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Abstract. We given an exposition of the theory of model categories following

[6] and we will use it to construct the cotangent complex of a morphism of rings.
We then give some applications of the cotangent complex in characterizing

complete intersection and smooth morphisms.

1. Introduction

The application of ideas from algebraic topology to help solve problems in al-
gebraic geometry and number theory has been a recurring theme in mathematics
in the last century. From Grothendieck’s etale cohomology to the application of
homological methods in algebra, this interplay between the different areas of math-
ematics has given algebraists a vast toolkit for tackling many problems. In this
paper we give a brief description of one small area of where this interaction has
proved particularly fruitful, that of homotopical methods to studying problems in
algebra.

Homological algebra is one way of using techniques from topology to study al-
gebra, however this case is limited only when things (such as our base category)
are abelian. Non-abelian situation arise very naturally even in basic algebraic con-
cepts, for example the category of rings is a highly non abelian category. In algebraic
topology, one thinks of homotopy theory as a sort of non-abelian homology theory,
so it is natural to wonder if homotopic techniques can be applied in non-abelian
situations.
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This question was first answered by Quillen who gave an axiomatic treatment of
homotopy theorem in [6]. Using intuition from the case of topilogical spaces, it can
be shown that one can define a good notion of homotopy theory on an arbitrary
category. A category endowed with this structure is known as a model category.

One of the first applications of this theory was the construction of the cotangent
complex of a morphism of rings. Recall if R → S is a morphism of rings, then
the Kahler differentials ΩS/R is the S module which represents the functor on S-
modules

N 7→ DerR(S,N)

where DerR(S,N) is the set of R-linear derivations of S with coefficients in N .
Given a composition of ring homomorphisms R→ S → T one can show there is an
exact sequence of S modules

(1.1) ΩS/R ⊗S T > ΩT/R > ΩR/S > 0

This is reminiscent of the short exact obtained of a left exact functor applied to
an exact sequence in an abelian category, so a natural question to ask is whether
there is a continuation of (1.1) to a long exact sequence of S modules. Of course
in the abelian situation, one achieves this by taking left derived functors, but the
category of R algebras being non-abelian, a new construction is needed.

It turns out that in model categories there is good notion of a left derived func-
tors, this allows the construction of the cotangent complex LS/R of a morphism of
rings which indeed does extend the sequence (1.1). The model category we work in
will be the category of simplicial algebras over a ring. This category has a simpli-
cial structure (see chapter 9) compatible with the model category structure, which
allows computation of left derived functors via simplicial resolutions. Simplicial
resolutions are a direct generalization of projective resolutions in the abelian case
and gives a powerful tool for proving properties of the cotangent complex.

We now give a brief description of the contents and organization of the paper.
The first half of the paper is concerned with with definition and properties of model
categories in full generality. In chapter 2 and 3, we define model categories and show
the existence of the associated homotopy category. Chapter 4 gives some examples
of model categories, in general it is non-trivial to show that certain categories have
a structure of a model category, we show this for the case of topological spaces
to demonstrate some of the techniques involved. We also include the case of non-
negatively graded chain complexes to show the generality of the theory, this example
will persist throughout the paper in order to demonstrate how model categories
generalize all the constructions in homological algebra. Chapter 5 and 6 will be
concerned with definitions of loop and suspension functors, and the derived functor
of a functor model categories. These constructions are used in the definition of
homology and cohomology for model categories, and ultimately in the definition
of the cotangent complex. Chapter 7 introduces the concept of simplicial model
categories, most of the examples of model categories we encounter will be of this
form and some are given in Chapter 8. In Chapter 9 we give a brief treatment of
homology and cohomology in an arbitrary category. The idea here is that since
homotopy theorem can be thought of as a non abelian version of homology, one
would hope that taking abelianizations would give a good notion homology and
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cohomology. Indeed this is case, and under certain conditions this definition can
be related to other definitions of homology and cohomology.

In the second half, we show how the theory developed in the first half allows
us to construct the cotangent complex. Chapter 10 is devoted to the definition of
the cotangent complex and proofs of its basic properties. In Chapter 11 we will
see some applications of the cotangent in characterizing complete intersections and
smooth homomorphisms.

The paper is aimed at algebraicists with a familiarity of the basic constructions
in algebraic topology. The material that we cover on model categories is far more
general that what one needs to construct to cotangent complex. However the author
feels that, much in the same way that the constructions of the Tor and Ext functors
become much more clear in the general setting of derived functors, being able to
work in general model categories will make the later constructions clearer as well
putting them in the correct context. Indeed there many more model categories that
may be of interest to algebraicists, which one would be able to access once one has
got to grips with the abstract formulations.

Acknowledgements: The author would like to thank Jacob Lurie for his sugges-
tion of this minor thesis topic and useful guidance. The author also benefitted from
conversations with Lukas Brantner, Omar Camarena and Tobias Barthel.

1.1. Notations and Conventions. The pushout of two morphisms A → B and
A → C in a category will be denoted B ∨A C, and the canonical morphisms B →
B ∨A C and C → B ∨A C will denoted in1 and in2 respectively. Similarly the
pullback of two morphisms B → A and C → A will be denoted B ×A C and the
canonical maps B ×A C → B and B ×A C → C will be denoted pr1 and pr2

respectively. When A is the initial (resp. terminal object in a category) we drop
the subscript A in ∨ (resp. ×).

2. Definition of a Model Category

In this section we give the definition of a model category and prove the basic
results about them. The idea behind the definition of a model category is that it
should allow us to have a notion of homotopy theory in a more general setting.
This allows us to use intuition from classical homotopy theory to prove powerful
theorems about any such category, and moreover the definitions are sufficiently
general so as to allow various applications.

In the classical example of topological spaces, there are three distinguished
classes of maps, the fibrations, cofibrations and weak equivalences. Here the fi-
brations are in the sense of Serre, i.e. maps which have the homotopy lifting
property with respect to CW complexes, and weak equivalences are maps which
induce isomorphisms on all homotopy groups. Cofibrations are then defined to be
maps which satisfy the following lifting property:

Given a commutative diagram

A
f
> X

B

i

∨
g
> Y

p

∨

where p is both a fibration and a weak equivalence, there exists a map h : B → X
such that ih = f and ph = g.
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A morphism f : X → Y in this category satisfies the property that it can be
factored intof = pi and f = p′i′ where i and i′ are cofibrations, p and p′ are
fibrations and i and p′ are also weak equivalences. This is proved in Chapter 4,
Propositionr 4.5.

These are the two most important properties that model categories should satisfy,
in the presence of other axioms one can many prove results about such categories.
However since the axioms we assume are quite strong, the hard work comes in later
in showing that certain categories are indeed model categories. We will begin with
the axiomatic treatment of homotopy theory following [6]. The notations we use
are very suggestive of the origins of the theory in algebraic topology, and the reader
is encouraged to use the connection as intuition while reading through the proofs.

We first make a couple of preliminary definitions:

Definition 2.1. Suppose we have a commutative diagram

A
f
> X

B

i

∨
g
> Y

p

∨

then we say i has the left lifting property with respect to p and p has the right
lifting property with respect to i if there exists a map h : B → X such that ih = f
and ph = g.

Definition 2.2. We say f : A→ B is a retract of g : X → Y if it is so in the arrow
category of C. In other words, there exists a diagram

A > X > A

B

f

∨
> Y

g

∨
> B

f

∨

where the horizontal composites are the identity

We can now define the concept of a model structure on category

Definition 2.3. A model structure on a category C consists of three distinguished
classes of morphisms in C, the fibrations, cofibrations and weak equivalences such
that the following conditions are satisfied:

M1) C is closed under finite projective and inductive limits
M2) (Lifting Property) Define a trivial fibration (resp. cofibration) to be a

fibration (resp. cofibration) which is also a weak equivalence. Then the cofibrations
have the left lifting property with respect to trivial fibrations and the fibrations have
the right lifting property with respect to trivial cofibrations.

M3) (Factorization) Any morphism f in C can be factored as f = pi an f = p′i′

where i and i′ are cofibrations, p and p′ are cofibrations and i and p′ are trivial.
M4) Fibrations are stable under composition, base change and any isomorphism

is a fibration. Cofibrations are stable under composition, cobase change and any
isomorphism is a cofibration.

M5) The (co)base change of a trivial (co)fibration is a weak equivalence.
M6) (2 out of 3) given morphisms f = gh, if two out of the three morphisms

are weak equivalences, then so is the third. Any isomorphism is a weak equivalence.
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By a model category we mean a category with together with a model structure,
usually this model structure will be implicit and so will not be mentioned.

Remark 2.4. The definitions given above satisfy a certain compatibility with duality,
in the sense that if C is a model category, then Cop is also a model category where
we switch the cofibrations and fibrations. Thus to every statement that we prove,
there will also be a dual statement whose formulation we leave to the reader.

Remark 2.5. There can be more than one model structure on a category. Moreover
there can be more than one model structure on the same category which gives the
same homotopy theory in a sense to be made more precise later.

Most model structures that we come across will satisfy the following additional
property:

Definition 2.6. A closed model category is one whose model structure satisfies in
addition to M1)-M6), the following two equivalent conditions

M7a) If f and g are morphisms and f is a retract of g and g is either a fibration,
cofibration or weak equivalence, then so is f .

M7b) i) A morphism is fibration if and only it has the right lifting property
with respect to all trivial cofibrations

ii) A morphism is a cofibration if and only if it has the left lifting property with
respect to all trivial fibrations

A proof of the equivalence of the above conditions can be found [6] Chapter I,
Section 6.

Remark 2.7. Most of the model categories that we encounter are actually closed,
so some authors such as [3] drop the adjective closed and define a model category
to be one which also satisfies M7a). Although we will not need the extra generality
of non-closed model categories in the construction of the cotangent complex, the
author feels a little extra generality never hurt anyone so we follow Quillen’s original
definition.

Having given this rather abstract definition of a model category, it is tempting, if
for no other reason than motivation, to give some (more general) examples of model
categories. However this will have to wait until after the next section. The main
reason for this is that in general it is rather non-trivial to show that a category has
the structure of a model category, and the author does not feel it worth delving into
the details of these proofs before one can see why it would be interesting to have a
model structure on your category. Thus in the next section we will jump straight
into the the proofs about the basic properties of model categories, the pay-off will
then come in Chapter 4 when we show how this axiomatic treatment of homotopy
theory allows for a direct generalization of homological algebra, hence provide a
natural framework for applying techniques from algebraic topology over categories
which are not necessarily abelian.

3. The Homotopy Category

In this chapter we describe some of the basic properties and constructions as-
sociated to an arbitrary model category. We will see how the axioms allow use to
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define a good notion of homotopy between morphisms in a model category, gen-
eralizing the case of topological spaces. The main result of this chapter is then
the existence of a certain homotopy category HoC associated to a model category
C, where HoC is obtained by formally inverting weak equivalences. Moreover this
homotopy category is equivalent to a certain category πCcf whose morphisms are
homotopy classes of maps in a subcategory Ccf of C. The proofs in this section are
largely category theoretic, however they are based on the corresponding proofs in
algebraic topology. Readers with basic knowledge of algebraic topology, but who
are not necessarily familiar with model categories are advised to read through the
proofs carefully at least once, using the analogy with usual homotopy as a source
of intuition.

We first give a more precise definition of the homotopy category associated to
a model category C. The objects of HoC are the same as the objects of the C,
and morphisms in HoC are finite composible strings (f0, ..., fn) where the fi is
a morphism in C or w−1 for w a weak equivalence. The identity is the empty
string and composition is given by concatenation. We also make the identifications
between morphisms (f, g) = (g ◦ f) for all composable arrows f, g, (w,w−1) =
1dom(w) for all weak equivalences w and () = (1A) for all objects A.

There is a foundational issue here in that the arrows between two objects in
HoC may not form a set. However in Theorem 3.8 we will show that HoC is in fact
equivalent to a much more concrete category ΠCcf so we set aside any set theoretic
difficulties for now and consider HoC as a genuine category.

As in most constructions in algebra, the best way to think about the above
construction is in terms of the following universal property. If we let γ : C → HoC
denote the natural functor, then (HoC, γ) satisfies the following:

Proposition 3.1. Given a functor F : C → D such that F (w) is an isomorphism
for all weak equivalences w, there there is a unique functor HoF : HoC → D such
that HoF ◦ γ = F

Remark 3.2. Said more concretely, any functor on C which inverts weak equivalences
factors through Hocat. In this sense one can of HoC as a localization of the category
C.

It is clear that the above universal property determines HoC up to equivalence.
From now fix a model category C. Since C has finite limits and colimits, there

exists an initial object 0 and a terminal object ∗. An object A ∈ obC is then said
to be fibrant (resp. cofibrant) if A→ ∗ is a fibration (resp. 0→ A is a cofibration).

The next definition gives a good notion of a homotopy between morphisms in
the category C.

Definition 3.3. Let A and B be objects of C
1) A cylinder object for A ∈ obC is an object A× I which fits in a triangle

A ∨A

A

∇
∨

σ
> A× I

j0+j1

>

where A ∨ A is the coproduct of two copies of A, ∇ is the codiagonal, j0 + j1 is a
cofibration and σ is weak equivalence.
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2) Dually a path object for B is an object BI fitting in the triangle

BI
s
> B

B ×B

∆

∨i0+i1 >

where B ×B is the product of two copies of B, ∆ the diagonal, (i0, i1) a fibration
and s is a weak equivalence.

3) Let f, g : A→ B be two morphisms. By a left homotopy between f and g we
mean a morphism h : A × I → B where A × I is an path object for A such that
hj0 = f and hj1 = g. A good picture to keep in mind is the following:

A ∨A f+g
> B

A

∇
∨
<

σ
A× I

h

∧j0+j1

>

We write f ∼l g if there exists a left homotopy between f and g.

By M3) cylinder objects exist for any object in a model category.
The dual notion to that of 3) is that of a right homotopy and is defined using a

path object for b, we write f ∼r g if there exist a right homotopy between f and g.
When we consider path or cylinder objects for more than one object, we will

sometimes abuse notation and use the (i0, i1) and s, j0 + j1 and σ for both the
objects, this should not cause any confusion.

In the example of topological spaces, taking I to be the unit interval and A× I
and BI to have the obvious meanings, we find that if f and g are homotopic, then
they are left and right homotopic. We also have the implication right homotopic
implies left homotopic by the dual of Prop. however in general these implications
may be strict.

We have the following properties of these homotopy relations. As usual, to each
result there is a dual which won’t mention:

Proposition 3.4. Let A,B ∈ obC and f, g : A→ B
i) If u : X → A, then f ∼r g implies fu ∼r gu.
ii) Let A be cofibrant and v : X → A then vf ∼r vg
iii)If A is cofibrant, then left homotopy is an equivalence relation on HomC(A,B).
iv) If A is cofibrant the f ∼l g implies f ∼r g.

Proof. i) This is obvious from definitions, indeed if h : A→ BI is a right homotopy
between f and g, then hu is a right homotopy between uf and ug.

ii) Let h : A → BI be a right homotopy between f and g. We claim that since
A is cofibrant we may take s : B → BI to be a trivial cofibration. Indeed given
s : B → BI in the definition of a path object, we may factorize s = is′ where s′

is a trivial cofibration i is a fibration. Letting B̃ be the target of s′, we have the
triangle
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B̃ <
s′

B

B ×B

∆

∨(i0+i1)◦i >

which tuns B̃ into a path object for B. By M6), i is a weak equivalence hence a
trivial fibration, so that given the commutative diagram:

0 > B̃

A
∨

h
>

k
>

BI

i
∨

there exists a lift k : A→ B̃, which is a right homotopy from f to g with the path
object B̃.

Thus assume s : B → BI is a trivial cofibration, and let CI be a path object for
C, then we have the following commutative diagram:

B
sv

> CI

BI

s
∨

(i0v,i1v)
>

H
>

C × C

i0+i1
∨

and we obtain a lift H : BI → CI . It can then be checked that the composition
Hh : A→ CI is a homotopy between vf and vg.

iii) The reflexivity is obvious. For symmetry let h : A×I → B be a left homotopy
from f to g. Letting denote A×I ′ be the cylinder object for A where A×I = A×I ′
and we switch j0 and j1, then h→ AI

′
is a left homotopy from g to f .

Now let h : A × I → B is a left homotopy from f0 to f1 and h′ : A × I ′ → B
a left homotopy from f1 to f2. Let A′ be the pushout of A × I and A × I ′ with
respect to A:

A
j0
> A× I

A× I ′
j′0∨

d′
> A′

d
∨

The motivation here is gluing unit intervals end to end. Let j′′0 + j′′1 : A ∨ A→ A′

be the map where j′′0 : A→ A′ is the map dj0 and j′′1 : A→ A′ is the map d′j′1. We
obtain a factorization of the codiagonal ∇ : A∨A→ A given by t ◦ (j′′0 + j′′1 ) where
t is induced by σ : A→ A× I and σ′ : A→ A× I ′.

The maps h and h′ then induce a map k : A′ → B such that kj′′0 = f0 and
kj′′1 = f2. This is not quite a left homotopy between f0 and g0 since j′′0 + j′′1 might
not be a cofibration, so that A′ might not be a cylinder object for A. However we
can factorize j′′0 + j′′1 = pi where i is a cofibration and p is a trivial fibration. Then
letting A× I ′′ denote the source of p, A× I ′′ is a cylinder object for A and kp gives
a left homotopy from f0 to f2.
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iv) Let h : A × I → B be a left homotopy from f to g, we first show that
j0 : A → A × I is a trivial cofibration, which we will need to apply a lifting
argument. Indeed since σj0 = idA, it follows that j0 is a weak equivalence. Also
since A is cofibrant, we have by M5) that in1 : A → A ∨ A is a cofibration being
the pushout of 0→ A by 0→ A, and since i0 = (i0 + i1) ◦ in1 it follows that i0 is
a cofibration.

Now let BI be a path object for B and consider the diagram:

A
sf

> BI

A× I

j0
∨

(fσ,h)
> B ×B

(i0,i1)

∨

We obtain a lift H : A× I → BI , then and one checks that Hj1 : A→ BI is a right
homotopy from f to g. �

Given A,B ∈ obC, we let πl(A,B) (resp. πr(A,B)) be the set of equivalence
classes of Hom(A,B) with respect to the equivalence relation generated by ∼l (resp.
∼r), we refer to these as the left (resp. right) homotopy classes. When A is cofibrant
(resp. B is fibrant), ∼l (resp. ∼r) is already an equivalence relation by Proposition
3.4 iii) and its dual. When A is cofibrant and B is fibrant part iv) of Proposition
3.4 and its dual shows that the relations ∼l and ∼r coincide, in this case we write
π(A,B) for the equivalence classes. We say f : A→ B and g : B → A are a pair of
(left) homotopy equivalences if the fg ∼l idB and gf ∼l idA.

We would like to define a category whose morphisms are homotopy classes of
maps, the following shows that the homotopy classes behave well with respect to
composition.

Corollary 3.5. Given A,B,C ∈ obC with A cofibrant, then composition of mor-
phisms induces well-defined map πr(A,B)× πr(B,C)→ πr(A,C)

Proof. This follows immediately from Prop. 3.4 i) and ii), using the fact that A is
cofibrant. �

We will also need the following result in what follows

Proposition 3.6. Let A be cofibrant and p : X → Y a trivial fibration, then p
induces a bijection p∗ : πl(A,X)→ πl(A, Y )

Proof. The map is well defined by (the dual of) part i) of Proposition 3.4. Given
f : A→ Y we may by M2) take a lifting in the diagram:

0 > X

A
∨

f
>

g
>

Y

p

∨

Thus the map is in fact surjective without taking homotopy classes.
To show injectivity let f, g ∈ Hom(A,X) and suppose h : A × I → Y is a left

homotopy between pf and pg. Then since p is a trivial fibration, we may take a
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lifting in the following diagram:

A ∨A f+g
> X

A× I

i0+i1
∨

h
>

k
>

Y

p

∨

Then k is a homotopy between f and g, hence the map p∗ is injective. �

Now let Cc, Cf and Ccf be the full subcategories of C consisting of the objects
which are cofibrant, fibrant and both cofibrant and fibrant respectively. By Corol-
lary 2.11, we may define a category πCc whose objects are the same Cc and where
HomπcC(A,B) is given by πr(A,B). There is a natural functor C → πCc which is
given by the identity on objects and takes f ∈ HomC(A,B) to it’s homotopy class
f ∈ πr(A,B). Similarly we obtain categories πCf and πCcf together with functors
Cf → πCf and Ccf → πCcf .

The above projection functors inverts the (left/right) homotopy equivalences.
The next result shows that any functor from C which inverts weak equivalences
also inverts homotopy equivalences. This allows us to define functors from the
categories πCc, πCf , πCcf to the homotopy category HoC.

Proposition 3.7. i) Let F : C → B be a functor such that F (w) is an isomorphism
for all weak equivalences f , then f ∼l g or f ∼r g implies F (f) = F (g).

ii)Let F : Cc → B be a functor such that F (w) is an isomorphism for all weak
equivalences w, then f ∼r g implies F (f) = F (g)

Proof. i) Let f, g ∈ HomC(A,B) and suppose h : A× I be a left homotopy between
f and g. Since j0σ = idA and j1σ = idA and σ is weak equivalence, we that
F (j0) = F (j1) = F (σ)−1. Thus F (f) = F (h)F (j0) = F (h)F (j1) = F (g). The case
of ∼r is dual.

ii) The proof is the same as part i), there is a slight subtlety here in that the path
object BI might not be in Cc. However the proof of part ii) of Proposition shows
that we can assume s : B → BI is a cofibration, and hence that BI is cofibrant.

�

Remark 3.8. The key ingredient in the proof of Prop 3.6 part ii) is the following
analogue of the homotopy lifting theorem. Given a fibration p : X → Y , a left
homotopy h : A× I → X and a map α : A→ B such that hj0 = pα, then we may
take a lifting in the following diagram.

A
α
> X

A× I

j0
∨

h
>

H
>

Y

p

∨

Indeed this result is used to show that s : B → BI can be taken to be a trivial
cofibration.
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Similarly the key to the proof of (the injectivity part of) Proposition 3.6 is the
lifting property for the diagram:

A ∨A f+g
> X

A× I

i0+i1
∨

h
>

k
>

Y

p

∨

where p is a trivial cofibration. We will see that when we move to the simplicial
setting, analogues of these results hold for simplicial homotopies and the proofs of
the previous results and the next Theorem will go through.

Recall the homotopy category HoC and the projection functor γ : C → HoC
constructed above by inverting weak equivalences. We may apply the same con-
struction (i.e. invert weak equivalences) to the categories Cc, Cf to obtain the lo-
calized categories HoCc,HoCf together with functors γc : Cc → πCc, γf : Cf → πCf .
By Proposition 3.7 the functors γc, γf and γ induce functors γc : πCc → HoC,
γf : πCf → HoCf and πCcf → HoC. We can now state out first main result.

Theorem 3.9. The category HoC exists and γ : πCcf → HoC is an equivalence of
categories.

Remark 3.10. The theorem says that πCcf and HoC are only equivalent, they are
not necessarily the same category.

The theorem proved in [6] is slightly stronger, we state it here for completeness,
but we refer to loc. cit. for the proof.

Theorem 3.11. HoCc,HoCf and HoC exists and we have a diagram of functors:

πCc
γc
> HoCc

πCcf
∪

∧

γ
> HoC
∨

πCf
∨

∩

γf
> HoCf

∧

Here ↪→ indicates a fully faithful functor, and the two right vertical arrows and γ
are equivalences of categories. Moreover if γ−1 is q quasi inverse for γ, we have
that the composition

HoCc > HoC γ−1

> πCcf ⊂ > πCc
is right adjoint to γc, and the composition

HoCf > HoC γ−1

> πCcf ⊂ > πCf
is left adjoint γf

We will now give the proof of Prop 3.9. We will show the equivalence by first
defining an auxiliary category B together with a natural equivalence of categories
πCcf → B. We will then show that the composite C → πCcf → B satisfies the
universal property of HoC which is enough to prove the proposition
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Proof. For each object X ∈ obC choose a factorization of 0→ X into

0 > Q(A)
iA
> A

with Q(A) cofibrant andpX a trivial fibration. For A cofibrant we choose Q(A) = A
and pA the identity on A and we will call Q(A) a cofibrant replacement for the object
A.

Given a map f : A→ B, pick a lifting in the diagram:

0 > Q(B)

Q(A)
∨

fpA
>

Q(f) >

B

pB
∨

Since Q(B)→ B is a trivial fibration, it follows that by Proposition 3.6 that Q(f)
is unique up to left homotopy. If g : B → C is another morphism, it follows that
Q(g)Q(f) ∼l Q(gf) and Q(idX) ∼l idQ(X). By part (iv) of Proposition 3.4, left

homotopic implies right homotopic, thus Q induces a functor Q : C → πCc.
Similarly, picking a factorization

A
iA
> R(A) > ∗

of A → ∗ into a trivial cofibration followed by a fibration for each object A and
applying the same construction we obtain a functor R : C → πCf .

Now suppose A is cofibrant and f, g : A → B with f ∼r g, then by Prop 2.10
part ii) we have iBf ∼r iBg, and hence by dual of Prop 3.6, we have R(f) ∼r R(g).
This implies the restriction of R to Cc induces a well defined functor πCc → πCcf
and hence there exists a functor RQ : C → πCcf which takes to A to RQ(A) and
takes a map f to the homotopy class of RQ(f).

Let B be the category having the same objects as C with

HomB(A,B) = HomπCcf (RQ(A), RQ(B) = π(RQ(A), RQ(B))

The is a natural functor Θ : C → B given by the identity on objects and f 7→ RQ(f).
Since RQ(A) = A for all A ∈ Ccf , the induced functor Θ : πCcf → B is fully faithful.

Now if p is trivial fibration or trivial cofibration in Ccf , it follows from Proposi-
tion 3.6 applied to idY ∈ π(Y, Y ), that p is an isomorphism in πCcf . Thus given
any weak equivalence we may factorize it into a trivial cofibration followed by a
fibration which is necessarily trivial by M6), hence any weak equivalence in Ccf is
an isomorphism in πCcf .

For f : A → B any weak equivalence in C, it follows from pBQ(f) = fpA that
Q(f) is a weak equivalence. Similarly RQ(f) is a weak equivalence so that Θ(f) is
an isomorphism. Thus

A <
pA

Q(A)
iQ(A)

> RQ(A)

yields an isomorphism in B between X and RQ(X) = Θ(X), thus Θ is essentially
surjective and hence an equivalence of categories.

We now show that (B,Θ) satisfies the same universal property as HoC.
Given F : C → D be a functor such that F (w) is an isomorphism for all

weak equivalences w. Define G : B → D by setting G(A) = F (A) and for f ∈
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HomB(A,B) = π(RQ(A), RQ(B)), we pick a representative f ∈ Hom(RQ(A), RQ(B))
of f , and define G(f) : F (A)→ F (B) to be the composite:

F (A)
G(f)

> F (B)

F (Q(A))

F (pA)−1

∨
F (Q(B))

F (pB)
∧

F (RQ(A))

F (iQ(A))
∨

F (f)
> F (RQ(B))

F (iQ(B))
−1

∧

By Proposition 3.7 part i), this is independent of the choice of f and it is clear that
G is the unique functor such that G ◦Θ = F . This concludes the proof. �

As a corollary we obtain the following simple description of the set HomHoC(A,B)
when A is cofibrant and B fibrant.

Corollary 3.12. Let A be cofibrant and B fibrant, then HomHoC(A,B) = π(A,B)

Proof. Indeed HomHoC(A,B) = π(RQ(A), RQ(B)) = π(R(A), Q(B)) = π(A,Q(B)) =
π(A,B) by Proposition 3.6 and its dual. �

When the C is a closed model category, the situation is slightly nicer as we have
the following result.

Proposition 3.13. A morphism f in C is a weak equivalence if and only if γ(f)
is an isomorphism in HoC.

Proof. The implication⇒ follows by definition of HoC. Suppose f : A→ B satisfies
γ(f) is an isomorphism in HoC, then it follows from the proof of Theorem 3.9 that
RQ(f) is an isomorphism in πCcf .

Factoring RQ(f) as:

RQ(A)
i
> C

p
> RQ(B)

where i is trivial cofibration and p is a fibration, it suffices to show that p is
a weak equivalence. As C is cofibrant and fibrant, it thus suffices to prove the
implication when f is a fibration in Ccf .

By Proposition 3.6, f is a homotopy equivalence (left or right, it does not matter
since we are in Ccf ) so let g be a homotopy inverse for f and h : B× I → B is a left
homotopy between fg and idB . We may take a lifting h′ in the following diagram

A
g
> A

B × I

j0
∨

h
>

h′
>

B

f

∨

so that letting q = h′i1, we have fq = idB and h′ is a left homotopy between g and
q. Now qf ∼l gf ∼l idA, so q is also a homotopy inverse for f and we may take
k : A × I → A be homotopy between qf and idA. We have j1k = idA and hence
k is a weak equivalence by M6), so that j0k = qf is also a weak equivalence. The
following diagram then presents f as a retract of qf :
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A
idA
> A

idA
> A

B

f

∨
q
> A

qf

∨
f
> B

f

∨

Hence it follows from M7a) that f is also a weak equivalence. �

Remark 3.14. The careful reader should have observed that during the course of the
above proofs, we tacitly proved Whiteheads theorem for the category Ccf . When C
is a closed model category, the converse also holds for Ccf .

4. Examples: Topological spaces and chain complexes

In this section we give the two fundamental (at least for the purposes of this
paper) examples of model categories. Since the whole idea behind model categories
stemmed from that of topological spaces, we will show that indeed this category
does have the natural structure of a model category. It turns out even for this basic
case, the proofs of some of the axioms are quite non-trivial and already demonstrates
techniques which can easily be generalized to other contexts. The two hardest
axioms to prove are usually the lifting the proper M2) and the factorization property
M3). We will omit the proof of the lifting properties as these can be found in any
algebraic topology textbook, the proof of M3) however is important and gives a
good concrete demonstration of the small object object which can be used to prove
M3) in much more general circumstances.

The second example that we discuss is that of non-negatively graded chain com-
plexes. In this case we will not prove that the model structure we define satisfies all
the axiom, rather we will content ourselves with a discussion of what the construc-
tions of the previous chapter look like in this context. What we are find should be
familiar to anyone who has come into contact with any sort of homological algebra.
This example not only demonstrates the generality of model categories but will be
useful throughout the paper as good source of intuition for later applications.

Let Top be the category of topological spaces and continuous maps. We define
fibrations in C to be Serre fibrations, i.e. have the homotopy lift in property with
respect to CW -complexes. A weak equivalence is a weak homotopy equivalence,
that is, a map which induces isomorphisms on all homotopy groups and a cofibration
will be a map which has the left lifting property with respect to a trivial fibrations.

Let |∆(n)| denote the standard n-simplex and |∂∆(n)| its boundary, so that the
inclusion |∂∆(n)| ↪→ |∆(n)| is homeomorphic to Sn−1 ↪→ Dn−1. We also define
the |V (n, k)| to be the boundary of |∆(n)| without the kth face, in this case the
inclusion |V (n, k)| ↪→ |∆(n)| is homeomorphic to Dn−1 → Dn−1× I. The following
two results are proved in [3].

Lemma 4.1. f is a fibration if and only if f has the right lifting property with
respect to |V (n, k)| ↪→ ||∆(n)|| for 0 ≤ k ≤ n.

Similarly f is a trivial fibration if and only if f has the right lifting property
with respect to |∂∆(n)| ↪→ ∆(n).

Lemma 4.2. f is fibration (resp. trivial fibration ) if and only if it it has the right
lifting property with respect to all trivial cobfrations (resp. cofibrations)
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It follows that with these definitions, axioms M1), M2), M6) M7b) become clear
and M4) and M5) follow by an easy diagram chase.

We will now give a proof of M3). The argument, known as the small argument,
works whenever the fibrations can be characterized by the fact that they satisfy
the left lifting property with respect to morphisms A → B where A satisfies the
property that the natural map

(4.1) lim
→n

HomC(A,Zn)→ HomC(A, lim→n
Zn)

is a bijection where Z0 → Z1 → ... is a sequence of objects indexed by N. We say
A is small if (4.1) is satisfied. We will only treat the special case but should give
the reader the flavor of the argument.

We begin by showing (4.1) is satisfied when A = |∂∆(n)| and Zi → Zi+1 is a T1

inclusion in the sense below.

Definition 4.3. An inclusion i : A ↪→ B of spaces is said to be a T1 inclusion if it
is a closed inclusion and B\i(A) consists of closed points.

Lemma 4.4. Suppose Z0 → Z1 → ... is a sequence of T1 inclusions, and A is
compact, then

lim
→n

HomC(A,Zn)→ HomC(A, lim→n
Zn)

is a bijection.

Proof. The map is clearly an injection and by definition of the inductive limit
topology on lim→n Zn, if f : A → lim→n Zn factors through some Zn, the map
A → Zn is automatically continuous. Thus it suffices to show that any such f
factors through some Zn. Suppose not, then we can find an increasing sequence of
integers (in)n≥0 with i0 = 0 and points αn ∈ f(A) such that αn ∈ Zin\Zim−1

. For
any subset of the {αn}, the intersection with any Zi is finite and not contained in
Z0, hence is closed. Thus the image the αn in the compact space f(A) is discrete
which is a contradiction. �

Proposition 4.5. Any map f : A → B can be factored as f = pi where i is a
cofibration and p is a trivial fibration

Proof. We will construct a diagram

A
j0
> Z0

j1
> Z1 > ...

B

f

∨
p1

<

p0

<

Let Z−1 = A and suppose we have constructed Zn−1 and pn−1 and let D be the
set of diagrams D:

∂∆(nD)
αD
> Zn−1

∆(nD)
∨

∩

βD
> B

pn−1

∨
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We define Zn to be the pushout∨
D∈D

∂∆(nD) >
∨
D∈D

∆(nD)

Zn−1

ΣαD

∨
jn−1=in1

> Zn

in2

∨

and pn : Zn → B is defined to be the map such that pnin1 = pn−1 and pnin2 =
ΣβD.

Let us define Z to be the inductive limit of the spaces Zi, p the inductive limit
of the pi’s and i = ...j2 ◦ j1 ◦ j0. We will show that i is cofibration and that p is a
trivial fibration thus obtaining the desired factorization.

We claim that i is a cofibration, indeed since |∂∆(n)| ↪→ |∆(n)| has the right
lifting property with respect to all trivial fibrations by Lemma 4.1, it follows that∨

D∈D
∂∆(nD) >

∨
D∈D

∆(nD)

also has the right lifting property with respect to all trivial fibrations and hence
is a cofibration. Since jn−1 is the cobase change of this morhpism, we have jn is
a cofibration for all n and it follows that i satisfies the left lifting property with
respect to all trivial fibrations since each jn does. Therefore i is cofibration.

By Lemma 4.2, to show p is a trivial fibration we need to check that it satisfies
the right lifting property with respect to |∂∆(n)| ↪→ |∆(n)|. Suppose we have a
diagram:

|∂∆(n)| α
> Z

|∆(n)|
∨

∩

β
> B

p

∨

Since jn : Zn−1 → Zn is given as the pushout of the inclusion
∨
D∈D ∂∆(nD)→∨

D∈D ∆(nD) which is a T1 inclusion, it is clear that jn itself is a T1 inclusion. Thus

since |∂∆(n)| is compact it follows by Lemma 4.4 that α factors through Zn for
some n, thus by definition of Zn+1 we obtain a map |∆(n)| → Zn+1 and hence a
lift |∆(n)| → Z. This completes the proof. �

Lemma 4.5 gives half of axiom M3). To obtain the other factorization, let f :
A→ B be a map and factor it as

A
i
> Af

p
> B

where Af is the homotopy fibre of f . This is the set of pairs (a, γ) where a ∈ A
and γ is a path inB with γ(0) = f(a) endowed with the subspace topology of A×BI .
The map p : Af → B is given by (a, γ) 7→ γ(1) and i is the map a 7→ (a, γa) where
γa is the constant path based at a. It is a standard exercise to show that p has the
homotopy lifting property with respect to CW complexes (see for example 4.64 of
[2]), hence is a fibration, and one can show that i is a weak equivalence (in fact a
homotopy equivalence) by contracting paths.
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Now factor i = p′i′ into a cofibration followed by a trivial cofibration using
Lemma 4.5. Since i and p′ are weak equivalences, i′ is a trivial cofibration, and pp′

is fibration which gives us the desired factorization of f .
Let us now consider the example the example of chain complexes. For an abelian

category A, let Ch≥0(A) be the category of non-negatively graded chain complexes
A• = {d : An → An−1} of objects of A, i.e. complexes such that Kn = 0 for n ≤ 0.
The fibrations are the epimorphisms, cofibrations are injective maps i such that
the cokernel of i is a projective object in every degree (note this is not the same as
saying the cokernel is a projective object in the category Ch≥0(A)) and the weak
equivalences are maps which induce isomorphisms on homology. To show that this
is indeed a model category, all axioms apart from M2) and M3) are easy, for these
two axioms we refer to [3] for their proofs.

Taking on faith that the constructions above endows Ch≥0(A) with the structure
of a model category, one should ask the question what does a cylinder object look
in this category?

For simplicity we will assume that A is the category of modules over some com-
mutative ring R, and by abuse of notation we will write Ch≥0(R) for this category.
The constructions in the general case are completely analogous so we will not lose
anything by assuming this.

Recall we already have a notion of homotopy for Ch≥0(R): for two maps f, g :
A• → B• a homotopy between f and g is a sequence of maps hn : An → Bn+1

such that dhn − hn−1d = f − g. So whatever a cylinder object is, it should allow
a definition of homotopy which can be related existing one. For general A• the
construction of cylinder objects is difficult; one would have to trace through the
proof of the factorization axiom to obtain such a construction, however when A•
is cofibrant there is a much simpler construction. In this case we have that An is
projective for all n. Define M• to be the object with

Mn = An ⊕An−1 ⊕An
and differential given by

d(a, b, c) = (da+ b,−db, dc− b)

The chain map j0.j1 : A• → M• are given by the natural inclusions into the first
and last component and the map σ : M• → A• is given by (a, b, c) 7→ a + c. It is
clear that these give a factorization of the codiagonal ∇ : A⊕A→ A.

Define maps hn : Mn →Mn+1 by hn(a, b, c) = (0,−c, 0). These satisfy

(dhn − hn−1d)(−c, b, c) = idM• − j0σ

i.e. h is a homotopy between j0σ and idM• , then since σj0 = idA• , we have that σ
is a weak equivalence.

Let A[−1]• be the complex with A[−1]n = An−1, then the map j0+j1 is injective
and its cokernel is A[−1]• which is projective in every degree by our assumption on
A, hence j0 + j1 is a cofibration and M• is a cylinder object for A.

A homotopy h between two maps f, g : A→ B then determines a left homotopy
from f to g, given by h′n(a, b, c) = f(a)− h(b) + g(c) and one checks that this is a
map of chain complexes with j0h

′ = f and j1h
′ = g. Conversely one shows that

given h′ : M• → B a map of complexes with j0h
′ = f and j1h

′ = g that −h′
restricted to the middle factor of M)• gives a homotopy between f and g, so the
two notions coincide.
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The homotopy category HoCh≥0(R) in this case is then just the derived category
of Ch≥0(A)

5. Loop and suspension functors

Given a topological space X with a base point ∗ → X in the category of base-
pointed topological spaces, there is the construction of the loop space ΩX and the
suspension ΣX. These form a pair of adjoint functors in the homotopy category of
topological spaces, more precisely we have:

π(ΣX,Y ) = π(X,ΩY )

where π denotes homotopy classes of maps. If we let 0 : X → Y be the map taking
X to the base point of Y , it can be shown that both these sets are groups and
actually groups and are isomorphic to π1(X,Y ) the group of homotopy classes of
homotopies from 0 to itself

Furthermore, given a sequence:

F
i
> E

p
> B

where E is a Serre fibration and i is the inclusion of the fibre F over the base point
B, then there is a construction of a sequence

(5.1) ...→ Ω2B → ΩF → ΩE → ΩB → F → E → B

which satisfies the property that given an object A, the sequence of pointed sets:

...→ π(A,Ω2B)→ π(A,ΩF )→ π(A,ΩE)→ π(A,ΩB)→ π(A,F )→ π(A,E)→ π(A,B)

is exact in a sense to be explained later.
For n ≥ 1, ΩnX is a group object in the homotopy category of pointed topological

spaces (which is commutative if n > 1) and the above notion of exactness coincides
with that for group homomorphisms after the first three terms.

These constructions have corresponding generalizations in an arbitrary (pointed)
model category, and are needed to in the definition of homology and cohomology
later on. For the purposes of constructing the cotangent complex there are far more
concrete constructions that we can do, however these constructions become much
easier to understand once placed in this more general context. Our account is based
on section 2 of chapter 1 in [6], where we will refer for the more involved proofs.

In the case of topological spaces, to define suspension of loop functors, we need
the concept of a base point, the generalization to model categories is provided by
the following definition:

Definition 5.1. A model category C is pointed if the the initial and terminal
objects are isomorphic, we call such an object a null object.

For any two objects A,B in C we will denote by 0 ∈ Hom(A,B) the unique
morphism A → ∗ → B. The fibre of a map f : A → B is then defined to be the
pullback of the two maps f and 0 : ∗ → B. The cofibre is defined dually.

From now on we will fix a pointed model category C with the null object ∗.
f, g : A→ B will be two morphisms in C and we will insist the following holds:

Assumption: A is cofibrant and B is fibrant
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Definition 5.2. Let A×I be a cylinder object for A, the suspension ΣA is defined
to be the cofibre of the map

A ∨A (j0+j1)
> A× I

Although ΣA depends on the choice of cylinder object, it can be shown that once
we pass to the homotopy category HoC, this construction induces a well-defined
functor Σ : HoC → HoC.

Dually the loop space ΩB of B is defined to be the fibre of the map

BI > B ×B

where BI is a path object for B, and this indues a functor Ω : HoC → HoC.

Example 5.3. Let C = Ch≥0(R) with the model structure defined in the previous
section. Since A is cofibrant we have the cylinder object M• with Mn = An ⊕
An−1 ⊕An. The complex 0• which is 0 in all degrees is a null object for Ch≥0(R),
it is then clear that the cofibre of j0 + j1 : A•⊕A• → m• is precisely A[−1]• where
A[−1]n = An−1 together with the obvious differential d. Similarly one can show
that ΩB• is the complex:

ΩBn =

{
Bn+1 n ≥ 1

ker(d : B1 → B0) n = 0

Taking our inspiration from topological spaces we would like an isomorphism
π(ΣA,B) ∼= π1(A,B) ∼= π(A,ΩB) for an appropriate group π1(A,B). To do this
we must define the concept of a homotopy between homotopies.

Definition 5.4. Let h : A× I → B, h′ : A× I ′ → B two left homotopies between
f and g. By a left homotopy between h and h′ we mean a diagram:

A× I ∨A∨A A× I ′
h+h′

> B

A

σ+σ′

∨
<

τ
A× J

∧
H

d0+d1

>

where d0 + d1 is a cofibration and τ is a weak equivalence. A × I ∨A∨A A × I ′

denotes the pushout of j0 + j1 : A ∨A→ A× I and j′0 + j′1 : A ∨A→ A× I ′.

The dual notion is that of a right homotopy between right homotopies k and k′

which the reader should have no problem formulating.
We now show that the relation ”is left homotopic to” is an equivalence relation

on the set of homotopies from f to g; this follows from the two lemma following
the next definition.

Definition 5.5. Let h : A×I → B be a left homotopy from f to g and k : A→ BI

a right homotopy from f to g. By a correspondence between h and k we mean a
map H : A× I → B such that Hj0 = k,Hj1 = sg, i0H = h and i1H = gσ.

It is convenient to draw the following pictures for a left homotopy, right homotopy
and correspondence between h and k.
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The two vertical lines in the correspondence square represents the composition
of H with j0 and j1 and the horizontal squares the compositions with i0 and i1.

Lemma 5.6. Given a cylinder object A × I and a right homotopy k : A → BI

there is a left homotopy h : A× I corresponding to k.

Proof. As A is cofibrant, j0 is a trivial cofibration, hence we may take lifting in the
diagram:

A
k
> BI

A× I

j0
∨

gσ
>

H
>

B

i1
∨

then i0H gives the desired left homotopy and H the correspondence. �

Lemma 5.7. Suppose h : A × I → B and h′ : A × I ′ are two left homotopies
and k : A → BI a right homotopy such that h and k correspond. Then h′ is left
homotopic to h if and only if h′ and k correspond

Proof. ⇐” Let H (resp .H ′) be correspondences between h′ (resp h′) and k. Let
A × J, d0 + d1, τ be as in definition 4.3, these exist by M3). Since B is fibrant, i1
is a trivial cofibration and so we may take a lifting in the diagram:

A× I ∨A∨A A× I ′
H+H′

> BI

A× J

d0+d1

∨
gτ
>

K
>

B

i1
∨

Then d0K is a left homotopy from h to h′.
”⇒” Again left H be a correspondence between h and k and let K : A× J → B

be a left homotopy from h to h′. As in the proof of Prop 3.4 part iv), one shows
that d0 is a trivial fibration. Thus we may take a lifting in the following diagram:

A× I H
> BI

A× J

d0

∨
(K,gτ)

>

L
>

B ×B

(i0,i1)

∨

Then Ld1 : A× I ′ → BI gives a correspondence between h′ and k. �

It follows from Lemma 5.7 that left homotopy is an equivalence on the class of
left homotopies f and g, and Lemma 5.6 shows that the equivalence classes are are
actually sets. We let πl1(A,B : f, g) denote the set of equivalence classes, similarly
we obtain equivalence classes πl1(A,B : f, g) given by the relation ”right homotopic
to”. Correspondence then yields a bijection πl(A,B : f, g) ∼= πr1(A,B; f, g). When
f and g are the zero map we will denote these sets by π1(A,B).
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We would like to have a group structure on π1(A,B), in the case of topological
spaces, this is given by composing homotopies. In our more abstract setting, we
can mimic the construction via the following:

Lemma 5.8. Let A × I and A × I ′ be cylinder objects for A and let A × I ′′ be
the pushout of j1 : A → A × I and j0 : A → A × I ′. Then A × I ′′ together with
in1j0 + in2d

′
0 : A ∨A→ A× I ′′ and σ′′ : A× I ′′ induced by σ and σ′ is a cylinder

object for A.

Proof. The only thing that needs to be checked is that in1j0+in2d
′
0 is a cofibration,

this is [6] Lemma 3 of Chapter I, Section 1. �

Definition 5.9. Given f1, f2, f3 ∈ Homcat(A,B), h a left homotopy between f1

and f2, and h′ a left homotopy between f2 and f3. The composition of h and h′

is a left homotopy h′′ = h′ ◦ h : A × I ′′ → B given by h′′in1 = h, h′′in2h
′ where

A× I ′′ is the cylinder object constructed above.
For f, g ∈ HomC(A,B) and h a homotopy between f and g, the inverse of h

denoted h−1 is the left homotopy between g and f , given by h : A × I ′ → B be
A× I ′ is the cylinder object A× I with j0 and j1 switched.

The next proposition shows that this process is compatible with taking homotopy
classes

Proposition 5.10. Composition of left homotopies induces maps πl1(A,B; f1, f2)×
πl1(A,B; f2, f3)→ πl1(A,B; f1, f3) and similarly for right homotopies, indeed these
maps are compatible with the correspondence bijection of the previous paragraph.
In this way HomC(A,B) can be endowed with the natural structure of a groupoid,
where a morphism between f and g is a homotopy class of homotopies between f
and g.

Proof. This is Proposition 1 of [6] Chapter I, section 2 �

The main result is then the following:

Theorem 5.11. There is a functor A,B → [A,B]1 from HoC0 × HoC to (groups)
where [A,B]1 = π1(A,B) when A is cofibrant and B is fibrant. Moreover we have
the canonical isomorphism of functors:

π(ΣA,B) ∼= [A,B]1 ∼= π(A,ΩB)

Proof. This is Theorem 2 of [6] Chapter I, section 2 �

Now would be a good opportunity to see what the above constructions mean for
our toy example Ch≥0(R).

Example 5.12. Let C = Ch≥0 with the model structure defined in the previous
section. Let ΣA• and ΩB• denote the suspension of A resp. the loop space of B as
defined in Example 5.3.

By definition [A,B]1 is the ”homotopy classes” of maps between the zero map
and itself. But a homotopy between two zero maps is a sequence of maps hn :
An → Bn + 1 with dhn − hn−1d = 0, i.e. map of chain complexes A[−1] → B.
It is left as an easy exercise for the reader to show that a homotopy between two
homotopies h and h′ is just a homotopy between h and h′ considered as maps of
chain complexes, from which we obtain Theorem 5.11 for this special case.
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We now are now in a position to construct the fibration and cofibration sequences.
Fix a fibration p : E → B where B is fibrant and let i : F → E be the fibre of
this map. Upon passing to the homotopy category, we would like to extend this
sequence to the right as in equation (4.1).

When C is the category of pointed topological spaces, we can do this as follows.
Note that composition of loops endows ΩB with the structure of a group, we will
first define an action of ΩB on F . Let γ be an element of ΩB, i.e. a loop in B,
and a and element of F . Since p : E → B is a fibration we may lift γ to a path
γ : [0, 1] → E with γ(0) = i(a). Then since p(γ(1)) = ∗, γ(1) factors through the
inclusion i : F → E and we denote this element by γ.a. It is easy to show that this
defines an action of ΩB on F , the map ΩB → F is then given by γ → γ.∗ where ∗
is the base point of F .

Using this idea of transporting elements around loops we will define a group
action of ΩB on F in the homotopy category. (Recall ΩB is a group object in HoC
by Prop 4.9)

Let A be cofibrant. Since F → ∗ is the base change of p, F is fibrant hence by
corollary 2.16 we have HomC(A,B) = π(A,B). Suppose α ∈ π(A,F ) is represented
by u : A → F , and λ ∈ π(A,ΩB) = [A,B]1 is represented by the homotopy
h : A× I → B with h(j0 + j1) = 0, and let h′ be lifting in the following diagram.

A
iu
> E

A× I

j0
∨

h
>

h′
>

B

p

∨

Now as ph′j1 = j1h = 0, the map h′j1 factors uniquely through F . We will denote
this map i−1h′j1 : A → F and the homotopy class of this map will be λ.α. This
construction is obviously functorial in the object A of the homotopy category, hence
by Yoneda’s Lemma this defines a morphism m : ΩB × F → F

Proposition 5.13. m defines a group action in HoC of ΩB on F .

Proof. Let α, u, λ, hh′ be as above. Let λ1 ∈ [A,B]1 represented by the homotopy
h1 : A× I ′ → B. Since i−1h′j1 represents λα, taking a lifting h′1 in the diagram:

A
h′j1
> E

A× I ′
j′0∨

h
>

h′1
>

B

p

∨

we have that i−1h′1j
′
1 represent λ1.(λ.α).

As the composite homotopy h.h1 represents λ1λ, let h′.h′1 denote the composite
of the two homotopies h′ and h′1. These then fit in the commutative diagram:

A
iu
> E

A× I ′′
j′′0∨

h.h1
>

h′.h′1
>

B

p

∨
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where A× I ′′ is the path object in Lemma 4.7. Thus i−1h′.h′1j
′′
1 represents λ1λ.α.

However h′.h′1j
′′
1 = h′1j

′
1 by definition of A×I ′′, hence we see that λ1λ.α = λ1.(λ.α)

�

Definition 5.14. A fibration sequence is diagram in HoC of the form

X → Y → Z ΩZ ×X → X

which is isomorphic to a sequence in Cf
F → E → B ΩB × F → F

as constructed above.

Remark 5.15. Dual to the above constructions we have the concept of a cofibration
sequence which is constructed from a sequence in Cc:

A→ B → C C → C ∨ ΣA

Where A → B is a cofibration and B → C is its cofibre, and C → C ∨ ΣA is a
cogroup action.

Given a fibration sequence X → Y → Z, we have a morphism δ : ΩZ → X given
by

ΩZ
(0,id)

> ΩZ ×X > X

In Chapter 4 of [2], there is a proof of the topological analogue of the following
theorem.

Proposition 5.16. Given a fibration sequence

X
i
> Y

p
> Z ΩZ ×X m

> X

then the diagram

ΩZ
δ
> X

i
> Y ΩY × ΩZ > ΩZ

is also a fibration sequence

Proof. This is Proposition 4 in [6] Chapter I, section 3.
�

Remark 5.17. For topological spaces given a sequence

F
p
> E

i
> B

where i is a fibration and p is the fibre of i, then it is not necessarily true that the
sequence

ΩZ
δ
> X

i
> Y

is of the the same form, eg. i might not be a fibration. The proposition states that
one can find a sequence which is isomorphic to this in the homotopy category. In
the topological case this is achieved by taking homotopy fibers and Quillen’s proof
is a based on this process.

Proposition 5.16 implies that any fibration sequence may be extended as in
equation (5.1). Moreover some diagram chasing shows that this sequence is exact
in the following sense.
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Proposition 5.18. Let

F
i
> E

p
> B ΩB × F > F

be a fibration sequence and A any element of HoC. Then the following sequence is
exact

...
(Ωq+1p)∗

> [A,Ωq+1B]
(Ωqδ)∗

> [A,ΩqF ]
(Ωqi)∗

> [A,ΩqE]
(Ωqp)∗

> ...

...
(Ωp)∗

> [A,ΩB]
δ∗

> [A,F ]
i∗

> [A,E]
p∗
> [A,B]

where for two objectsA,B of HoC we write [A,B] as shorthand for HomHoC(A,B)
and we take exact to mean:

i) p−1
∗ (0) = im i∗

ii) i∗δ∗ = 0 and i∗α1 = ı∗α2, if and only if∃λ ∈ [A,ΩB], such that λ.α1 = α2.
iii) δ∗(Ωp)∗ = 0 and δ∗λ1 = δ∗λ2 if and only if λ2 = (Ωp) ∗ µ.λ1 for some

µ ∈ [A,ΩE]
iv) The sequence of group homomorphisms to the left of [A,ΩE] is exact in the

usual sense.

Proof. This is Proposition 4 in [6], Chapter I, section 3. �

To finish of this section let’s see what fibration sequences look like in the category
Ch≥0(R)

Example 5.19. In the category Ch≥0, a fibration E → B is an epimorphism, and
the fibre of this map is precisely its kernel, hence a fibration sequence is just an
exact sequence of complexes (or at least homotopy equivalent to one).

If we let I denote the complex

... > 0 > R > 0 > ...

where the R is in degree 0, then it follows by from definitions that π(I, A) =
H0(A•). More generally we have that π(ΣnI, A) = π(I,ΩnA) and an easy check
verifies that the fibration exact sequence is just the long exact sequence arising
rom the exact sequence of complexes. A similar statement holds for the cofibration
exact sequence.

6. Derived functors and equivalences of Model categories

In this section, we define for a functor F : C → B where C is a model category, its
left and derived functors the existence which is guaranteed by a simple criterion on
F . We will see how these constructions directly generalize left and right functors in
the abelian case with our example of Ch≥0(R). When the target of F is equipped
with a model structure, one can define the concept of the total derived functor of F
which is a functor between the homotopy categories and proof a criterion for when
this is an equivalence of categories. The constructions of this section are not only
essential in the construction of the cotangent complex, but is an important facet
of the theory of model categories, so everything in this section will be proved in
detail.

The concept of derived functors exists in greater generality than just that of
model categories, they are defined as follows
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Definition 6.1. Let γ : A → A′ and F : A → B be two functors. The left derived
functor of F with respect to γ is a functor LγF : A′ → B together with a natural
transformation ε : LγF ◦γ → F such that given any other functor G : A′ → B with
a natural transformation ζ : G ◦ γ → F , there is a unique natural transformation
Θ : G→ LγF such that the following diagram commutes:

G ◦ γ

LγF ◦ γ

Θ◦γ
∨

ε
> F

ζ

>

In this sense, LγF is the closest functor to F from the left, similarly we can
define the right derived functor RγF together with the natural transformation
η : F → RγF which is the closest to F from the right.

We will only be interested in the when A = C is a model category and γ is the
localization functor γ in which case we omit the γ : C → HoC from the notation and
write LF (resp. RF ) for the left (resp. right) derived functor of F with respect to
γ.

Example 6.2. If the functor F : C → B takes weak equivalences to isomorphisms,
then F factors uniquely through HoC. It is then clear that LF : HoC → C is the
unique functor such that LF ◦ γ = F .

From now on fix a model category C.

Proposition 6.3. Suppose F : C → B takes all weak equivalences in Cc to iso-
morphisms in B, then LF exists and furthermore ε : LF ◦ γ(X) → F (X) is an
isomorphism when X is cofibrant

Proof. Recall the cofibrant replacement Q(A) of an object A. We have that A 7→
Q(A), f 7→ Q(f) determines a functor Q : C → πCc. By Proposition 3.7 part ii) we
have for any two morphism f, g : A→ B in Cc, f ∼r g implies F (f) = F (g), hence
A → FQ(A) and f → FQ(f) induce a well defined functor Cc → B. Since this
functor inverts all weak equivalences (since Q(f) is a weak equivalence if f is), we
obtain a functor LF : HoC = HoCc → B. The natural transformation ε is given by
ε(A) : F (pA) : LF (A) = FQ(A)→ A, where pA is the trivial fibration Q(A)→ A.
We will now show that (LF, ε) has the required universal property.

For a functor G : HoC → B with a natural transformation ζ : G ◦ γ → F , define
a natural transformation Θ : G ◦ γ → F by the following:

G ◦ γ(A)
G(γ(pA))−1

> GQ(A)
ζQ(A)

> FQ(A) = LF (A)

It is clear that Θ is a natural transformation and as every morphism in HoC
is a composition of finitely many morphisms of the form γ(f) or γ(w)−1 for w a
weak equivalence, it follows that Θ can be extended to a natural transformation
Θ : G→ LF . The following diagram then shows that ε ◦Θ = ζ

G(A)
G(γ(pA))−1

> GQ(A)
ζQ(A)

> FQ(A) ≡≡≡ LF (A)

G(A)

G(γ(pA))
∨

ζA
>

idG(A) >
F (A)

F (γ(pA))
∨ εA

<



26 RONG ZHOU

Uniqueness of Θ follows since it is determined by what it does on HoCc, and by
Theorem 3.11 we have HoCc = HoC. When A is cofibrant, LF (A) = FQ(A) = FA
and εA = idA �

Definition 6.4. Let F : C → C′ be a functor between two model categories, the
total left derived functor denoted LF of F is given by the left derived functor of
γ′ ◦ F : C → HoC′

As an immediate corollary of Proposition 6.3, we have that if F is a functor
between model categories which takes weak equivalences in Cc to weak equivalences
in C′ then the total left derived functor exists.

Now fix a functor C → C′ between model categories. The rest of this section will
be devoted to proving a criterion for when the total left derived functor of F is an
equivalence of categories LF : HoC → HoC′.

Proposition 6.5. Let F : C :→ C′ be a functor between pointed model categories
which preserves finite colimits and cofibrations and takes weak equivalences in Cc
to weak equivalences in C′. Then LF is compatible with direct sums and if Σ and
Σ′ denote the suspension functors on HoC and HoC′ respectively, we have LFΣA ∼=
Σ′LFA.

Proof. By Proposition 6.3, LF exists and the proof shows that we may assume
LF (A) = F (A) if A is cofibrant. It can be shown that the localization map C′c →
HoC′ preserves direct sums. Since F (Cc) = F (C′c), it follows that for A,B ∈ obCc,
we have

LF (A ∨B) = F (A ∨B) = F (A) ∨ F (B) = LF (A) ∨ LF (B)

so that LF commutes with direct sums.
Let A be cofibrant and let

A ∨A j0+j1
> A× I σ

> A

be a cylinder object for A. Applying F to this sequence and using the fact that F
commutes with colimits, we obtain the sequence

F (A) ∨ F (A)
F (j0)+F (j1)

> F (A× I)
F (σ)
> F (A)

where F (j1)+F (j1) is a cofibration and F (σ) is a weak equivalence by our assump-
tions. Hence F (A×I) is a cylinder object for A, and since A is cofibrant the cofibre
of F (j0) + F (j1) represent the suspension ΣF (A). Since F preserves colimits, this
is isomorphic to F (ΣA). �

We now come to the main result of this section.

Theorem 6.6. Let F : C → C′, G : C′ → C be two functors between two models
categories and where F is left adjoint to G. Assume F takes preserves cofibrations
and takes weak equivalences in Cc to weak equivalences in C′, dually suppose G
preserves cofibrations and takes weak equivalences in C′c to weak equivalences in C.
Then the total derived functors LF and RF are canonically adjoint.

Suppose further that for A ∈ obCc and B ∈ obC′f , we have LA → B is a weak
equivalence if and only if A→ RB is a weak equivalence. Then the unit and count
of the adjunction are both natural isomorphisms.
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Proof. We will write u[ : A → GB (resp. v# : FA → B)be the map which
corresponds to u : FA → B (resp. v : A → GB) under the adjunction. Suppose
A ∈ obCc and B ∈ obC′f , then we saw in the proof of Proposition 6.5 that F (A)×I :=

F (A× I) is a cylinder object for F (A). Thus if f, g : A→ GB are two morphisms
in C, and h : A × I → GB a left homotopy from f to g, then h# : FA × I → B
gives a left homotopy between f# and g#. Since A and FA are cofibrant, and
B and GB are fibrant, the left and right homotopy relations coincide, so that
π(A,GB) ∼= π(FA,B).

If we let Q denote the cofibrant replacement functor on C and R′ the fibrant re-
placement functor for C′, then by our construction of the derived functor in Propo-
sition 6.3, it follows that for general A,B

HomHoC′(LF (A), B) ∼= π(FQ(A), R′B) ∼= π(Q(A), GR′(B)) ∼= HomHoC(A,RF (B))

These isormorphisms are clearly functorial and as any morphism in HoC is a
finite composition of morphisms coming from C, it follows that LF and RG are
adjoint.

Now suppose that A ∈ obCc and B ∈ obC′f , and f : A→ GB is a weak equivalence

if and only if f# : FA → B is a weak equivalence. Thus i[FA : A → GR′F (A) is a
weak equivalence, and hence an isomorphism in the homotopy category. However
this tracing through the definitions one finds that the homotopy class of this map
is just the unit of the adjunction. Dually we get the counit is also an isomorphism.

�

Remark 6.7. Quillen also shows that for F and G satisfying the hypothesis of the
theorem, then LF and RG preserve both fibration and cofibration sequences. We
will not make use of this result so we omit the proof.

Functors F and G which satisfy the conditions of the first part of Theorem 6.6
will be called a Quillen adjunction.

The next example shows how the above constructions generalize those in the
abelian case. In that case one can compute left derived functors by taking projec-
tive resolutions and we will see why cofibrant replacement is the appropriate gen-
eralization. In the next section, once we have a simplicial structure on the model
category, the analogous construction is to take a simplicial resolutions, which gives
us a powerful tool for computing derived functors.

Example 6.8. Let R be a commutative ring and N an R-module. Consider the
functor F : Ch≥0(R)→ Ch≥0(R) induced by the functor −⊗R N .

We would like to compute the total left derived functor of F . To apply prop 6.3
we need to know that F takes weak equivalence in Ch≥0(R)c to weak equivalences
in Ch≥0(R). Thus suppose A and B are chain complexes which are projective in
every degree and f : A• → B• be a map of chain complexes which induces an
isomorphism of homology. We may factor M into a trivial cofibration followed by
a trivial fibration, thus it suffices to show F takes trivial cofibrations and trivial
fibrations to weak equivalences.

Suppose f is a trivial cofibration, then we have an exact sequence of complexes

0→ A• → B• → C• → 0

Then since C• is projective in every degree it follow that upon tensoring by N , the
short exact sequence of complexes remains short exact. As f is a weak equivalence,
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it follows by the long exact of homology that C• is an exact complex, and since
it is degreewise projective, it follows that C ⊗R N is also an exact complex. The
long exact sequence of homology groups shows that F (f) induces an isomorphism
on homology. The proof for f a trivial fibration is the same. It now follows from
Prop 6.3 that LF exists.

For an R module M , consider the complex M̃ which is M in degree 0 and zero
everywhere else. Working through the proof of proposition 6.3, one sees that the
image of M̃ under LF is the image of FQ(M̃) in the homotopy category. In this
context a cobfibrant replacement is given by a projective resolution P• of M , hence
the left derived functor is the image of P• ⊗R N in the derived category. The ith

homology of this complex is well defined and is given by ToriR(M,N).

7. The Simplicial Setting

From now on we begin to specialize to the case of interest to us. The definitions
and constructions made in the previous chapters are far more general than we need,
in fact the model categories that we will come across now are all simplicial model
categories. Theses are model categories together such that for any two objects
A,B one can attach a simplicial set Hom(A,B) whose zero degree part is just
Hom(A,B). This satisfies certain compatibility conditions with the model category
structure, and allows to define a concept of simplicial homotopy which coincides
with the usual notion in when A is cofibrant and B is fibrant. In certain cases,
the simplicial structure provides us with powerful tools for calculations, examples
of which the reader will encounter in Chapter 9.

From now we assume all model categories we encounter are closed and pointed
with null object ∗.

Let ∆ denote the category with objects [n] = {0, 1, ..., n} and Hom∆([n], [k]) the
set of weakly order preserving maps between [n] and [k]. Let di : [n − 1] → [n] be
the order preserving map whose image does not include i, and si : [n]→ [n− 1] the
surjective map which takes i and i+ 1 to i. These morphisms satisfy the identities:

1) djdi = didj−1 (i < j)

2) sjdi = disj−1 (i < j)

= id (i = j, j + 1) (∗)

= di−1sj (i > j + 1)

3) sjsi = si−1sj (i > j)

and it can be shown that in fact these morphisms generate all morphisms in ∆. We
call the di face maps and si degeneracy maps.

Definition 7.1. Let C be an arbitrary category, A simplicial object of C is a functor
∆op → C. Morphisms between simplicial objects are natural transformations of
functors and the we will denote the category of simplicial objects in C by sC.

When C is the category of sets, we will denote the category of simplicial sets
sSets. Concretely the objects of this category are a chain of sets An together with
maps di : An → An−1 and si : An−1 → An satisfying (the dual of) the relations
(∗).
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The simplicial set Hom∆(−, [n]) will be denoted ∆(n), we will call this the stan-
dard n simplex and for any simplicial set A we write An for the set A([n]) which
by Yoneda’s Lemma is equal HomsSets(∆(n), A). We call an element of An an
n-simplex of A. For any n-simplex σ of A, we call a simplex a face of σ if it is the
image of σ under a composition of face maps, and a degeneracy of σ will denote
the image of σ under a combination of degeneracy maps. We specify that σ is both
a degeneracy and face of itself. A simplex will be called non-degenerate if it is only
a degeneracy of itself. For example the simplicial set ∆(n) has

(
n
k

)
non-degenerate

k simplices.
For the readers who are unfamiliar with simplicial sets, there is a more concrete

way to think about them in terms of the geometric realization functor. That is, to
any simplicial set K we can associate to it a topological space |K| with a simplicial
decomposition such that the k simplifies of |K| are precisely the non-degenerate k
simplices of K. For example, |∆(n)| is precisely the standard n simplex so that
the notation of section 4 is consistent with this definition. We refer to [3] for more
details.

Definition 7.2. A simplicial category is a category C together with a functor
Cop × C → sSets denoted Hom(A,B) for A,B ∈ obC and for any A,B,C ∈ obC a
”composition” map of simplicial sets

◦ : Hom(A,B)×Hom(B,C)→ Hom(A,C)

satisfying the following properties:
i) Composition is associative in that for f ∈ Hom(A,B)n, g ∈ Hom(B,C)n h ∈

Hom(C,D)n we have f ◦ (g ◦ h) = (f ◦ g) ◦ h
ii) There is an isomorphism Hom(A,B) ∼= Hom(A,B)0 denoted u 7→ ũ. And

composition in Hom0 agrees with the usual composition in Hom under the identi-
fication above identification.

iii) For u ∈ Hom(A,B) and f ∈ Hom(B,C)n then f ◦ sn0 ũ = Hom(u,B)nf .
Similarly for g ∈ Hom(D,A)n we have sn0 ũ ◦ g = Hom(D,u)g

If C1, C2 are simplicial categories then a simplicial functor F : C1 → C2 is a functor
from C1 to C2 together with maps of simplicial sets Hom(A,B) → Hom(FA,FB)
also denoted F , which agrees with F on Hom(A,B)n

Example 7.3. For the case of simplicial sets we define

Hom(A,B)n = Hom(A×∆(n), B)

with face and degeneracy maps given by

di(f) = f ◦ 1× di and si(f) = f ◦ 1× si
The composition map Hom(A,B)n × Hom(B,C)n → Hom(A,C)n is given by g ◦
f(x, u) = g(f(x, u), u) and this gives sSets the structure of a simplicial category.

Example 7.4. Consider the category Top of topological spaces and let A and B
be spaces, we define Hom(A,B) by

Hom(A,B)n = Hom(A× |∆(n)|, B)

and face and degeneracy maps are induced by those |∆(n)|. Composition is given
by g ◦ f(x, u) = g(f(x, u), u), in this way C becomes a simplicial category, in fact
this simplicial structure is compatible with the model category structure i.e. it
endows C with the structure of a closed simplicial model category.
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Remark 7.5. There are evident similarities in the above two constructions which
hint at some deeper underlying connection between the two categories. Indeed if
we restrict ourselves to the subcategory of compactly generated topological spaces,
there is a Quillen adjunction Sing : T → sSets and |.| : sSets→ T , where Sing is
the singular complex functor. These satisfy the assumptions of Theorem 6.6. and
hence induce equivalences on the homotopy categories. One consequence of this is
that it gives us a completely combinatorial definition of homotopy groups see [5]
for details.

In sSets there is a canonical evaluation map

ev : A×HomsSets(A,B)→ B

If we take

σn ∈ HomsSets(A,B)n = HomsSets(∆(n),HomsSets(A,B))

= HomsSets(A×∆(n), B)

then this map is the unique map which makes the following diagram commute:

A×∆(n)

A×HomsSets(A,B)

idA×σn

∨
ev
> B

σn

>

Concretely, for a ∈ A, σn ∈ HomsSets(A×∆(n), B) and where in ∈ ∆(n)n the
unique non-degenerate n simplex, the map is given by

(x× σn) 7→ σn(x, in)

The map ev determines an isomorphism

HomsSets(K,HomsSets(A,B))
Θ
> HomsSets(A×K,B)

for any simplicial set K, where Θ(u) = ev ◦ (id× u)
We now fix a simplicial category C, it will be convenient to identify HomC(A,B)

with HomC(A,B)0 and drop the ∼ notation. The simplicial structure on a cate-
gory allows us to define a notion of simplicial homotopy on a simplicial category
analogous to the definition for topological spaces.

Definition 7.6. A generalized unit interval is a simplicial set J which is a union
of copies of ∆(1)’s joined end on end. More concretely it has non-degenerate 1
simplices a1, ..., an and 0 simplices v0, ..., vn with d0(ai) = vi−1 and d1(ai) = vi or
d0(ai) = vi and d1(ai) = vi−1. We let 0 and 1 denote the endpoints v0 and vn of J .

Definition 7.7. Let K be a simplicial set. The two elements x, y of K0 are strictly
homotopic if there exists an element h ∈ K1 such that d0h = x and d1h = y and
homotopic if there exists a map h : J → K1 such that h(0) = x and h(1) = y.

It is clear the the condition of being homotopic to is an equivalence relation on
K0 and we write π0(K) for the set of equivalence classes.

Applying the above definition to the simplicial function complex in an arbitrary
simplicial category we obtain the following.
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Definition 7.8. Let A,B ∈ obC and f, g two morphisms from A to B. We say f
and g are strictly homotopic (resp. homotopic) if they are so considered as elements
of HomC(A,B) and HomC(A,B). A strict homotopy (resp. homotopy) between f
and g will then be an element h ∈ HomC(A,B)1 (resp. h : J → HomC(A,B) with
d0h = f, d1h = g (resp. h(0) = f, h(1) = g).

In order to relate this notion of homotopy, which we will henceforth refer to as
simplicial homotopy, to that given in the context of model categories, we need to
have simplicial versions of cylinder/ path objects

Definition 7.9. Let A ∈ obC, and K ∈ obsSets. A⊗K will denote an object of C
together with a morphism of simplicial sets

(7.1) α : K → HomC(A,A⊗K)

which satisfy the property that for any other object B, we have an isomorphism

(7.2) ϕ : HomC(A⊗K,B) ∼= HomsSets(K,HomC(A,B))

Where Θ(ϕ) : K ×HomC(A⊗K,B)→ HomC(A,B) is the map given by

K ×HomC(A⊗K,B)
α×id
> HomC(A,A⊗K)×HomC(A⊗K,B)

◦
> HomC(A,B)

Dually BK will denote an object of C together with a morphism BK → B
satisfying the property for any other object A we have an isomorphism

ψ : HomC(A,B
K) ∼= HomsSets(K,HomC(A,B))

Remark 7.10. Any object A determines a simplicial functor hA := HomC(−, A)
from Cop to sSets. A functor F : Cop → sSets is representable if it is naturally
isomorphic to some hA. There is an analogue of Yoneda’s lemma for this type
of representability, and in this language, we have A ⊗ K represents the functor
B 7→ HomsSets(K,HomC(A,B))

To see why these should be considered cylinder/ path objects, consider the cat-
egory sSets, where the product simplicial sets A×K gives such an object A⊗K.
When K is ∆(1), the geometric realization of |X×∆| is homeomorphic to A× [0, 1].
The reader is encouraged to keep these geometric interpretations in the back of their
mind for intuition in later proofs.

These path and cylinder objects satisfy the following properties.

Proposition 7.11. For A ∈ obC and L,K ∈ obsSets we have canonical isomor-
phisms:

A⊗ (K × L) ∼= (A⊗K)⊗ L AK×L ∼= (AK)L

Proof. Let B ∈ obC, then we have bijections

HomC(A⊗ (K × L), B)∼= HomsSets(K × L,HomC(A,B))

∼=HomsSets(L,HomsSets(K,HomC(A,B)))

∼= HomsSets(L,HomsSets(A⊗K,B))

∼= HomC((A⊗K)⊗ L,B)

�



32 RONG ZHOU

Suppose that cylinder and path objets exists in C, then for J a generalized unit
interval, the images of 0 and 1 under the map α : J → HomC(A,A⊗ J) correspond
to morphisms j0, j1 : A → A ⊗K. It is then easy to see that a homotopy from f
to g is the same as a map h : A⊗ J → B such that hj0 = f and hj1 = g. Similarly
a homotopy can be identified with a map k : A → BJ such i0k = f and j1k = g
where i0 and i1 are the maps BJ → B determined by 0, 1 ∈ J0.

We now come to the definition of a closed simplicial model. As mentioned before,
this is a category with both a closed model structure and simplicial structure which
are compatible, and so allows us to relate the two notions of homotopy. We first
define the model structure on sSets as we will need this to define a closed simplicial
model category. The definitions make sSets into a closed simplicial model category,
however the proof of this is rather long so we instead refer to [6] for the proof.

Let ∂∆(n) denote the simplicial subset of ∆(n) generated by the faces di :
[n−1]→ [n] of ∆(n), and V (n, k),the k horn of ∆(n), the simplicial subset of ∆(n)
generated by the face di : [n − 1] → [n] for i 6= k. Geometrically, |∂∆(n)| is the
boundary of the standard n simplex and |V (n, k)| is the boundary minus the kkWh

face, i.e. the closed star of the kth vertex, so that the notation is consistent with
Chapter 4.

Let f be a morphism in sSets; we will need the following two lemmas:

Lemma 7.12. The following are equivalent:
i) f has the right lifting property with respect to ∂∆(n) ↪→ ∆(n).
ii) f has the right lifting property with respect to any injective map.

Proof. [3] Prop 3.22 �

Lemma 7.13. The following are equivalent:
i) f has the right lifting property with respect to V (n, k) ↪→ ∆(n).
ii)f has the right lifting property with respect to ∂∆(n) ×∆(1) ∪∆(n) × 0 ↪→

∆(n)×∆(1)
ii) f has the right lifting property with respect K×∆(1) ∪ L × 0 ↪→ L × ∆(1)

where K → L is any injective map.

Proof. [6] �

Definition 7.14. A map f in sSets is a trivial fibration (resp. fibration) if it
satisfies the equivalent conditions of Lemma 7.12 (resp. Lemma 7.13). Then a
cofibration (resp. trial cofibration) in sSets is a map which satisfies the left lifting
property with respect to the trivial fibrations (resp. fibrations), in particular a map
in sSets is a cofibration if and only if it is injective.

A simplicial set will be called finite if it has only finitely many non-degenerate
simplices. Note that a finite simplicial set is always a simplicial object over the
category of finite sets, however the converse is not true.

The definition of a closed simplicial model category can now be stated.

Definition 7.15. A closed simplicial model category is a closed model category
which is also a closed simplicial model category which and who satisfies the following
conditions:

SM1) For all A ∈ obC and K a finite simplicial set, the objects A ⊗K and AK

exist.
SM2) If i : A→ B is a cofibration and p : X → Y is a fibration. Then the map
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HomC(B,X)
(i∗,p∗)

> HomC(A,X)×HomC(A,Y ) HomC(B, Y )

is a fibration of simplicial sets which is trivial if either i or p is.

It will be convenient to denote the target of the above map by HomC(i, p)
A more useful version of the axiom SM2) is stated in the next proposition

Proposition 7.16. Suppose C is a category with 4 classes of morphisms, fibrations,
trivial fibrations, cofibrations and trivial cofibrations such that the first and fourth,
and second and third classes determine each other via the lifting property as in
M6a) (In particular these conditions are satisfied when C is a closed simplicial
model category. Then SM2 is equivalent separately to each of the following two
condition:

SM2a) If X → Y is a fibration (resp. trivial fibration), the map X∆(n) →
X∆.(n) ×Y ∂∆(n) Y ∂∆(n) is a fibration (resp. trivial fibration) and the map X∆(1) →
Xe ×Y e Y ∆(1) is a trivial fibration for e = 0 or 1.

SM2b) The dual of the SM1a): If A → B is a cofibration (resp. trivial cofibra-
tion), the map A⊗∆(n) ∨A⊗∂∆(n) B ⊗ ∂∆(n) → B ⊗∆(n) is a cofibration (resp.
trivial cofibration) and the map A ⊗ ∆(1) ∨A⊗e B × e → B ⊗ ∆(1) is a trivial
cofibration for e = 0 or 1.

Proof. We prove only the equivalence of SM2) and SM2a) as the other is dual. For
L→ K a map of finite simplicial sets, it follows from the definition of path objects
that to give a commutative square

A > XK

B
∨

> XK ×XL Y L
∨

is equivalent to giving a square:

L > HomC(B,X)

K
∨

> HomC(A,X)×HomC(A,Y ) HomC(B, Y )
∨

it can then be shown that the left/ right lifting property for both diagrams are also
equivalent.

When X → K is a fibration, then XK → XK ×XL Y L is a fibration if and only
if for A → B a trivial cofibration, there is a lift B → XK . This is equivalent to
the existence of a lifting K → HomC(B,X). From this one sees the equivalence of
SM2) and SM2a). �

The above proposition immediately implies the following corollary, which gives
a simplicial analogue of the homotopy lifting theorem which was essential in the
proof of Theorem 3.9. From now on we fix a closed simplicial model category C.
We would like to relate the two notions of homotopy that we now have, we write
f ∼s.s g if f and g are strictly homotopic and f ∼s g if f and g are homotopic,
where homotopic is meant in the simplicial sense.
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Corollary 7.17. i) Suppose i : A→ B is a cofibration and p : X → Y a fibration.
Let h : B ⊗ J → Y be a homotopy and k : A⊗ J → X be a lift of this homotopy in
the sense that the following diagram commutes.

A⊗ J k
> X

B ⊗ J

i⊗idJ
∨

h
> Y

p

∨

Suppose θ : B → X is map such that pθ = hj0, then there exists a homotopy
H : B ⊗ J → X such that pH = h, H ◦ ⊗idJ = k and Hj0 = θ.

ii) If in addition i or p is trivial and θ0, θ1 : B → X are maps such that pθ0 = hj0
and pθ1 = hj1, then one can find H : B⊗J → X as above which satisfies Hj0 = θ0

and Hj1 = θ1

Proof. i) By induction we may assume J = ∆(1). Then this follows immediately
from SM2b); indeed the map A⊗∆(1)∨A⊗eB×e→ B⊗∆(1) is a trivial fibration,
hence we may pick a lifting in the following diagram:

A⊗∆(1) ∨A⊗e B × e
k+θ
> X

B ⊗∆(1)
∨

h
> Y

H
>

p

∨

which gives our desired homotopy.
ii) The proof is similar to the above, noting that the fact that i or p being trivial

implies we can lift in the following diagram:

A⊗∆(1) ∨A⊗∂∆(1) B × ∂∆(1)
k+(θ0,θ1)

> X

B ⊗∆(1)
∨

h
> Y

H
>

p

∨
�

The main result of this section is then the following

Proposition 7.18. i) The conclusion of Theorem 3.7 holds with πCcf replaced with
πCcf .

ii) Let C be a closed simplicial model category and f, g : A→ B two morphisms
in C. The f ∼s g implies f ∼l g and f ∼r g. When A is cofibrant and B is fibrant
all three relations coincide.

Proof. i) Suppose A is cofibrant, then 0 ↪→ J has the left lifting property with
respect to fibrations, indeed 0 ↪→ ∆(1) is the inclusion V (1, 0) ↪→ ∆(1) and the
general case follows by induction on the length of J . Then it follows by the proof of
SM2b) that j0 : A → A ⊗ J has the left lifting property with respect to fibrations
hence is a trivial cofibration. Here we use the fact that for the initial object 0 we
have 0⊗K ∼= 0 for any simplicial set K, which follows from equation (7.2), so that
the applying SM7b) with 0 ↪→ B we obtain the claim. Let σ : A × J → A denote
the constant homotopy, then it follows from M6) that σ is a weak equivalence. And
since ∂∆(1) ↪→ ∆(1) has the left lifting property with respect to trivial cofibrations,
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it follows by SM2b) again that j0 + j1;A∨A→ A⊗J is a cofibration so that A×J
is a cylinder object for A.

Examining the Proposition 3.6 part ii), we see that the same proof applies (cf.
remark 3.7), so that any map which inverts weak equivalences identifies (simpli-
cially) homotopic maps. Thus γc induces a functor π0Cc → HoCc, and similarly for
γ and γf .

To construct the quasi-inverse functor, we use the cofibrant and fibrant replace-
ment functors Q and R. Again since Proposition 3.5 holds for the simplicial case
(cf. remark 3.7) we obtain a well defined functor RQ : C → π0Ccf . The same proof
then goes through as before.

ii) [6] Chapter II, Section 2 Proposition 5. �

Remark 7.19. In fact we have that Theorem 3.9 holds with πCc, πCf and πCcf
replaced by π0Cc, π0Cf and π0Ccf , the proof is adapted in the same way as above
using the previous Corollary.

8. More Examples

We now state some examples of closed simplicial categories. The proofs of the
axioms for these categories are generally quite difficult and can be found in [6]
Chapter 2, Sections 3 and 4. Alternatively there is a more modern treatment of
this material in [3]

Example 8.1. We have already seen in Section 4 that the category of topological
spaces Top is a model category and in Example 7.4 we also defined a simplicial
structure on it. It turns out that these endow Top with he structure of a closed
simplicial model category.

Example 8.2. Let A be a category which is closed under finite limits and all
colimits, and sA be the category of simplicial objets over A, i.e. functors ∆op → A
and natural transformations between them. For A an object of sA we let An
denote the image of [n]. For A,B ∈ obC, and K a simplicial set, we define a map
f : A×∆(n)→ B to be a collection of maps f(σ) : An → Bn for each n-simplex σ
such that if ϕ : [k]→ [n] is a map in ∆, the following diagram commutes:

An
f(σ)

> Bn

Ak

A(ϕ)

∨
K(ϕ)σ

> Bk

B(ϕ)

∨

Let Maps(A×K,B) be the set of maps f : A×K → B (it is an easy exercise to
show that for the case of simplicial sets we have Maps(A×K,B) = HomsSets(A×
K,B)). This allows us to define a simplicial structure on sA by setting

HomsA(A,B)n = Maps(A×∆(n), B)

where boundary and face maps are induced by those on ∆(n).
There is a composition map

Maps(A×K,B)×Maps(B ×K,C)→ Maps(A×K,C)

given by (g ◦ f)(σ) 7→ g(σ)f(σ) and this induces a composition:

HomsA(A,B)×HomsA(B,C)→ HomsA(A,C)
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To define the model category structure, recall that a morphism f : A→ B in A
is called an effective epimorphism if for any other object C, the map of sets.

Hom(B,C)
f∗

> Hom(A,C)
pr∗1>
pr∗2
> Hom(A×B A,C)

is exact.
An object P of A is called projective if the map Hom(P,A) → Hom(P,B) is

surjective for all effective epimorphisms A→ B. We say the category A has enough
projectives if for all objects A there exists an effective epimorphism P → A.

We call an object A small if Hom(A, .) commutes with all colimits and a class of
objects I are generators of A if for all objects A, there exists an effective epimor-
phism Q→ A where Q is a direct sum of elements of I.

Now let A and B be objects of sA, define a map f : A → B to be an fibration
(resp. a weak equivalence) if HomsA(P, f) is a fibration (resp. a weak equivalence)
in sSets for all projectives P ∈ obsA. Cofibrations are then defined to be maps
which have the left lifting property with respect to trivial fibrations.

With these definitions the category sA is a closed simplicial model category if
one of the following conditions is satisfied:
• All objects of sA are fibrant
• A has a set of small projective generators.

The following is a special case of the above and is an extremely important ex-
ample.

Fix a commutative ring R and let ModR be the category of modules over R, then
sModR is that category of simplcial modules over R. One can check that ModR
satisfies all the conditions in the above example and that in sModR all objects
are fibrant, so that the above construction endows ModR with the structure of a
closed simplicial model category. In this particular case there are more tractable
interpretations of the model structure which we will now describe.

Given a simplicial module M (as before we let Mn denote M([n])) we define the
normalized chain complex N(M) of M to be the complex of R modules with

N(M)n =
n⋂
i=1

ker di

with differential given by d0. The simplicial identities show that N(M) is indeed
a chain complex and indeed N can be extended to a functor ModR → Ch≥0(R).
Define the homotopy groups to be the R modules

πn(M) = Hn(N(M))

If N is an R-module, define s(N) to be the simplicial R module which is N in
every degree and all face and degeneracy maps are the identity. Then

πn(s(N)) =

{
N for n = 0

0 for n 6= 0

One checks that s extends to a functor ModR → sModR which is right adjoint
to π0.

Theorem 8.3. (Dold-Kan correspondence) The functor N : ModR → Ch≥(R) is
an equivalence of model categories.
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Here an equivalence of model categories means an equivalence of categories which
preserves the structures associated to a model category, eg. fibrations, cofibrations
weak equivalences. Thus comparing with the model category structure on Ch≥0(R)
we obtain the following:

Proposition 8.4. i) A morphism f : M → N of simplicial modules is a weak
equivalence if and only if the induced maps

π∗(f) : π∗(M)→ π∗(N)

is a weak equivalence.
ii) A morphism f : M → N if simplicial modules is a fibration if and only if

N(f) : N(M)→ N(M)

is surjective.

Remark 8.5. When R = Z, ModZ is just the category of abelian groups, hence the
above constructions all go through for the case of simplicial abelian groups.

9. Homology and Cohomology

In the context of model categories, there are good notions of homology and
cohomology. If one thinks of homotopoical algebra as a non-abelian homological
algebra, then a natural question would to ask what the abelianization functor looks
like. It turns out that (assuming the existence of a nice abelianization functor)
taking derived functors will give us a good notion of homology and which agrees
with that defined by suitable a Grothendieck topology.

Although cohomology is defined for general model categories, if we are in the
case of a closed simplicial model category, the simplicial structure can be a powerful
tool for computing cohomology. We will see some examples of this in Chapter 9,
the point is that one can use simplicial resolutions to compute cohomology (in the
language of Chapter 3, a simplicial resolution is just a cofibrant replacement). In
the special case of simplicial modules over a ring, the Dold-Kan correspondence
tells us that this is exactly the same as taking a projective resolution, giving us a
beautiful generalization the case of abelian categories.

In the next Chpater we will see how one can interpret taking Kahler differentials
of a morphism of rings as an abelianization functor on a suitable simplicial model, so
the rest of this section will prove the correct context for talking about the cotangent
complex.

Let C be a fixed model category and Cab the subcategory of abelian objects of C.
Recall that an abelian group object in the category C is an object A such that the
Hom(C,A) is an abelian group functorially in the object C. By Yoneda’s lemma
this is equivalent to the existence of maps

m : A×A→ A, i : A→ A and e : ∗ → A

where ∗ is the terminal object in A, such that these satisfy appropriate analogues
of the axioms of an abelian group.

We will assume that there exists an abelianization functor ab : C → Cab which is
left adjoint to the inclusion Cab. Moreover we assume that Cab is a model category
in such a way that these functors form a Quillen adjunction, so that the total left
and right derived Lab and Ri are canonically adjoint.
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Example 9.1. For sSets the category of simplicial sets, sSetsab is the subcategory
of simplicial abelian groups. i : sSets → sSetsab is the forgetful functor and
ab : sSets → sSetsab is induced by the the functor taking a set X to the free
abelian group with generator set X.

We also assume that in the homotopy category the adjunction morhpism

Θ : A→ ΩΣA

is an isomorphism and that if

A
i
> B

j
> C

δ
> ΣA

is a cofibration sequence, then

ΩΣA
iΘ−1

> A
j
> C

δ
> ΣA

is a fibration sequence.
These conditions hold in the situation of example 8.2. More importably for us

they hold for the category of simplicial modules over a simplicial ring.

Definition 9.2. The Quillen homology of an object X is defined to be the object
LabX in the category HoCab.

The ith cohomology group of X with coefficients in an object A ∈ obHoCab is
given by

Hi(X,A) = [LabX,Ωi+NΣNA]

where N ≥ 0 is sufficiently large that i+N ≥ 0.

Let’s see what this definition gives us in a couple of examples

Example 9.3. If X is a simplicial set, then X is cofibrant and we have that
LabX = Xab. Let A be the simplicial abelian group s(Z), then by the Dold-Kan
correspondence, we have that

Hi(X,A) = [Xab,Ω
i+NΣNs(Z)] = π(N(Xab),N(Ωi+NΣNs(Z)))

Here N(Ωi+NΣNs(Z)) is the complex which Z in degree i and zero everywhere else.
If Y is a topological space, N(SingY ) is the singular complex associated to Y ,
hence Hi(SingY, s(Z)) = Hi(Y,Z) the usual cohomology of Y .

This examples reinforces the notion that homotopy theory gives a non-abelian
generalization of homology. Indeed one would would the abelianization of any such
theory would recover ordinary homology.

Definition 9.4. Let C be a closed simplicial model category. By a simplicial
resolution P of an object A ∈ obC we mean a cofibrant replacement for A, in other
words a cofibrant object together with a trivial fibration P → A.

Suppose A satisfies the conditions in example 8.3 and let X ∈ obA. Consider
X as a constant simplicial object in sA, and let P → X be simplicial resolu-
tion of X. Then for an abelian group object A ∈ obAab, define RihA(P ) to be
πi(HomsA(Pab, A)), the ith homotopy group of the simplicial function complex of
maps from Pab to A.

The following proposition makes it clear how simplicial resolutions generalize
projective resolutions and can be use to compute homology.
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Proposition 9.5. Suppose A satisfies the condition in example 8.3 with X ∈ obA
and A ∈ obAab, so that the simplicial category s(A/X) satisfies the conditions at
the start of this section. Then if we consider X and A as constant simplicial objects
in s(A/X), there exists an isomorphism

Hi(X,A) ∼= RihA(X)

Proof. Let B be the category (A/X)ab, then B has enough projective objects given
by ab(P ) where P is a projective object in A/X. Then sB and Ch≥0(B) exist,
and N : sBab → Ch≥0(B) is an equivalence of model categories by the Dold-Kan
theorem. Let P be a simplicial resolution of X, and we will consider A as a constant
simplicial object then we have the following bijections:

Hi(X,A)= π(Lab,ΩiA)

= π(P,Ωi+N iΣNA)

= π0(P,Ωi+NΣNA)

=π0(N(P ),ΩiN(A))

Now Ωi(N(A)) is just the chain complex with A in degree i and zero elsewhere,
hence the homotopy classes of maps from N(P ) to N(A) is just the ith homology
of the complex Hom(N(P ), A), which is just RihAX.

�

Remark 9.6. Under some further assumptions, the cohomology defined here can be
shown to be same as that defined by the sheaf cohomology with respect to a certain
Grothendieck topology on the category or by a sets of cotriples, see [6] Chapter 2
section 5 for more details.

If A itself was an abelian category, for example ModR, then the abelianzation
functor is just the identity and the proof of the above theorem shows that the ith

quillen cohomology is just the ith homology of the complex HomA(P•, A) where P•
is a projective resolution of X and hence is just the usual Exti(X,A).

10. The Cotangent Complex

We have now arrived at our final port of call, the definition of the cotangent
complex. We will see how the techniques developed in the paper so far allow a very
clean definition of this object as the left derived functor taking Kahler differentials.
We will explain how this is equivalent to taking the derived functor of abelianization
on a suitable category, placing the construction in the general context of Chapter 9,
and use the theory developed derive some basic properties. The next two Chpaters
follow the material covered in [4] and [1] and we refer the reader to these articles
for more detailed explanations. We begin by recalling some results about Kahler
differentials; we will not go into any proofs as these can be found in most textbooks
on commutative algebra.

Let R be a ring and S and R an algebra. For an S-module M , and R-linear
derivation with values in M is a homomorphism of R modules δ : S →M satisfying
the Leibniz rule:
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δ(xy) = xδ(y) + yδ(x)

The set of such derivations is denoted DerR(S,M) and it has the natural struc-
ture of an S module. The functor M 7→ DerR(S,M) is representable and the
representing object is denoted by ΩS/R, the module of Kahler differentials. It is
equipped with a universal derivations δS/R : S → ΩS/R and the bijection

Hom(ΩS/R,M)→ DerR(S,M)

is given by f 7→ fδS/R.
The module ΩS/R can be constructed as a quotient of the free module on gen-

erators ds, s ∈ S by a set of universal relations. Alternatively letting I denote the
kernel of the map S ⊗R S → S given by s ⊗ s′ → ss′, one can show that I/I2

together with the map S → I/I2 given by s 7→ S ⊗ 1− 1⊗ s satisfies the universal
property of ΩS/R.

Example 10.1. When S is the polynomial ring R[X] in a set of indeterminates
X = {xi : i ∈ I}, one can show

ΩS/R =
⊕
i∈I

dxi

the free module on generators dxi and δS/R is given by δS/R(xi) = dxi. Indeed it
is easy to check that this module has the desired universal property.

Let f : S → T be a homormorphism of R algebras, then composing the universal
derivation δT/R with S → T , we obtain an R-linear derivation of S with coefficients
in ΩT/R and hence a map of S modules Ωf/R : ΩS/R → ΩT/R, in fact it is the
unique map which makes the following diagram commute:

(10.1)

ΩS/R
Ωf/R

> ΩT/R

S

δS/R

∧

f
> T

δT/S

∧

Suppose we have homomorphisms of commutative rings

R
f
> S

g
> T

Then there exists an exact sequence

(10.2) ΩS/R ⊗S T
α
> ΩT/R

β
> ΩT/S > 0

The map α is given by the map in (10.1) upon extension of scalars. Similarly
restricting the universal derivation δT/S to R, we obtain an R linear derivation
with coefficients in ΩT/S hence a unique map β : ΩT/R → ΩT/S .

The exact sequence (10.2) is really the origin of the cotangent complex, it hints
that Ω−/R is behaving somewhat like a right exact functor on the category on R
algebras. Obviously this notion does not make any sense since the category of R
algebras is not abelian, however it is still a natural question to ask whether one
can extend this sequence to the left in the same way that left derived functors do
in the abelian case. Moreover when S → T is a smooth map it can be shown that
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α is injective, so whatever this extension, the first term should vanish when S → T
is smooth.

The sequence (10.2) can be extended naturally in the special case when g : S → T
is surjective. In this case ΩT/S is trivial, and if we let J be the kernel of g, (10.2)
can be extended to

(10.3) J/J2 ζ
> ΩS/R ⊗S S/J

α
> ΩT/R > 0

The map ζ is defined as follows. Restricting the universal derivation δS/R to J
gives a map J → ΩS/R ⊗R R/J . Using the Leibniz rule, one shows that this map

is trivial on J2 and the induced map J/J2 → ΩS/R ⊗R R/J is precisely the map

ζ. Again we would hope any extension of this sequence would give J/J2 for this
special case.

So what we are looking for then is a complex L• of S modules for any map
R → S of commutative rings, well defined in the homotopy category of complexes
over S, and such that H0(L•) ∼= ΩS/R and H1(L) = 0 (resp. J/J2) when R → S
is smooth (resp. when S = R/J).

We have seen through our example of Ch≥0(R) that model categories give a
good generalization of derived functors, so let’s what the constructions give in this
case.

We are trying to derive the the functor of Kahler differentials on the category of
R algebras which is a highly non-abelain category. To compute derived functors in
the abelian one uses projective resolutions, we have seen that simplicial resolutions
give a good generalization of this. Translating the constructions above into the
simplicial setting will turn out to be very fruitful.

Let sAlgR category of simplcial algebras over R. An object A in sAlgR is
then a collection of R algebras An, together with face maps which are morphisms
of R algebras. If X is a simplicial R algebra, by simplicial X-module M we mean
collection of Xn modules Mn together with face and degeneracy maps which respect
the fact and degeneracy maps on X. We denote the category of simplicial X
modules my sModX (note this is not the category of simplcial objects over some
category, the s just denotes the fact that the category is simplicial).
sAlgR has the structure of a closed simplicial model category, and considering

an R algebra as an R algebra via the structure map we obtain, as in the case of
simplcial modules, a normalization functor S → N(S) from sAlgR to the category
of chain complexes of R-modules and hence the homotopy groups πn, which are no
longer R algebras, merely R-modules. We have the following characterization of
weak equivalences and fibrations in sAlgR

Proposition 10.2. A morphism f : A→ B in sAlgR is:
i) a weak equivalence if and if π∗A→ π∗B is an isomorphism.
ii) a fibration if and only if the map X → π0X ×π0Y Y is surjective.

The cofibrations can then be characterized formally by the lifting property in
the usual way, however we will need a more concrete characterization.

Definition 10.3. Let A be a simplicial algebra over R. A free extension of A is a
simplicial algebra B over R satisfying the following conditions:

i) Bn = An[xn] where Xn is a set of indeterminates.
ii) sj(Xn) ⊂ Xn+1 for each degeneracy map sj .
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ii) The natural map A→ B is a morphism of simplicial algebras.

We usually denote free extensions by A[X] where X = (Xn)n≥0 is the set of
indeterminates.

It is easy to check that free extensions have the left lifting property with respect
to the fibrations in sAlgR, the following also holds.

Proposition 10.4. A morphism f : A→ B in sAlgR is a cofibration if and only
if it is the retract of a free extension.

Let us now consider the commutative rings S and R as constant objects in
sAlgR, and let

R
i
> P

p
> S

be a factorization of the structure map into a cofibration followed by a trivial
fibration, in the terminology of the previous chapter, P is a simplicial resolution of
P . In fact one can show that we can take P to be a free resolution, in the sense
that R→ P is a free extensions, this can be proved by a version of the small object
argument. Applying the functor Ω−/R degree wise to P we obtain a simplicial

module ΩP/R over P which is ΩPn,/R in the nth degree and face and degeneracy
maps are induced by those on P by the diagram (10.1).

Definition 10.5. The cotangent complex LS/R of S/A is the chain complex of S
given by the normalization

LS/R = N(ΩP/R)⊗P S)

where the tensor product is taken component wise over P .

Note that as in the case of Kahler differentials, the cotangent complex depends
on the morphism of rings R→ S. The notations LS/R however will not cause any
confusion as we will never consider two different morphisms between rings.

Remark 10.6. Some authors define the cotangent complex as the simplicial module
ΩP/R⊗PS, by the Dold-Kan correspondence these two points of view are equivalent.

The cotangent complex is not a functor from R algebras to another category
since the target category depends on the R algebra S. Thus this definition does
not make it clear that it is a left derived functor, we will see in the next paragraph
how we can remedy this situation by restricting ourselves to augmented algebras.

The cotangent complex is only well defined in the homotopy category of chain
complexes over S, so that its homology is well defined. This is easily seen by putting
the construction in the context of section 9, which we will explain below. To prove
any basic properties we will use free resolutions to compute LS/R in which case one
can give a direct proof of the well-definedness, we will omit this and instead refer
the reader to [1]

Begin going to discuss properties of the cotangent complex, we show how one can
think of ΩS/R can be thought of as a left derived functor of abelianization, so that
it can be thought of as the cohomology theory of some category. This cohomology
theory is known as Andre-Quillen cohomology.

Remember before we were working in the category AlgR. The terminal object in
this category is the R algebra 0 and as such does not admit maps into any non zero
object in AlgR thus there are non non-trivial abelian group objects in this category
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and its cohomology theory is not particularly interesting. The way to remedy this
is to work in the category of S-augmented R algebras, denoted AlgSR whose objects
consists of R algebras A together with an augmentation map A→ S.

An abelian group object in this category is then an S-augmented R algebra A
together with maps

m : A×S A→ A e : S → A i : A→ A

satisfying the axioms for an abelian group.
Suppose M is an S-module, then consider the R-algebra S nM whose additive

group is S ⊕M and whose multiplication is given by

(a1,m1)(a2,m2) = (a1a2, a2m+ a1m)

It is easy to check to if we take e : S → SnM to be the inclusion of the first factor,
m : (a,m1,m2) 7→ (a,m1 +m2) and i : (a,m1) 7→ (a,−m2) then this turns S nM

into an abelian group object of AlgSR.

Suppose X is another object in AlgSR, then what is the group HomAlgS

R

(X,Sn
M)? An element of this group can be written as f⊕d, where f is the augmentation
map B → A. The algebra structure on S nM implies d is a an R linear derivation
of X with coefficients in M . Conversely an element d ∈ DerR(X,M) determines
an element of HomAlgS

R

(X,S nM) by f ⊕ d and hence we obtain a bijection

(10.4) DerR(X,M)→ HomAlgS

R

(X,S nM)

which can be seen to be compatible with the group structure. The following is then
an easy exercise.

Proposition 10.7. The functor M 7→ SnM is an equivalence of categories between
the category of S modules and the category of abelian group objects in AlgSR and it
has a left adjoint given by X 7→ ΩX/R ⊗X S

The next corollary is immediate

Corollary 10.8. The abelianization functor in the category AlgSR is given by

X 7→ ΩX/R ⊗X S

under the above identification of categories

It follows that one can think of the cotangent complex as the Quillen homology
of the object B.

We finish this section by discussing the basic properties of the the cotangent
complex, showing that it satisfies the properties expected of it. First note that by
right exactness of (10.2) we have that H0(LS/R) = ΩS/R. The following is proved
in [1]

Proposition 10.9. (Flat base change) Given a diagram of rings

R
f

> S

A

g

∨
> S ⊗R A

∨

where either f or g is flat, then there is an isomorphism LS⊗RA/S
∼= LA/R
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We now show how it allows us to extend the Jacobi-Zariski exact sequence (9.2).

Proposition 10.10. (Jacobi-Zariski exact sequence) Let R → S → T be mor-
phisms of rings, then the sequence

LS/R ⊗S T → LT/R → LT/S
is a cofibration sequence in the category Ch≥0(T )

Proof. Let A be a free resolution of R → S and B a free resolution of A → T , so
that we have a diagram:

R
i
> A

i′

> B

R

|||
|||
|||

> S

p

∨
> T

p′

∨

where p and p′ are trivial fibrations, and i and i′ are free extensions. Thus B is also
a free extension of R and we obtain for each n an exact sequence of Bn modules

ΩAn/R ⊗An
Bn > ΩBn/R > ΩBn/An

> 0

In fact this sequence is short exact since Bn is a polynomial algebra in An. Then
tensuring by T we obtain a short exact sequence

(10.5) 0 > ΩAn/R ⊗An T > ΩBn/R ⊗Bn T > ΩBn/An
⊗Bn T > 0

where the left exactness follows from the fact ΩBn/An
is free over Bn (cf example

10.1).
We then have maps S ⊗S B → T which can be shown to be trivial fibration and

the map S → S⊗AB is cofibration, being the pushout of i′. In other words S⊗AB
is a simplicial resolution (in fact free) resolution of T in the category of simplicial
S algebras. Observing that

ΩBn/An
∼= ΩS⊗AnBn

by flat base change and that the normalization of the right hand is just the cotangent
complex LT/S , we have that upon taking the normalization of the sequence (9.3),
we obtain an exact sequence of complexes,

0→ LS/R ⊗S T → LT/R → LT/S → 0

with the third column consisting of free modules. By definition of the model cate-
gory structure on Ch≥0(R) is precisely a cofibration sequence. �

Taking homology of the above sequence we obtain the desired extension of the
exact sequence (10.2).

For a concrete computation of the cotangent complex using free resolutions, we
refer to Proposition 5.11 in [1]. We will need this result in the next section so we
state it below.

Proposition 10.11. Let S = R/(r) and R→ S the canonical surjection. We have
the following homotopy equivalence:

LS/R ∼= ΣS
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where we consider S as the complex of S modules which is S in degree 0 and 0
everywhere else.

11. Applications: Complete intersections and smooth homomorphisms

In this section we will use the cotangent complex to prove a characterization
of complete intersection homomorphisms and smooth homomorphisms under some
finiteness assumptions. Just as the Tor functor can be used to detect flatness of
homomorphism of rings, in order to study these finer invariants one must use the
cotangent complex.

Let us begin with the definitions of complete intersections and smooth homo-
morphisms. For simplicity we assume throughout that all rings are Noetherian and
all morphisms of rings are locally of finite type.

Let R be a ring. A sequence of elements r1, ..., rc said to be regular if ri is a
non-zero divisor in R/(r1, ..., ri−1) for i = 1, ..., c

Definition 11.1. A surjective morphism of rings ϕ : R → S is a complete inter-
section if the kernel of ϕ is generated by a regular sequence.

A surjective ϕ is a locally complete intersection if for all prime ideals q of S, the
morphism Rϕ−1q → Sq is a complete intersection.

In general a ϕ is a locally complete intersection if there is a factorization of ϕ
into R→ R′ → S where R′ is the localization of a polynomial ring over R at some
multiplicativly closed subset, and the second map is a surjective locally complete
intersection.

Now let R be a local ring with maximal ideal m, then it is a regular local ring
if the maximal ideal is generated by a regular sequence. In general, a ring R is
regular if the localization of R at all prime ideals is a regular local ring.

Definition 11.2. A morphism ϕ : R→ S is said to be smooth if it is flat and for
all morphisms S → l where l is a field we have S ⊗R l is a regular ring.

Remark 11.3. Had we not insisted that ϕ was locally of finite type, then the smooth
should be replaced by regular.

There is a functorial characterization of smooth morphisms due to Grothendieck
that says a (locally of finite type) morphisms of rings is a smooth morphism if and
only if it is formally smooth, where R → S is said to be formally smooth if for all
R algebras A with I ⊂ A a nilpotent ideal, the map

HomR(S,A)→ HomR(S,A/I)

is surjective, i.e. one can lift any R algebra map S → A/I to an R algebra map
S → A.

Recall that in the characterization of flat morphisms, to show an R module N
is flat we need to check that Tor1

R(N,M) is zero for every R module M . Similarly
in order to characterize complete intersections/ smooth morphisms we will need to
consider the cotangent complex with coefficients.

Definition 11.4. Let S be an R algebra and N an S module, then the S modules

Dn(S/R,N) = Hn(LR/S ⊗S N), Dn(S/R,N) = Hn(HomS(L, N))
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are defined to be the nth Andre-Quillen homology (resp. cohomology) groups of
R→ S with coefficients in N .

Note as LS/R is well defined up to homotopy these modules are well defined.
Note also that by the Dold-Kan correspondence the definition of cohomology is
consistent with the one given in in section 9.

For a composition R→ S → T , it follows from Theorem 10.10 that

LS/R ⊗S T → LT/R → LT/S
is a cofibration sequence, and hence induces exact sequences on the Andre-Quileen
cohomology (and homology) groups.

The main results we will prove in this section are the following:

Theorem 11.5. For a morphism for rings ϕ : R→ S, the following are equivalent:
i) ϕ is a locally complete intersection
ii) Dn(S/R,N) = 0 for all n ≥ 2 and all S modules N .
iii) D2(S/R,N) = 0 for all S modules N

Theorem 11.6. For a morphism of rings ϕ : R→ S, the following are equivalent:
i) ϕ is a smooth morphism
ii) Dn(S/R,N) = 0 for all n ≥ 1 and all S modules N .
iii) D1(S/R,N) = 0 for all S modules N

Let us first prove Theorem. The hard part direction is iii)⇒ i), proof of this is
by induction on the minimal number of generators of kerϕ and the key input is a
relationship between the Tor functor and Andre-Quillen homology.

Proposition 11.7. Let ϕ : R → S be a surjective morphism of rings with kernel
I, then there are isomorphisms:

D1(S/R,N) ∼= Tor1
R
∼= I/I2 ⊗N

For a morphism R→ S let µSr : S⊗S → S denote the multiplication map.

Proposition 11.8. Suppose µSR is surjective, then there is an exact sequence of S
modules

Tor3
R(S,N) > D3(S/R,N) > ∧2

STor
1
R(S, S)⊗S N > ...

... > Tor2
R(S,N) > D2(S/R,N) > 0

Remark 11.9. These two results are proved in section 7 of [4]. The exact sequence
in Proposition 11.8 is just the terms of low degree in a spectral sequence relating
Tor and Dn. Note also that Proposition 11.7 verifies a desired property of the
cotangent complex resulting from equation 10.3.

We can reduce iii)⇒ i) to the following special case:

Proposition 11.10. Let ϕ : (R,m, k)→ (S, n, l) be a local homomorphism of local
rings, then D2(S/R,N) = 0 for all S-modules N implies ϕ is complete intersection.

Before we prove the result, let us briefly explain how one can use it to deduce
the implication iii)⇒ i). By definition of locally complete intersection, we need to
check that for all prime ideals q ⊂ S, the map Rϕ−1q → Sq is a locally complete
intersection. The in order to apply the Proposition we need to show that condition
D1(R/S,N) = 0 implies Dn(Sq, Rϕ−1q, l).
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Lemma 11.11. Let U ⊂ R be a multiplicatively closed subset, and set S = R[U−1],
then LS/R = 0

Proof. Since the functor ⊗RS is the identity on the category of S modules, we have
the homotopy equivalences:

LS/R ∼=LS/R ⊗R S∼=LS/S⊗RS
∼= LS/S∼= 0

where the map S ⊗R S → S is given by ϕ⊗R S.
Since R→ S is flat, the second isomorphism follows by flat base change and the

third isomorphism follows from the fact that ϕ⊗R S is non other than the identity
map on S. �

Now consider the diagram:

R > Rϕ−1q

S
∨

> Sq

∨

Applying the Jacobi-Zariski exact sequence to the two compositionsR→ Rϕ−1q →
Sq and R→ S → Sq and using the above lemma, one shows that

LS/R ⊗S Sq
∼= LSq/Rϕ−1q

In particular the vanishing ofD1(S/R,N) implies the vanishing ofD1(Sq/Rϕ−1q, N).

Proof. (of Proposition 11.10)We can factor the map ϕ as

R
i
> R′

ϕ′

> S

where R′ = R[X]q where X is a finite set of indeterminates, q a prime ideal in
R′ and ϕ′ a surjective map. Since LS/R′ vanishes, it follows by the Jacobi-Zariski
sequence that Dn(S/R,N) = Dn(S/R′, N), and hence we may assume that ϕ is
surjective.

Suppose kerϕ is minimally generated by c elements r1, ..., rc, we prove by induc-
tion on c that r1, ..., rc is a regular sequence in R.

For the base case c = 1 we have S = R/(r), we would like to show r is a
non-zero-divisor. Lemma 11.8 gives us the exact sequence

Λ2Tor1
R(S, S)⊗S k > Tor2

R(S, k) > D2(S/R, k) > 0

Since Tor1(S, S) ∼= r/r2 ∼= k we have that Tor2
R(S, k) = 0. This implies that the

projective dimension of S over R is at most 1, hence the complex

0→ R→ R→ 0

is exact as it is the start of a resolution of S, in particular r is a non-zero-divisor.
Suppose that we know the claim for c − 1, then let T = R/(r1, .., rc−1) and

S = T/(rc). The Jacobi-Zariski sequence of R→ T → S is the following:

D2(T/R,N) > D2(S/T,N) > D1(T/R,N) > D1(S/R,N) > D1(S/T ) > 0
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We have that the following isomorphisms

D1(T/R,N) ∼= kc−1 D1(S/R,N) ∼= kc D1(S/R,N) ∼= k

so that S2(S/T,N) = 0. By the base case of the induction we have that rc is a
non-zero divisor in T , hence rc is a regular sequence. �

Proof. (of Theorem 11.5) iii)→ i) was just proved and ii)→ iii) is obvious.
i)→ ii) Using the Jacobi-Zariski exact sequence we may again reduce to the case

ϕ is surjective. In this case, suppose S = R/(r1, ..., rc) where r1, .., rc is a regular
sequence. We induct on c, the case c = 1 being Proposition 10.11.

Now applying the Jacobi-Zariski exact sequence to the morphism of rings R →
R/(r1, ..., rc−1)→ S we obtain the isomorphism LS/R ∼= ΣS and hence the desired
vanishing of Dn.

�

We now turn to the proof of Theorem 11.6. Arguing in the same way as for
Theorem 11.5, we may reduce to the special case:

Proposition 11.12. For a morphism ϕ : (R,m, k) → (S, n, l) the following are
equivalent:

i) ϕ is smooth
ii) Dn(S/R,N) = 0 for all n ≥ 1 and all S modules N , and ΩS/R is finite free.
iii) D1(S/R, l) = 0

Proof. i) ⇒ iii) We will first show that Dn(S/R, l) = 0 for all n ≥ 1. Let S′ =
S ⊗R l, since R → S is flat, it follows that Dn(S/R, l) = Dn(S′/l, l) for all n.
Consider the map S′ → l induced by the identity on l and the natural map S → l.
Composing with l → S′ is the identity, thus applying the Jacobi Zariski sequence
to the composition l→ S′ → l we obtain isomorphisms:

Dn(S′/l, l) ∼= Dn+1(l/S′, l)

The smoothness of ϕ implies S′ is regular, and letting n′ be the ideal of S′

with S′/n′ = l, we have S′n′ is regular local ring, which is equivalent to the mor-
phism S′n′ → l being a complete intersection homomorphism. We thus obtain the
isomorphisms

Dn(l/S′, l) = Dn(l, S′n′ , l) = 0, n ≥ 2

where the last isomorphism follows from Theorem 11.5
The vanishing of Dn(S/R,N) for all S-modules N and the finite freeness of ΩS/R

follows immediately from the next lemma, stated without proof

Lemma 11.13. Let ϕ : (R, n, k) → (S, n, l) be a local homomorphism of rings.
Then the complex of LS/R is a homotopy equivalent to a complex:

... > Ln > Ln−1 > ... > L1 > L0 > 0

where the Li are finite free S-modules with d(Li) ⊂ nLi−1 In particular ifDn(S/R, l) =
0 then Dn(S.R,N) = 0 for all S-modules N .

Proof. [4] Lemma 8.7 �
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ii)⇒ iii) is clear
iii)⇒ i) Since D1(S/R, l) = 0 it follows from Lemma 11.13 that LS/R is homo-

topy equivalent to a complex with L1 = 0, so that

D1(S/R, l) = H1(HomS(L,R)) = 0

But this last condition is the merely the statement that an extension of S by
a square zero ideal is necessarily split. It is then easy to deduce the functorial
criterion for smoothness from this condition, hence ϕ is smooth.

�
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