When the group GZp is unramified and Kp is
hyperspecial there is a characterization of such an integral model using a certain extension property;
see [Mil92, Proposion 2.8]. For general parahorics such a characterization is not known. However as
long as the integral model has good local properties (more precisely, one desires that its nearby cycles
are amenable to computation) and one can obtain some global information about the Fq-rational
points, then this is already enough for many applications such as the computation of the (semisimple)
local factor of the Hasse–Weil zeta function of the Shimura variety; see for example [Hai05, §11].

We consider also the inverse limit of integral models

SKp(G,X) := lim
←Kp

SKpKp(G,X).

Then conjecturally there should be a bijection (see [LR87], [Rap05], [Hai05]):

SKp(G,X)(Fp) ∼=
∐
φ

S(φ)

where
S(φ) = lim

←Kp
Iφ(Q)\Xp(φ)×Xp(φ)/Kp.

When SKpKp(G,X) arises as a moduli space of abelian varieties, this represents the decomposition
of the special fiber into disjoint isogeny classes parametrised by φ. The individual isogeny class S(φ)
breaks up into a prime-to-p part Xp(φ) and p-power part Xp(φ), and the Iφ(Q) is the group of self-
isogenies of any member of the isogeny class S(φ). For general G, the objects appearing are approriate
group-theoretic analogues of the objects described.

The bijection should satisfy compatibility conditions with respect to certain group actions on either
side. For example, on S(φ) one can define an operator Φ, and this should correspond under the above
bijection to the action of Frobenius on SKp(G,X)(Fp). Using this, one obtains a completely group
theoretic description of the Fq-points of the Shimura variety.

The first major result in this direction was obtained by Kottwitz [Kot97] who gave a description
of the Fp-points for PEL-type Shimura varieties (more precisely the moduli spaces he considered are
actually a union of Shimura varieties, but for the application to computing the zeta function, this
was not an issue). In this case, the integral models of Shimura varieties are indeed moduli spaces
of abelian varieties with extra structure, so one ends up counting such abelian varieties. Then after
constructing good integral models for Shimura varieties of abelian type in [Kis10], Kisin [Kis17] proved
the conjecture for these integral models. In that case the Shimura varieties and their integral mod-
els are no longer moduli spaces of abelian varieties with any obvious additional structure and many
new ideas were needed. In both these works, the authors worked with hyperspecial level structure
at p; in particular this meant the Shimura varieties had good reduction at v, i.e. the integral mod-
els SKpKp(G,X) were smooth over OE(v)

. In constrast, when considering arbitrary parahoric level
structure, the integral models will not in general be smooth and this presents many new difficulties
in proving such a result. However, if one is to get a complete description of the zeta function of the
Shimura variety, then knowledge of the places of bad reduction is still needed. Moreover, understand-
ing the cohomology of these spaces at places of bad reduction has many other important applications
such as the local Langlands correspondences; see [HT01].

We assume now that p > 2. Let (G,X) be a Shimura datum of Hodge type such that GQp is

tamely ramified, p - |π1(Gder)| and Kp is a connected parahoric1 (we will refer to these assumptions as

1A connected parahoric is one which is equal to the Bruhat–Tits stabilizer scheme

2



(*)). Under these assumptions Kisin and Pappas have constructed good integral models SKp(G,X)
for the Shimura varieties associated to the above data. These integral models satisfy the correct local
properties in the sense that there exists a local model diagram as in [Hai01, §6]. The main result of
this paper is the following.

Theorem 1.1. Let (G,X) be a Shimura datum of Hodge type as above. We assume GQp is residually
split at p.

(i) The isogeny classes in SKp(G,X)(Fp) have the form

lim
←Kp

Iφ(Q)\Xp(φ)×Xp(φ)/Kp.

(ii) Each isogeny class contains a point x which lifts to a special point in ShKp(G,X).

Let us first explain what we mean by an isogeny class. We assume for simplicity that Kp = G(Zp),
where G is an Iwahori group scheme for the rest of the introduction. It follows from the construction
of the integral models that to each x ∈ SKp(G,X)(Fp) one can associate an abelian variety Ax with
G-structure. This means Ax is equipped with certain tensors in its étale and crystalline cohomology
whose stabilizer subgroups are related to the group G. This leads to a natural notion of the isogeny
class of x, which breaks up into a prime-to-p part and a p-power part. We then obtain a decomposition
of the special fiber into disjoint isogeny classes as in the conjecture. To prove the conjecture in full one
needs therefore a description of the points in an individual isogeny class and then also an enumeration
of the set of all isogeny classes. In this paper we focus on the first problem. The key ingredient needed
for the enumeration of the set of all isogeny classes is part (ii) of the above theorem; this allows one
to relate the set of isogeny classes to some data on the generic fiber where one has a good description
of the points. Note that some results in the direction of part (ii) of the Theorem has also been proved
in [KMPS]; here we provide a different proof more along the lines of [Kis17, §2]. To go from the above
theorem to the conjecture in full requires some technical computations involving Galois cohomology,
which the author intends to return to in a future work. The above then can really be thought of as
the arithmetic heart of the conjecture of [LR87].

Let us now give some details about the theorem and its proof. The general strategy follows that
of [Kis17]; however there are many obstructions to adapting the proof over directly for the case of
general parahorics. As was mentioned above, each isogeny class decomposes into a p-power part and
a prime-to-p part. Describing the p-power part is the most difficult part of the problem.

To an x as above we can associate an Xp(φ) which is a union of affine Deligne–Lusztig varieties
(see §5.2 for the precise definition). By the construction of these integral models, one has a map

SK(G,X)→ SK′(GSp(V ), S±)⊗OE(v)

where SK′(GSp(V ), S±) is an integral model for the Siegel Shimura variety ShK′(GSp(V ), S±), de-
fined as a moduli space for abelian varieties with polarization and level structure. Using Dieudonné
theory it is possible to define a natural map

ĩx : Xp(φ)→ SK′(GSp, S
±)(Fp)

and one would like to show this lifts to a well-defined map

ix : Xp(φ)→ SK(G,X)(Fp)
satisfying good properties. The image of the map will then be the p-power part of the isogeny class
for x. This is carried out in two steps. One can show that Xp(φ) has a geometric structure as a closed
subscheme of the Witt vector affine flag variety of [Zhu17] and [BS17]. In particular there is a notion
of connected components for the Xp(φ). The two steps are as follows.
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(1) Show that if ix is defined at a point of Xp(φ) then it is defined on the whole connected component
containing the point.

(2) Show that every connected component of Xp(φ) contains a point at which ix is well-defined by
lifting isogenies to characteristic 0.

For part 1), one uses an argument involving deformations of p-divisible groups. The analogous
argument in [Kis17] uses Grothendieck-Messing theory. In our context this is not possible since the
test rings one needs to deform to are no longer smooth. Hence we use a new argument using Zink’s
theory of displays.

To carry out 2), an essential part is to get a description of (or at least a bound on) the connected
components of Xp(φ). Such a bound is obtained in [HZ]. The bound obtained there is somewhat more
complicated than the description for the case of hyperspecial level. This necessitates an improvement
in the argument for lifting isogenies to characteristic 0. The main new innovation here is that one can
move about through different Levi subgroups of G using characteristic 0 isogenies.

Note that the bound obtained in [HZ] is only good enough to carry out the argument for groups
which are residually split at p. More generally, we will describe how one can get rid of the residually
split condition in the statement of Theorem 1.1 if one assumes a natural conjecture (Conjecture 5.4)
on the set of connected components of affine Deligne–Lusztig varieties. Indeed, the bound on the
connected components obtained in [HZ] can thought of as a reasonable substitute for this conjecture
in the residually split case. However, without assuming GQp residually split, part (1) of the argument
goes through unconditionally. This already allows us to deduce the following interesting corollary.

By construction of SKp(G,X), we have a well-defined map

δ : SKp(G,X)(Fp)→ B(G,µ)

which induces the so-called Newton stratification on the special fiber of SKp(G,X). Here µ is the
inverse of the Hodge cocharacter and B(G,µ) ⊂ B(G) consists of the set of neutral acceptable σ-
conjugacy classes as in [RV14]; it is the group-theoretic analogue of the set of isomorphism classes of
isocrystals satisfying Mazur’s inequality. In the case G = GSp, the integral model is a moduli space
for polarized abelian varieties and this map sends an abelian variety to the isomorphism class of the
associated isocrystal. The following result can then be thought of as a generalization of the classical
Manin’s problem, which asks whether a p-divisible with Newton slopes between 0 and 1 symmetric
about 1

2 arises from an abelian variety up to isogeny.

Theorem 1.2. Let (G,X) and Kp satisfy the assumptions (∗). Then δ is surjective.

This is proved by verifying some of the He–Rapoport axioms for integral models of Shimura varieties
in [HR17]. We cannot yet verify all of the axioms. However, we are able to reduce the verification of
the axioms in full to Conjecture 5.4; for the application the non-emptiness of Newton strata, this is
not needed.

In recent work [KMPS], the authors have shown surjectivity of this map for groups which are
quasi-split at p using a different method. There is an obstruction to their technique working for
certain non quasi-split groups. In contrast, our proof works for non quasi-split groups. For this it is
essential to be able to work at Iwahori level. The key part is to prove non-emptiness of the minimal
Kottwitz–Rapoport stratum at Iwahori level; this shows the surjectivity at Iwahori level. This allows
one to deduce the surjectivity statement for all parahoric levels by using suitable comparision maps
between models with different levels. However, one major input to the proof is the non-emptiness of
the basic locus, which is proved in [KMPS].

Let us give a brief outline of the paper. In section 2 we recall some preliminaries on Bruhat–Tits
buildings and Iwahori Weyl groups associated to a p-adic group. In section 3 we recall the construction
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of the local models of Shimura varietes in [PZ13] and prove certain results about their embeddings
into Grassmannians. In section 4 we recall the construction in [KP] of the universal p-divisible group
over the completion of an Fp-point of the Shimura variety. We construct in Proposition 4.8 a specific
lifting which will be needed in the lifting isogenies argument. Section 5 is the technical heart of the
paper. We recall the notion of affine Deligne–Lusztig varieties and state a conjecture (Conjecture 5.4)
on their connected components. We then recall the bound on the connected components of affine
Deligne-Lusztig varieties obtained in [HZ] and show that for the basic case, or when Conjecture 5.4
holds, enough isogenies lift to characteristic 0. In section 6 we put the results together to deduce the
existence of the required map from Xp(φ) into the integral model when the level Kp is Iwahori; this
is Proposition 6.5. This allows us to deduce part (i) of Theorem 1.1 for the case of Iwahori level at p;
this is the most pertinent case. In section 7 we deduce the existence of good maps between Shimura
varieties of different level which allows us to use the case of Iwahori level to deduce the result for other
parahorics. This also verifies one of the He–Rapoport axioms for these integral models. The rest of
the axioms are verified in section 8 which allows us to deduce the non-emptiness of Newton strata.
Finally in section 9 we prove part (ii) of the main theorem.

Acknowledgements: It is a pleasure to thank my advisor Mark Kisin for suggesting this problem to
me and for his constant encouragement. I would also like to thank George Boxer, Xuhua He, Erick
Knight, Chao Li, Tom Lovering, Anand Patel, Ananth Shankar, Xinwen Zhu and Yihang Zhu for
useful discussions. The author was supported by NSF grant No. DMS-1638352 through Membership
at the Institute for Advanced Study.

2. Preliminaries

2.1. Let p > 2 be a prime. Let F be a p-adic field with ring of integers OF and residue field Fq. Let
L be the completion of the maximal unramified extension F ur of F and OL its ring of integers. Fix
an algebraic closure F of F and let Γ := Gal(F/F ). We write I for the absolute Galois group of L
which can be identified with the inertia subgroup Gal(F/F ur) of Γ. We let σ ∈ Gal(F ur/F ) denote
the Frobenius automorphism which extends by continuity to an automorphism of L.

Let G be a connected reductive group over F . We assume G splits over a tamely ramified extension
of F . Let B(G,F ) be the (extended) Bruhat–Tits building of G(F ). For any x ∈ B(G,F ), there is a
smooth affine group scheme Gx over OF such that Gx(OF ) can be identified with the stabilizer of x in
G(F ). The connected component G◦x of Gx is the parahoric group scheme associated to x. We can also
consider the corresponding objects over L. Then for x ∈ B(G,L), we have G◦x(OL) = Gx(OL)∩ ker κ̃G
where

κ̃G : G(L)→ π1(G)I

is the Kottwitz homomorphism, cf. [HR08, Prop. 3 and Remarks 4 and 11]. Thus if x ∈ B(G,F ),
G◦x(OF ) = Gx(OF ) ∩ ker κ̃G. We say a parahoric subgroup G◦x is connected if G◦x = Gx. If G is
an unramified group (i.e. G is quasi-split and split over an unramified extension of F ), then every
parahoric subgroup is connected; see [KP, 4.2.14 b)]. For ramified groups there does not seem to be a
nice characterization of which parahorics are connected. For some examples of cases when connected
parahorics arise in the study of Shimura varieties we refer to [PR09, 1.b.3] for the case of ramified
unitary groups and [PR05] for cases of groups associated with restrictions of scalars.

Let S ⊂ G be a maximal L-split torus defined over F and T its centralizer. Since G is quasi-split
over L by Steinberg’s theorem, T is a maximal torus of G. Let a denote a σ-invariant alcove in the
apartment V associated to S over L. The relative Weyl group W0 and the Iwahori Weyl group are
defined as

W0 = N(L)/T (L) W = N(L)/T0(OL)
5



where N is the normalizer of T and T0 is the connected Néron model for T . These are related by an
exact sequence

(2.1.1) 0→ X∗(T )I →W →W0 → 0.

For an element λ ∈ X∗(T )I we write tλ for the corresponding element in W ; such elements will be
called translation elements.

Let S denote the set of simple reflections in the walls of a. We let Wa denote the affine Weyl group,
it is the subgroup of W generated by the reflections in S. Then Wa fits into an exact sequence

0→ X∗(Tsc)I →Wa →W0 → 0

where Tsc is the preimage of T in the simply connected cover of the derived group of G. The Iwahori
Weyl group and affine Weyl group are related via the following exact sequence:

0→Wa →W → π1(G)I → 0.

The choice of a induces a splitting of this exact sequence and π1(G)I can be identified with the
subgroup Ω ⊂W consisting of length 0 elements. Wa has the structure of a Coxeter group and hence
a notion of length and Bruhat order which extends to W in the natural way using the splitting above.
As in [HR08], there is a reduced root system Σ such that

Wa
∼= Q∨(Σ) nW (Σ)

where Q∨(Σ) is the coroot lattice of Σ and W (Σ) is its Weyl group. The roots in Σ are proportional
to the roots in the relative root system of G over L, however the root systems themselves may not be
proportional. As explained in [HR17], this induces a pairing 〈 , 〉 between X∗(T )I ⊗ R and the root
lattice of Σ.

2.2. Now let {µ} be a geometric conjugacy class of homomorphisms of Gm into G. Let µ denote the
image in X∗(T )I of a dominant (with respect to some choice of Borel defined over L) representative
of µ ∈ X∗(T ) of {µ}. The µ-admissible set (cf. [Rap05, §3]) is defined to be

Adm({µ}) = {w ∈W |w ≤ tx(µ) for some x ∈W0}.

Note that the µ-admissible set has a unique minimal element denoted τ{µ}; it is the unique element
of Adm({µ}) ∩ Ω.

Now let K ⊂ S and let WK denote the subgroup of W generated by K. We write WK (resp. KW )

for the set of minimal length elements of the cosets W/WK (resp. WK\W ). If K ′ ⊂ S we write K
′
WK

for the set of minimal length elements in the double cosets WK′\W/WK . If K ⊂ S is σ-stable and
WK is finite, then the fixed points of K determines a parahoric subgroup G which is defined over OF .
We set AdmK({µ}) to be the image of Adm({µ}) in WK\W/WK . This subset only depends on the

parahoric G and not on the choice of alcove a. We sometimes write AdmG
K({µ}) if we want to specify

the group G we are working with.
We have the Iwahori decomposition; for w ∈W , we write ẇ for a lift of w to N(L). Then the map

w 7→ ẇ induces a bijection

WK\W/WK
∼= G(OL)\G(L)/G(OL).

Finally we recall the definition and some properties of σ-straight elements. The Frobenius σ induces
an action on W and Wa which preserves S.

Definition 2.1. We say an element w is σ-straight if nl(w) = l(wσ(w) . . . σn−1(w)) for all n ∈ N.
If the action of σ is trivial, we simply write straight for σ-straight in this context.
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For w ∈ W , there exists m ∈ Z ≥ 1 such that σm = 1 and wσ(w) . . . σm−1(w) = tλ for some
λ ∈ X∗(T )I . We define νw ∈ X∗(T )I ⊗ Q to be λ

m and νw to be the dominant representative of νw
with respect to some choice of Borel B defined over L. Then it is known that w is σ-straight if and
only if 〈νw, 2ρ〉 = l(w) where ρ is the half sum of positive roots in Σ.

For w,w′ ∈W and s ∈ S we write w ≈s w′ if w′ = swσ(s) and l(w) = l(swσ(s)). We write w ≈ w′
if there exists a sequence w = w1, . . . , wn ∈W , s1, . . . , sn−1 ∈ S and τ ∈ Ω such that wi ≈si wi+1 for
all i and we have τ−1wnσ(τ) = w′. The following result is [HN14, Theorem 3.9].

Theorem 2.2. Let w,w′ ∈W be σ-straight elements such that there exists x ∈W with x−1wσ(x) =
w′. Then w ≈ w′.
Remark 2.3. By [He14, Theorem 3.7], for w,w′ σ-straight, the condition that there exists x ∈W such
that x−1wσ(x) is equivalent to the existence of g ∈ G(L) such that g−1ẇσ(g) = ẇ′.

We will also need the following property of the Iwahori double coset corresponding to straight
elements.

Theorem 2.4 ([He14] Proposition 4.5). Let w be σ-straight and I the Iwahori subgroup correspondig
to a. Then for every g ∈ I(OL)ẇI(OL) there exists i ∈ I(OL) such that i−1gσ(i) = ẇ.

3. Local models of Shimura varieties

3.1. In this section we recall the construction of the local models of Shimura varieties and prove
certain results concerning their embeddings into Grassmannians. Let F denote a finite unramified
extension of Qp and L/F the completion of the maximal unramified extension of F . We write k for
the residue field of OL.

We start with a triple (G,G, {µ}) where:
• G is a connected reductive group over F which splits over a tamely ramified extension of F .
• G is a connected parahoric group scheme associated to a point x ∈ B(G,F )
• {µ} is a conjugacy class of minuscule geometric cocharacters of G.
We assume G is the parahoric group scheme associated to a subset K ⊂ S.
Let E be the field of definition of the conjugacy class {µ}. In [PZ13] there is a construction

of a reductive group scheme G over OF [u±] := OF [u, u−1] which specializes to G under the map
OF [u±]→ F given by u→ p. There is also the construction of a smooth affine group scheme G over
OF [u] which extends G and which specialises to G under the map OF [u] → OF given by u → p.
Moreover the specialization of Gk[[t]] of G under the map OF [u]→ k[[t]] given by u 7→ t is a parahoric

subgroup of Gk((t)) := G⊗OF [u±] k((t)).
Using these groups, there is a construction of the global affine Grassmanian GrG,X over X :=

Spec (OF [u]) which, under the base change OF [u] → F given by u 7→ p, can be identified with
the affine Grassmanian GrG,F for G. Recall GrG,F is the ind-scheme which represents the fpqc
sheaf associated to the functor on F -algebras R 7→ G(R((t)))/G(R[[t]]) (the identification is given by
t = u− p).

Let Pµ−1 be the parabolic corresponding to µ−1 (we use the convention that the parabolic Pν
defined by a cocharacter ν has Lie algebra consisting of the subspace of the Lie algebra of G where ν
acts by weights ≥ 0). The homogeneous space GQp/Pµ−1 has a canonical model Xµ defined over E.

We may consider µ as a Qp((t))-point µ(t) of G which gives a Qp point of GrG,F . As µ is minuscule,

the action of G(Qp[[t]]) on µ(t) factors through G(Qp[t]])→ G(Qp) and the image of the stabilizer of

µ(t) in G(Qp) is equal to Pµ−1 . Thus the G(Qp[[t]])-orbit of µ(t) in GrG,F can be GE-equivariantly
identified with Xµ.
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Definition 3.1. The local model M loc
G,µ is defined to be the Zariski closure of Xµ in GrG,X×XSpec OE ,

where the specialization map X → Spec OE is given by u 7→ p

We will usually write M loc
G for M loc

G,µ when it is clear what the cocharacter µ is. By its construction

M loc
G is a projective scheme over OE admitting an action of G ⊗OF OE . The following is [PZ13,

Theorem 8.1].

Theorem 3.2. Suppose p does not divide the order of π1(Gder). Then the scheme M loc
G is normal,

the geometric special fibre is reduced and admits a stratification by locally closed smooth strata; the
closure of each stratum is normal and Cohen–Macaulay.

This theorem is proved by identifying the geometric special fiber with an explicit subscheme of
the partial affine flag variety FLG

k[[t]]
for Gk[[t]]. This is an ind-scheme which represents the fpqc

sheaf associated to the functor R 7→ Gk((t))(R((t)))/Gk[[t]](R[[t]]) for a k-algebra R. We have an

identification

FLG
k[[t]]

(k) ∼= Gk((t))(k((t)))/Gk[[t]](k[[t]]).

By [PZ13, §3.a.1], there is an identification of Iwahori Weyl groups for G and Gk((t)). Thus for

w ∈ WK\W/WK we obtain a point ẇk[[t]] ∈ FLG
k[[t]]

corresponding to the image in FLG
k[[t]]

of a lift

of w to Gk((t))(k((t))). We let Cw denote the Gk[[t]] orbit of ẇk[[t]] in FLG
k[[t]]

and Sw its closure, both

of which are independent of the lift ẇ. Cw and Sw are respectively known as the Schubert cell and
Schubert variety corresponding to w. Then by [PZ13, Theorem 8.3] there is an identification

M loc
G ⊗OE k ∼=

⋃
w∈AdmK({µ})

Cw.

Example 3.3. Let G = GLn and let µ be the cocharacter a 7→ diag(a(r), 1(n−r)). Let e1, . . . , en be
the standard basis for Fn. For a sequence of integers 0 ≤ m0 < . . . < mk ≤ n − 1, let GL be the
parahoric subgroup of GLn(F ) stabilizing the lattice chain

Λm0
⊃ Λm1

⊃ · · · ⊃ Λmk

where

Λmi := span〈pe1, . . . , pemi , emi+1, . . . , en〉.
The local model in this case agrees with that considered in [RZ96], as mentioned in [PZ13, §6.b.1].

In this case there is the following description. Given an OF -scheme S, we let Mloc
GL(S) denote the set

of isomorphism classes of commutative diagrams:

Λm0,S Λm1,S
oo . . .oo Λmk,S

oo

Fm0

OO

Fm1
oo

OO

. . .oo Fmkoo

OO

where Λmi,S := Λmi ⊗OF OS and Fmi is a locally free OS -module of rank r and Fmi → Λmi,S is an
inclusion which locally on S is a direct summand of Λmi,S . Let us explain how this description is
related to the M loc

GL considered by [PZ13] which was described in the last section.
We use the following convention for a filtration defined by a cocharacter. Let V be a finite dimen-

sional vector space over F or a finite free OF -module. Then a cocharacter µ : Gm → GL(V ) induces
a grading V =

⊕
i∈Z Vi where Gm acts on Vi by the character z 7→ zi. It induces the filtration on V
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given by F i :=
⊕

j≥i Vj . The stabilizer of this filtration is given by the parabolic subgroup Pµ ⊂ GLn
associated to µ.

From the description of Mloc
GL above, its generic fiber can be identified with the homogeneous space

GLn/Pµ. Indeed when p is inverted, all the Λmi coincide and the choice of Fm0 ⊂ Λm0,F determines
the other Fmi .

This implies that in the construction of the local model M loc
GL , we must therefore take the defin-

ing cocharacter to be µ−1. In this case the stabilizer of the point of GLn(Qp((t)))/GLn(Qp[[t]])
corresponding to µ−1 is Pµ, hence the generic fiber of M loc

G,µ−1 is identified with GLn/Pµ as above.

The identification of Mloc
GL(k) and M loc

GL(k) is given as follows. The group GLk[[t]] is the parahoric

subgroup in GLn(k((t)) stabilizing the lattice chain

Λ′m0
⊃ · · · ⊃ Λ′mk

in k((t))n where Λ′mi := span〈te1, . . . , temi , emi+1, . . . , en〉. We may identify the special fibers of

Λmi and Λ′mi by the choice of standard basis. Given a point of Mloc
GL(k), we obtain a subspace

Fmi ⊂ Λ′mi ⊗ k via the above identification, where Fmi is of dimension r. The preimages Lmi of Fmi

in Λ′mi corresponds to a lattice chain of the same type as Λ′m0
⊃ · · · ⊃ Λ′mk . As in [Gör01, 3.1.3], there

exists an element g ∈ GLn(k((t)))/GL(k[[t]]) such that Lmi = gΛ′mi for all mi. The corresponding

point of M loc
GL(k) is given by xt−1 (here we consider k((t))× ⊂ GLn(k((t))) via the scalar matrices).

3.2. We recall the construction of certain lattice chains of OF [u]-modules from [PZ13, §4.b.1]. Let
W = OF [u]n and W = W ⊗OF [u],u7→0 OF ∼= OnF . Write W = ⊕ri=0Vi and let Ui = ⊕j≥iVj . For

i = 0, . . . , r − 1 we let Wi ⊂ W denote the inverse image of Ui under W → W ; the sequence Wi

satisfies

uW ⊂Wr−1 ⊂ . . . ⊂W0 = W.

We extend the sequence to Z by letting Wi+kr = ukWi and we write W• for the resulting chain indexed
by Z.

Now let ρ : G → GL2n be a closed group scheme immersion over F such that ρ ◦ µ is in the
conjugacy class of the minuscule cocharacter a 7→ diag(1(n), (a−1)(n)). Suppose also that ρ satisfies
the following conditions:
• ρ extends to a closed group scheme immersion G → GL(W•), where W• is a lattice chain in

OF [u]2n as in [PZ13, 4.b.1] and which was recalled above.
• The Zariski closure of Gk((u)) in GL(W•⊗OF [u]k[[u]]) is a smooth group scheme P ′ whose identity

component can be identified with Gk[[u]].

Then it is shown in [PZ13, Proposition 7.1] that extending torsors along G → GL(W•) induces a
closed immersion:

ι : M loc
G,µ →M loc

GL,ρ◦µ ⊗OF OE
where GL is the parahoric subgroup of GL2n corresponding to the lattice chain W• ⊗Zp[u] OF . We
will need a more explicit description of this map on the level of k-points which we now explain.

3.3. For the rest of this section we assume G is quasi-split. By Steinberg’s theorem, this can be
achieved upon making a finite unramified base extension F ′/F . For later applications it will suffice
to make such a base change which is why we are allowed to make this assumption. We remind the
reader that S is a maximal L-split torus of G defined over F .

Let ρ : G→ GSp(V ) be a local Hodge embedding in the sense of [KP, §2.3], in particular we assume
G contains the scalars in GL(V ). As explained in [KP, Proposition 2.3.7], there is an embedding
G → GL(W•) satisfying the above conditions and hence an embedding of local models. Base changing
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to OL[u±] we obtain an embedding G → GL(Λ) where Λ is a free module over OL[u±] and is the
common generic fibre of W•. The fiber over L of this embedding is given by ρ and we denote the
fibers over κ((u)), where κ = k, L, by ρκ((u)). As shown in [KP, §1.2], these maps induce embeddings
of buildings

(3.3.1) B(G,L)→ B(GL2n, L)

(3.3.2) B(G, κ((u)))→ B(GL2n, κ((u))).

These embeddings satisfy the following property: There is a choice of a maximal OL[u±]-split torus
S of G and a choice of basis b for Λ such that the embeddings of buildings (3.3.1) and (3.3.2) induce
embeddings of the corresponding apartments

(3.3.3) A(G,S, L)→ A(GL2n, S
′, L)

(3.3.4) A(Gκ((u)), Sκ((u)), κ((u)))→ A(GL2n, S
′, κ((u)));

here the choice of b determines an isomorphism of GL(Λ) with GL2n and S′ is the diagonal torus
of GL2n. Indeed taking S to be the torus associated to S by the construction in [PZ13, 2.c] and
taking the choice of b as in [PZ13, Proof of Proposition 2.3.7, Step 1], we see that the embedding
G → GL(Λ) takes S to the standard torus. By [PZ13, 3.a.2], the base change Sκ((u)) is a maximal
torus of Gκ((u)). This gives the embedding of apartments by the construction of the corresponding
embedding of buildings.

The choice of S and b also give identifications

(3.3.5) A(G,S, L) ∼= A(Gκ((u)), Sκ((u)), κ((u)))

and

(3.3.6) A(GL2n, S
′, L) ∼= A(GL2n, S

′, κ((u))).

Moreover there is an identification of Iwahori Weyl groups for the different groups over the fields L
and κ((u)) and the identification of apartments is compatible with the actions of these groups, see
[PZ13, §3.a.1]. The maps (3.3.1) and (3.3.2) are compatible with these identifications.

Let x ∈ A(G,S, L) be a point corresponding to the parahoric and let

xκ((u)) ∈ A(Gκ((u)), Sκ((u)), κ((u)))

be the image of x under the identification (3.3.5). Then the group scheme Gκ[[u]] is identified with

the parahoric group scheme corresponding to xκ((u)). The images of x (resp. xκ((u))) under the
embeddings (3.3.1) and (3.3.2) give points y (resp. yκ((u))) whose corresponding parahoric GL (resp.
GLκ[[u]]) is the stabilizer of the base change of W• to L (resp. κ((u))).

3.4. The image of the alcove a under the embedding of apartments A(G,S, L) → A(GL2n, S
′, L)

is contained in (the closure of) an alcove in the apartment for GL2n. We fix such an alcove and
let S′ denote the corresponding set of simple reflections. Then GL corresponds to a subset K ′ ⊂ S′
and we may apply the constructions in §2 to GL to obtain AdmGL2n

K′ ({µ}GL2n
), this is a subset of

W ′K′\W ′/W ′K′ where W ′ denotes the Iwahori subgroup for GLn and {µ}GL2n denotes the GL2n-
conjugacy class of cocharacters induced by {µ}.

We identify

M loc
G (k) ⊂ G(k((u)))/Gk[[t]](k[[u]])

10



with the union over the Schubert varieties Sw where w ∈ AdmK({µ}). Similarly

M loc
GL(k) ⊂ GL2n(k((u)))/GL(k[[u]])

is the union of the Schubert varieties SGL2n

w′ in GL2n for w′ ∈ AdmGL2n

K′ ({µ}GL2n
).

On the level of k points the embeddings M loc
G (k) ↪→M loc

GL2n
(k) is induced by the map G(k((u)))→

GL2n(k((u))). On the other hand, the choice of basis b gives an embedding

(3.4.1) M loc
GL(k) ⊂ GL2n(L)/GL(OL).

Indeed the choice of basis gives an identification between the special fibers of the lattice chains W• ⊗
k[[u]] and W• ⊗OL. Then as in Example 3.3 a k-point of M loc

GL corresponds to a filtration on each of

the k vector spaces W• ⊗ k. If g′ ∈ GLn(k((u)))/GL(k[[u]]) lies in M loc
GL(k), the filtration is induced

by reducing the image of the lattice chain ug′W•⊗ k modulo u. Taking the preimage of this filtration
in W• ⊗ OL, we obtain a lattice chain of type W• ⊗ OL which is given by p−1gW• ⊗ OL for some
g ∈ GL2n(L)/GL2n(OL). The embedding is then given by g′ 7→ g. We may thus use (3.4.1) to identify
M loc
G (k) with a subset of GLn(L)/GLn(OL).

Note that the embedding (3.4.1) identifies M loc
GL(k) with

(3.4.2)
⋃

w∈Adm
GL2n
K′ ({µ})

GL(OL)ẇGL(OL)/GL(OL)

where ẇ denotes a representative of w in G(L) (see for example, [Hai05, §11]). Then this identification
is equivariant for the action of GL(k), where GL(k) acts on (3.4.2) by left multiplication. Indeed since
µ is minuscule, left multiplication by GL(OL) factors through GL(k).

3.5. Recall we have assumed G ⊂ GL(V ) contains the scalars. We let λ : Gm → G denote the
cocharacter giving scalar multiplication.

Proposition 3.4. Let g ∈ G(L) with

g ∈ G(OL)ẇG(OL)

for some w ∈ WK\W/WK . Then the image ρ(g) of ρ(g) in GL2n(L)/GL(OL) lies in M loc
G (k) if and

if and only if w ∈ AdmK({µ}).

Proof. Let g1ẇg2 in the Bruhat decomposition G(OL)ẇG(OL). Since G(OL) maps to GL(OL), we
may assume g = g1ẇ.

Now M loc
G is equipped with an action by G ×OF OE and M loc

GL with an action of GL. Over the

special fiber this action is identified with the one given by left multiplication by G(OL) on M loc
G (k) ⊂

GLn(L)/GL(OL), which as above, factors through G(k). Thus, modifying g by g1 on the left, we may
assume g = ẇ.

Since the embedding of apartments (3.1) and (3.2) over L and k((u)) is compatible with the
identification of apartments

A(G,S, L) ∼= A(Gk((u)), Sk((u)), k((u)))

respecting the action of Iwahori Weyl groups, we see that ρ(g) corresponds to the point ρk((u))(ẇk[[u]]) ∈
GL2n(k((u)))/GL(k[[u]]). Thus by the description of M loc

G (k) above, we see that ρ(g) ∈ M loc
G (k) if

and only if w lies in AdmK({µ}). �
11



Corollary 3.5. Let g ∈ G(OL)ẇG(OL) with w ∈ AdmK({µ}), then

ρ(g) ∈ GL(OL)ẇ′GL(OL)

for some ẇ′ ∈ AdmGL2n

K ({µ}GL2n).

Proof. This follows from Proposition 3.4 and the description in (3.4.2) of M loc
GL(k) as a subset of

GL2n(L)/GL(OL). �

3.6. As explained in [KP, 2.3.15], we may compose ρ : G → GSp(V,Ψ) with a diagonal embedding
to obtain a new minuscule Hodge embedding ρ′ : GSp(V ′,Ψ′) with dimV ′ = 2n′ such that there is
a self-dual lattice V ′Zp ⊂ V ′ and the above embedding of buildings takes x to the hyperspecial point

y ∈ B(GL(V ′), L) corresponding to V ′Zp ⊗Zp OL. V ′Zp is constructed by taking the direct sum of the

lattices in the lattice chain corresponding to GL. Then ρ′ factors through a diagonal embedding
GL(V )→ GL(V ′). In this case we obtain an embedding of local models:

M loc
G → Gr(V ′Zp)⊗Zp OE

where Gr(V ′Zp) is the smooth grassmannian parametrizing dimension n′ sub-bundles F ⊂ V ′Zp ⊗Zp OS
for any Zp-scheme S.

Choosing a basis b as above, we obtain an embedding

M loc
G (k) ↪→ GL2n′(L)/GL′(OL)

where GL′ is the hyperspecial subgroup stabilising V ′Zp . Let T ′ ⊂ GL(V ′) denote a maximal torus

whose apartment contains the hyperspecial vertex corresponding to GL′ and such that ρ maps S to
T ′.

Corollary 3.6. Let g ∈ G(OL)ẇG(OL) ⊂ G(L) with w ∈ AdmK({µ}), then

ρ(g) ∈ GL′(OL)µ′GL(p)GL′(OL)

where µ′GL is a representative of {µ}GL(V ′).

Proof. Under the diagonal embedding GL(V )→ GL(V ′), we have that Adm
GL(V )
K′ ({µ}GL(V )) maps to

Adm
GL(V ′)
K′′ ({µ}GL(V ′)). This follows by the equality Adm({µ}) = Perm({µ}) for general linear groups,

see [HC02]. Since GL′ is hyperspecial, Adm
GL(V ′)
K′′ ({µ}GL(V ′)) is just the single coset corresponding

to tµ, hence the result follosw from Corollary 3.5. �

4. p-divisible groups

In this section we review the theory of S-modules and their applications to deformation theory of
p-divisible groups equipped with a collection of crystalline tensors. The main result is the construction
of a certain deformation of such a p-divisible group in Proposition 4.8 which is needed in the arguments
of §5.

4.1. We now let F = Qp so that L = W (Fp)[ 1
p ]. For K/L a finite totally ramified extension, let ΓK

be the absolute Galois group of K. Let Repcris denote the category of crystalline ΓK-representations,
and Rep◦cris the category of ΓK-representations in finite free Zp-modules which are lattices in some
crystalline representation of ΓK . For V a crystalline representation of ΓK , recall Fontaine’s functors
Dcris, DdR:

Dcris(V ) = (V ⊗Qp Bcris)
ΓK DdR(V ) = (V ⊗Qp BdR)ΓK .
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Fix a uniformizer π for K and let E(u) be the Eisenstein polynomial which is the minimal poly-
nomial of π. Let S = OL[[u]], we equip this with a lift ϕ of Frobenius given by the usual Frobenius
on OL and u 7→ up. We write D× for the scheme Spec S with its closed point removed. Let ModϕS
denote the category of finite free S-modules M equipped with a ϕ-linear isomorphism:

1⊗ ϕ : M⊗S,ϕ S[1/E(u)]→M[1/E(u)].

Let BTϕ denote the subcategory of ModϕS consisting of M, such that 1 ⊗ ϕ maps ϕ∗(M) into M
and whose cokernel is killed by E(u).

Given M ∈ ModϕS we equip ϕ∗(M) with the filtration

Filiϕ∗(M) = (1⊗ ϕ)−1(E(u)iM) ∩ ϕ∗(M).

Let OE denote the p-adic completion of S(p); it is a discrete valuation ring with uniformizer p and
residue field k((u)) and let E denote its fraction field. We equip OE with the unique Frobenius ϕ
which extends that on S, and let ModϕOE denote the category of finite free OE -modules M equipped
with a Frobenius semilinear isomorphism

1⊗ ϕ : ϕ∗(M)→M

.
There is a functor ModϕS → ModϕOE given by

M 7→M⊗S OE .

with the Frobenius on M⊗S OE induced by that on M.
Let OÊur denote the p-adic completion of a strict Henselization of OE . The following is contained

in [Kis17, Theorem 1.1.2] and [KP, Theorem 3.3.2]:

Proposition 4.1. There is a fully faithful functor

M : Rep◦cris → ModϕS

which is compatible with the formation of symmetric and exterior products and is such that Λ 7→
M(Λ)|D× is exact. If Λ is in Rep◦cris, V := Λ⊗Qp and M = M(Λ)

(i) There are canonical isomorphisms

Dcris(V ) ∼= M/uM[
1

p
] and DdR(V ) ∼= ϕ∗(M)⊗S K

the first being compatible with ϕ and the second being compatible with filtrations.
(ii) There is a canonical isomorphism

Λ⊗Zp OÊ ur
∼= M⊗S OÊ ur .

4.2. For an R-module M , we let M⊗ denote the direct sum of all R-modules obtained from M by
taking duals, tensor products, symmetric and exterior products.

Let Λ ∈ Rep◦cris and suppose sα,ét ∈ Λ⊗ are a collection of ΓK-invariant tensors whose stabilizer is
a smooth group scheme G over Zp with reductive generic fiber G. Since the sα,ét are ΓK-invariant, we
obtain a representation

ρ : ΓK → G(Zp).
We may think of each sα,ét as a morphism in Rep◦cris from the trivial representation Zp to Λ⊗.

Applying the functor M to these morphisms gives us ϕ-invariant tensors s̃α ∈M(Λ)⊗.
13



Proposition 4.2. Suppose that the special fiber of G is connected and H1(G, D×) = 1. Then there
exists an isomorphism.

Λ⊗Zp S
∼= M(Λ)

taking sα,ét to s̃α.

Proof. This is a special case of [KP, 3.3.5], indeed with our assumptions G = G◦. �

4.3. For a p-divisible group G over a scheme where p is locally nilpotent we write D(G ) for its
contravariant Dieudonné crystal. For G a p-divisible group over OK , we let TpG be the Tate module
of G and TpG ∨ the linear dual of TpG . We will apply the above to Λ = TpG ∨.

Let R be a complete local ring with maximal ideal m and residue field k. We let W (R) denote

the Witt vectors of R. Recall [Zin01] we have a subring Ŵ (R) = W (k) ⊕W(m) ⊂ W (R), where
W(m) ⊂W (R) consists of Witt vectors (wi)i≥1 with wi ∈ m and wi → 0 in the m-adic topology. Then

Ŵ (R) is preserved by both the Frobenius ϕ and Verschiebung V on W (R). We have IR := V Ŵ (R)

is the kernel of the projection map Ŵ (R)→ R. Fix a uniformizer π of K and write [π] ∈ Ŵ (OK) for
its Teichmuller representative. Recall the following definition from [Zin01].

Definition 4.3. A Dieudonné display over R is a tuple (M,M1,Φ,Φ1) where

(i) M is a free Ŵ (R)-module.

(ii) M1 ⊂M is a Ŵ (R)-submodule such that

IRM ⊂M1 ⊂M
and M/M1 is a projective R-module.

(iii) Φ : M →M is a ϕ-semilinear map.

(iv) Φ1 : M1 →M is a ϕ-semilinear map whose image generates M as a Ŵ (R) module and which
satisfies

Φ1(V (w)m) = wΦ(m), for w ∈ Ŵ (R),m ∈M.

Let G be a p-divisible group over R. Then D(G )(Ŵ (R)) naturally has the structure of a Dieudonné

display, and by the main result of [Zin01] the functor G 7→ D(G )(Ŵ (R)) is an anti-equivalence of
categories between p-divisible groups over R and Dieudonné displays over R.

4.4. If G is a p-divisible group over OK , then by [KP, Theorem 3.3.2] there is a canonical isomorphism

D(G )(Ŵ (OK)) ∼= M⊗S,ϕ Ŵ (OK)

where M = M(TpG ∨) and the tensor product is over the map given by composing the map S →
Ŵ (OK), u 7→ [π] with ϕ. Moreover the induced map

D(G )(OK) ∼= ϕ∗(M)⊗S OK → DdR(TpG
∨ ⊗Zp Qp)

respects filtrations and we have a canonical identification

D(G0)(OL) ∼= ϕ∗(M/uM)

where G0 := G ⊗OK k.
If sα,ét ∈ TpG ∨,⊗ are a collection of ΓK invariant tensors, we let

sα,0 ∈ Dcris(TpG
∨ ⊗Zp Qp)

denote the ϕ-invariant tensors corresponding to sα,ét under the p-adic comparison isomorphism. We
assume from now on that the stabilizer of sα,ét is of the form Gx for x ∈ B(G,Qp), where G is a tamely
ramified reductive group containing no factors of type E8. The following is [KP, 3.3.8]
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Proposition 4.4. sα,0 ∈ D(G0)(OL)⊗ where we view D(G0)(OL)⊗ as an OL-submodule of the L

vector space Dcris(TpG ∨⊗ZpQp)⊗. Moreover the sα,0 lift to ϕ-invariant tensors s̃α ∈ D(G )(Ŵ (OK))⊗

which map to Fil0D(G )(OK)⊗, and there exists an isomorphism:

D(G )(Ŵ (OK)) ∼= TpG
∨ ⊗Zp Ŵ (OK)

taking s̃α to sα,ét. In particular, there is an isomorphism

D(G0)(OL) ∼= TpG
∨ ⊗Zp OL

taking sα,0 to sα,ét.

4.5. Now let G0 be a p-divisible group over k and suppose (sα,0) ∈ D⊗, where D := D(G0)(OL), are

a collection of ϕ-invariant tensors whose image in D(G0)(k) lie in Fil0. We assume that the stabilizer
GOL of the sα,0 is a connected Bruhat–Tits parahoric group scheme, i.e. GOL = Gx = G◦x for some
x ∈ B(G,L) as above and also that G contains the scalars.

Let P ⊂ GL(D) be a parabolic subgroup lifting the parabolic P0 corresponding to the filtration on

D(G0)(k). Write M loc = GL(D)/P and SpfA = M̂ loc the completion at the identity. We write M1 for
the universal filtration on D ⊗OL A. Let K ′/L be a finite extension and y : A → K ′ be a map such
that sα,0 ∈ Fil0D⊗OL K ′ for the filtration induced by y on D⊗OL K ′. By [Kis10, Lemma 1.4.5], the
filtration corresponding to y is induced by a G-valued cocharacter µy.

Let G.y be the orbit of y in M loc ⊗OL K ′ which is defined over the field of definition E of the
G-conjugacy class of cocharacters {µy}, and we write M loc

GOL
for the closure of this orbit in M loc. By

[KP, Proposition 2.3.16], M loc
GOL

can be identified with the local model for GOL and the conjugacy

class of cocharacters {µ−1
y } considered in §3.

Definition 4.5. Let G be a p-divisible group over OK whose special fiber is isomorphic to G0. We

say G is (GOL , µy)-adapted if the tensors sα,0 lift to Frobenius invariant tensors s̃α ∈ D(G )(Ŵ (OK))⊗

such that the following two conditions hold:

(1) There is an isomorphism D(G )(Ŵ (OK)) ∼= D⊗OL Ŵ (OK) taking s̃α to sα,0.
(2) Under the canonical identification D(G )(OK) ⊗OK K ∼= D ⊗OL K coming from [KP, Lemma

3.1.17], the filtration on D⊗OL K is induced by a G-valued cocharacter conjugate to µy.

Remark 4.6. It can be checked from the construction in [KP], that the notion of (GOL , µy)-adapted
liftings only depends on the G-conjugacy class of µy and the specialization of the filtration induced
by µy.

Proposition 4.7. Let SpfA denote the versal deformation space of G0. Then there is a versal quotient
AG of A ⊗OL OE such that for any K as above, a map $ : A ⊗OL OE → OK factors through AG if
and only if the p-divisible group G$ induced is (G, µy)-adapted.

Proof. This is essentially [KP, Prop. 3.2.17]. It follows from the construction that the p-divisible
group G$ induced by a map $ : AG → OK is (G, µy)-adapted. Indeed by the construction of the
versal p-divisible group in [KP, §3.2.12], the Dieudonné display MAG of the versal p-divisible group

base changed to AG is equipped with Frobenius invariant tensors sα,0,AG ∈ M⊗AG and there is an
identification

β : MAG
∼−→ D⊗OL Ŵ (AG)

taking sα,0,AG to sα,0. Base changing to Ŵ (OK), we obtain s̃α and the identification β gives condition
(1) of Definition 4.5. For the second condition, by [KP, Lemma 3.2.13], the canonical map

(4.5.1) γ : D⊗OL K ∼= D(GOK )(OK)⊗OK K
15



induced by [KP, Lemma 3.1.17] sends sα,0 to sα,0,OK , where sα,0,OK denotes the base change sα,0,AG
to OK . Note that this map is not necessarily the same map induced by the identification β−1|K . By
[Kis10, Lemma 1.4.5], the filtration on D(GOK )(OK) ⊗OK K is induced by a G-valued cocharacter
conjugate to µy under the identification with D⊗OL K coming from β|K , see also [KP, §3.2.5]. Since

the map γ respects sα,0 the map β|K ◦ γ : D⊗OL K
∼−→ D⊗OL K is induced by an element of G(K)

and hence the filtration on D ⊗OL K coming from the map γ is induced by a G-valued cocharacter
conjugate to µy. This proves condition (2).

The converse is [KP, Prop. 3.2.17]. �

4.6. Now assume there is a Zp-module U and an isomorphism U ⊗Zp OL ∼= D such that sα,0 ∈ U⊗.
Then the stabilizer of sα,0 in U⊗ is a group G over Zp such that G ⊗Zp OL ∼= GOL . We assume G is
of the form Gx for some x ∈ B(G,Qp). Since the sα,0 are ϕ-invariant, ϕ is of the form bσ for some
b ∈ G(L).

Under these assumptions one can make the following construction of a certain (GOL , µy)-adapted
lift, which will be needed in §5 for the reduction to Levi subgroups argument.

Proposition 4.8. There exists a (GOL , µy)-adapted deformation of G0 such that sα,0 ∈ D⊗ correspond
to tensors sα,ét ∈ TpG ∨ under the p-adic comparison isomorphism and such that there exists an
isomorphism:

TpG
∨ ⊗Zp OL ∼= D

taking sα,ét to sα,0.

Proof. Let M := D ⊗σ−1,OL S, then σ∗(M) ∼= D ⊗OL S. Note that the map y : A → K ′ necessarily
factors through OK′ since A is a power series ring over OL; we abuse notation and also write y for
the map A → OK′ . Let y∗(M1) ⊂ D⊗OL OK′ denote the filtration induced by y : A → OK′ and let
F ⊂ σ∗(M) denote be the premiage of y∗(M1). By [KP, Lemma 3.2.6], F is a free S-module and
sα,0 ∈ F , moreover the scheme Isomsα,0,S

(F, σ∗(M)) of S-isomorphisms which respect the sα,0 is a G
torsor. The Frobenius ϕ on D induces a map

D1
'−→ D

∼=−→ σ−1∗D.

Here D1 is the preimage of the filtration on D(G0)(k); the first arrow is given by σ−1(b/p) and the
second isomorphism is induced by the identity on U . The specialization of F at u = 0 is identified
with D1. Then since G contains the scalars, σ−1(b/p) preserves sα,0 and hence corresponds to a point
Isomsα,0,S

(F, σ∗(M))(W ). By smoothness of G, this lifts to an isomorphism

Θ : F
∼−→ σ∗(M)

respecting sα,0. Let c = pE(u)
E(0) . The morphism

ϕ : σ∗(M)
×c−−→ F

Θ−→ σ∗(M)→M

where the last map is induced from the identity on U , gives M the structure of an element of BTϕ

such that ϕ∗(M/uM) is identified with D, and hence corresponds to a p-divisible group G over OK
deforming G0.

Since ϕ preserves sα,0, these give rise to Frobenius invariant tensors in s̃α ∈ D(G )(Ŵ (OK))⊗, and
by construction there is an isomorphism

β′ : D(G )(Ŵ (OK)) ∼= D⊗OL Ŵ (OK)
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taking s̃α to sα,0. Moreover under this isomorphism, the filtration on D ⊗OL K is given by µy. The
canonical isomorphism

(4.6.1) D⊗OL K ∼= D(G )(OK)⊗OK K

induced by [KP, Lemma 3.1.17] takes s̃α to sα,0 by [KP, Lemma 3.2.13]. As in the proof of Proposition
4.7, the map in (4.6.1) is not necessarily identified with β′−1|K . However both the maps respect tensors
and hence by the same argument of 4.7 the filtration on D⊗OLK coming from (4.6.1) is induced by a
G-valued cocharacter conjugate to µy. Thus G is a (G, µy)-adapted deformation, and since s̃α ∈M⊗,
we have sα,ét ∈ TpG ∨ by the fully faithfulness of M in Proposition 4.1.

We now show that there exists an isomorphism TpG ∨⊗Zp OL ∼= D respecting tensors. It will suffice
to show that P is a trivial G-torsor. Let

P ⊂ Isom(TpG
∨ ⊗Zp OL,D)

be the isomorphism scheme taking sα,ét to sα,0. By construction there is an isomorphism

M(TpG
∨) ∼= D⊗σ−1,OL S

∼−→ D⊗OL S

taking s̃α to sα,0. By Proposition 4.1 there is a canonical isomorphism

TpG
∨ ⊗Zp OÊur ∼= M(TpG

∨)⊗S OÊur
and this isomorphism takes sα,ét to s̃α. Thus there is an isomorphism

TpG
∨ ⊗Zp OÊur ∼= D⊗OL OÊur

taking sα,ét to sα,0, i.e. P ⊗W OÊur is a trivial G-torsor. Since OL → OÊur is faithfully flat, P is a
G-torsor which is necessarily trivial since G is smooth and OL is strictly henselian.

�

5. Affine Deligne–Lusztig varieties

This section forms the main part of the local argument for the description of the isogeny classes. It
is used for the argument in §6 for lifting isogenies to characteristic 0. An essential part is a bound on
the connected components of affine Deligne-Lusztig varieties obtained in [HZ], which is recalled here.
We also state a conjecture on the connected components of affine Deligne–Lusztig varieties of which
the results of [HZ] can be thought of as a special case.

5.1. Let G be a reductive group over Qp which splits over a tamely ramified extension. Recall S is
a maximal L-split torus defined over Qp and T its centralizer. We have fixed a σ-invariant alcove a
in the apartment corresponding to S which induces a length function and ordering on the affine Weyl
group Wa and hence on the Iwahori Weyl group W . We also fix a special vertex s (not necessarily
σ-invariant) contained in the closure of a. This induces an identification A(G,S, L) ∼= X∗(T )I ⊗ R
by sending s to 0. This also determines a dominant chamber C+ in X∗(T )I ⊗ R by taking the one
containing the alcove a. We let B denote the Borel subgroup over L corresponding to this choice of
dominant chamber. The choice also determines a splitting of the exact sequence (2.1.1) so we may
think of W0 ⊂W . It is generated by the simple reflections S0 corresponding to the special vertex s.

Under the identification A(G,S, L) ∼= X∗(T )I ⊗ R induced by s, σ acts by affine transformations
on X∗(T )I ⊗ R and we write ς for the linear part of this action. We write σ0 for the automorphism
of X∗(T )I ⊗R defined by σ0 := w ◦ ς where w ∈W0 is the unique element such that w ◦ ς(C+) = C+.
We call this the L-action on X∗(T )I ⊗ R; it preserves C+.
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Let b ∈ G(L), we denote by [b] = {g−1bσ(g)|g ∈ G(L)} its σ-conjugacy class. Let B(G) be the set
of σ-conjugacy classes of G(L). We let ν be the Newton map

ν : B(G)→ (X∗(T )+
I,Q)σ0

where X∗(T )I,Q := X∗(T )I ⊗Z Q and X∗(T )+
I,Q is its intersection with the dominant chamber C+.

Following convention, we denote by νb the image of the σ-conjugacy class of b under the map ν. We
let

κG : B(G)→ π1(G)Γ

denote the map induced by composition of the Kottwitz map κ̃G : G(L)→ π1(G)I with the projection
π1(G)I � π1(G)Γ.

By [Kot97, §4.13] the map

(ν, κG) : B(G)→ (X∗(T )+
I,Q)σ0 × π1(G)Γ

is injective.
We say a σ-conjugacy class [b] ∈ B(G) is basic if νb is central.

5.2. Let K ⊂ S be a σ-invariant subset and WK the group generated by the reflections in K. Let G
denote the associated parahoric group scheme over Zp. For b ∈ G(L) and w ∈WK\W/WK the affine
Deligne–Lusztig variety is defined to be

XK,w(b) := {g ∈ G(L)/G(OL)|g−1bσ(g) ∈ G(OL)ẇG(OL)}.

It is known that XK,w(b) arises as the k-points of a perfect scheme over k, for example by [BS17] (see
also [Zhu17]). When K = ∅ and G = I is an Iwahori subgroup, we write Xw(b) for the corresponding
affine Deligne–Lusztig variety.

Let {µ} be a geometric conjugacy class of cocharacters for G and let µ be the image in X∗(T )I of
a dominant representative µ in X∗(T ). Recall we have associated to this data the µ-admissible set
AdmK({µ}) ⊂WK\W/WK .

Let

X({µ}, b)K : = {g ∈ G(L)/G(OL)|g−1bσ(g) ∈
⋃

w∈AdmK({µ})

G(OL)ẇG(OL)}

=
⋃

w∈AdmK({µ})

XK,w(b).

As before, when G is the Iwahori subgroup we write X({µ}, b) for this union of affine Deligne–Lusztig
varieties. For notational convenience we will also consider the unions

X(σ({µ}), b)K :=
⋃

w∈AdmK({µ})

XK,σ(w)(b).

It can be identified with X({σ′(µ)}, b) where σ′ ∈ Gal(Qp/Qp) is a lift of Frobenius. The map
g 7→ bσ(g) defines an isomorphism from X({µ}, b) to X(σ({µ}), b).

We recall the definition of the neutral acceptable set B(G, {µ}) in [RV14]. For λ, λ′ ∈ X∗(T )+
I,Q,

we write λ ≤ λ′ if λ′−λ is a non-negative rational linear combination of positive relative coroots. Set

B(G, {µ}) = {[b] ∈ B(G) : κG([b]) = µ\, νb ≤ µ�}

where µ\ is the common image of µ ∈ {µ} in π1(G)Γ, and µ� ∈ X∗(T )I,Q denotes the Galois average
of µ ∈ X∗(T )I with respect to the action of σ0.
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The following result on the non-emptiness pattern of the X({µ}, b)K was conjectured by Kottwitz
and Rapoport in [KR03] and proved by He in [He16].

Theorem 5.1 ([He16, Theorem 1.1] ). (i) The set X({µ}, b)K 6= ∅ if and only if [b] ∈ B(G, {µ}).
(ii) Let K ′ ⊂ K with K ′ also σ-invariant and let G′ be the associated parahoric. The natural

projection G(L)/G′(OL)→ G(L)/G(OL) induces a surjection

X({µ}, b)K′ � X({µ}, b)K .

We write Jb for the reductive group over Qp whose points in a Qp-algebra R is defined to be

Jb(R) := {g ∈ G(L⊗Qp R)|g−1bσ(g) = b}.
Then Jb(Qp) acts on XK,w(b) and X({µ}, b).

5.3. We now state a conjecture on the connected components of affine Deligne–Lusztig varieties. For
[b] ∈ B(G), we let Mνb denote the standard Levi subgroup of G corresponding to νb. A standard
Levi subgroup M ⊂ G defined over L is said to σ0-stable if it is the centralizer of a cocharacter
ν ∈ X∗(T )I,Q ∼= X∗(T )I ⊗Z Q which is stable under σ0. Such a Levi determines a subroot system
ΦM ⊂ Σ.

Definition 5.2 ([GHN, Definition 2.1 (1)]). Let M ⊂ G be a proper σ0-stable standard Levi subgroup.
We say that [b] ∈ B(G, {µ}) is Hodge–Newton decomposable with respect to M if Mνb ⊂ M and
µ� − νb ∈ R≥0Φ∨M .

It is Hodge-Newton indecomposable if no such M exists.

Lemma 5.3. Let [b] ∈ B(G, {µ}) be Hodge–Newton indecomposable and assume Gad is Qp-simple.
Then either b is σ-conjugate to ṫµ and µ is central (meaning 〈µ, α〉 = 0 for all α ∈ Σ), or the coefficient

of each simple coroot of Σ∨ in µ� − νb is strictly positive.

Proof. The proof is the same as [CKV15, Theorem 2.5.6]. Suppose the coefficient of some simple
coroot α∨0 ∈ Σ∨ vanishes in µ� − νb, we claim that this implies µ� = νb. Assuming this we can prove
the Lemma as follows. Let M = Mνb , then M is σ0-stable and if it is proper, [b] is Hodge–Newton
decomposable with respect to M . Therefore Mνb = G, i.e. νb is central in G. Since κG(ṫµ) = κG(b)

and ν ṫµ = µ� = νb, b is σ-conjugate to ṫµ. Let α ∈ Σ be a positive root. We have

(5.3.1) 0 = 〈µ�, α〉 =
1

n

n−1∑
i=0

〈σi0(µ), α〉 =
1

n

n−1∑
i=0

〈µ, σi0(α)〉

where n is the order of σ0 acting on Σ. Since σ0 preserves the positive roots in Σ, and µ is dominant,

〈µ, σi0(α)〉 ≥ 0 for all i, and hence 〈µ, σi0(α)〉 = 0 for all i by (5.3.1).
It suffices therefore to prove the claim. Let α∨ be a simple coroot in Σ∨; we show by induction

on the distance between α∨ and the σ0-orbit of α∨0 in the Dynkin diagram that the coefficient of
α∨ in µ� − νb also vanishes. Suppose this is known for some simple coroot α∨, then it is known
for any element of the σ0-orbit of α∨ since µ� − νb is σ0-invariant. If 〈α, νb〉 6= 0 then the standard
σ0-stable Levi subgroup M corresponding to the σ0-orbit of α satisfies Mνb ⊂ M contradicting the
Hodge–Newton indecomposability assumption. Here M is generated by T and all the relative root
subgroups Uβ for β not proportional to an element of the σ0-orbit of α. Therefore 〈α, νb〉 = 0. It
follows that

〈µ�, α〉 = 〈µ� − νb, α〉 =
∑
β

λβ〈β∨, α〉
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where λβ is the coefficient of β∨ in µ� − νb and the sum runs over neighbors β of α in the Dynkin
diagram of σ. Since 〈µ�, α〉 ≥ 0 and λβ ≥ 0, this implies λβ = 0 for all neighbors β of α. This proves
the induction step and the lemma. �

If [b] ∈ B(G, {µ}) is Hodge–Newton indecomposable and the coefficient of each simple coroot of
Σ∨ in µ� − νb is strictly positive, then we say that [b] is Hodge–Newton irreducible.

For b ∈ G(L) with [b] ∈ B(G, {µ}), we let cb,µ ∈ π1(G)I be an element such that (σ − 1)(cb,µ) =
[µ] − κ̃G(b). Here [µ] is the common image of {µ} in π1(G)I , and the existence of cb,µ is guaranteed
by the property κG([b]) = µ\ defining B(G, {µ}).

Conjecture 5.4. Suppose [b] ∈ B(G, {µ}) is Hodge–Newton irreducible. Then the map κ̃G : G(L)→
π1(G)I induces an isomorphism

π0(X({µ}, b))→ cb,µπ1(G)σI ,

Remark 5.5. (i) There is also a version of this conjecture for arbitrary parahoric subgroups. Suppose
K ⊂ S is a σ-stable subset with WK finite. Then we may conjecture that κ̃G : G(L)→ π1(G)I induces
an isomorphism

π0(X({µ}, b)K)→ cb,µπ1(G)σI .

By the surjectivity in Theorem 5.1, the conjecture for arbitrary parahorics follows from Conjecture
5.4.

(ii) Suppose Gad is Qp-simple. If [b] is Hodge–Newton indecomposable but not Hodge–Newton
irreducible, then it is easy to see that X({µ}), b) is discrete and there is an identification

G(Qp)/I(Zp) ∼= X({µ}, b).
Thus together with the above conjecture, this gives a description of π0(X({µ}, b)) in the Hodge–
Newton indecomposable case in this case. The description of π0(X({µ}, b)) when Gad is not assumed
simple can easily be deduced from this using standard reductions; see for example [HZ, §6.1].

In the case the group G is unramified and when K corresponds to a hyperspecial subgroup of G,
this conjecture has been proved in [CKV15]. Recently, the case when G is split and K corresponds to
any parahoric has been settled in [CN17].

5.4. The motivation for the above definitions comes from the following Theorem which is proved in
[GHN].

Theorem 5.6 ([GHN, Theorem 3.16]). Let [b] ∈ B(G, {µ}) and suppose that [b] is Hodge–Newton
decomposable with respect to M ⊂ G. Then

(5.4.1) X({µ}, b) ∼=
∐

M ′N ′=P ′∈Pσ
XM ′({µP ′}, bP ′).

Moreover the terms in the union are open and closed.

The notation in the Theorem is as follows. We write P for the parabolic subgroup of G containing
M and the Borel B. Pσ denotes the set of σ-stable parabolic subgroups of G which contain T and are
conjugate to P . For P ′ ∈ Pσ, N ′ denotes the unipotent radical of P ′ and M ′ the semistandard Levi
subgroup contained in P ′ (here semistandard means containing the maximal torus T ). [bP ′ ] denotes
the σ-conjugacy class of M ′(L) constructed in [GHN, Proposition 3.8]. To define the M conjugacy
class of cocharacters {µP ′}, we write J ⊂ S0 for the σ0-stable subset corresponding to the standard
Levi subgroup M . We write W J

0 for the set of minimal length representatives of the cosets W0/WJ .
As P is conjugate to P ′ there is a unique zP ′ ∈ W J

0 such that zP ′(P ) := żP ′P ż
−1
P ′ = P ′. we take
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µ ∈ X∗(T ) a dominant representative of {µ}, then {µP ′} is the M ′ conjugacy class of cocharacters
containing µP ′ := zP ′(µ).

Since M ′ is σ-stable, it is defined over Qp, and M ′(L) ∩ I(OL) is the OL-points of an Iwahori
subgroup IM ′ of M ′(L) defined over Zp. The choice of Iwahori IM ′ induces a Bruhat order on the
Iwahori Weyl group WM ′ (defined in terms of the torus T ) assocated to M ′ and hence there is a notion

of µP ′ -admissible set AdmM ′({µP ′}). We then define XM ′({µP ′}, bP ′) to be the affine Deligne–Lusztig
variety for the data (M ′, IM ′ , {µP ′}, bP ′).

Lemma 5.7. Let [b] ∈ B(G, {µ}) then there exists a unique σ0-stable M ⊂ G such that for each P ′

appearing in the decomposition (5.4.1), [bP ′ ] ∈ B(M ′, {µP ′}) is Hodge–Newton indecomposable.

Proof. Let M denote the smallest σ0-stable standard Levi subgroup of G such that Mb ⊂ M and
such that µ� − νb ∈ Φ∨M . Indeed a smallest such Levi exists since if M1 and M2 are such, then so is
M1 ∩M2.

Let P ′ ∈ Pσ and M ′ its semistandard Levi subgroup. Then νM
′

bP ′
= zP ′(νb) (see [GHN, Proposition

3.8]) and µ
P ′

= zP ′(µ). We write σM
′

0 for the L-action on X∗(T )I,Q corresponding to M ′. Then it

can be checked that σM
′

0 = zP ′σ0z
−1
P ′ . Suppose H ⊂ M ′ is a proper σM

′

0 -stable Levi subgroup of M ′

such that [bP ′ ] ∈ B(M ′, {µP ′}) is Hodge–Newton decomposable with respect to H. We will show that
[b] is Hodge–Newton decomposable with respect to z−1

P ′ (H), which contradicts our choice of M .

First note that z−1
P ′ (H) is a σ0-stable Levi subgroup of G which is (properly) contained in M . Then

νM
′

bP ′
− µ�P ′ ∈ Φ∨H implies that νb − µ� ∈ Φ∨

z−1

P ′ (H)
. This is a contradication.

�

Theorem 5.6 and Lemma 5.7 shows that in order to understand X({µ}, b) is suffices to under-
stand the Hodge–Newton indecomposable case. Using Lemma 5.3, the understanding of connected
components is essentially reduced to Conjecture 5.4.

For later arguments we will need the following Lemma.

Lemma 5.8. Let P ′, P ′′ ∈ Pσ. Then there exists v ∈ Wσ (i.e. σ(v) = v) such that following
properties are satisfied:

(i) vAdmM ′({µP ′})v−1 = AdmM ′′({µP ′′})
(ii) v̇IM ′(OL)v̇−1 = IM ′′(OL).

Proof. Let u = zP ′′z
−1
P ′ ; then u̇P ′u̇−1 = P ′′. By definition u(µP ′) = µP ′′ , so u maps the M ′ conjugacy

class of cocharacters {µP ′} into the M ′′ conjugacy class of cocharacters {µP ′′}.
The Iwahori weyl group WM ′ for M ′ is a reflection subgroup of W . Therefore by [Dye90, Corollary

3.4], each coset W/WM ′ has a unique element of minimal length; we write WM ′ for the set of such

elements. Since WM ′ is σ-stable, so is WM ′ . We let v denote the element of WM ′ corresponding to the
coset containing u. Since u̇P ′u̇−1 = P ′′ and P ′ is normalized by WM ′ , it follows that v̇P ′v̇−1 = P ′′.
Since P ′ and P ′′ are σ-stable, it follows that v̇−1σ(v̇)P ′σ(v̇)−1v̇ = P ′ and hence v−1σ(v) ∈ WM ′ .

Since v, σ(v) ∈WM ′ , it follows that σ(v) = v.

Since v ∈ WM ′ , we have v̇IM ′(OL)v̇−1 = I ′M ′(OL), and hence the isomorphism WM ′
∼−→ WM ′′

induced by conjugation by v preserves Bruhat order. Moreover, since conjugation by v takes {µP ′}
to {µP ′′} (since v ∈ uWM ′), it follows that vAdmM ′({µP ′})v−1 = AdmM ′′({µP ′′}). �

5.5. As a first step towards Conjecture 5.4 we have the following two Theorems which are proved in
[HZ].
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Theorem 5.9 ([HZ, Theorem 0.1, Theorem 4.1] ). (i) Let Y ⊂ X({µ}, b) be a connected component,
then Y ∩Xw(b) 6= ∅ for some σ-straight element w ∈W .

(ii) Assume Gad is Qp-simple and that b corresponds to a basic σ-conjugacy class in B(G). If µ is
not central, then the Kottwitz homomorphism induces an isomorphism:

π0(X({µ}, τ̇{µ}))
∼−→ π1(G)σI

and if µ is central, X({µ}, b) is discrete and there is a bijection

X({µ}, b) ' G(Qp)/G(Zp).

Remark 5.10. (i) The condition [b] ∈ B(G, {µ}) basic in part (ii) of the Theorem implies that [b] is
Hodge–Newton indecompsable. So one can think of the Theorem as a special case of Conjecture 5.4.

(ii) A version of part (ii) of this Theorem can also be proved for arbitrary parahorics; see [HZ,
Theorem 8.1].

Now assume G is residually split; we recall that this means G and G ⊗Qp L have the same split
rank, or equivalently that σ acts trivially on W . In this case, the results of [HZ] give a bound on
π0(X({µ}, b)) in terms of affine Deligne–Lusztig varieties for Levi subgroups. This bound will be a
sufficient substitute for Conjecture 5.4 needed for later applications.

To any element w ∈ W one may associate a vector νw ∈ X∗(T )I,Q as in 2.2, its non-dominant
Newton vector. We write Mνw for the associated semistandard Levi subgroup which is generated by
T and the root subgroups Ua, where a is a relative root such that 〈νw, a〉 = 0. Alternatively, if we
consider νw ∈ X∗(T )I,Q ∼= X∗(T )IQ as a fractional cocharacter of G, then Mνw is just its centralizer.

We now assume w is a straight (equivalently σ-straight since σ is trivial) element. As in §5.4,
the Iwahori I determines an Iwahori subgroup of Mνw , namely IMνw

(OL) = I(OL) ∩Mνw(L). This
induces a Bruhat order and length function on the Iwahori Weyl group WMνw

for Mνw . Then it is

known that w lies in WMνw
and is a length 0 element, i.e. ẇIMνw

(OL)ẇ−1 = IMνw
(OL), cf. [Nie15,

Theorem 1.3] for the case of unramified groups and [HZ, Theorem 5.2] in general. Hence ẇ is a basic
element in Mνw(L). The following is [HZ, Theorem 7.1].

Theorem 5.11. There is a map∐
w∈W,w a straight element with ẇ∈[b]

XMνw ({λw}Mνw
, ẇ)→ X({µ}, b)

which induces a surjection ∐
w∈W,w a straight element with ẇ∈[b]

π0(XMνw ({λw}Mνw
, ẇ))→ π0(X({µ}, b)).

Here {λw}Mνw
is a certain Mνw conjugacy class of cocharacters of Mνw which maps to {µ}. Since

ẇ is basic in Mνw , we may use Theorem 5.9 to describe the connected components of the terms on
the left (again using [HZ, §6.1] to reduce the general case to when Gad is Qp-simple).

5.6. Now let G0 be a p-divisible group over k = Fp and write D(G0) for D(G0)(OL). Let sα,0 ∈ D(G0)⊗

be a collection of ϕ-invariant tensors such that sα,0 lie in Fil0D(G0)(k) and let GOL ⊂ GL(D(G0))
denote their stabilizer. Assume that there is a free Zp-module U together with an isomorphism
U ⊗Zp OL ∼= D(G0) such that sα,0 ∈ U⊗. Assume also that the stabilizer G ⊂ GL(U) of these tensors
has generic fiber G and is a connected parahoric group scheme corresponding to K ⊂ S. Then we
have an isomorphism G ⊗Zp OL ' GOL so that GOL is also a parahoric group scheme over OL. If U ′ is

another such Zp-module, the scheme of isomorphisms U ′
∼−→ U taking sα,0 to sα,0 is a G-torsor which
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is necessarily trivial since G is smooth and has connected special fiber. Let G denote the generic fibre
of G which is reductive group over Qp.

Since the sα,0 are ϕ invariant, we can write ϕ = bσ for some b ∈ G(L), and the choice is independent
of the choice of U up to σ-conjugation by an element of G(OL). Let K ′/L be a finite extension. We
pick a filtration on D(G0) ⊗OL K ′ lifting the one on D(G0)(k) as in §4.1 (this means that Fil0D ⊗OL
K ′∩D⊗OLOK′ lifts the filtration on D(G0)(k)) so that sα,0 ∈ Fil0D⊗OLK ′. This filtration is defined
by a G-valued cocharacter µy and we have the embedding of local models

M loc
G ↪→M loc

GL ⊗OL OE
where the defining cocharacter for M loc

G is µ−1
y .

The filtration on D(G0) ⊗ k = D(G0)(k) is by definition the kernel of ϕ, thus the preimage of the
filtration in D(G0) is given by

{v ∈ D(G0)|bσ(v) ∈ pD(G0)}.
This is precisely the sub OL-lattice in D(G0) corresponding to σ−1(b−1)pD(G0). By Proposition 3.4

we have

σ−1(b−1) ∈
⋃

w∈AdmK({µ−1
y })

G(OL)ẇG(OL)

i.e., 1 ∈ X({σ(µy)}, b)K .
We let G be a (GOL , µy)-adapted lifting to OK for some K/L finite such that if sα,ét ∈ TpG ∨,⊗⊗Qp

denotes the tensors corresponding to sα,0 under the p-adic comparison isomorphism, then we have
sα,ét ∈ TpG ∨,⊗. By Proposition 4.8, such a (GOL , µy)-adapted lifting G always exists. Then we have
an isomorphism

TpG
∨ ⊗Zp S

∼= M(TpG
∨)

taking sα,ét to s̃α. This induces an isomorphism

TpG
∨ ⊗Zp OL ' D(G0)

taking sα,ét to sα,0. As in §4, s̃α denotes the functor M applied to sα,ét.

5.7. Now suppose M ⊂ G is a closed reductive subgroup defined over Qp such that b ∈ M(L).
Suppose that M(L) ∩ G(OL) is the set of OL-points of a parahoric subgroup M of M , then M is a
defined over Zp. Since b ∈ M(L), we may extend the tensors sα,0 ∈ U⊗ to ϕ-invariant tensors tβ,0
whose stabilizer is M. We make the following assumption:

Assumption 5.12. The filtration on D(G0)⊗OL k lifts to a filtration on D(G0)⊗OLK which is induced
by an M -valued cocharacter µ′y which is conjugate µy in G.

We have the local model M loc
M,µ−1

y′
which is defined over OE′ where E′ is the local reflex field for

{µ′y}. Then there is an embedding

M loc
M,µ′−1

y
↪→M loc

GL ⊗OF OE′

which factors through a closed embedding M loc
M,µ′−1

y
↪→M loc

G,µ−1
y
⊗OE′ .

Now we let G be a (M, µ′y)-adapted lifting such that if tα,ét ∈ TpG ∨,⊗ ⊗ Qp denotes the tensors

corresponding to tα,0 under the p-adic comparison isomorphism, then tα,ét ∈ TpG ∨,⊗. By Proposition
4.8, such a lifting exists. Then there is an isomorphism

(5.7.1) TpG
∨ ⊗Zp S

∼= M(TpG
∨)
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taking tα,ét to t̃α. In particular since tα,0 extends sα,0, it takes sα,ét to s̃α. Note that since µ′y
is G-conjugate to µy, any (M, µ′y)-adapted lifitng is also a (G, µy)-adapted lifting of G0. Fixing
an isomorphism (5.7.1), we may take U to be TpG ∨. Since the notion of (G, µy)-adapted lifting only
depends on the G-conjugacy class of µy and its specialization, we may replace µy with µ′y (see Remark
4.6). We relabel this µy; thus µy is an M -valued cocharacter inducing the filtration on D(G0)⊗K.

5.8. Let g ∈ G(Qp), then there is a finite extension K ′/K for which g−1TpG is stable by ΓK′

in TpG ⊗Zp Qp hence corresponds to a p-divisible group G ′ over K ′ which is isogenous to G . Let
M′ := M(TpG ′∨) and M := M(TpG ∨), then the quasi-isogeny θ : G → G ′ induces an identification

θ̃ : M(TpG
′∨)[1/p]

∼−→M(TpG
∨)[1/p]

so that M′ = g̃M for some g̃ ∈ GL(M[1/p]).

Proposition 5.13. (i) g̃ can be taken to be in G(S[1/p]) under the above identification (5.7.1)

TpG
∨ ⊗Zp S

∼−→M.

(ii) We have g̃ ∈M(O
Ê ur)gG(O

Ê ur).

Proof. (i) Since sα,ét are fixed by G(Qp), we have sα,ét ∈ TpG ′∨⊗, and the stabilizer of sα,ét in TpG ′∨⊗

is a parahoric subgroup of G. Thus by Proposition 3.2. there is an isomorphism:

(5.8.1) TpG
′∨ ⊗Zp S

∼= M′

taking sα,ét to s̃α. Under the identification TpG ∨ ⊗Zp S
∼= M, g̃ is given by the composition:

(5.8.2) TpG
∨ ⊗Zp S

g−→ TpG
′∨ ⊗Zp S→M′

θ̃−→M[1/p]→ TpG
∨ ⊗Zp S[1/p].

Here, the second map preserves tensors of type sα and the fourth map preserves tensors of type tα.
Thus the composition preserves s̃α and so g̃ ∈ G(S[1/p]).

(ii) Over O
Ê ur there are canonical identifications

(5.8.3) TpG
∨ ⊗Zp OÊ ur

∼= M⊗S OÊ ur

(5.8.4) TpG
′∨ ⊗Zp OÊ ur

∼= M′ ⊗S OÊ ur

the first one taking tα,ét to t̃α and the second taking sα,ét to s̃α. Thus, if we identify TpG ∨ with TpG ′∨

via g, these isomorphisms differ from the isomorphisms (5.7.1) and (5.8.1) by elements of M(O
Ê ur)

and G(O
Ê ur) respectively. Since g̃ is identified with the map

TpG
∨ ⊗Zp OÊ ur

g−→ TpG
′∨ ⊗Zp OÊ ur

(5.8.4)−−−−→M′ ⊗S OÊ ur

θ̃
Êur−−−→M⊗S[1/p] Ê ur

(5.8.3)−−−−→ TpG
∨ ⊗Zp Ê ur,

we obtain g̃ ∈M(O
Ê ur)gG(O

Ê ur).
�

We will apply the above Proposition in the cases when M ⊂ G is a Levi subgroup or if we are in
the situation of Proposition 5.17 below.

24



5.9. Using the canonical identification D(G0) with ϕ∗(M/uM), we see that θ̃−1 induces an isomor-
phism

D(G0)[1/p]
∼−→ D(G ′0)[1/p].

Then D(G ′0) can be identified with g0D(G0) for g0 = σ−1(g̃)|u=0 ∈ G(L).

Proposition 5.14. The association g 7→ g0 induces a well-defined map.

G(Qp)/G(Zp)→ X(σ({µy}), b)K
and we have κ̃(g) = κ̃(g0) ∈ π1(G)I .

Remark 5.15. g0 and b ∈ G(L) both depend on the choice of lifting G as well as on the choice of
the isomorphism (5.7.1). However if we fix the lift G , then modifying the isomorphism (5.7.1) by an

h̃ ∈ G(S) which lifts σ(h) ∈ G(OL) conjugates g0 by h and σ-conjugates b by h. We then obtain a
map G(Qp)/G(Zp)→ X(σ({µy}), b′)K where b′ = h−1bσ(h), which fits into a commutative diagram:

X(σ({µy}), b)K

∼

��

G(Qp)/G(Zp)

66

((
X(σ({µy}), b′)K

.

Here the vertical isomorphism is given by g0 7→ h−1g0.

We will need the following Lemma.

Lemma 5.16. Let µ and µ′ be cocharacters of G which induce the same filtration on D⊗OLK. Then
µ and µ′ are conjugate in G.

Proof. The proof is the same as in [Kis17, Lemma 1.1.9]; for the reader’s convenience we recall the
argument. The cocharacters µ and µ′ define the same parabolic P ⊂ G⊗OL K and induce the same
P/U valued cocharacter by the proof of [Kis10, Lemma 1.1.5] where U is the unipotent radical of P .
Note that the proof of this Lemma only uses the property that the group is reductive which is true
for G. Let H and H ′ denote the centralizers of µ and µ′; these are Levi subgroups of P and hence are
conjugate by an element of U . Hence µ′ is conjugate to a cocharacter µ′′ : Gm → H which induces
the same P/U valued cocharacter as µ. Since H ∼= P/U , µ′′ = µ. �

Proof of Proposition 5.14. We identify D(G ′0)⊗OL L with D(G0)⊗OL L, so that we consider

D(G ′0) = g0D(G0) ⊂ D(G0)⊗OL L.
Under this identification, we have sα,0 ∈ D(G ′0)⊗ and the stabilizer of these tensors in D(G ′0) can be

identified with g0GOLg−1
0 .

By [KP, Corollary 3.3.10], there exists a G-valued cocharacter µ′y defined over a finite extension

K ′′/L such that G ′ is a (g0GOLg−1
0 , µ′y) adapted-lifting of G ′⊗OK k. Upon enlarging K (but with K/L

still finite) we assume all the cocharacters above are defined over K. Then we have three filtrations on
D⊗OL K: the one induced by µy, the canonical filtration corresponding to the Galois representation
TpG ∨ ⊗Zp Qp ∼= TpG ′∨ ⊗Zp Qp and the one induced by µ′y. The second filtration is induced by a
G-valued cocharacters µ and µ′ which are conjugate to µy and µ′y respectively. By Lemma 5.16, µ
and µ′ are G-conjugate.
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Thus g−1
0 µ′yg0 induces a filtration on D ⊗OL K corresponding to a point in M loc

G,µ−1
y

(K). The

specialization of this point gives a filtration on D(G0)⊗OK k which lies in M loc
G,µ−1

y
(k). This filtration

is given by the reduction of g−1
0 σ−1(b−1g0)p mod p, hence by Propositon 3.4 we have

g−1
0 bσ(g0) ∈ G(OL)σ(ẇ)G(OL)

where w ∈ AdmK({µy}), i.e. g0 ∈ X(σ({µy}), b).
To show κ(g) = κG(g0), note that g̃ gives a k[[u]]perf -point of GrG , where GrG is the Witt vector

affine flag variety of [Zhu17], [BS17], and the superscript perf denotes the perfection of a ring in
characteristic p. For k a perfect field of characterstic p, the Kottwitz homomorphism induces a map

κ̃G : GrG(k)→ π1(G)I

and this induces an isomorphism π0(GrG) ∼= π1(G)I . In particular, κ̃G is a locally constant function.

Let h ∈ GrG(k((u))) be the generic point of g̃, then by Proposition 5.13 (ii) we have κ̃G(h) = κ̃G(g),
hence κ̃G(σ−1(g0)) = κ̃G(g). Since g is σ-invariant, we hav κ̃G(g0) = κ̃G(g).

�

Proposition 5.17. Let H be a parahoric subgroup scheme of some reductive group H over Qp.
Suppose f : G → H is a surjection such that the following conditions hold:

(i) The composition of f with the map ΓK → G(Zp) coming from the action of the Galois group
ΓK on TpG factors through the center ZH of H.

(ii) The connected component G′ of the identity of f−1(ZH) has reductive generic fiber G′ and G′
is a parahoric subgroup of G′.

(iii) The kernel of f is a smooth group scheme over Zp.
Then we may choose the isomorphism (5.7.1) such that for every g ∈ G(Qp), we have

f(g) = f(g0) ∈ H(L)/H(OL),

Proof. By assumption G′ is a parahoric subgroup of its reductive generic fibre G′. Upon replacing
K by a finite extension, we may assume ΓK → G(Zp) factors through G′(Zp), and we may extend
sα,ét ∈ TpG ∨,⊗ to a set tβ,ét of ΓK-invariant tensors whose stabilizer is G′. By Proposition 4.4,
we obtain tensors tβ,0 ∈ D(G0)⊗ whose stabilizer G′OL can be identified with G′ ⊗Zp OL. By [KP,
Corollary 3.3.10] there is a G′-valued cocharacter µ′y such that the filtration it induces lifts the one on
D(G0)⊗OL k and is G′ conjugate to a G′-valued cocharacter µ′ inducing the filtration on D(G0)⊗K.
There is a cocharacter µ of G which induces the filtration on D(G0)⊗OL K, which is G-conjugate to
µy. Since µ and µ′ are G-conjugate by Lemma 5.16, µy and µ′y are conjugate in G. In other words,
µ′y satisfies the conditions in Assumption 5.12, hence we may apply the construction in 5.13. We fix
the S-linear bijection (5.7.1)

TpG
∨ ⊗Zp S

∼= M(TpG
∨)

so that it takes tβ,ét to t̃β .
Let g ∈ G(Qp), applying the previous construction we obtain g̃ ∈ G(S[1/p]) and by Proposition 5.13

we have g̃ = hgi where h ∈ G′(O
Ê ur) and i ∈ G(O

Ê ur). Since G′ ⊂ f−1(ZH), we have f(g−1hg) = f(h),
so

p := g−1hgh−1 ∈ P(Ê ur)

where P := ker(f : G → H) is a smooth group scheme over Zp by assumption. Thus

f(g̃) = f(gphi) = f(g)f(hi)
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and we obtain
f(hi) ∈ H(O

Ê ur) ∩H(S[1/p]) = H(S).

The induced map on points f : G(S) → H(S) is surjective. Indeed the cokernel injects into
H1(S,P) = 0 since P is smooth and S is strictly Henselian. We let m ∈ G(S) such that f(m) = f(hi).
Thus f(phim−1) = 1, and we have

phim−1 ∈ P(Ê ur) ∩ G(S[1/p]).

But this last group is just P(S[1/p]). Thus g̃ = g(phim−1)m ∈ gP(S[1/p])G(S), and hence

g0 = σ−1(g̃)|u=0 ∈ gP(L)G(OL)

so that f(g0) = f(σ(g)) = f(g) ∈ H(L)/H(OL). �

Lemma 5.18. (i) The map κ̃G|G(Qp) : G(Qp)→ π1(G)σI is surjective.
(ii) Let gad ∈ Gad(Qp). Suppose the image of gad under κ̃Gad

lifts to an element of π1(G)σI , then
the image of gad in G(Qp)/G(Zp) is in the image of

G(Qp)/G(Zp)→ Gad(Qp)/Gad(Zp)

Proof. (i) By [HR08, Lemma 5], the Kottwitz homomorphism induces an exact sequence:

0→ T ◦(OL)→ T (L)
κ̃G−−→ π1(G)I → 0

where T ◦ is the connected Neron model of T . Since H1(Zp, T ◦) = 0 we have

κ̃G|T (Qp) : T (Qp)→ π1(G)σI

is surjective, hence κ̃G|G(Qp) is surjective.
(ii) By part (i), there exists g ∈ G(Qp) such that κ̃G(g) ∈ π1(G)σI lifts κ̃Gad

(gad). Replacing gad

with gadg
−1, we may assume κ̃Gad

(gad) is trivial.
By the Iwahori decomposition there exists wad ∈ Wσ

ad, g1, g2 ∈ Gad(Zp) such that gad = g1ẇadg2,

with ẇad ∈ Gad(Qp) a lift of wad. Changing our choice of torus T to T ′ := g1Tg
−1
1 we may assume

gad = ẇadg2. Since κ̃Gad
(g) is trivial, wad lies in the affine Weyl group Wa,ad of Gad. But the natural

projection induces an isomorphism Wa
∼= Wa,ad hence, wad lifts to an element w of Wσ

a . Thus we
may take ẇ ∈ Gder(Qp) lifting w, and the image of ẇ in G(Qp)/G(Zp) gives the required lifting. �

With the above notations we have the following.

Proposition 5.19. Assume b = σ(τ̇{µy}). Then for any (G, µy)-adapted lifting G such that sα,ét ∈
TpG ∨,⊗ ⊂ TpG ∨,⊗ ⊗Qp, the map

G(Qp)/G(Zp)→ π0(X(σ({µy}), σ(τ̇{µy}))K), g 7→ g0

defined above is surjective.

Proof. We let µad
y denote the cocharacter of Gad induced by µy. Let Gad = G1 × G2 where µad

y

induces the trivial cocharacter of G1 and induces a non-trivial cocharacter in every Qp-factor of G2.
We write Gad for the parahoric in Gad corresponding to G; it decomposes as G1 ×G2 where G1 and G2

are parahorics of G1 and G2 respectively. By Theorem 5.9 (see also [HZ, Theorem 8.1] for the case of
general parahorics) and using [HZ, §6.1], there is an isomorphism

(5.9.1) π0(X(σ({µad
y }), σ(τ̇{µad

y }))K) ∼= G1(Qp)/G1(Zp)× π1(G2)σI .

We pick the isomorphism (5.7.1) so that the conclusion of Proposition 5.17 holds for the projection
G → G1. Note that condition (iii) in Proposition 5.17 holds since the kernel is an extension of G2 by
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ZG, the center of G which is smooth, by [KP, Proposition 1.1.4]. Morever, its generic fiber is reductive
since it is a central extension of a reductive group hence condition (ii) holds.

Let h ∈ X(σ({µy}), σ(τ̇{µy}))K and had the image of had in X(σ({µad
y }), σ(τ̇{µad

y }))Kad
, where we

write Kad for the corresponding set of simple reflections for Gad. Then by Lemma 5.18 (i), there
exists gad ∈ Gad(Qp)/Gad(Zp) mapping to the image of had on the right hand side of (5.9.1). Since
κ̃Gad

(gad) lifts to the element κ̃G(h) ∈ π1(G)σI , Lemma 5.18 (ii) implies that gad lifts to an element
g ∈ G(Qp)/G(Zp). By Proposition 5.14 and 5.17, the image of g0 is equal to the image of h in
π0(X(σ({µad

y }), σ(τ̇{µad
y }))Kad

). By [HZ, Corollary 4.4], there exists z ∈ Z(Qp) such that g0z = h

in π0(X(σ({µy}), σ(τ̇{µy})K). By the functoriality of the construction, (gz)0 = g0z0 = g0z = h in
π0(X(σ({µy}), σ(τ̇{µy}))K). �

More generally, there is the following.

Proposition 5.20. Assume Conjecture 5.4 holds and that [b] ∈ B(G, σ({µ})) is Hodge–Newton in-
decomposable. Then for any (G, µy)-adapted lifting G such that sα,ét ∈ TpG ∨,⊗ ⊂ TpG ∨,⊗ ⊗ Qp, the
map

G(Qp)/G(Zp)→ π0(X(σ({µy}), b)K), g 7→ g0

is surjective.

Proof. As in the proof of Proposition 5.19, µad
y will denote the cocharacter of Gad induced by µy and

Gad = G1 × G2 where µad
y induces the trivial cocharacter of G1 and is non-trivial in every simple

factor of G2; we write {µ1} and {µ2} for the induced conjugacy class of cocharacters for G1 and
G2 respectively. Similarly, writing Gad for the parahoric in Gad corresponding to G, Gad decomposes
as G1 × G2. We write bad = b1 × b2 in the decomposition Gad(L) = G1(L) × G2(L). It is easy to
see from the definition that [bad] ∈ B(Gad, {µad

y }) is Hodge–Newton indecomposable, and it follows
from 5.3 that b2 is Hodge–Newton irreducible in G2. Therefore assuming Conjecture 5.4, there is an
identification

π0(X(σ({µad
y }), bad)Kad

) ∼= G1(Qp)/G1(Zp)× cb2,µ2
π1(G2)σI .

The same argument as in Proposition 5.19 then shows that the map g 7→ g0 is surjective. �

6. Shimura varieties

6.1. We recall the construction of the integral models of Shimura varieties of Hodge type in [KP].
Let G be a reductive group over Q and X a conjugacy class of homomorphisms

h : S := ResC/RGm → GR

such that (G,X) is a Shimura datum in the sense of [Del71].
Let c be the complex conjugation. Then ResC/R(C) ∼= (C⊗R C)× ∼= C× × c∗(C×) and we write µh

for the cocharacter given by

C× → C× × c∗(C×)
h−→ G(C)

We set wh := µ−1
h (µch)−1.

Let Af denote the ring of finite adeles and Apf the subring of Af with trivial p-component. Let

Kp ⊂ G(Qp) and Kp ⊂ G(Apf ) be compact open subgroups and write K := KpK
p. Then for Kp

sufficiently small

(6.1.1) ShK(G,X)C = G(Q)\X ×G(Af )/K

arises as the complex points of an algebraic variety over C, which has a model over the reflex field
E := E(G,X); this is a number field and is the field of definition of the conjugacy class of µh.
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We will also consider the pro-varieties

Sh(G,X) := lim
←K

ShK(G,X)

ShKp(G,X) := lim
←Kp

ShKpKp(G,X)

6.2. Let V be a vector space over Q of dimension 2g equipped with an alternating bilinear form ψ;
we write VR = V ⊗Q R for a Q-algebra R. Let GSp = GSp(V, ψ) denote the corresponding group of
symplectic similitudes. The Siegel half-space is defined to be the set of homomorphisms

h : S→ GSpR

such that:
(1) The Hodge structure on VC induced by h is of type (−1, 0), (0,−1), i.e.

VC = V −1,0 ⊕ V 0,−1

(2) (x, y) 7→ ψ(x, h(i)y) is positive or negative definite on VR.
For the rest of this section we assume there is an embedding of Shimura data

ρ : (G,X)→ (GSp, S±)

We sometimes write G for GQp when there is no risk of confusion. For the rest of the paper we will
assume the following condition holds

(6.2.1) G splits over a tamely ramified extension of Qp and p - |π1(Gder)|.

Let G be a connected parahoric subgroup of G, i.e. G = Gx = G◦x for some x ∈ B(G,Qp). We
assume that the compact open Kp ⊂ G(Qp) is identified with G(Zp). By [KP, 2.3.15], upon replacing
ρ by another symplectic embedding, there is a closed immersion G → GSP, where GSP is a parahoric
group scheme of GSp corresponding to the stabilizer of a lattice VZp ⊂ V . Upon scaling VZp , we may

assume V ∨Zp ⊂ VZp and we let pd = |VZp/V ∨Zp |. This induces a closed immersion of local models

M loc
G,µh →M loc

GSP,µh ⊗OE
where E is the local reflex of µh in GQp .

6.3. Let VZ(p)
= VZp∩V , we write GZ(p)

for the Zariski closure of G in GL(VZ(p)
), then GZ(p)

⊗Z(p)
Zp ∼=

G. The choice of VZ(p)
gives rise to an interpretation of ShK′(GSp, S

±) as a moduli space of abelian

varieties and hence an integral model over Z(p) which we now describe. We let K′ = K′pK
′p where

K′p = GSP(Zp) and K′p ⊂ GSp(Apf ) is a compact open.
Let A be an abelian scheme of dimension g over a scheme T . We write

V̂ (A) = lim
←p-n

A[n]

Consider the category obtained from the category of abelian varieties by tensoring the Hom groups
by Z(p). An object in this category will be called an abelian variety up to prime to p isogeny and an
isomorphism in this category will be called a prime to p isogeny.

Let A be an abelian variety up to prime to p isogeny and let A∗ be the dual abelian variety. By
a weak polarization we mean an equivalence class of quasi-isogenies λ : A → A∗ such that pd exactly
divides deg λ and some multiple of λ is a polarization. Two such quasi-isogenies are equivalent if they
differ by a multiple of Z×(p).
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Let (A, λ) be a pair as above. We write Isomλ,ψ(V̂ (A), VApf ) for the (pro)-étale sheaf of isomorphisms

V̂ (A) ∼= VApf which preserves the pairings induced λ and ψ up to a Ap×f -scalar.

We write Ag,d,K′(T ) for the set of triples (A, λ, εpK′) consisting of an abelian variety up to prime to
p isogeny A over T together with a weak polarization λ : A → A∗ and a global section

εpK′ ∈ Γ(T, Isomλ,ψ(V̂ (A), VApf )/K′p)

For K′p sufficiently small, Ag,d,K′ is representable by a quasi-projective scheme over Z(p) which we

denote by SK′(GSp, S
±).

6.4. For the rest of this paper we fix an algebraic closure Q, and for each place v of Q an algebraic
closure Qv together with an embedding Q→ Qv.

By [Kis10, Lemma 2.1.2], we can choose K′ such that ι induces a closed immesion:

ShK(G,X) ↪→ ShK′(GSp, S
±)E

defined over E. The choice of embedding E → Qp determines a place v of E. Write OE,(v) for the
localisation of OE at v, E the completion of E at v and OE the ring of intgers of E. We assume the
residue field has q = pr elements and as before k will denote an algebraic closure of Fq. We define
SK(G,X)− to be the Zariski closure of ShK(G,X) inside SK′(GSp, S

±)⊗Z(p)
OE,(v), and SK(G,X)

to be the normalization of SK(G,X)−. By construction, for Kp
1 ⊂ Kp

2 compact open subgroups of
G(Apf ), there are well defined maps SKpKp1

(G,X)→ SKpKp2
(G,X) and we write

SKp(G,X) := lim←−
Kp

SKpKp(G,X).

Under these assumptions we have the following.

Theorem 6.1 ([KP] Theorem 4.2.2, Theorem 4.2.7). (i) The OE,(v) scheme SKp(G,X) is a flat
G(Apf )-equivariant extension of ShKp(G,X).

(ii) Let Ûx be the completion of SK(G,X)− at some k-point x. There exists a point x′ ∈M loc
G,µh(k)

such that the irreducible components of Ûx are isomorphic to the completion M̂ loc
G,µh of M loc

G,µh at x′.

Moreover SK(G,X) fits in a local model diagram:

S̃K(G,X)OE

π

&&

q

ww
SK(G,X)OE M loc

G,µh

where q is a G-torsor and π is smooth of relative dimension dimG.

6.5. We will need a more explicit description of Ûx and this local model diagram for the next section.
To do this we will need to introduce Hodge cycles.

By [Kis10, 1.3.2], the subgroup GZ(p)
is the stabilizer of a collection of tensors sα ∈ V ⊗Z(p)

. Let

h : A → SK(G,X) denote the pullback of the universal abelian variety on SK′(GSp, S
±) and let

VB := R1han,∗Z(p), where han is the map of complex analytic spaces associated to h. We also let

V = R1h∗Ω
• be the relative de Rham cohomology of A. Using the de Rham isomorphism, the sα

give rise to a collection of Hodge cycles sα,dR ∈ V⊗C , where VC is the complex analytic vector bundle
associated to V. By [Kis06, §2.2.], these tensors are defined over E, and in fact over OE,(v) by [KP,
Proposition 4.2.6].
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Similarly for a finite prime l 6= p, we let Vl = R1hét∗Ql and Vp = R1hη,ét∗Zp where hη is the generic
fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors sα,l ∈ V⊗l and sα,ét ∈ V⊗p
which are Galois invariant by the same argument as in [Kis10, Lemma 2.2.1].

For T an OE(p)
-scheme (resp E-scheme, resp. C-scheme), ∗ = l or dR (resp. ét, resp. B) and

x ∈ SKp(G,X)(T ), we write Ax for the pullback of A to x and sα,∗,x for the pullback of sα,∗ to x.
As in [Kis10, 3.4.2.], if x ∈ SKp(G,X)(T ) corresponds to a triple (Ax, λ, εpK′), then εpK′ can be

promoted to a section:

εpK ∈ Γ(T, Isomλ,ψ(V̂ p(Ax), VApf )/Kp)

which takes sα,l,x to sα (l 6= p).

6.6. Recall k is an algebraic closure of Fq and L = W (k)[1/p]. Let x ∈ SK(G,X)(k) and x ∈
SK(G,X)(OK) a point lifting x, where K/L is a finite extension.

Let Gx denote the p-divisible group associated to Ax and Gx,0 its special fiber. Then TpG ∨x is
identified with H1

ét(Ax,Zp) and we obtain ΓK-invariant tensors sα,ét,x ∈ TpG ∨⊗ whose stabilizer can
be identified with G. We may thus apply the constructions of §4 and we obtain ϕ-invariant tensors
sα,0,x ∈ D(Gx,0) whose stabilizer group GOL can be identified with G⊗ZpOL. The filtration on D⊗OLK
corresponding to Gx is induced by a G-valued cocharacter conjugate to µ−1

h . By [KP, Corollary 3.3.10],
there is an isomorphism:

D(Gx)(OK) ∼= D(Gx,0)⊗OL OK
taking sα,OK to sα,0,x lifting the identity modπ, where sα,OK ∈ D(Gx)(OK)⊗ denotes the image of
s̃α ∈M(TpG ∨x )⊗ (in fact the sα,OK are equal to sα,dR,x under the identification D(Gx)(OK) ∼= H1

dR(Ax)
by the compatibility of M with comparison isomorphisms). Moreover, upon enlarging K, there is a
G-valued cocharacter µy which is G-conjugate to µ−1

h and induces a filtration on D(Gx,0) ⊗OL OK
lifting the filtration on D(Gx,0)⊗ k. Thus we have a notion of (GOL , µy)-adapted liftings of Gx,0 as in
section §4 and by definition Gx is a (GOL , µy)-adapted lifting.

As before we let P ⊂ GL(D) be a parabolic lifting P0. We obtain formal local models M̂ loc
µ−1
y

= SpfA

and M̂ loc
G,µ−1

y
= SpfAG , and the filtration corresponding to µy is given by a point y : AG → OK .

Proposition 6.2. Let Ûx be the completion of S −K (G,X) at x.

(i) Ûx can be identified with a closed subspace of SpfA containing SpfAG. Moreover SpfAG is an

irreducible component of Ûx.
(ii) Let x′ ∈ SK(G,X)(OK′) whose special fibre x′ maps to the image of x in S −K (G,X). Then

sα,0,x′ = sα,0,x ∈ D(Gx,0) if and only if x and x′ lie on the same irreducible component of Ûx.
(iii) A deformation G of Gx,0 to OK′ corresponds to a point on the same irreducible component of

Ûx as x if and only if G is (GOL , µy)-adapted.

Proof. This is effectively [KP, Proposition 4.2.2] we recall the argument for the reader’s convenience.
Recall we assumed that G splits over a tamely ramified extension of Qp. Moreover GOL ⊗OL

L ⊂ GL(D(Gx,0)) contains the scalars, since it contains the image of wh. Thus we may apply the
construction of §4 to the tensors sα,0,x; we may equip SpfA with the structure of a versal deformation
space for Gx,0 and the subspace SpfAG is such that $ : A⊗ZpOE → K factors through AG if and only
if the induced p-divisible group G$ is (GOL , µy)-adapted, where GOL is the stabilizer of sα,0,x and µy
is G-conjugate to µh−1 .
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The p-divisible group over Ûx is induced by pullback from a map Ûx → SpfA which is a closed
immersion by the Serre-Tate theorem. Let Z ⊂ Ux be the irreducible component containing x. Let
x′ ∈ Z(K ′). As in the proof of [KP, Proposition 4.2.2], sα,ét,x′ corresponds to sα,0 under the p-
adic comparison isomorphism for the p-divisible group Gx. Hence we obtain one direction in (ii) and
x′ ∈ SpfAG since the filtration on D⊗OL K ′ corresponding to Gx′ is given by a G-valued cocharacter
conjugate to µ−1

h . Since this holds for all x′ ∈ Z(K ′), we have Z ⊂ SpfAG and hence they are equal
since they have the same dimension. We thus obtain (iii) and the other implication in (ii) as well as
the moreover part in (i).

�

The previous proposition shows that the tensors sα,0,x are independent of the choice of x ∈
SKp(G,X) lifting x, thus we denote them by sα,0,x. The following is then immediate.

Corollary 6.3. Let x, x′ ∈ SK(G,X)(k) be points whose image in SK(G,X)−(k) coincide. Then
x = x′ if and only if sα,0,x = sα,0,x′ .

6.7. We would like to show the isogeny classes in SK(G,X)(k) admit maps from X(σ({µy}), b). We
will show this when G is residually split at p and in general for the basic case. More generally, we show
the existence of such a map without the residually split condition (but still under the assumptions in
(6.2.1)) upon assuming Conjecture 5.4. In the rest of this section we will prove the case when G is an
Iwahori subgroup of G; the general case will be deduced from this in §7. We thus assume G is an
Iwahori subgroup for the rest of the section and that the assumptions in (6.2.1) hold.

Let x ∈ SK(G,X)(k) and x ∈ SK(G,X)(K) a point lifting x. Let GOL denote the stabilizer sα,0,x.
By the above Gx is a (GOL , µy)-adapted lifting of x and there is an OL-linear bijection

(6.7.1) TpG
∨
x ⊗Zp OL ∼= D(Gx)

taking sα,ét,x to sα,0,x. We fix an isomorphism V ∗Zp
∼= TpG ∨x taking sα,0 to sα,ét,x; this identifies the

stabilizer GOL of sα,ét,x with G ⊗Zp OL.
Since the sα,0,x are ϕ-invariant, we may write ϕ = bσ for some b ∈ G(L) which is independent of

the above choices up to σ-conjugation by elements of G(OL).
Fix S a maximal L-split torus in G with centralizer T as in §5 so that G corresponds to an alcove

in the apartment A(G,S,Qp). As in §5.6, we have

b ∈
⋃

w∈Adm({µy})

G(OL)σ(ẇ)G(OL).

Write µ ∈ X∗(T ) for the dominant (with respect to a choice of Borel defined over L) representative
of {µy} = {µ−1

h }, and µ its image in X∗(T )I . With the notation of §5, we have 1 ∈ X(σ({µy}), b).
Recall X(σ({µy}), b) is equipped with an action Φ given by

Φ(g) = (bσ)r(g) = bσ(b) . . . σr−1(b)σr(g)

where r is the residue degree of OE/Zp. Then

Φ(g)−1bσ(Φ(g)) = σr(g−1bσ(g)) ∈
⋃

w∈Adm({µy})

G(OL)σr+1(ẇ)G(OL).

By [Rap05, Lemma 5.1], Adm({µy}) is stable under σr, hence Φ(g) ∈ X(σ({µy}), b) and Φ is well
defined.

Pick a basis for VZp compatible with S as in §3.3. In other words, the corresponding maximal
split torus T ′ ⊂ GL(VZp) satisfies the compatiblity conditions in §3.3; in particular S maps to T ′
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and there are embeddings of apartments (3.3.3) and (3.3.4). By Corollary 3.6, for g ∈ X(σ({µy}), b))
we have g−1bσ(g) ∈ GL(OL)vGL(p)GL(OL) where vGL is the cocharacter (1(g), 0(g)) and GL is the
hyperspecial subgroup of GL2n over Zp which stabilizes the lattice VZp . Thus the Hodge polygon of
the F -crystal gD(Gx) has slopes 0,1 hence corresponds to a p-divisible group Ggx which is isogenous
to Gx and hence to an abelian variety Agx isogenous to Ax. Agx is equipped with a prime to p level
structure corresponding to the one on Ax. Since g(sα,0,x) = sα,0,x, we have sα,0,x ∈ D(Ggx).

Since g ∈ GSp(L) the weak polarisation on λx induces a weak polarisation on Agx. Thus Agx
together with the extra structure gives a point of SK′(GSp(V ), S±)(k) and we obtain a map

i′x : X(σ({µy}), b)→ SK′(GSp(V ), S±)(k).

In fact this map is non other than the one induced by the Rapoport-Zink uniformization [RZ96, §6]
for SK′(GSp(V ), S±). Note in this paper, we will only consider such a map on the level of points and
not as a map of perfect schemes.

Remark 6.4. Note that if we modify the trivialization (6.7.1) by an element h ∈ G(OL), the Frobenius
is given by the element b′ = h−1bσ(h). The map

i′′x : X(σ({µy}), b′)→ SK′(GSp(V ), S±)(k)

obtained using this trivialization fits into the commutative diagram

(6.7.2) X(σ({µy}), b)
i′x

))
∼

��

SK′(GSp(V ), S±)(k)

X(σ({µy}), b′)

i′′x

55

.

where the vertical map is the isomorphism induced by g 7→ h−1g. Therefore the map i′x is essentially
independent of the trivialization (6.7.1).

The main result of this section is the following:

Proposition 6.5. Suppose either of the following assumptions hold:
(i) b is basic in B(G).
(ii) GQp is residually split.
(iii) Conjecture 5.4 holds.
Then there exists a unique map

ix : X(σ({µy}), b)→ SK(G,X)(k)

lifting i′x such that sα,0,ix(g) = sα,0,x. Moreover we have

Φ ◦ ix = ix ◦ Φ

where Φ acts on SK(G,X)(k) via the geometric r-Frobenius.

Remark 6.6. To be more specific, to deduce the existence of the lifting in part (iii) we only need to
assume the Conjecture 5.4 holds for the following specific case. We let M denote standard σ0-stable
Levi constructed in Lemma 5.7. Then for any M ′ in the decomposition 5.4.1, we need the conjecture
holds for XM ′({µP ′}, bP ′), or more precisely it holds for each simple factor of M ′ad in which bP ′ is
Hodge–Newton irreducible.
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The rest of this section will be devoted to the proof of Proposition 6.5.

6.8. The uniqueness follows from Corollary 6.3. The same proof as in [Kis06, §1.4.4] shows the
compatibility with Φ. Thus it remains to show the existence of ix. The strategy follows [Kis06, §1.4];
the first step is to show that if g ∈ X(σ({µy}), b) can be lifted, then every point on the connected
component of X(σ({µy}), b) containing g also lifts. This first step can be carried out without any of
the extra hypothesis in Proposition 6.5. The second step is to show that every connected component
of X(σ({µy}), b) contains a point which lifts; this is done by showing the quasi-isogeny Agx → Ax
lifts to characteristic 0.

We recall some definitions from [HZ, Appendix A], see also [CKV15].

Definition 6.7. Let R be k-algebra. A frame for R is a p torsion free, p-adically complete and
separated OL-algebra R equipped with an isomorphism R ∼= R/pR and a lift (again denoted σ) of
the Frobenius σ on R.

Let R be as above and fix R a frame for R. We write RL for R[ 1
p ]. If κ is any perfect field

of characteristic p and s : R → κ is a map, then there is a unique σ-equivariant map R → W (κ),
also denoted s. Indeed this follows from the universal property of Witt vectors once one notes that

any map R → W (κ) factors through the natural map R → R̂∞; here R̂∞ is the p-adic completion
R∞ := lim

→σ
R and is identified with the Witt vectors of the perfection of R. If R → R′ is an étale

map, then there exists a canonical frame R′ of R′ equipped with a canonical σ-invariant map R → R′

lifting R→ R′, see [CKV15, Lemma 2.1.4].
Let g ∈ G(RL). For C ⊂W , we write

SC(g) =
⋃
w∈C
{s ∈ Spec R|s(g−1bσ(g)) ∈ G(W (κ(s)))ẇG(W (κ(s)))}

where κ(s) is an algebraic closure of residue field k(s) of s. Note that this only depends on the image
of g ∈ G(RL)/G(R), hence we can define SC(g) for any element of g ∈ G(RL)/G(R). For b ∈ G(L),
we define the set

XC(b)(R) = {g ∈ G(RL)/G(R)|SC(g) = Spec R}.
When C = Adm({µ}) we write X({µ}, b)(R) for XC(b)(R). Similarly when C = σ(Adm({µ})) we
write X(σ({µ}), b)(R).

Definition 6.8. For g0, g1 ∈ X({µ}, b) and R a smooth k-algebra with connected spectrum and
frame R, we say g0 is connected to g1 via R if there exists g ∈ X({µ}, b)(R) and two k-points s0, s1

of Spec R such that s0(g) = g0 and s1(g) = g1.

We write ∼ for the equivalence relation on X({µ}, b) generated by the relation g0 ∼ g1 if g0 is
connected to g1 via some R as above, and we write π′0(X({µ}, b)) for the set of equivalence classes.

By [HZ, Theorem A.4], we have

(6.8.1) π′0(X({µ}, b)) = π0(X({µ}, b)).

6.9. Returning to the situation of Proposition 6.5, let g ∈ G(RL) be a lift of some element of
X(σ({µy}), b)(R). By Corollary 3.6, for all s ∈ Spec R, we have g(s) ∈ GL(OL)vGL(p)GL(OL). Since
GL is hyperspecial, it follows from [CKV15, Lemma 2.1.14] that there is an étale covering R → R′

with canonical frame R → R′ such that

g ∈ GL(R′)µGL(p)GL(R′),
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For n ≥ 1 we write Rn for the ring R considered as a R-algebra via σn : R → R and we define Rn
similarly. By [Kis17, Lemma 1.4.6], there exists n ≥ 1 and a p-divisible group Ggx over R′n together
with a quasi-isogeny Ggx → Gx ⊗ R′n which identifies D(Ggx)(R′n) with gD(Gx) ⊂ D(Gx) ⊗OL R′nL.
Upon relabelling R′n as R and R′n as R, we obtain an abelian variety Agx over Spec R.

Since g ∈ GSp(RL), λx induces a weak polarization λgx on Agx, and Agx is also equipped with a
prime to p level structure. Hence g gives a map

(6.9.1) Spec R→ SK′(GSp, S
±).

Since g ∈ G(RL), we have sα,0,x = g(sα,0,x) ∈ D(Ggx)(R).

Proposition 6.9. Suppose there is a k-point xR : R→ k of Spec R such that x∗R(g) = 1. Then there
is a unique lifting iR : Spec R→ SK(G,X) of (6.9.1) such that

i∗R(sα,0) = sα,0,x

Proof. The uniqueness can be checked on k points, hence this follows from Corollary 6.3.
To show existence, we first claim (6.9.1) factors through SK(G,X)−. Note that in the process

of replacing R by R′n, R may no longer be irreducible. However, by induction we may apply the

argument to each irreducible component successively. Therefore we may assume R is integral. Let R̂

denote the completion of R at xR. Since R is integral, it suffices to prove the claim for R̂.
Note that the filtration induced by g−1bσ(g) gives an R-point of the local model M loc

GL . For all k
points s : R→ k, we have

g(s)−1bσ(g(s)) ∈
⋃

w∈Adm({µy})

G(OL)σ(ẇ)G(OL)

By Corollary 3.6, the map Spec R→M loc
GL factors through M loc

G . Taking completions at the image of
xR, we obtain a map

ψ : AG → R̂

By smoothness of R, R̂ is power series ring over k. We may choose coordinates so that R̂ ∼=
k[[t1, . . . , tm]] for some m ≥ 1.

We have a p-divisible group over k[[t1, . . . , tm]]; we would like to use the map ψ to deform this

p-divisible group to G̃ over a ring in characteristic 0, such that the pullback to every OK-point
satisfies the condition in Definition 4.5, i.e. it is (GOL , µy)-adapted. The ring we will deform to is
AG [[t1, . . . , tm]].

We have a map

AG [[t1, . . . , tm]]� k[[t1, . . . , tm]]

induced by ψ : AG → k[[t1, . . . , tm]] and ti 7→ ti. This induces a surjection

Ŵ (AG [[t1, . . . , tm]])� Ŵ (k[[t1, . . . , tm]]).

Let R̂ denote the completion of R at the image of the point xR. We write ĝ for the image

of g in G(R̂) and Gĝx for the induced p-divisible group, then D(Gĝx)(R̂) can be identified with

ĝD(Gx) ⊂ D(Gx)⊗ R̂L. We may use ĝ−1 to identify D(Gĝx)(R̂) with D(Gx)⊗OL R̂ as an R̂-module.
Under this identification the Frobenius is given by ĝ−1bσ(ĝ). It follows that the Dieudonné display

D(Gĝx)(Ŵ (k[[t1, . . . , tm]])) can be identified with D ⊗OL Ŵ (k[[t1, . . . , tm]]) and the Frobenius Φ pre-
serves sα,0,x.
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Let SpfA be the completion of M loc
GL,µ−1

h

at the image of xR, then D ⊗OL A is equipped with a

universal filtration M1 ⊂ D ⊗OL A. We let M1 denote the preimage of M1 in M := D ⊗OL Ŵ (A).

Let M̃1 denote the image of the map ϕ∗M1 → ϕ∗M .
By construction, the pushforward of M1 along A → AG → k[[t1, . . . , tm]] is the filtration on

D⊗OL k[[t1, . . . , tm]] induced by ĝ−1bσ(ĝ). Therefore by [KP, Lemma 3.1.5] the structure of a display

on D⊗OL Ŵ (k[[t1, . . . , tm]]) corresponding to Gĝx is given by an isomorphism

Ψk[[t1,...,tm]] : M̃1,k[[t1,...,tm]] → D⊗OL Ŵ (k[[t1, . . . , tm]])

where for any ring B with A→ B, we write M̃1,B for the base change M̃1 ⊗Ŵ (A)
Ŵ (B). Since A→

k[[t1, . . . , tm]] factors through AG it follows from [KP, Corollary 3.2.11] that sα,0,x ∈ M̃⊗1,k[[t1,...,tm]],

and since ĝ−1bσ(ĝ) preserves sα,0,x we have Ψk[[t1,...,tm]](sα,0,x) = sα,0,x.
By [KP, Corollary 3.2.11], the scheme

T = Isomsα,0,x
(M̃1,AG ,M ⊗Ŵ (A)

Ŵ (AG))

of tensor preserving isomorphisms is a G-torsor. Base changing to AG [[t1, . . . , tm]] we obtain a G-torsor

TAG [[t1,...,tm]] = Isomsα,0,x
(M̃1,AG [[t1,...,tm]],M ⊗Ŵ (A)

Ŵ (AG [[t1, . . . , tm]])).

By smoothness of G, Ψk[[t1,...,tm]] lifts to an isomorphism

Ψ : M̃1,AG [[t1,...,tm]]
∼−→M ⊗

Ŵ (A)
Ŵ (AG [[t1, . . . , tm]])).

Again, by [KP, Lemma 3.1.5], this corresponds to a display over AG [[t1, . . . , tm]]. Since Ψ lifts

Ψk[[t1,...,tm]], this display deforms D(Gĝx)(Ŵ (k[[t1, . . . , tm]])) by the discussion in [KP, 3.2.6], and

hence corresponds to a p-divisible group G̃ over AG [[t1, . . . , tm]] deforming Gĝx.

Let $ : AG [[t1, . . . , tm]] → OK be any map and G̃$ the p-divisible group over OK obtained by
pullback. By construction we have an isomorphism

ι : D(G̃$)(Ŵ (OK)) ∼= D⊗OL Ŵ (OK).

Thus sα,0,x give rise to Φ-invariant tensors in D(G̃ )(Ŵ (OK))⊗. Moreover, under the canonical identi-

fication D(G̃$)(OK)⊗OK K ∼= D⊗OLK, the filtration is induced by a G-valued cocharacter conjugate
to µy. Indeed the composition

D⊗OL OK
ι−1

−−→ D(G̃$)(OK)⊗OK K
∼−→ D⊗OL K

where the second map is the canonical isomorphism as in [KP, Lemma 3.1.17] takes sα,0,x to itself.
Since the filtration on the left is induced by the map A→ AG → AG [[t1, . . . , tm]]→ OK , it corresponds
to a point of the local model M loc

G hence is induced by a G-valued cocharacter conjugate to µy. Thus

G̃$ is (GOL , µy)-adapted as desired.

Let Û ′x (resp. Ûx) denote the completion of SK′(GSp, S
±) (resp. SK(G,X)−) at the image of x.

Then the p-divisible group G̃ corresponds to a map

ε− : SpfAG [[t1, . . . , tm]]→ Û ′x.

We let Ẑ ⊂ Ûx denote the irreducible component containing x (recall x ∈ SK(G,X)(K) was a point

lifting x). By the previous paragraph, for any $ : AG [[t1, . . . , tm]]→ OK , the induced point of Û ′x lies

in Ẑ by Proposition 6.2 (iii). Since this is true for any OK-point with K/L finite and AG [[t1, . . . . tm]]

is flat over Zp, ε− factors though Ẑ. Thus iR factors through SK(G,X)−.
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We have shown that (6.9.1) factors through SK(G,X)−. We let

i−R : Spec R→ SK(G,X)−

be the induced map. We now show that i−R lifts to SK(G,X). We first show there exists an open
subscheme U ⊂ Spec R containing xR which lifts.

We let OS ,x (resp. OS−,x) denote the local ring of SK(G,X) (resp. SK(G,X)−) at the (image
of the) point x. The irreducible component Zx of Spec OS−,x containing x has completion which is
normal by Theorem 6.1 (i), hence Zx is normal. Therefore the map

Spec OS ,x → Spec OS−,x

induces an isomorphism Spec OS ,x
∼= Zx.

Let RxR be the localization of R at the point xR. The proof above showing that (6.9.1) factors
through SK(G,X)− also shows that the induced map Spec RxR → Spec OS−,x actually factors
through Zx. Hence we obtain a unique lifting

Spec RxR → SK(G,X).

It follows that there exists an open subscheme U ⊂ Spec R containing x such that i−R|U lifts to a
unique map

U → SK(G,X).

The existence and uniqueness of the lifting iR then follows from Lemma 6.10 below.
To show the compatibility of this map with the tensors sα,0,x, we let M denote the Dieudonné

F -crystal over SKp(G,X)k associated to the universal p-divisible group, and M[ 1
p ] the corresponding

F -isocrystal. By [KMPS, Corollary A.7], there exist sections

sα,0 : 1→M[
1

p
]⊗

such that for all x′ ∈ SK(G,X)(k), sα,0 pulls back to sα,0,x′ ∈ D(Gx′)[
1
p ]⊗.

Thus pulling back to Spec R, we obtain sα,0,R ∈ D(Ggx)(R)[ 1
p ]⊗ such that for all z : R → k,

the pullback coincides with sα,0,ιR(z). Now by construction sα,0,x ∈ D(Ggx)(R)⊗ are parallel for the
connection coming from the crystal structure of D(Ggx); indeed this connection is induced by the
trivial connection 1 ⊗ d on D(Gx) ⊗OL R, see [Kis17, Lemma 1.4.6]. Moreover sα,0,x coincide with
sα,0,R at the point xR. Since R is integral, sα,0,R = sα,0,x.

�

Lemma 6.10. Let Y be a reduced scheme and Y n its normalization. Let X be a normal integral
scheme and U ⊂ X an open subscheme. Suppose we have a diagram:

U //

��

Y n

��
X

f // Y

Then f lifts to a unique map f ′ : X → Y n

Proof. Since X is irreducible, so is U . As Y n is a disjoint union of integral schemes, the image of
U is contained in a single irreducible component, which is the normalization of a single irreducible
component in Y . Replacing Y by this component, we may assume that Y is reduced and irreducible,
hence integral. By uniqueness we may assume X = Spec R and Y = Spec S are affine. Then
Y n = Spec Sint where Sint is the integral closure of S in K(Y ) := Frac(S). Thus it suffices to show
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the induced map Sint → K(X) factors through R. But this follows since R is integrally closed in
K(X). �

Proof of Proposition 6.5. For now we do not make any extra assumptions as in the Proposition 6.5
parts (i), (ii), (iii). By uniqueness, there is a maximal subset X(σ({µy}, b)◦ ⊂ X(σ({µy}), b) which
lifts to a map:

ix : X(σ({µy}), b)◦ → SK(G,X)(k)

If g ∈ G(L) represents an element of X({µy}, b)◦, then for x′ := ix(g) ∈ SK(G,X)(k), the Frobenius
ϕ on D(Gx′) is given by b′ := g−1bσ(g) ∈ G(L) under a suitable trivialization of D(Gx′). The maps ix
and ix′ fit into the commutative diagram:

(6.9.2) X(σ({µy}), b)
i′x

))
∼

��

SK′(GSp(V ), S±)(k)

X(σ({µy}), b′)

i′
x′
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where the vertical arrow is the isomorphism induced by left multiplication by g−1. Therefore

X(σ({µy}), b)◦ = X(σ({µy}), b′)◦

under this identification. In what follows, we will often change the base-point x in the definition of
the map i′x.

Lemma 6.11. The set X(σ({µy}), b)◦ is a union of connected components.

Proof. By (6.8.1), it suffices to show that X(σ({µy}), b)◦ is a union of equivalence classes under ∼. By
Proposition 6.9, if g ∈ X(σ({µy}), b)◦ and g′ ∈ X(σ({µy}), b) with g ∼ g′, then there exists a sequence
g = g0, . . . , gr = g′ such that gi is connected to gi+1 via some R as in Definition 6.8. We would like
to show g′ ∈ X(σ({µy}), b)◦. By induction, it suffices to show consider the case g is connected to g′

via R. Upon replacing x by ix(g) and using (6.9.2), we may assume g = 1.
Upon replacing R by R′n, where R→ R′ is an étale cover, there exists a map

Spec R→ SK′(GSp, S
±)

as in (6.9.1). Note that the étale covering R′ may be disconnected, but applying the argument to each
connected component and using induction again, we may assume it is connected. The result then
follows from Proposition 6.9. �

Case (i), b is basic: By Theorem 5.9 (i) and Lemma 6.11, there exists g′ ∈ Xσ(τ{µy})
(b) ∩

X(σ({µy}), b)◦, i.e. ix(g′) lifts to a point x′ ∈ SK(G,X)(k). Upon replacing x by x′ and using
(6.9.2) we may assume b ∈ G(OL)σ(τ̇{µ})G(OL). By Theorem 2.4, upon changing the isomorphism

V ∗Zp ⊗Zp OL ∼= D(Gx)

by an element of G(OL), we may assume b = σ(τ̇{µ}).
Let x ∈ SK(G,X)(OK) denote a lift of x with K/L finite. Fix the isomorphism

TpG
∨
x ⊗Zp OL ∼= D(Gx)
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taking sα,ét,x to sα,0,x compatibly with the isomorphism V ∗Zp ⊗Zp OL ∼= D(Gx) above. We may now

apply the construction of §5.
Let g ∈ G(Qp)/G(Zp) and g0 the corresponding element in X(σ({µ}), b) constructed in §5.6; upon

replacing K by a finite extension, g−1TpGx corresponds to a p-divisible group G ′ over OK together with
a quasi-isogeny G ′ → Gx which identifies D(G ′0) with g0D(Gx). This corresponds to a quasi-isogeny
A′ → Ax hence to a point gx ∈ ShK(G,X)(K) by the moduli interpretation of ShK(G,X)(C).
Indeed after base changing to C, the quasi- isogeny A′ → Ax preserves sα,B,x since it preserves sα,ét,x.
Therefore g0 ∈ X(σ({µy}), b)◦ as it is the specialization of gx.

By Proposition 5.19, g 7→ g0 induces a surjection

G(Qp)/G(Zp)� π0(X(σ({µy}), b));
hence

X(σ({µy}), b)◦ = X(σ({µy}), b).
This proves the Proposition when b is basic in G.

Case (ii), GQp is residually split: In this case σ acts trivially on the Iwahori Weyl group W , hence
Adm({µy}) = σ(Adm({µy})). Recall that by Theorem 5.11, there is a map

(6.9.3)
∐

w∈W,w a straight element with ẇ∈[b]

XMνw ({λw}Mνw
, ẇ)→ X({µy}, b)

which induces a surjection

(6.9.4)
∐

w∈W,w a straight element with ẇ∈[b]

π0(XMνw ({λw}Mνw
, ẇ))→ π0(X({µy}, b))

Here we write straight instead of σ-straight since the action is trivial. We note that the map
XMνw ({λw}Mνw

, ẇ) → X({µy}, b) is induced by the map m 7→ jb,ẇm for m ∈ Mνw(L), and where

jb,w is an element in G(L) such that j−1
b,ẇbσ(jb,ẇ) = ẇ. Such a map depends on the choice of jb,ẇ,

however its image does not. We now fix a choice a of jb,ẇ for each w in the decomposition 6.9.3 and
we write ιw for the induced map XMνw ({λw}Mνw

, ẇ)→ X({µy}, b).
We outline the strategy for the proof. By Lemma 6.11 and the surjection (6.9.4), it suffices to show

for each w ∈ Adm({µ}) straight, that every connected component of XMνw ({λw}Mνw
, ẇ) contains

an element whose image in X({µy}, b) lies in X({µy}, b)◦. This will follow from Lemmas 6.12, 6.13
and 6.15 below. The first step is to show that if ιw(XMνw ({λw}Mνw

, ẇ)) ∩ X({µy}, b)◦ 6= ∅, then

ιw(XMνw ({λw}Mνw
, ẇ)) is contained in X({µy}, b)◦. This follows from same argument as in the basic

case since by [HZ, Theorem 5.2], ẇ is basic in Mνw(L). It now suffices to show that the image of
XMνw ({λw}Mνw

, ẇ) contains at least one point which lifts. To do this, we use the property of straight
elements stated in Theorem 2.2; namely that for any w,w′ straight with [ẇ] = [ẇ′] in B(G), we have
w ≈ w′. We show that for such a w and s ∈ S such that w′ = swσ(s) and l(swσ(s)) = l(w), if

ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦ 6= ∅,

then

ιw′(X
Mν

w′ ({λw′}Mν
w′
, ẇ′)) ∩X({µy}, b)◦ 6= ∅.

Similarly, if τ ∈ Ω and w′ = τwτ−1, we show that if

ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦ 6= ∅

then

ιw′(X
Mν

w′ ({λw′}Mν
w′
, ẇ′)) ∩X({µy}, b)◦ 6= ∅.
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These properties imply that to prove the Proposition, it suffices to show that there exists some w such
ιw(XMνw ({λw}Mνw

, ẇ))∩X({µy}, b)◦ 6= ∅, which again follows from Lemma 6.11 and the surjectivity
of (6.9.4).

Lemma 6.12. Let w straight such that ẇ ∈ [b]. Suppose there exists

g ∈ ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦.

Then ιw(XMνw ({λw}Mνw
, ẇ)) ⊂ X({µy}, b)◦.

Proof. By Theorem 5.9 (i) appplied to XMνw ({λw}Mνw
, ẇ), there exists

g′ ∈ XMνw
w (ẇ) ⊂ XMνw ({λw}Mνw

, ẇ)

such that g′ ∼ g and hence ιw(g′) ∈ X({µy}, b)◦. Indeed in this case, w ∈ AdmMνw ({λw}Mνw
)

is the unique straight element. Upon replacing x by ix(ιw(g′)) and using (6.9.2), we may assume
b ∈ G(OL)ẇG(OL). Since w is straight, upon modifying the isomorphism (6.7.1) and using Theorem
2.4, we may assume b = ẇ. The inclusion ιw is induced by the map m 7→ jẇ,ẇm where m ∈ M(L)
and jẇ,ẇ is an element of

Jẇ(Qp) := {h ∈ G(L)|h−1ẇσ(h) = ẇ}.
The image of ιw is unchanged upon replacing jẇ,ẇ by 1, hence we may assume ιw is the natural
inclusion.

Write M := Mνw . Then M(L) ∩ G(OL) is an Iwahori subgroup of M which is defined over Zp;
we write M for the associated group scheme. Let WM denote the Iwahori Weyl group of M , then
w ∈ WM and [HZ, Theorem 5.2] implies ẇM(OL)ẇ−1 = M(OL). We equip WM with the Bruhat
order ≤M induced by the Iwahori subgroup M, then w is a length 0 element of WM . The M
conjugacy class of cocharacter {λw} may be constructed as follows. We write νw ∈ X∗(T )I,Q for the
dominant representative of νw and Mνw the corresponding standard Levi. Let J ⊂ S0 be the subset
corresponding to Mνb . We let zw ∈ W J

0 such that zw(Mνw) = M . If µ ∈ X∗(T ) is a dominant
representative of {µy}, then {λw} is represented by λw := zw(µ). Therefore by Proposition 3.4, there
is an M -valued cocharacter conjugate to λw such that the induced filtration on D⊗OL K specializes
to the one on D(Gx)⊗OL k and hence the assumption (5.12) is satisfied for the subgroup M of G. We
may thus apply the construction of §5.7.

Since ẇ ∈ M(L), we may extend the tensors sα to tensors tα ∈ V ⊗Zp whose stablizer is the Iwahori

M. We obtain an embedding of local models M loc
M,λ−1

w
⊂ M loc

GL,µ−1
y
⊗ OE′ , where E′ is the (local)

reflex for the M -conjugacy class of {λw}. Since ẇ ∈ AdmM ({λw}) the filtration on D(Gx) ⊗OL k
gives a point in the local model M loc

M (k). Replacing λw by an element in its M -conjugacy class, we
may assume λw is defined over a finite extension K/L and the induced filtration lifts the filtration on
D(Gx)⊗OL k.

Recall that ẇ is basic in M(L); indeed it is the element τ̇{λw}, where τ{λw} is the minimal element

of AdmM ({λw}). We let G denote an (MOL , λw)-adapted lifting of Gx satisfying the conditions in
Proposition 4.8. Note that any (MOL , λw)-adapted lifting is also (GOL , µy)-adapted, hence corre-
sponds to a point x ∈ SK(G,X)(OK). We apply the construction of §5 to Gx, and we obtain a
map

M(Qp)/M(Zp)→ XM ({λw}, ẇ), m 7→ m0

such that the image of its composition with ιw lies in X({µy}, ẇ)◦. This follows as in part (i) since
i′x(m0) is the specialization of mx ∈ SK(G,X)(OK). By Proposition 5.19, it induces a surjection

M(Qp)/M(Zp)→ π0(XM ({λw}, ẇ)),
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and hence X({µy}, b)◦ contains the image of XMνw ({λw}, ẇ). �

Lemma 6.13. Let w,w′ straight such that ẇ, ẇ′ ∈ [b] and w′ = sw′s for some s ∈ S. Suppose there
exists

g ∈ ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦.

Then there exists

g′ ∈ ιw′(XMν
w′ ({λw′}Mν

w′
, ẇ′)) ∩X({µy}, b)◦.

Proof. By Lemma 6.12 ιw(XMνw ({λw}Mνw
, ẇ)) ⊂ X({µy}, b)◦; hence upon choosing a different g, we

may assume g ∈ ιw(X
Mνw
w (ẇ)). Upon replacing x by ix(g) and using (6.9.2), we may assume as in

Lemma 6.12 that b = ẇ and the ιw is the natural inclusion. We note from the proof of [He14, Theorem
4.8] that

Xw′(ẇ) ∼= ιw′(X
Mν

w′
w′ (ẇ′)) ⊂ ιw′(XMν

w′ ({λw′}Mν
w′
, ẇ′)).

It therefore suffices to show that there exists g′ ∈ Xw′(ẇ) ∩X({µy}, ẇ)◦.
We assume that the lift ṡ lies in N(Qp); such a lift exists since the action of σ is trivial under our

assumption that GQp is residually split. As in the proof of Lemma 6.12, we may apply the construction
of §5.7. We let G be an (MOL , λw)-adapted lifting as in Proposition 4.8. We fix the isomorphism

TpG
∨ ⊗Zp OL ∼= D(Gx)

taking tα,ét to tα,0,x. Upon replacing K by a finite extensions, we have ṡTpG corresponds to a p-
divisible group G ′ over OK equipped with a quasi isogeny G ′ → G . This identifies M(TpG ′∨) with
s̃M(TpG ∨) for some s̃ ∈ G(S[1/p]). We also obtain a quasi-isogeny G ′ → G over k which identifies
D(G ′) with s0D(G ) where s0 = σ−1(s̃)|u=0. By Proposition 5.13 we have σ−1(s̃) = mṡh where
m ∈ M(O

Ê ur) and h ∈ G(O
Ê ur). Using the natural map L → S[1/p], we may consider ẇ ∈ G(L) as

an element of G(S[1/p]). Then we have

σ−1(s̃−1)ẇs̃ = h−1ṡ−1m−1ẇσ(m)ṡσ(h)

We assume l(sw) = l(w) + 1; the case l(ws) = l(w) + 1 can be treated in the same way. Since w is
basic in WM , we have

m′ := m−1ẇσ(m)ẇ−1 ∈M(O
Ê ur)

Since l(sw) = l(w) + 1, we have l(sws) = l(ws) + 1 and hence

G(O
Ê ur)ṡG(O

Ê ur)ẇṡG(O
Ê ur) = G(O

Ê ur)ṡẇṡG(O
Ê ur).

It follows that

σ−1(s̃−1)ẇs̃ = h−1ṡ−1m′ẇṡσ(h) ∈ G(O
Ê ur)ṡẇṡG(O

Ê ur);

note here we use that s = s−1. We consider σ−1(s̃−1)ẇs̃ as a k[[u]]perf point of FL. The above
calculation shows that the generic fiber of this point lies in the the Schubert variety Sw′ ⊂ FL. Since
the Schubert variety Sw′ is closed, the special fiber also lies in Sw′ . Hence we have

s0ẇσ(s0) ∈ G(OL)ẇ′′G(OL)

for some w′′ ≤ w′. By Lemma 6.14 below, we have w′ = w′′ and s0 ∈ Xw′(ẇ), and moreover it lies in
X({µy}, ẇ)◦ since it is the specialization of ṡx, where x ∈ SK(G,X)(OK) corresponds to G . �

Lemma 6.14. (G not necessarily residually split) Let w ∈ W be a σ-straight element and g ∈ G(L)
such that g−1ẇσ(g) ∈ G(OL)ẇ′G(OL) with w′ ≤ w. Then w′ = w.
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Proof. Since w′ ≤ w, it suffices to show l(w) = l(w′). Let b = g−1ẇσ(g) ∈ G(OL)ẇ′G(OL). We claim
that there is a σ-straight element y ∈W with l(y) ≤ l(w′) such that [ẏ] = [b] in B(G). We first show
by induction on l(w′) that there exists w′′ ∈ W with l(w′′) ≤ l(w′) which is minimal length in its
σ-conjugacy class in W and such that b is σ-conjugate to an element of G(OL)ẇ′′G(OL). Indeed if w′ is
minimal length in its σ-conjugacy class, then there is nothing to show. Otherwise, by [He14, Theorem
2.3] and [He14, Lemma 3.1 (1)], there exists x ∈W with l(x) < l(w′) such that b is σ-conjugate to an
element of G(OL)ẋG(OL). The result then follows by induction hypothesis applied to x.

By [He14, Theorem 2.3], there exists J ⊂ S with WJ finite, u ∈WJ and y ∈ JWσ(J) σ-straight with
yσ(J) = J such that w′′ ≈ uy; here the notation is as in §2. Note that l(y) ≤ l(w′′). Then by [He14,
Lemma 3.1 (2)] and [He14, Lemma 3.2], any element of G(OL)ẇ′′G(OL) is σ-conjugate to an element
of G(OL)ẏG(OL). Therefore b, and hence ẇ is σ-conjugate in G(L) to an element of G(OL)ẏG(OL).
By [He14, Theorem 3.5], b is σ-conjugate to ẏ itself.

Therefore [ẇ] = [ẏ] in B(G) and since they are both σ-straight, it follows by [He14, Theorem
3.7] that w and y are σ-conjugate in W . Since they are both straight, l(w) = l(y), and hence
l(w) = l(w′). �

Lemma 6.15. Let w,w′ straight such that ẇ, ẇ′ ∈ [b] and w′ = τ−1wτ for some τ ∈ Ω. Suppose
there exists

g ∈ ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦.

Then there exists

g′ ∈ ιw′(XMν
w′ ({λw′}Mν

w′
, ẇ′)) ∩X({µy}, b)◦.

Proof. As in Lemma 6.13, we may assune g ∈ ιw(X
Mνw
w (ẇ)) and upon replacing x by ix(g) we may

assume b = ẇ. As in the proof of Lemma 6.13, it suffices to show there exists g′ ∈ Xw′(ẇ) ∩
X({µy}, ẇ)◦.

Let G be an (MOL , λw)-adapted lifting of Gx to OK and apply the construction of Proposition 5.14
to τ̇ ∈ N(Qp); we obtain an element τ̃ ∈ G(S[ 1

p ]). Moreover σ−1(τ̃) = mτ̇g with m ∈ M(O
Ê ur) and

g ∈ G(O
Ê ur). Since τ̇G(O

Ê ur)τ̇
−1 = G(O

Ê ur), we have

σ−1(τ̃−1)ẇτ̃ = g−1τ̇−1m−1ẇσ(m)τ̇σ(g) ∈ G(O
Ê ur)τ̇

−1ẇτ̇G(O
Ê ur).

By the same argument in Lemma 6.13, τ0 := σ−1(τ̃)|u=0 ∈ Xw′(ẇ) ∩X({µy}, ẇ)◦. �

We can now complete the proof of Proposition 6.5 (ii). Recall we are trying to show the map i′x
lifts to a map

ix : X(σ({µy}), b)→ SK(G,X)(k)

which is compatible with tensors, or in other words that X({µy}, b)◦ = X({µy}, b). By the surjectivity
of (6.9.4) and the fact that X({µy}, b)◦ is a union of connected components, it suffices to show
ιw(XMνw ({λw}Mνw

, ẇ)) ⊂ X({µy}, b)◦ for all w straight such that ẇ ∈ [b]. By Lemma 6.12, it suffices

to show ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦ is non-empty for each such w.

By the surjectivity of (6.9.4) and the fact that X({µy}, b)◦ is a union of components, there exists
some w straight with ẇ ∈ [b] such that

ιw(XMνw ({λw}Mνw
, ẇ)) ∩X({µy}, b)◦ 6= ∅.

By Theorem 2.2, for any w′ straight with ẇ′ ∈ [b], there exists w = w0, w1, . . . , wm = τw′τ−1 with
τ ∈ Ω such that wi ≈si wi+1 for some si ∈ S and i = 0, . . . . ,m− 1. Applying Lemmas 6.13 and 6.15

inductively, we obtain ιw′(X
Mν

w′ ({λw′}Mν
w′
, ẇ′)) ∩X({µy}, b)◦ 6= ∅.
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This completes the proof of Proposition 6.5 part (ii).
Case (iii), Conjecture 5.4 holds: The proof in this case follows along the lines of Case (ii). Let

M ⊂ G be a standard σ0-stable Levi subgroup as in Lemma 5.7. Recall the decomposition

X(σ({µy}), b) ∼=
∐

P ′=M ′N ′

XM ′(σ({µP ′}), bP ′)

into open and closed subschemes from Theorem 5.4.1. This induces a bijection

π0(X(σ({µy}), b)) ∼=
∐

P ′=M ′N ′

π0(XM ′(σ({µP ′}), bP ′)).

We write ιP ′ for the map XM ′(σ({µP ′}), bP ′))→ X(σ({µy}), b); it is induced by the map m 7→ jb,bP ′m

for m ∈ M ′(L), where jb,bP ′ ∈ G(L) is a fixed element such that j−1
b,bP ′

bσ(jb,bP ′ ) = bP ′ . By our

assumption on M , [bP ′ ] ∈ B(M ′, σ({µP ′})) is Hodge–Newton indecomposable. Using Lemma 6.11,
X(σ({µy}), b)◦ is a union of connected components. The Proposition will follow from the next two
Lemmas.

Lemma 6.16. Let P ′ ∈ Pσ. Suppose there exists

g ∈ ιP ′(XM ′(σ({µP ′}), bP ′)) ∩X(σ({µy}), b)◦.

Then ιP ′(X
M ′(σ({µP ′}), bP ′)) ⊂ X(σ({µy}), b)◦.

Proof. LetM′(OL) =M′(L)∩G(OL). Then M ′(OL) is preserved by σ and arises as the OL-points of
an Iwahori subgroupM′ of M ′ defined over Zp. Upon replacing x by ix(g) and using (6.9.2), we may
assume g = 1. Upon modifying the isomorphism (6.7.1), we may assume b ∈ M′(OL)ẇM ′M′(OL)

where wM ′ ∈ AdmM ′(σ({µP ′})). Replacing bP ′ by another representative of its class in B(M ′), we
assume bP ′ = b.

By Proposition 3.4, upon extending K we may choose a representative µP ′ of {µP ′} which induces
a filtration on D(Gx) ⊗ K lifting the filtration mod p. Then since the µP ′ lies in the G-conjugacy
class of cocharacters {µy}, the assumption (5.12) is satisfied. We extend the tensors sα to tensors
tα ∈ V ⊗Zp whose stabilizer is identified with M′. We may thus apply the construction of §5.7.

Let G be an (M′, µP ′)-adapted lifting of Gx satisfying the conditions in Proposition 4.8. We fix
the isomorphism

TpG
∨ ⊗Zp OL ∼= D(Gx)

taking tα,ét to tα,0,x. Applying the construction of §5.7, we obtain a map

M ′(Qp)/M′(Zp)→ XM ′(σ({µP ′}), bP ′)
whose image after composition with ιP ′ lies in X(σ({µy}, bP ′))◦. By Proposition 5.20 and our as-
sumption on M which implies bP ′ ∈ B(M ′, σ({µP ′})) is Hodge–Newton indecomposable, the map

M ′(Qp)/M′(Zp)→ π0(XM ′(σ({µP ′}), bP ′))

is surjective. Hence ιP ′(X
M ′(σ({µP ′}), bP ′)) ⊂ X(σ({µy}), bP ′)◦. �

Lemma 6.17. For each P ′ ∈ Pσ, there exists g ∈ ιP ′(XM ′(σ({µP ′}), bP ′)) ∩X(σ({µy}), b)◦.

Proof. The decomposition 5.4.1 implies that there exists P ′′ ∈ Pσ such that

1 ∈ ιP ′′(XM ′′(σ({µP ′′}), bP ′′))
Then upon modifying (6.7.1), we may assume b = bP ′′ ∈ M′′(OL)ẇM ′′M′′(OL), where M′′ is
the Iwahori subgroup scheme over Zp of M ′′ such that M′′(OL) = G(OL) ∩ M ′′(L) and wM ′′ ∈
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AdmM ′′(σ({µP ′′})). We write bP ′′ = m1ẇM ′′m2 in this decomposition. By [GHN, Theorem 3.6] and

[GHN, Theorem 3.12], if wM ′ ∈ AdmM ′(σ({µP ′})) is such that XwM′ (bP ′′) 6= ∅, then XwM′ (bP ′′)
∼=

ιP ′(X
M ′

wM′
(bP ′)). In particular XwM′ (bP ′′) ⊂ ιP ′(X

M ′(σ({µP ′}), bP ′)). Thus it suffices to show that

that there exists some wM ′ ∈ AdmM ′(σ({µP ′})) and g ∈ XwM′ (bP ′′) ∩X(σ({µy}), bP ′′)◦.
We write M′ for the Iwahori subgroup scheme of M ′ defined over Zp such that M′(OL) =

M ′(L) ∩ G(OL). By Lemma 5.8, there exists v ∈ Wσ such that v̇−1M′′(OL)v̇ = M′(OL) and

v−1AdmM ′′(σ({µP ′′}))v = AdmM ′(σ({µP ′})).
As in Lemma 6.16, we may choose a representative µP ′′ for {µP ′′} which induces a filtration on

D(Gx)⊗K lifting the filtration mod p. Let G be an (M, µP ′′)-adapted lifting of Gx as in Proposition
4.8. We choose the lift v̇ of v to lie in N(Qp) and we fix the isomorphism

TpG
∨ ⊗Zp OL ∼= D(Gx)

taking tα,ét to tα,0,x. We obtain a map

G(Qp)/G(Zp)→ X(σ({µy}), bP ′′).

Moreover by Proposition 5.13, the image of v under this map is given by σ−1(ṽ)|u=0 where ṽ ∈
G(S[1/p]) is an element such that σ−1(ṽ) = mv̇h with m ∈ M′′(O

Ê ur) and h ∈ G(O
Ê ur). Using the

natural map L→ S[1/p], we consider bP ′′ ∈ G(L) as an element of G(S[1/p]). Then we have

σ−1(ṽ)−1bP ′′ ṽ = h−1v̇−1m−1m1ẇM ′′m2σ(m)v̇σ(h)

= h−1(v̇−1m−1m1v̇)v̇−1ẇM ′′ v̇(v̇−1m2σ(m)v̇)σ(h) ∈ G(O
Ê ur)ẇM ′G(O

Ê ur)

where wM ′ := v−1wM ′′v ∈ AdmM ′(σ({µP ′})). Therefore considering σ−1(ṽ) as a k[[u]]perf -point of

FL, it follows that the generic fiber of ṽ lies in XM ′(σ({µP ′}), bP ′). Hence since

ιP ′(X
M ′(σ({µP ′}), bP ′)) ⊂ X(σ({µy}), bP ′′)

is closed, v0 := σ−1(ṽ)|u=0 ∈ ιP ′(XM ′(σ({µP ′}), bP ′)) and v0 ∈ X(σ({µy}), b)◦. �

�

In some of the later statements, we will assume the existence of a lifting ix as in Proposition 6.5.
For notational convenience, we will introduce the following assumption.

Assumption 6.18. For each x ∈ SK(G,X)(k), there exists a map

ix : X(σ({µy}), b)→ SK(G,X)(k)

lifting i′x such that sα,0,ix(g) = sα,0,x and Φ ◦ ix = ix ◦ Φ.

Therefore Proposition 6.5 says that this assumption is satisfied if GQp is residually split or if
Conjecture 5.4 holds.

6.10. For the rest of this section, we assume Assumption 6.18 is satisfied. Recall the local model
diagram from Theorem 6.1:

S̃K(G,X)OE

π

&&

q

ww
SK(G,X)OE M loc

G,µh
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This induces the Kottwitz Rapoport stratification on the geometric special fiber SK(G,X)k. We write
µ for a dominant representative of µ−1

h in X∗(T ). Then we have a map

λ : SK(G,X)(k)→ Adm({µ})
Since µy and µ are both conjugate to µ−1

h , the admissible sets Adm({µ}) and Adm({µy}) coincide;
thus we may write X(σ({µ}), b) for X(σ({µy}), b).

Proposition 6.19. Let g ∈ Xw(b) for some w ∈ σ(Adm({µ})). Then λ(ix(g)) = σ−1(w).

Proof. Recall how the map λ is defined. Let x ∈ SK(G,X)(OK) be a point lifting x. The torsor

S̃K(G,X) is constructed by taking trivializations of the relative de Rham cohomology which respect
the cycles sα,dR. We have an isomorphism

V ∗Zp ⊗Zp OK ∼= D(Gx)(OK)

taking sα to sα,dR,x. The local modelM loc
G embeds insideM loc

GL⊗OE , whereM loc
GL classifies sub-modules

of V ∗Zp . The pullback of the Hodge filtration on D(Gx)(OK) gives a point of M loc
GL ⊗OE which lies in

the local model M loc
G (OK). We obtain a point x̃ ∈ M loc

G (k) which lies in G(k[[t]])ẇG(k[[t]])/G(k[[t]])
for some w ∈ Adm({µ}). Here ẇ denotes a lift of w to G(k((t))) via the identification of Iwahori Weyl
groups for G and Gk((t)). Then λ(x) = ẇ.

There is an isomorphism D(Gx)(OK) ∼= D(Gx) ⊗OK lifting the identity mod p and taking sα,dR,x

to sα,0,x. Thus if we fix an isomorphism

V ∗Zp ⊗OL ∼= D(Gx)

taking sα to sα,0,x, then the pullback of the filtration on D(Gx)(k) to V ∗Zp differs from the one above

by translation by an element of G(OK). We thus obtain a point on x̃′ ∈ M loc
G (k) which lies in the

Schubert cell Cw. Thus λ(x) can also be computed by a trivialization of D(Gx).
Now fix an isomorphism V ∗Zp ⊗ OL ∼= D(Gx). Let g ∈ Xw(b) for some w ∈ Adm({µ}); then

D(Gix(g)) is identified with gD(Gx). We may trivialize D(Gix(g)) ∼= V ∗Zp ⊗ OL by composing the

trivilization V ∗Zp⊗OL ∼= D(Gx) with the element g. The filtration mod p on V ∗Zp is then induced by the

element g−1bσ(g). By the identification of apartments and Iwahori Weyl group in §3.3, this filtration
corresponds to a pointM loc

G (k) which lies in G(k[[t]])σ−1(ẇ)G(k[[t]])/G(k[[t]]). Hence λ(ix(g)) = w. �

6.11. The maps ix are compatible with the changing the prime to p level structure Kp. Since
SKp(G,X) is equipped with an action of G(Apf ), ix extends to a map:

ix : X(σ({µ}), b)×G(Apf )→ SKp(G,X)(k)

As in [Kis10, Corollary 1.4.13], this map is equivariant for the action of Φ×G(Apf ).

Definition 6.20. Let x, x′ ∈ SKp(G,X)(k). We say x and x′ are in the same isogeny class if
there exists a quasi-isogeny Ax → Ax′ respecting weak polarizations such that the induced maps

D(Gx′)→ D(Gx) and V̂ p(Ax)→ V̂ p(Ax′) take sα,0,x to sα,0,x′ and {sα,l,x}l 6=p to {sα,l,x′}l 6=p.
For x ∈ SKp(G,X)(k), we write Ix for the isogeny class containing x. For x ∈ SK(G,X)(k), we

use the same notation to denote the image of Ixp in SK(G,X)(k) where xp ∈ SKp(G,X)(k) is a
point lifting x.

Proposition 6.21. Let GQp be residually split or b basic, or assume that Conjecture 5.4 holds. Then
x, x′ ∈ SKp(G,X)(k) lie in the same isogeny class if and only if x′ lies in the image of

ix : X(σ({µ}), b)×G(Apf )→ SKp(G,X)(k)
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Proof. Suppose x and x′ lie in the same isogeny class. The composition

VApf
∼−→
εx

V̂ (Ax)
∼−→ V̂ (Ax′)

∼−−→
εx′

VApf

takes sα to sα, hence upon replacing x′ by a translate under G(Apf ), we may assume the quasi isogeny
Ax → Ax′ is compatible with εx and εx′ .

Recall there are isomorphisms

D(Gx)
∼−→ V ∗ ⊗Z OL

∼−→ D(G ′x)

taking sα,0,x to sα,0,x′ . Thus D(Gx′) corresponds to gD(Gx) for some g ∈ G(L). By the same proof as
Proposition 5.14, we have g ∈ X(σ({µ}), b). It follows from the definition of ix that x′ and ix(g) have
the same image in SKp(G,X)−(k). Since the quasi-isogeny induces a map D(Gx′) → D(Gx) taking
sα,0,x to sα,0,x′ , we have by Corollary 6.3 that ix(g) = x′. Hence x′ lies in the image of ix.

The converse is clear. �

7. Maps between Shimura varieties

In this section we show that the Shimura varieties associated to different parahorics levels admit
maps between them with good properties. This will allow us to deduce the description of the isogeny
classes for general parahorics from the result for Iwahori subgroups proved in the previous section.
This also verifies one of the axioms of [HR17] for integral models of Shimura varieties with parahoric
level.

7.1. We keep the notations from the previous section, so that ρ : G → GSp(V, ψ) is a Hodge
embedding. Let Kp be a connected parahoric subgroup of G(Qp) and let G denote the corresponding
group scheme over Zp. Let K′p ⊂ G(Qp) be another connected parahoric subgroup with corresponding
group scheme G′ such that Kp ⊂ K′p. If Kp and K′p have corresponding facets f and f′, then this is
equivalent to f lying in the closure of f′. Note that we are changing the notation from the previous
section where K′p was a subgroup of GSp(VQp).

By the construction in the previous section we have integral models SK′(G,X) and SK(G,X) over
OE(v)

, where K′ = K′pK
p and K = KpK

p for some sufficiently small Kp. Since at this point there is no
characterization of these integral models, in what follows we must assume that they are constructed
using the same Hodge embedding ρ; see §7.3 for the precise details of the construction.

Theorem 7.1. Suppose SK′(G,X) and SK(G,X) are constructed from the same Hodge embedding.
Then we have:

(i) For sufficiently small Kp, there exists a map

πKp,K′p
: SK(G,X)→ SK′(G,X).

(ii) The induced map
SKp(G,X)(k)→ SK′p

(G,X)(k)

is compatible with isogeny classes.

7.2. Let g be a facet in B(GSp(VQp),Qp) and let GSP denote the associated parahoric group scheme.
Then g corresponds to a lattice chain Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λr in VQp . Let V ′Qp = ⊕ri=1VQp , then

V ′ is equipped with an alternating form ψ′ given by the direct sum of ψ. We have the lattice
Λ′ = ⊕ri=1Λi ⊂ V ′Qp and we write GSP ′ for the associated parahoric of GSp(V ′Qp) stabilizing Λ′.

We have a map
GSp(V, ψ)→ GSp(V ′, ψ′)
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which factors through the subgroup H :=
∏′r
i=1GSp(V, ψ). Here

∏′
denotes the subgroup of the

product
∏r
i=1GSp(V, ψ) consisting of elements (g1, . . . , gr) such that c(g1) = · · · = c(g2), where

c : GSp(V, ψ)→ Gm
is the multiplier homomorphism.

The conjugacy class of cocharacters S± for GSp(V, ψ) gives rise to a H(R) conjugacy class of
homomorphisms T from S into HR and (H,T ) is a Shimura datum. We write Hp and Jp for the
stabilizer of the lattice Λ′ in H(Qp) and GSp(V ′Qp) respectively. We obtain a map of Shimura varieties

ι : ShHpHp(H,T )→ ShJpJp(GSp(V ′), S′±))

which is a closed immersion. Here Hp ⊂ H(Apf ) and Jp ⊂ GSp(V ′⊗Apf ) are sufficiently small compact
open subgroups.

The Shimura variety ShHpHp(H,T ) admits a moduli interpretation over Z(p) which we will now
explain. For S a Z(p)-scheme, we consider the set of tuples (Ai, λi, εpi )i=1,...,r, where:

(i) Ai is an abelian variety over S up to prime to isogeny.
(ii) λi is a weak polarization such that deg λi is exactly divisible by |Λi/Λ∗i |.
(iii) εpi ∈ Γ(S, Isomλi,ψ(V̂ (Ai), V ⊗Q Apf )/Hp), where Isomλi,ψ(V̂ (Ai), V ⊗Q Apf ) is the (pro)-étale

sheaf of isomorphisms V̂ (Ai) ∼= VApf which preserves the pairings induced λi and ψ up to a Ap×f -scalar.

This multiple is required to be independent of i.
We obtain an integral model SHpHp(H,T ) of ShHpHp(H,T ).

Proposition 7.2. For sufficiently small Jp, the embedding ι extends to a closed embedding

ι : SHpHp(H,T )→ SJpJp(GSp(V ′), S′±).

Proof. Using the moduli interpretations, we may define ι by sending

(Ai, λi, εpi )i=1,...,r ∈ SHpHp(H,T )(S)

to the product A1 × · · · × Ar, together with the product polarization and level structure.
We show that for Jp sufficiently small, the map ι is proper and injective on points.
As in [Kis06, 2.1.2] (see also [Del71, 1, 1.5]), to show the injectivity on points it suffices to show

the map
ιp : SHp(H,T )→ SJp(GSp(V ′), S′±)

is injective on points. This follows from the moduli interpretations of the integral models.
We now fix Jp sufficiently small such that ι is injective. To check properness, we apply the valuative

criterion. Let R be a discrete valuation ring with fraction field K. We must show for any diagram

Spec K //

��

SHpHp(H,T )

��
Spec R // SJpJp(GSp(V ′), S′±)

there exists a unique lift Spec R→ SHp(H,T ). Rephrasing in terms of the moduli interpretation, we
must show for a triple (A, λ, εp) over R, such that over K this data decomposes into a product coming
from (Ai, λi, εpi )i=1,...,r, then the triple over R decomposes. This follows by well known properties of
Neron models.

Indeed if (A, λ, εp) over R is such a triple. We let

(7.2.1) AK ∼= A1,K × . . .×Ar,K
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be the isomorphism on the generic fiber and let Ai denote the Neron models of Ai,K . Then by
uniqueness of Neron models, the isomorphism (7.2.1) extends to an isomorphism A ∼= A1 × . . .×Ar.
Similarly, λ is induced by the product of polarizations on each Ai. That εp breaks up into a product,
follows from the fact that an étale sheaf over R is determined by its generic fiber. �

7.3. By the construction in [KP, §1.2], there is an embedding of buildings,

θ : B(G,Qp)→ B(GSp(VQp),Qp).
Let f be a facet in B(G,Qp) with associated connected parahoric group scheme G. Let θ(f) be contained
in a facet g of B(GSp(VQp),Qp) corresponding to Λ1 ⊃ · · · ⊃ Λr. Let (H,T ) and V ′ be as above, we
obtain a new embedding of Shimura datum

(G,X)→ (GSp(V ′, ψ′), S′±)

which factorises as

(G,X)
ρ′−→ (H,T )→ (GSp(V ′, ψ′), S′±)

Let Hp and Jp; for a choice of Hp we let Jp be as in Proposition 7.2. For Hp sufficiently small, we
obtain maps of Shimura varieties

ShKpKp(G,X)→ ShHpHp(H,T )→ ShJpJ′p(GSp(V ′), S
′±)E

and each of these maps is a closed immersions. Recall S −KpKp(G,X) was defined to be the closure of

ShKpKp(G,X) in SJpJp(GSp(V ′), S′±)OE(v)
.

Corollary 7.3. S −Kp(G,X) is the closure of ShKpKp(G,X) in SHpHp(H,T ).

Proof. Immediate from Proposition 7.2. �

Now suppose f′ is a facet of B(GSp(VQp),Qp) such that f′ lies in the closure of f. Then f′ corresponds
to a lattice chain Λi1 ⊂ · · · ⊂ Λis , where {i1, . . . , is} ⊂ {1, . . . , r}. Let (H ′, T ′) be the Shimura datum

obtained from the above construction applied to g′, i.e. H ′ =
∏′s
j=1GSp(⊕sj=1V ), and H′p the parahoric

of H ′(Qp) stabilizing ⊕sj=1Λij . There is an obvious morphism of Shimura data (H,T ) → (H ′, T ′).

Hence choosing suitable levels Hp ⊂ H(Apf ) and H′p ⊂ H ′(Apf ) away from p, we obtain a morphism of
Shimura varieties

$H,H′ : ShHpHp(H,T )→ ShH′pH′p(H ′, T ′)

Using the moduli interpretation, this extends in a natural way to a morphism of integral models

$H,H′ : SHpHp(H,T )→ SH′pH′p(H ′, T ′)

Proof of Theorem 7.1 (i). Recall f′ is a facet of B(G,Qp) such that f lies in the closure of f′. Let
z ∈ f and let z′ ∈ f′ be a point sufficiently close to z such that if g and g′ denotes the facets of
B(GSp(VQp), S′,Qp) containing i(z) and i(z′), we have g lies in the closure of g′. Applying the above
constructions we obtain a diagram:

S −KpKp(G,X) // SHpHp(H,T )

$H,H′

��
S −K′pKp(G,X) // SH′pH′p(H ′, T ′).

On the generic fiber, this can be completed to a diagram
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ShKpKp(G,X)

��

// ShHpHp(H,T )

$H,H′

��
ShK′pKp(G,X) // ShH′pH′p(H ′, T ′)

hence by Corollary 7.3, we obtain a map S −KpKp(G,X) → S −K′pKp(G,X). Taking normalizations and

applying Lemma 6.10 we obtain:

πKp,K′p
: SKpKp(G,X)→ SK′pKp(G,X)

�

The above maps then induce by passage to the limit, a map between the pro-varieties

πKp,K′p
: SKp(G,X)→ SK′p

(G,X).

7.4. Now we relate the isogeny classes on SKpKp(G,X)k and SK′pKp(G,X)k. Let x ∈ SKpKp(G,X)(k)

and y = πKp,K′p
(x). Recall Ix and Iy are the isogeny classes of x and y. Then x corresponds to a col-

lection (Ai, λi, εpi )i=1,...,r and y corresponds to (Aij , λij , ε
p
ij

)j=1,...,s. We write D(Gi) for the p-divisible

group associated to Ai. We have inclusion and projection maps

ι0 : ⊕sj=1D(Gij )→ ⊕ri=1D(Gi) π0 : ⊕ri=1D(Gi)→ ⊕sj=1D(Gij )

and for l 6= p

ιl : ⊕sj=1(TlAij )∗ → ⊕ri=1(TlAi)∗ πl : ⊕ri=1(TlAi)∗ → ⊕sj=1(TlAij )∗

where ∗ denotes the linear dual.
We write G′Z(p)

and GZ(p)
the groups over Z(p) given by the Zariski closures of G in GL(⊕sj=1Λij ,Z(p)

)

and GL(⊕ri=1Λi,Z(p)
) respectively. Here we write Λi,Z(p)

for the Z(p) module V ∩Λi. Then G′Z(p)
is the

stabilizer of a collection of tensors sα ∈ (⊕sj=1Λij ,Z(p)
)⊗. We have the two maps

ι : ⊕sj=1Λij ,Z(p)
→ ⊕ri=1Λi,Z(p)

and π : ⊕ri=1Λi,Z(p)
→ ⊕sj=1Λij ,Z(p)

given by the inclusion and projection. These induce maps

ι⊗ : (⊕sj=1Λij ,Z(p)
)⊗ → (⊕ri=1Λi,Z(p)

)⊗ and π⊗ : (⊕ri=1Λi,Z(p)
)⊗ → (⊕sj=1Λij ,Z(p)

)⊗

such that π⊗ ◦ ι⊗ is the identity. Note that since (⊕sj=1Λij ,Z(p)
)⊗ involves taking duals, one needs to

use π in the definition of the map ι⊗. These maps exhibit (⊕sj=1Λij ,Z(p)
)⊗ as a direct summand of

(⊕ri=1Λi,Z(p)
)⊗

Lemma 7.4. The ι⊗(sα) are fixed by GZ(p)

Proof. It suffices to check this after inverting p. Then ι and π are both equivariant for the action of
G(Q), hence so is ι⊗. Thus ι⊗(sα) is preserved by G(Q). �

We may extend ι⊗(sα) to a collection of tensors tβ ∈ (⊕ri=1Λi,Z(p)
)⊗ whose stabilizer is GZ(p)

. We
fix an isomorphism

(7.4.1) (⊕ri=1Λi,Z(p)
)∗ ⊗Zp OL ∼= ⊕ri=1D(Gi)

taking tβ to tβ,0.
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Lemma 7.5. Any isomorphism as in (7.4.1) preserves the product decomposition on either side and
induces an isomorphism

(⊕sj=1Λij ,Z(p)
)∗ ⊗Zp OL ∼= ⊕sj=1D(Gij )

taking sα to sα,0.

Proof. We may assume that among the collection of tensors tβ there are tensors

tβk ∈ (⊕ri=1Λi,Z(p)
)∗ ⊗ (⊕ri=1Λi,Z(p)

)

corresponding to the projection (⊕ri=1Λi,Z(p)
)∗ → Λ∗k,Z(p)

for k = 1, . . . , r. Indeed this follows since

GZ(p)
⊂

r∏
i=1

GL(Λi,Z(p)
)

and the latter group fixes these tensors. By the functoriality of the constructions, we have

tβk,0 ∈ (⊕ri=1D(Gi))⊗ (⊕ri=1D(Gi))
∗

corresponds the to projection ⊕ri=1D(Gi)→ D(Gk) and that the isomorphism takes tβk to tβk,0 precisely
says that the isomorphism is compatible with the product decompositions.

That the induced isomorphism takes sα to sα,0 follows from the fact that π⊗ ◦ ι⊗ = id. �

Proposition 7.6. Let y = πKp,K′p
(x). The map πKp,K′p

takes Ix ⊂ SKpKp(G,X)(k) to Iy ⊂
SK′pKp(G,X)(k).

Proof. It suffices to prove this result for the induced map of inverse limits

πKp,K′p
: SKp(G,X)→ SK′pKp(G,X).

We thus assume x ∈ SKp(G,X)(k). Suppose x′ ∈ Ix, then we have the triple (Ax′ , λx′ , εpx′) corre-
sponding to x′ and there exists a quasi-isogeny θ : Ax → Ax′ taking tβ,l,x to tβ,l,x′ for l 6= p and tβ,0,x
to tβ,0,x′ .
Ax and Ax′ arise as products

∏r
i=1Ax,,i and

∏r
i=1Ax′,,i, and as in Lemma 7.5 we may assume

that there exist tensors tβk which correspond to the projections to the k-th component. The tensors
tβk,l,∗ and tβk,0,∗ then correspond to the projections on the Tate module and Dieudonné modules
and θ therefore respects these projections. It follows that θ decomposes decomposes as a product of
quasi-isogenies θi : Ax,i → Ax′,i.

By construction π⊗0 ◦ ι
⊗
0 (sα,0,x) = sα,0,x and similarly for sα,0,x′ . Thus

s∏
j=1

θij :

s∏
j=1

Ax,ij → Ax,ij

takes sα,0,x to sα,0,x′ . By a similar argument, it also takes sα,l,x to sα,l,x′ for l 6= p, hence πKp,K′p
(x′)

lies in Iy. �

7.5. We now use the description of the isogeny classes on the Shimura variety with Iwahori level to
deduce the description for arbitrary parahoric level. The projection map ⊕ri=1Λi → ⊕sj=1Λij induces
a map Kp → K′p which is the natural inclusion. If x ∈ SKpKp(G,X)(k) and y = πKp,K′p(x), the choice
of trivialization

D(Gx) ∼= ⊕ri=1Λi ⊗OL
taking tβ,0,x to tβ determines a trivialization

D(Gy) ∼= ⊕si=1Λi ⊗OL
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taking sα,0,y to sα. If we fix such a choice of trivialization, then we obtain an element b ∈ G(L) giving
the Frobenius on both D(Gx) and D(Gy).

Now suppose that Kp is an Iwahori subgroup and K′p is a parahoric whose corresponding facet lies
in the closure of the alcove corresponding to Kp. Fix the choice of maximal L-split torus S which is
compatible with the choice of parahorics. We assume K′p corresponds to the subset K ′ ⊂ S of simple
reflections. We have the affine Deligne-Lusztig varieties X(σ({µ}), b) and X(σ({µ}), b)K′ associated
to the parahorics Kp and K′p respectively. As in §6.7, there is an operator Φ which acts on both
groups X(σ({µ}), b) and X(σ({µ}), b)K′ ; it is induced by the map g 7→ bσ(g). The natural projection
G(L)/G(OL)→ G(L)/G′(OL) induces a surjection

X(σ({µ}), b)→ X(σ({µ}), b)K′

by Theorem 5.1 and this map is equivariant for Φ.
Recall from §6.7 we have a map

i′x : X(σ({µ}), b)→ SK′′(GSp(V
′), S±)(k)

which is easily seen to factor through SHpHp(H,T )(k); by abuse of notation we still use

i′x : X(σ({µ}), b)→ SHpHp(H,T )(k)

to denote the induced map. Similarly we obtain a map

i′y : X(σ({µ}), b)K′ → SH′pH′p(H ′, T ′)(k)

which fits into a commutative diagram:

(7.5.1) X(σ({µ}), b)
i′x //

��

SHpHp(H,T )(k)

��
X(σ({µ}), b)K′

i′y // SH′pH
′p(H ′, T ′)(k)

Proposition 7.7. Suppose Assumption 6.18 is satisfied. In other words, assume i′x lifts to

ix : X(σ({µ}), b)→ SKpKp(G,X)(k)

such that Φ ◦ ix = ix ◦ Φ and tβ,0,ix(g) = tβ,0,x for any g ∈ X(σ({µ}), b). Then the map i′y lifts to a
unique map

iy : X(σ({µ}), b)K′ → SK′pKp(G,X)(k)

such that Φ ◦ iy = iy ◦ Φ and sα,0,iy(g′) = sα,0,y for any g′ ∈ X(σ({µ}), b)K′ .

Remark 7.8. Recall in particular the Assumption 6.18 is satisfied if GQp is residually split or if
Conjecture 5.4 holds.

Proof. Let g′ ∈ X(σ({µ}), b)K′ and g ∈ X(σ({µ}), b) an element which projects to g′. We define

iy(g′) := πKp,K′p
(ix(g)).

Then iy is a lifting of i′y by commutativity of the diagram (7.5.1). It remains to show that sα,0,iy(g′) =

sα,0,y for any g′ ∈ X(σ({µ}), b)K′ . This follows from the fact that tβ extends ι⊗sα and the equality
tβ,0,x = tβ,0,ix(g) for any g ∈ X(σ({µ}), b). �
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As before, iy extends to a map

iy : X(σ({µ}), b)K′ ×G(Apf )→ SK′p
(G,X)(k)

The same proof as in Proposition 6.21 shows that Iy can be identified with the image of iy, and this
map is equivariant for the action of Φ×G(Apf ).

8. He-Rapoport axioms

8.1. In this section, we verify the axioms of He-Rapoport in [HR17]. We keep the assumptions of
(6.2.1), so that (G,X) is Hodge type and GQp splits over a tame extension. We have fixed a base
alcove a in the apartment corresponding to some Qp-split torus S. We write I for the Iwahori group
scheme and Ip = I(Zp). For K ⊂ S a σ-invariant subset, we write G for the parahoric group scheme
over Zp and Kp = G(Zp). As before all parahorics will be assumed connected and we will assume all
the integral models are constructed using the same Hodge embedding.

Theorem 8.1. (i) If GQp is residually split, all axioms in [HR17] hold, otherwise every axiom apart
from the surjectivity in Axiom 4 (c) holds.

(ii) If Assumption 6.18 is satisfied (in particular this is the case if Conjecture 5.4 holds), then all
the axioms hold.

Remark 8.2. (i) For main application to non-emptiness of Newton strata, we do not need the Axiom
4 (c) (see the remark in [HR17] after 3.7) and hence Theorem 8.3 holds without Conjecture 5.4.

(ii) As in §7 we must assume the integral models are constructed using the same Hodge embedding.

Axiom 1: (Compatibility with change in parahoric) The compatibility with the change in para-
horics follows from Theorem 7.1. To show the map πKp,K′p

is proper, we may apply a similar argument

to the one in Theorem 7.1 to reduce to the case of GSp(V ) considered in [HZ]. Indeed let f, f′ denote
the facets corresponding to Kp and K′p respectively and let g and g′ the facets in B(GSp(V ),Qp)
containing the images of f and f′ constructed in the proof of Theorem 7.1. Then g and g′ correspond
to the lattice chains in VQp

L := {Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λr}
L′ := {Λi1 ⊂ Λi2 ⊂ · · · ⊂ Λis}

We write Mp and M′p for the stabilizer of these lattice chains in GSp(VQp) and fix a sufficiently

small compact open Mp ⊂ GSp(V ⊗ Apf ). As in [HR17], we may consider the moduli problem which
associates to a Z(p) scheme S the triple:

(i) An L-set of abelian varieties
(ii) A polarization of the L-set of abelian varieties as in [HR17, §7].
(iii) A prime to p level structure on the common rational Tate module away from p of the L-set

εp ∈ Isom(V̂ (Ai), V ⊗ Apf )/Mp

compatible with the Riemann form on V̂ (Ai) and ψ on V ⊗ Apf .

We refer to [HR17, §7] for the precise definitions of an L-set and a polarization. This moduli functor
is representable by a scheme SMpMp(GSp(V ), S±) and we have a natural map

SMpMp(GSp(V ), S±)→ SHpHp(H,T )

where H is the group considered in §7. The same proof as in Theorem 7.1 shows that for sufficently
small Hp, the above map is a closed immersion. Indeed in this case the valuative criterion follows
from the fact that if R is a discrete valuation ring with fraction field K, an isogeny of abelian varieties
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A → A′ extends uniquely to an isogeny of Neron models over R. It follows as in Corollary 7.3 that if we
take take Mp sufficiently small so that ShKpKp(G,X)→ ShMpMp(GSp(V ), S±) is a closed immersion,
we have a closed immersion

SKpKp(G,X)− → SMpMp(GSp(V ), S±)

and hence a finite map

SKpKp(G,X)→ SMpMp(GSp(V ), S±).

We may apply the same considerations to g′ and M′. We obtain a commutative diagram:

(8.1.1) SKpKp(G,X) //

πKp,K′p

��

SMpMp(GSp(V ), S±)

��
SK′pKp(G,X) // SM′pMp(GSp(V ), S±)

The horizontal maps are finite hence proper. The vertical map on the right is proper by [HR17,
§7]; hence πKp,K′p

is proper. Since the map πKp,K′p
is surjective on the generic fiber, πKp,K′p

is also
surjective by properness.

Axiom 2: (Local Model diagram) As in [KP, Theorem 4.2.7] we have a diagram:

S̃KpKp(G,X)

π

ww

q

%%
SKpKp(G,X) M loc

G

where π is a G-torsor and q is a smooth map equivariant for the action of G. By [PZ13, Theorem 8.3],
the special fiber of M loc

G has a stratification by Adm({µ})K , and this diagram induces a stratification
on SKpKp(G,X)k as well as a map

λKp : SKpKp(G,X)(k)→ Adm({µ})K .

To show the compatibility with change in parahorics, we assume SKpKp(G,X), SK′pKp(G,X) and

the map πKp,K′p are constructed as in §7.3. The torsor S̃KpKp(G,X) classifies trivializations

(8.1.2) V ∼= (⊕ri=1Λi,Z(p)
)

taking tβ,dR to tβ , where V is the relative de Rham cohomology of the abelian variety over SKpKp(G,X)
as in §6.5. The sheaf V breaks up into a direct sum over the sheaves associated to each Ai and as in
§7.5, any trivialization (8.1.2) induces a trivialization

V ′ ∼= (⊕sj=1Λij ,Z(p)
)

where V ′ is relative de Rham cohomology of the abelian variety over SK′pKp(G,X). We thus obtain

a map π̃Kp,K′p
: S̃KpKp(G,X)→ S̃KpKp(G,X).

The projection map (⊕ri=1Λi,Z(p)
)→ (⊕sj=1Λij ,Z(p)

) induces a map

πloc
Kp,K′p

: M loc
G →M loc

G′ ,

since it induces such a map on the generic fiber. Here we write G′ for the parahoric group scheme
associated to K′p. By construction the map π̃Kp,K′p

is compatible with πloc
Kp,K′p

.

53



Axiom 3: (Newton Stratification) For every x ∈ SKpKp(G,X), we may take a trivialization

V ′∗Z(p)
⊗OL ∼= D(Gx)(OL)

respecting appropriate tensors. The Frobenius ϕ is given by bσ; we thus obtain b ∈ G(L) well defined
up to σ-conjugation by G(OL). The same discussion as §6.7 in the Iwahori case shows that σ−1(b) ∈⋃
w∈Adm({µ})K G(OL)ẇG(O), hence b ∈ B(G, {µ}). The compatibility with change in parahorics

follows from the discussion in §7.5. We thus obtain a map

δ : SKpKp(G,X)(k)→ B(G, {µ}).

To show that δ induces a stratification on SKpKp(G,X)k, we must show this map arises from an
isocrystal with G-structure. This follows from [KMPS, Corollary A7].

Axiom 4: (Joint stratification) (a) Let G(L)/G(OL).σ denote the set of G(OL)-conjugacy classes
of in G(L). We have natural projection maps

dKp : G(L)/G(OL).σ → B(G)

lKp : G(L)/G(OL).σ → G(OL)\G(L)/G(OL).

Let x ∈ SKpKp(G,X)(k). The construction in Axiom 3 associates to x an element, b ∈ G(L)
well-defined up to σ-conjugation by G(OL). The map

ΥKp : SKpKp(G,X)(k)→ G(L)/G(OL).σ

is defined by ΥKp(x) = [σ−1(b)]. It is clear by definition that dKp ◦ΥKp = δKp . By Proposition 6.19,
lIp ◦ ΥIp = λIp ; the case of general Kp follows from the same proof. The compatibility of ΥKp with
change in parahorics follows from the discussion in §7.5.

(b) By [HR17, Lemma 3.11], it suffices to prove this in the case of Iwahori level. We need to
show for all δ ∈ l−1

Ip
(Adm({µ})), there exists x ∈ SIpKp(G,X)(k) such that ΥIp(x) = δ. We fix a

lift b ∈ G(L) of σ(δ), then by definition 1 ∈ X(σ({µ}), b). By Theorem 5.9, there exists a σ-straight
element w ∈ σ(Adm({µ})) and h ∈ Xw(b) such that h lies on the same connected component of
X(σ({µ}), b) as 1. By Theorem 2.4 we may assume there is a representative h ∈ G(L) such that
h−1bσ(h) = ẇ. We pick x′ ∈ λ−1

Ip
(σ−1(w)), which exists since λIp is surjective (see Theorem 8.2

below), and we may pick the isomorphism V ∗Zp ⊗ OL ∼= D(Gx) so that the Frobenius is given by ẇσ.

Using the isomorphism X(σ({µ}), b) ∼= X(σ({µ}), ẇ) given by g 7→ h−1g, we have h−1 ∈ X(σ({µ}), ẇ)
is connected to 1 ∈ Xw(ẇ). By Proposition 6.9, ix′(h

−1) ∈ SIpKp(G,X)(k) is well defined and we
have ΥIpKp(x) = δ.

(c) For Kp ⊂ K ′p, let δ ∈ Im(ΥKp) and δ′ its image in G(L)/G′(OL).σ. The finiteness of the fibers
of πKp,K′p

|Υ−1
Kp

(δ) can be deduced from the case of GSp(V ) which is proved in [HR17, §7]. Indeed it

follows from the diagram 8.1.1, that a fiber of πKp,K′p |Υ−1
Kp

(δ) admits a finite map to a corresponding

fiber for the integral model for GSp.
For the surjectivity, we need that Assumption 6.18 is satisfied. Let x′ ∈ Υ−1

K′p
(δ′). Then by the

surjectivity in Axiom 1, there exists x ∈ SKpKp(G,X)(k) such that πKp,K′p
(x) = x′. Let γ = ΥKp(x),

then by compatibility of the map Υ with πKp,K′p
, the image of γ ∈ G(L)/G′(OL).σ is equal to δ′.

Thus γ and δ are sigma-conjugate by an element of G′(OL), and the same is true for b := σ(γ)
and σ(δ). Let g ∈ G′(OL) such that g−1bσ(g) = σ(δ), then g ∈ X(σ({µ}), b)K and its image in
X(σ({µ}), b)K′ is equal to 1. Then by Assumption 6.18 ix(g) ∈ SKpKp(G,X)(k) satisfies Υ(ix(g)) = δ,
and πKp,K′p

(ix(g)) = x′.
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Axiom 5: (Basic non-emptiness) Recall Ip was an Iwahori subgroup of G(Qp). Let τ{µ} denote

the unique minimal element of Adm({µ}). We need to show λ−1
Ip

(τ{µ}) 6= ∅.
By [KMPS, Theorem 1.3.13.2] (see also the remark beneath the Theorem), there exists x ∈

SIpKp(G,X)(k) such that δIp = [b]basic. Let g ∈ Xσ(τ{µ})(b) ⊂ X(σ({µ}), b). By Prop 6.5 (i), the map

ix : X(σ({µ}), b)→ SIpKp(G,X)(k) is well defined. Then by Proposition 6.19, ix(g) ∈ λ−1
Ip

(τ{µ}).

The main application of the above results is the non-emptiness of Newton strata.

Theorem 8.3. λKp and δKp are surjective.

Proof. Since the πKp,K′p
are compatible with the maps δ and λ it suffices to prove the result when Kp

is Iwahori. Since q : S̃IpKp(G,X)→M loc
I is a smooth map, the image of q is open and on the special

fiber it is a union of strata. Since the minimal strata τ{µ} lies in the image, q ⊗ k is surjective, in
particular λIp is surjective.

It follows from [HR17, Theorem 5.4] that δIp is also surjective. Indeed it is proved in loc. cit. that

for each [b] ∈ B(G,µ), there exists w ∈ Adm({µ}) σ-straight such that λ−1
Ip

(w) ⊂ δ−1
Ip

([b]). �

Remark 8.4. [KMPS, Theorem 1.3.13.2] have proved the surjectivity of δKp under much weaker as-
sumptions on the level structure at p using a different method. In particular, their proof does not rely
on the existence of good integral models such as those constructed in [KP]. However they do assume
the group GQp is quasi-split whereas our proof does not make this assumption.

9. Lifting to special points

9.1. In this section we show, under the Assumption 6.18 and that GQp is quasi-split, that every
isogeny class in SK(G,X) admits a lift to a special point of ShK(G,X). The proof follows ideas
from [Kis17, §2], the main new input being a generalization of the so called Langlands–Rapoport
lemma, see [Kis17, Lemma 2.2.2]. This allows us to associate a Kottwitz triple to each isogeny class,
a key ingredient needed to enumerate the set of isogeny classes. A proof of this result also appears in
[KMPS] using a different method.

We first recall some definitions from [Kis17]; these make sense without any reference to the as-
sumption 6.18. As before (G,X) is of Hodge type and Kp = G(Zp) is a connected parahoric subgroup

corresponding to K ⊂ S, but now k ⊂ Fp will denote a finite extension of the residue field kE of OE(v)
.

Kp ⊂ G(Apf ) is a sufficiently small compact open subgroup and K = KpK
p. We write r for the degree

of k over Fp, and write W := W (k), and K0 = W (k)[ 1
p ].

9.2. For x ∈ SK(G,X)(k) we write x for the Fp-point associated to x. Recall we have an associated
abelian variety Ax together with Frobenius invariant tensors sα,l,x ∈ H1

ét(Ax,Ql)⊗ whose stablizer in
GL(H1

ét(Ax,Ql)) can be identified with GQl via the level structure εp. Since the sα,l,x are invariant
under the action of the geometric Frobenius γl on H1

ét(Ax,Ql), we may consider γl as an element of
G(Ql). We let Il/k denote the centralizer of γl in G(Ql) and Il the centralizer of γnl for n sufficiently
large, cf. [Kis17, §2.1.2].

We also fix an identification

(9.2.1) D(Gx)⊗W K0
∼= V ∗Zp ⊗Zp K0

taking sα,0,x to sα. The existence of such an identification follows from [KP, Proposition 3.3.8] which
is valid even when Gx is defined over a finite field. The Frobenius on D(Gx) is of the form ϕ = δσ for
some δ ∈ G(K0) and we write γp for the element δσ(δ) . . . σr−1(δ) ∈ G(K0).
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Let Ip/k denote the group over Qp whose R-points are given by

Ip/k(R) = {g ∈ G(K0 ⊗Qp R)|g−1δσ(g) = δ}

Clearly Ip/k ⊂ Jδ. We have γp ∈ Ip/k(Qp) and we have Ip/k ⊗Qp K0 is identified with the centralizer
of γp in GK0 .

For n ∈ N, we write kn for the degree n extension of k, and Ip/kn the group over Qp defined as

above with K0 replaced with W (kn)[ 1
p ]. Ip will then denote the Ip/kn for sufficiently large n.

Finally we let AutQ(Ax) denote the group over Q defined by

AutQ(Ax)(R) = (EndQ(Ax)⊗Z R)×

where EndQ(Ax) denotes the set of endomorphisms of Ax viewed as an abelian variety up to isogeny
defined over k. We write I/k ⊂ AutQ(Ax) for the subgroup of elements which preserve the tensors
sα,l,x for l 6= p and sα,0,x. We obtain maps I/k → Il/k for all l (including l = p).

Similarly we write I ⊂ AutQ(Ax ⊗ Fp) for the subgroup which fixes sα,l,x for all l 6= p and sα,0,x.
Again we have maps I → Il for all l.

9.3. By the argument in Proposition 7.6 the projection maps πKp,K′p
are compatible with the con-

struction of δ and γl. Thus the above definitions are independent of level structure, i.e. for x ∈
SKp(G,X)(k) and y = πKp,K′p

(x), the construction above give rise to the same groups Il/k, Ip/k and
I.

From now on, we assume that Assumption 6.18 is satisfied and moreover we assume that GQp is
quasi-split. The same proof as in [Kis17, 2.1.3 and 2.1.5] gives us the following proposition; see also
[KMPS, Theorem 6].

Proposition 9.1. (i) The map ix of Assumption 6.18 induces an injective map

ix : I(Q)\X(σ({µ}), δ)K ×G(Apf )→ SKp(G,X)(Fp).

(ii) Let Hp =
∏
l 6=p Il/k(Ql) ∩Kp and Hp = Ip/k ∩ G(W (k)). The map in (i) induces an injective

map:

I/k(Q)\
∏
l

Il/k(Ql)/Hp ×Hp → SK(G,X)(k).

(iii) For some prime l 6= p, the connected component of IQl = I ⊗Q Ql contains the connected
component of the identity in Il. In particular the ranks of I and G are equal.

9.4. The next lemma is the key technical ingredient needed for the existence of CM lifts. For this
we need to recall some group theoretic preliminaries. If S is a maximal L-split torus of G defined
over Qp and T is its centralizer, then W is the Iwahori Weyl group of G and S is the set of simple
reflections in W corresponding to a choice of base alcove a in the apartment for S. Since G is quasi-
split there exists a σ-stable special vertex s lying in the closure of a. Let K := S0 denote the set of
simple reflections corresponding to s and G the associated special parahoric subgroup defined over Zp.
Let WK be the group generated by the reflections in K; it is identified with the relative Weyl group
W0 := N(L)/T (L). We have an identification

G(OL)\G(L)/G(OL) ∼= WK\W/WK

and this latter set can be identified with X∗(T )I/WK . The choice of alcove a and special vertex s
determines a positive chamber V+ in V := X∗(T )I ⊗R and a Borel subgroup B of G defined over Qp.
We now describe the relationship between V+ and B more explicitly.
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Let ( , ) : X∗(T ) × X∗(T ) → Z be the natural pairing and we use the same symbol to denote
the scalar extension to R. We let Ψ ⊂ X∗(T ) denote the set of absolute roots, then B determines a
system of positive roots Ψ+ ⊂ Ψ. Now for K/L a finite Galois extension over which T splits, we have
a norm map

Nm : X∗(T )I → X∗(T )I

given by

µ 7→
∑

γ∈Gal(K/L)

γ(µ)

where µ ∈ X∗(T )I and µ ∈ X∗(T ) is a lift. This extends linearly to a map V → X∗(T )I ⊗ R. Then
V+ can be identified with the subset of V consisting of x such that (Nm(x), α) ≥ 0 for all α ∈ Ψ+.

We write X∗(T )I,+ for the subset of X∗(T )I which maps to V+, then WK\W/WK can be identified
with X∗(T )I,+.

Now recall we have the affine Weyl group Wa ⊂ W , and there is reduced root system Σ such
that Wa

∼= Q∨(Σ) nW (Σ); in particular Q∨(Σ) is identified with X∗(Tsc)I . The choice of Borel B,
determines an ordering of the roots in Σ. The length function and Bruhat order ≤ on W is determined
by Wa and hence by Σ. For λ, µ ∈ X∗(T )I,+, we write λ 4 µ if µ− λ is a positive linear combination
of positive coroots in Q∨(Σ) with integral coefficients. By [Lus83, §2] applied to the root system Σ,
we have for λ, µ ∈ X∗(T )I,+

tλ ≤ tµ ⇔ λ 4 µ.

9.5. The following is a generalization of [Kis17, 2.2.2] to general quasi-split groups. If ε : Gm → G is
a cocharacter defined over a finite extension of Qp which commutes with all its Galois conjugates, we
write εG for the fractional cocharacter given by the average of the Galois conjugates of ε. If ε factors
through a torus T , then we may consider εT as an element of X∗(T )Q defined over Qp. Recall we have
the Newton cocharacter νδ : D→ G, which is central in Jδ and hence central in Ip.

Lemma 9.2. Let Tp ⊂ Ip be a maximal torus defined over Qp. Then there exists a cocharacter
µTp ∈ X∗(Tp) such that:

(i) Considered as a G-valued cocharacter, µTp is conjugate to µ.

(ii) µ
Tp
Tp

= νδ.

Proof. First note that the truth of the Lemma is invariant under changing of the isomorphism

D(Gx)⊗K0
∼= V ∗Zp ⊗K0.

Indeed, since (ii) only depends on the abstract group Tp ⊂ Ip, we need to show the condition (i) does
not depend on this choice. But this follows from the fact that if we modify the isomorphism (9.2.1)
by h ∈ G(K0), the inclusion Ip(K0) ⊂ G(K0) is conjugated by h.

Let T ′ ⊂ Tp denote the maximal Qp-split subtorus. The same proof as [Kis17, Lemma 2.2.2] shows
upon changing the isomorphism D(Gx) ⊗K0

∼= V ∗Zp ⊗K0, we may assume that δ is contained in the

centralizer of T ′. Since the Qp-structure on the image of T ′K0
in GK0

differs by the one on T ′ by
conjugation by δ, we may consider T ′ as a subtorus of G. Let M denote the centralizer of T ′ in G;
then we have δ ∈M(K0).

Let T ′2 be a maximal Qp-split torus in G containing T ′, and T2 its centralizer; it is a maximal torus
since G is quasi-split. We may apply the considerations in §9.4 to T = T2.

Note that T2 ⊂ M . Let P be a parabolic subgroup containing M with unipotent radical N ;
we suppose it contains a choice of Borel B defined over Qp containing T2. Let g ∈ X(σ({µ}), δ)K
which exists since δ ∈ B(G, σ({µ})). Then there exists µ

1
∈ X∗(T2)I with tµ

1
≤ tσ(µ) such that
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g−1bσ(g) ∈ G(OL)ṫµ
1
G(OL). Note that when G splits over an unramified extension, µ is minuscule (for

the root system Σ) and hence µ
1

= σ(µ); this is not true in general. By the Iwasawa decomposition,

we may assume g = mn for n ∈ N(L),m ∈ M(L). Let M(OL) = M(L) ∩ G(OL) a special parahoric
subgroup of M defined over Zp.

Then we have

m−1δσ(m) ∈M(OL)ṫλM(OL)

for some λ ∈ X∗(T2)I . Let m−1δσ(m) = m1ṫλm2 in the decomposition above. Now

g−1δσ(g) = n−1m−1δσ(m)σ(n) = ñm−1δσ(m)

for some ñ ∈ N(L). Thus

(m−1
1 ñm1)ṫλm2 ∈ N(L)ṫλM(OL) ∩ G(OL)ṫµ

1
G(OL)

hence by [HR10, Lemma 10.2.1] we have tλ ≤ tµ
1
≤ tσ(µ).

By Lemma 9.3 below, there exists a lift of λ to v′2 ∈ X∗(T2) which is conjugate to σ̃(µ) in G, where
σ̃ ∈ Gal(Qp/Qp) is a lift of σ. We let v2 = σ̃−1(v′2); then v2 is conjugate to µ and δ ∈ B(M,σ({v2}M ))
by [He16, Theorem A]; hence v2 has the same image as νδ in π1(M)Q.

Now let µTp ∈ X∗(Tp) be a cocharacter conjugate to v2 in M . Then since conjugate cocharacters

have the same image in π1, the images of µMTp and νδ in π1(M)Q coincide, where µMTp denotes the
Galois average of µTp computed as a cocharacter of M . Then as before, since the two Qp-structures

on the image of TK0
differ by conjugation by δ, the images of µ

Tp
Tp

and µMTp in π1(M)Q coincide.

Now as µ
Tp
Tp

is defined over Qp, we may consider it as an element of X∗(T
′)Q. We have σ(νδ) =

δ−1νδδ, hence νδ is defined over Qp (as a cocharacter to Tp) and we have νδ ∈ X∗(T ′)Q. Since T ′ ⊂M
is central, we have νδ = µ

Tp
Tp

.

�

Lemma 9.3. Let µ be a minuscule cocharacter of G and λ ∈ X∗(T )I whose image in WK\W/WK

lies in Adm({µ})K . Then there exists a cocharacter v2 ∈ X∗(T ) lifting λ which is conjugate to µ in
G.

Proof. Let λ′ ∈ X∗(T )I,+ denote the dominant representative of λ for our choice of Borel B. By
[Lus83, §2], tλ ∈ Adm({µ})K implies tµ − tλ′ is a positive linear combination of coroots in Σ (Recall

µ is the image of a dominant representative of {µ} in X∗(T )I . Note that in general µ being minuscule
in G does not imply µ is minuscule for the root system Σ, so that it is possible that tλ 6= tµ.

Since W0 is a subgroup of the absolute Weyl group, it suffices to prove the result for λ replaced by
λ′. Upon relabelling, we assume λ is dominant. By Stembridge’s Lemma [Rap00, Lemma 2.3] there
exists a sequence of positive coroots α∨1 , . . . , α

∨
n ∈ Σ∨ such that

µ− α∨1 − . . . α∨i ∈ X∗(T )I

is dominant for all i and µ− α∨1 − . . . .− α∨n = λ. We prove by induction on i that

λi := µ− α∨1 − · · · − α∨i ∈ X∗(T )I

admits a lifting λi ∈ X∗(T ) which is conjugate to µ. The base case is i = 0 in which case λ = µ and
the result is obvious.

Suppose we have shown the existence of λi. Let α∨i+1 ∈ X∗(Tsc) be a positive coroot lifting α∨i ;
such a root exists by the construction of Σ as in [Bou68, VI, 2.1]. Then since λi+1 is dominant, we
have 〈λi+1, αi+1〉 ≥ 0 and hence 〈λi, αi+1〉 = 〈λi+1 + α∨i+1, αi+1〉 > 0.
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Letting K/L be a finite Galois extension of degree n over which T splits, we have by the definition
of Σ in [Bou68, VI, 2.1] that

〈λi, αi+1〉 = c
∑

γ∈Gal(K/L)

(γ(λi), αi+1)

for some c ∈ R>0. Since (γ(λi), αi+1) = (λi, γ(αi+1)), upon replacing αi+1 by some γ(αi+1), we may
assume 〈λi, αi+1〉 > 0. By assumption λi is minuscule hence 〈λi, αi+1〉 = 1. We set λi+1 = sαi+1

(λi) =
λi − αi+1 where sαi+1

is the simple reflection corresponding to αi+1. Then λi+1 is minuscule since it
is the Weyl conjugate of a minuscule cocharacter, and λi+1 is a lift of λi+1. �

Theorem 9.4. Supose that Assumption 6.18 is satisfied. Let x ∈ SK(G,X)(k). The isogeny class of
x contains a point which lifts to a special point on ShK(G,X).

Proof. Let Tp ⊂ Ip a maximal torus and µTp the cocharacter constructed in Lemma 9.2. Recall we
have fixed the ismorphism D(Gx)⊗K0

∼= V ∗Zp ⊗K0 such that δ commutes with the maximal Qp-split

subtorus T ′ of Tp and hence νδ is defined over Qp. Let Mνδ denote the centralizer of νδ, then there is
an inner twisting Mνδ,Qp

∼= Jb,Qp . By [Lan89, Lemma 2.1], there is an embedding j : Tp ↪→ Mνδ over

Qp which is Mνδ -conjugate to

(9.5.1) Tp,Qp ↪→ Ip,Qp ↪→ Jb,Qp
∼−→Mνδ,Qp

By Steinberg’s theorem, there is an element m ∈ Mνδ(L) which conjugates j to 9.5.1. Thus upon
modifying the isomorphism D(Gx) ⊗ L ∼= V ∗Zp ⊗ L by m, we have δ commutes with j(T ′) ⊂ G. Let

M denote the centralizer of j(T ′) in G, hence Tp is an elliptic maximal torus in M and δ ∈ M(L).
By [Kot97], we may further modify the isomorphism D(Gx)⊗L ∼= V ∗Zp ⊗L by an element of M(L) so

that δ ∈ Tp(L).
Let K/L be a finite extension such that µ is defined over K, then by [RZ96], the filtration induced

by j◦µTp is admissible. As j◦µTp is conjugate to µ, the filtration has weight 0, 1 hence by [Kis06, 2.2.6],

there exists a p-divisible group G̃ ′ over OK with special fiber G ′, such that we have an identification
D(G ′)⊗ L ∼= D(Gx)⊗ L. This induces a quasi-isogeny θ : Gx → G ′.

Let x̃ ∈ SK(G,X)(OK) be a point lifting x, sα,ét,x̃ ∈ TpG ∨,⊗x̃ and sα,0,x ∈ D(Gx)⊗ the corresponding

crystalline tensors. Let s′α,ét ∈ TpG̃ ′∨,⊗ the tensors corresponding to the sα,0,x under the p-adic

comparison isomorphism. As in [Kis17, 1.1.19], there exists a Qp-linear isomorphism

TpG
∨
x̃ ⊗Qp ∼= TpG̃

′∨ ⊗Qp
taking sα,ét,x̃ to s′α,ét. Upon making a finite extension of K, we may assume the image of TpG ∨x̃ in

TpG̃ ′∨ ⊗ Qp is stable under the Galois action. Upon replacing G̃ ′ by an isogenous p-divisible group,
we may assume there is an isomorphism

TpGx̃ ∼= TpG̃
′

taking sα,ét,x̃ to s′α,ét.

By Proposition 4.4, we have sα,0,x ∈ D(G ′)⊗ and we have a sequence of isomorphisms

D(Gx) ∼= TpGx̃ ⊗Zp OL ∼= TpG̃
′ ⊗Zp OL ∼= D(G ′)

which preserve sα,0,x. We may thus identify D(G ′) with gD(Gx) for some g ∈ G(L). As in the proof of
Proposition 5.14, the filtration induced by g−1bσ(g) is the specialization of a filtration induced by a
G-valued cocharacter conjugate to µy. Hence the filtration corresponds to a point of the local model
M loc
G (k) and we have g−1bσ(g) ∈ Adm(σ({µ})), i.e. g ∈ X(σ({µ}), b).
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Thus upon replacing x by ix(g) ∈ SK(G,X)(k), we may assume there is a deformation G̃ of Gx to
OK such that the corresponding filtration on D(Gx)⊗OL K is induced by µTp . Since µTp is conjugate

to µ−1
h and TpG̃ is equipped with Galois invariant tensors corresponding to sα,0,x, it follows that G̃

corresponds to a point x̃ ∈ SK(G,X)(OK) by [KP, Proposition 3.3.13] and Proposition 6.2.
That x̃ is a special point of ShK(G,X) now follows from the same proof as [Kis17, 2.2.3]. Indeed

since I and Ip have the same rank we may assume Tp comes from a maximal torus T in I defined
over Q. Then T ⊂ I ⊂ AutQ(Ax) is compatible with filtrations and hence lifts to Ax̃ in the isogeny
category. As T fixes sα,0,x, it fixes sα,ét,x̃ and hence also sα,B,x̃. Thus T is naturally a subgroup of G
and is a maximal torus by Proposition 9.1 (iii). The Mumford-Tate group is a subgroup of G which
commutes with T , hence is contained in T . Hence x̃ is a special point. �

As in [Kis17, §2.3], we may use the above to associate an element γ0 ∈ G(Q) to each isogeny class
such that:

(i) For all l 6= p, γ0 is G-conjugate to γl in G(Ql).
(ii) γ0 is stably conjugate to γp in G(Qp)
(iii) γ0 is elliptic in G(R).

In other words, (γ0, (γl)l 6=p, δ) form a Kottwitz triple. Indeed using Theorem 9.4, we may assume that
x lifts to a special point x̃ ∈ SK(G,X)(OK) such that the action of T ⊂ AutQAx lifts to AutQAx̃.
We let k′/k denote the field of definition of x and K ′/K0 the fields of definition x and x̃ respectively.
Then k′ is a finite field Fqr and K ′ is a finite extension of K0 since any CM abelian variety is defined
over a number field.

Now γ lifts to an element γ̃ ∈ T (Q) ⊂ AutQAx̃. If we let γ̃ act on the Betti cohomology of Ax̃,
then γ̃ fixes sα,B,x̃ since it fixes sα,ét,x̃. We thus obtain an element γ0 in G(Q) which is conjugate to
(γl)l 6=p by the étale Betti comparison. Similarly γ0 and γp are conjugate over G(C) by the comparision
isomorphisms between crystalline, de-Rham and Betti cohomology.

By the positivity of the Rosati involution, T (R)/wh(R×) is compact, and hence γ0 is elliptic.
The following version of Tate’s theorem, as well as the structural result on the group I, can be

deduced in the same way as [Kis17, Cor. 2.3.2, 2.3.5].

Corollary 9.5. (i) For every prime l the natural maps

I/k,Ql := I/k ⊗Q Ql → Il/k

IQl := I ⊗Q Ql → Il

are isomorphisms.
(ii) Let I0 denote the centralizer of γ0. Then I is an inner form of I such that for each place l,

IQl
∼= Il.
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[Gör01] Ulrich Görtz, On the flatness of models of certain Shimura varieties of PEL-type, Math. Ann. 321 (2001),
no. 3, 689–727. MR 1871975 (2002k:14034)

[Hai01] Thomas J. Haines, The combinatorics of Bernstein functions, Trans. Amer. Math. Soc. 353 (2001), no. 3,

1251–1278 (electronic). MR 1804418
[Hai05] Thomas J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, Harmonic analysis,

the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., 2005, pp. 583–642.
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