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Abstract. We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study

of a�ne Deligne�Lusztig varieties. The main tools include the Base Change Fundamental Lemma and q-

analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen

and Xinwen Zhu, relating the set of irreducible components of an a�ne Deligne�Lusztig variety modulo the

action of the σ-centralizer group to the Mirkovi¢�Vilonen basis of a certain weight space of a representation

of the Langlands dual group.
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1. Introduction

1.1. The main result. First introduced by Rapoport [Rap05], the a�ne Deligne�Lusztig varieties play
an important role in arithmetic geometry and the Langlands program. One of the main motivations to
study a�ne Deligne�Lusztig varieties comes from the theory of p-adic uniformization, which was studied
by various authors including �erednik [�76], Drinfeld [Dri76], Rapoport�Zink [RZ96], and more recently
Howard�Pappas [HP17] and Kim [Kim18]. In this theory, a p-adic formal scheme known as the Rapoport�
Zink space uniformizes a tubular neighborhood in an integral model of a Shimura variety around a Newton
stratum. The reduced subscheme of the Rapoport�Zink space is a special example of a�ne Deligne�Lusztig
varieties. In a parallel story over function �elds, a�ne Deligne�Lusztig varieties also arise naturally in the
study of local shtukas, see for instance Hartl�Viehmann [HV11].
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Understanding of basic geometric properties of a�ne Deligne�Lusztig varieties has been fruitful for arith-
metic applications. For instance an understanding of the connected components [CKV15] was applied to the
proof of a version of Langlands�Rapoport conjecture by Kisin [Kis17]. The geometry of the supersingular
locus of Hilbert modular varieties, which is also a question closely related to a�ne Deligne�Lusztig varieties
via p-adic uniformizatoin, was applied to arithmetic level raising in the recent work of Liu�Tian [LT17].

In this paper, we concern the problem of parameterizing the irreducible components of a�ne Deligne�
Lusztig varieties. This problem was initiated in the work of Xiao�Zhu [XZ17]. These authors studied this
problem in some special cases, as an essential ingredient in their proof of a version of Tate's conjecture
for special �bers of Shimura varieties. After that, Miaofen Chen and Xinwen Zhu formulated a general
conjecture, relating the set of top dimensional irreducible components of general a�ne Deligne�Lusztig
varieties to the Mirkovi¢�Vilonen cycles in the a�ne Grassmannian, and thus to the representation theory
of the Langlands dual group via the geometric Satake. Partial results towards this conjecture have been
obtained by Xiao�Zhu [XZ17], Hamacher�Viehmann [HV17], and Nie [Nie18a], based on a common idea of
reduction to the superbasic case (which goes back to [GHKR06]).

In this paper we present a new method and prove:

Theorem. The Chen�Zhu Conjecture (see Conjecture 1.2.1) holds in full generality.

Our proof is based on an approach completely di�erent from the previous works. The problem is to
compute the number of top dimensional irreducible components of an a�ne Deligne�Lusztig variety (modulo
a certain symmetry group). We use the Lang�Weil estimate to relate this number to the asymptotic behavior
of the number of points on the a�ne Deligne�Lusztig variety over a �nite �eld, as the �nite �eld grows. We
show that the number of points over a �nite �eld is computed by a twisted orbital integral, and thus we
reduce the problem to the asymptotic behavior of twisted orbital integrals. We study the latter using explicit
methods from local harmonic analysis and representation theory, including the Base Change Fundamental
Lemma and the Kato�Lusztig formula.

An interesting point in our proof is that we apply the Base Change Fundamental Lemma, which is only
available in general for mixed characteristic local �elds as the current known proofs of it rely on trace
formula methods. Thus our method crucially depends on the geometric theory of mixed characteristic a�ne
Grassmannians as in [BS17] and [Zhu17]. To deduce the Chen�Zhu Conjecture also for equal characteristic
local �elds, we use results of He [He14], which imply that the number of irreducible components (modulo a
symmetry group) only depends on the a�ne Hecke algebra, and thus the truth of the conjecture transfers
between di�erent local �elds.

In our proof, certain polynomials that are linear combinations of the q-analogue of Kostant partition
functions appear, and the key computation is to estimate the sizes of them. These polynomials can be
viewed as a non-dominant generalization of the q-analogue of Kostant's weight multiplicity formula. Some
properties of them are noted in [Pan16], but beyond this there does not seem to have been a lot of study into
these objects. From our proof, it seems reasonable to expect that a more thorough study of the combinatorial
and geometric properties of these polynomials would shed new light on the structure of a�ne Deligne�Lusztig
varieties, as well as the structure of twisted orbital integrals.

In Appendix A, we combine our main result with the work of He [He14] to generalize the Chen�Zhu
Conjecture to quasi-split groups that are not necessarily unrami�ed.

1.2. The precise statement. We now give a precise statement of the Chen�Zhu Conjecture. Let F be a
non-archimedean local �eld with valuation ring OF and residue �eld kF = Fq. Let L be the completion of
the maximal unrami�ed extension of F . Let G be a connected reductive group scheme over OF and σ the
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Frobenius automorphism of L over F . We �x T ⊂ G to be the centralizer of a maximal OF -split torus, and
�x a Borel subgroup B ⊂ G containing T . For µ ∈ X∗(T )+ and b ∈ G(L), the a�ne Deligne�Lusztig variety

associated to (G,µ, b) is de�ned to be

Xµ(b) = {g ∈ G(L)/G(OL)|g−1bσ(g) ∈ G(OL)µ(πF )G(OL)},

where πF ∈ F is a uniformizer. More precisely, the above set is the set of Fq-points of a locally closed, locally
of (perfectly) �nite type subscheme of the (Witt vector) a�ne Grassmannian of G, while the (Witt vector)
a�ne Grassmannian of G is an inductive limit of (perfections of) projective varieties over Fq along closed
immersions. Here the parentheses apply when F is of mixed characteristic, and the geometric structure
stated in this case is due to the recent breakthrough by Bhatt�Scholze [BS17] (cf. [Zhu17]).

Let Σtop be the set of top-dimensional irreducible components of Xµ(b). Let

J := Jb(F ) = {g ∈ G(L)|g−1bσ(g) = b}.

Then the group J naturally acts by left multiplication on Xµ(b), and hence on Σtop. The set J\Σtop is in
fact �nite.

Let Ĝ denote the Langlands dual group of G over C, equipped with a Borel pair T̂ ⊂ B̂, where T̂ is a
maximal torus dual to T and equipped with an algebraic action by σ. Let Ŝ be the identity component of the
σ-�xed points of T̂ . In X∗(Ŝ), there is a distinguished element λb, determined by b. It is the �best integral
approximation� of the Newton cocharacter of b, but we omit its precise de�nition here (see De�nition 2.6.5).
For µ ∈ X∗(T )+ = X∗(T̂ )+, we write Vµ for the highest weight representation of Ĝ with highest weight µ.
We write Vµ(λb)rel for the λb-weight space in Vµ with respect to the action of Ŝ.

Conjecture 1.2.1 (Miaofen Chen, Xinwen Zhu). There exists a natural bijection between J\Σtop and the

Mirkovi¢�Vilonen basis of Vµ(λb)rel. In particular,∣∣J\Σtop
∣∣ = dimVµ(λb)rel.(1.2.1)

The �rst time this conjecture was considered in the form stated above was in [XZ17]. In loc. cit. Xiao�Zhu
proved the conjecture for general G, general µ, and unrami�ed b, meaning that Jb and G are assumed to
have equal F -rank.

Hamacher�Viehmann [HV17] proved the conjecture under either of the following assumptions:

• The cocharacter µ is minuscule, and G is split over F .
• The cocharacter µ is minuscule, and b is superbasic in M , where M is the largest Levi of G inside which
b is basic. (In particular if b is basic then they assume that b is superbasic).

More recently, Nie [Nie18a] proved the conjecture for arbitrary G under the assumption that µ is a sum of
dominant minuscule coweights. In particular it holds when the Dynkin diagram of GF only involves factors
of type A. Moreover, Nie constructed a surjection from the Mirkovi¢-Vilonen basis to the set J\Σtop in all
cases. Thus in order to prove the conjecture, it su�ces to prove the numerical relation (1.2.1) for groups
without type A factors.1

1.3. Overview of the proof. We now explain our proof of the Chen�Zhu Conjecture. A standard reduction
allows us to assume that b is basic, and that G is adjoint and F -simple. Throughout we also assume that
G is not of type A, which is already su�cient by the work of Nie [Nie18a]. To simplify the exposition, we
also assume that G is split and not of type E6. Then Ŝ = T̂ , and we drop the subscript �rel� for the weight
spaces in Conjecture 1.2.1.

1After we �nished this work, Nie uploaded online a new version of the preprint [Nie18a], in which he also proves the Chen�Zhu

Conjecture. However our work only uses the weaker result of Nie as stated here. See Remark 1.3.2.
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For any s ∈ Z>0, we let Fs be the unrami�ed extension of F of degree s, with residue �eld ks. We denote
by Hs the spherical Hecke algebra H(G(Fs)//G(OFs)). We may assume without loss of generality that b is
s0-decent for a �xed s0 ∈ N, meaning that b ∈ G(Fs0) and

bσ(b) · · ·σs0−1(b) = 1.

As mentioned above, our idea is to use the Lang�Weil estimate to relate the number of irreducible
components to the asymptotics of twisted orbital integrals. Since Xµ(b) is only locally of (perfectly) �nite
type and we are only counting J-orbits of irreducible components, we need a suitable interpretation of the
Lang�Weil estimate. The precise output is the following (Proposition 4.2.4):

TOb(fµ,s) =
∑

Z∈J\Σtop

vol(StabZ J)−1qs dimXµ(b) + o(qs dimXµ(b)), s ∈ s0N, s� 0.(1.3.1)

Here fµ,s ∈ Hs is the characteristic function of G(OFs)µ(πF )G(OFs), and TOb(fµ,s) denotes the twisted
orbital integral of fµ,s along b ∈ G(Fs).

To proceed, we need the following variant of (1.3.1):

TOb(τµ) =
∑

Z∈J\Σtop

vol(StabZ J)−1qsδ + o(qsδ), s ∈ s0N, s� 0.(1.3.2)

Here τµ ∈ Hs denotes the function whose Satake transform is the character of the representation Vµ of Ĝ,
and

δ := −1

2
(rkFG− rkFJb).

The proof of (1.3.2) is based on (1.3.1), the dimension formula for Xµ(b) by Hamacher [Ham15] and Zhu
[Zhu17], and asymptotics of the Kato�Lusztig formula [Kat82].

We next apply the Base Change Fundamental Lemma to compute TOb(τµ). There are two problems
in this step. Firstly, the Base Change Fundamental Lemma can only be applied to stable twisted orbital
integrals. This problem is solved because one can check that the twisted orbital integral in (1.3.1) is already
stable. Secondly, the general Base Change Fundamental Lemma is only available for charF = 0. In fact, the
proofs of this result by Clozel [Clo90] and Labesse [Lab90] rely on methods only available over characteristic
zero, for example the trace formula of Deligne�Kazhdan. To circumvent this, we show using the reduction
method of [He14] (in �3) that the truth of the Chen�Zhu Conjecture depends only on the a�ne root system
associated to G. Hence it su�ces to prove the conjecture just for p-adic �elds.

After computing the left hand side of (1.3.2) using the Base Change Fundamental Lemma, we obtain∑
λ∈X∗(T̂ )+,λ≤µ

dimVµ(λ) ·M0
sλ(q−1) = ±

∑
Z∈J\Σtop

vol(StabZ J)−1qsδ + o(qsδ), s� 0,(1.3.3)

where each M0
sλ(q) ∈ C[q] is a polynomial given explicitly in terms of the q-analogues of Kostant's partition

functions (see De�nition 5.2.5 and �5.3).
The key computation of our paper is summarized in the following

Proposition 1.3.1. Let λ+
b ∈ X∗(T̂ )+ be the dominant conjugate of λb. For all λ ∈ X∗(T̂ )+ −

{
λ+
b

}
, we

have

M0
sλ(q−1) = o(qsδ), s� 0.

When G is the split adjoint E6, we only prove a weaker form of the proposition, which also turns out to
be su�cient for our purpose.
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Proposition 1.3.1 tells us that on the left hand side of (1.3.3), only the summand indexed by λ = λ+
b has

the �right size�. We thus obtain

dimVµ(λb) ·Lb = ±
∑

Z∈J\Σtop

vol(StabZ J)−1,(1.3.4)

where

Lb = lim
s→∞

M0
sλ+
b

(q−1)qsδ

is a constant that depends only on b and not on µ.
In (1.3.4) we already see both the number dimVµ(λb) and the set J\Σtop. In order to deduce the desired

(1.2.1), one still needs some information on the volume terms vol(StabZJ). It turns out that even very
weak information will su�ce. In �3 we show that the right hand side of (1.3.4) is equal to R(q), where
R(T ) ∈ Q(T ) is a rational function which is independent of F in the following sense. It turns out that the
triple (G,µ, b) can be encoded combinatorially in terms of the a�ne root system of G. The rational function
R(T ) only depends on this combinatorial information and not on F . Moreover we show that

R(0) = |J\Σtop|.

Therefore, the desired (1.2.1) will follow from (1.3.4), if we can show that

Lb = S(q), for some S(T ) ∈ Q(T ) with S(0) = 1.(1.3.5)

A remarkable feature of the formulation (1.3.5) is that it is independent of µ. We recall that in the works
of Hamacher�Viehmann and Nie, special assumptions on µ are made. Hence we are able to bootstrap from
known cases of the Chen�Zhu Conjecture (for example when µ = λ+

b ) to establish (1.3.5), and hence to
establish the Chen�Zhu Conjecture in general.

We end our discussion with several remarks.

Remark 1.3.2. We refer to the statements of Theorem 6.3.2 and Corollary 6.3.3 for the logical dependence
of our work on previous works of other people.

Remark 1.3.3. In Appendix A, we prove a generalization of Conjecture 1.2.1 for possibly rami�ed quasi-split
groups G over F . See Theorem A.3.1.

Remark 1.3.4. At the moment, we are unable to directly compute the rational functions S(T ) appearing in
(1.3.5) in general. To do this would require a much better understanding of the polynomials M0

sλ(q). We are
however able to compute S(T ) in a very special case. When b is a basic unrami�ed element in the sense of
[XZ17], we show directly that (1.3.5) is satis�ed by S(T ) ≡ 1, see �6.2. From this we deduce the conjecture
for b, as well as the equality vol(StabZ J) = 1 for each Z ∈ Σtop. This last equality implies (according to our
normalization) that StabZ J is a hyperspecial subgroup of J = Jb(F ). This gives another proof of a result
in [XZ17], avoiding their use of Littelmann paths.

Remark 1.3.5. Our proof of Proposition 1.3.1 in the case G is split of type Dn with n odd turns out to be
di�erent from the other cases. In this case we devise a combinatorial method to compute the polynomials
M0
sλ(q), using certain binary trees whose vertices are decorated by pairs of roots in the root system, see

�8.1. This method could possibly be generalized to compute more instances of M0
sλ(q).
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1.4. Outline of paper. In �2, we introduce notations and state precisely our formulation of the Chen�Zhu
conjecture. In �3, we study the Jb(F )-action on the top-dimensional irreducible components of Xµ(b). We
prove using the reduction method of [He14] that the set of orbits and the stabilizers only depend on the
a�ne root system of G. In �4, we prove the relation (1.3.1), and then apply the Base Change Fundamental
Lemma to compute twisted orbital integrals. In �5 we review the relationship between the coe�cients of
the Satake transform and the q-analogue of Kostant's partition functions, and draw some consequences. In
�6 we state Proposition 6.3.1 as a more technical version of Proposition 1.3.1. We then deduce Conjecture
1.2.1 from Proposition 6.3.1. The proof of Proposition 6.3.1 is given in �7, �8, and �9, by analyzing each
root system case by case. In Appendix A, we generalize our main result to quasi-split groups.

Notation. We order N by divisibility, and write s � 0 to mean �for all su�ciently divisible s ∈ N�.
Limits lims→∞, as well as the big-O and little-o notations, are all with respect to the divisibility on N. For
example, we write f(s) = o(g(s)) to mean that f, g are C-valued functions de�ned for all su�ciently divisible
s ∈ N, such that

∀ε > 0 ∃s0 ∈ N ∀s ∈ s0N, |f(s)/g(s)| < ε.

Similarly, we write f(s) = O(g(s)) to mean that f(s)/g(s) is eventually bounded, namely

∃M > 0 ∃s0 ∈ N ∀s ∈ s0N, |f(s)/g(s)| < M,

without requiring boundedness on all of N.
For any �nitely generated abelian group X, we write Xfree for the free quotient of X.
We use q or q−1 and sometimes q−1/2 to denote the formal variable in a polynomial or power series ring.

Ackowledgements: We would like to thank Michael Harris, Xuhua He, Chao Li, Shizhang Li, Thomas
Haines, Michael Rapoport, Liang Xiao, Zhiwei Yun, and Xinwen Zhu for useful discussions concerning this
work, and for their interest and encouragement. R. Z. is partially supported by NSF grant DMS-1638352
through membership at the Institute for Advanced Study. Y. Z. is supported by NSF grant DMS-1802292.

2. Notations and preliminaries

2.1. Basic notations. Let F be a non-archimedean local �eld with valuation ring OF and residue �eld
kF = Fq. Let πF ∈ F be a uniformizer. Let p be the characteristic of kF . Let L be the completion of the
maximal unrami�ed extension of F , with valuation ring OL and residue �eld k = kF . Let Γ = Gal(F/F ) be
the absolute Galois group. Let σ be the Frobenius of L over F . We have σ-equivariant isomorphisms

L ∼= W (k)⊗W (kF ) F, OL ∼= W (k)⊗W (kF ) OF .

Let G be a connected reductive group over OF . In particular its generic �ber GF is an unrami�ed reductive
group over F , i.e. is quasi-split and splits over an unrami�ed extension of F . Then G(OF ) is a hyperspecial
subgroup of G(F ). Fix a maximal OF -split torus A of G. Let T be the centralizer of AF in GF , and �x a
Borel subgroup B ⊂ GF containing T . Hence T is an unrami�ed maximal torus of GF . In the following we
often abuse notation and simply write G for GF .

Note that TL is a maximal L-split torus of GL. Let V be the apartment of GL corresponding to TL.
The hyperspecial vertex s corresponding to G(OL) is then contained in V . We have an identi�cation
V ∼= X∗(T )⊗ R sending s to 0. Let a ⊂ V be the alcove whose closure contains s, such that the image of a
under V ∼= X∗(T )⊗ R is contained in the anti-dominant chamber. The action of σ induces an action on V ,
and both a and s are stabilized under this action. We let I be the Iwahori subgroup of G(L) corresponding
to a.
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2.2. The Iwahori Weyl group. The relative Weyl group W0 over L and the Iwahori�Weyl group W are
de�ned by

W0 = N(L)/T (L), W = N(L)/T (L) ∩ I,

where N denotes the normalizer of T in G. Note that W0 is equal to the absolute Weyl group, as TL is split.
The Iwahori�Weyl group W is a split extension of W0 by the subgroup X∗(T ). The splitting depends

on the choice of a hyperspecial vertex, which we �x to be s de�ned above. See [HR08] for more details.
When considering an element λ ∈ X∗(T ) as an element of W , we write tλ. For any w ∈ W , we choose a
representative ẇ ∈ N(L).

Let Wa be the associated a�ne Weyl group, and S be the set of simple re�ections associated to a. Since
a is σ-stable, there is a natural action of σ on S. We let S0 ⊂ S be set of simple re�ections �xing s. The
Iwahori�Weyl group W contains the a�ne Weyl group Wa as a normal subgroup and we have a natural
splitting

W = Wa o Ω,

where Ω is the normalizer of a and is isomorphic to π1(G). The length function ` and the Bruhat order ≤
on the Coxeter group Wa extend in a natural way to W .

For any subset P of S, we shall write WP for the subgroup of W generated by P .
For w,w′ ∈W and s ∈ S, we write w s−→σ w

′ if w′ = swσ(s) and `(w′) ≤ `(w). We write w →σ w
′ if there

is a sequence w = w0, w1, . . . , wn = w′ of elements in W such that for any i, wi−1
si−→σ wi for some si ∈ S.

Note that if moreover, `(w′) < `(w), then there exists i such that `(w) = `(wi) and si+1wiσ(si+1) < wi.
We write w ≈σ w′ if w →σ w

′ and w′ →σ w. It is easy to see that w ≈σ w′ if w →σ w
′ and `(w) = `(w′).

We write w ≈̃σw′ if there exists τ ∈ Ω such that w ≈σ τw′σ(τ)−1.

2.3. The set B(G). For any b ∈ G(L), we denote by [b] = {g−1bσ(g); g ∈ G(L)} its σ-conjugacy class. Let
B(G) be the set of σ-conjugacy classes of G(L). The σ-conjugacy classes have been classi�ed by Kottwitz
in [Kot85] and [Kot97], in terms of the Newton map ν̄ and the Kottwitz map κ. The Newton map is a map

ν̄ : B(G)→ (X∗(T )+
Q )σ,(2.3.1)

where X∗(T )+
Q is the set of dominant elements in X∗(T )Q := X∗(T )⊗Q. The Kottwitz map is a map

κ = κG : B(G)→ π1(G)Γ.

By [Kot97, �4.13], the map

(ν̄, κ) : B(G)→ (X∗(T )+
Q )σ × π1(G)Γ

is injective.
The maps ν̄ and κ can be described in an explicit way via the map W → G(L), w 7→ ẇ. As a result, we

obtain an explicit map (ν̄, κ) : W → (X∗(T )+
Q )σ × π1(G)Γ. Moreover, this map descends to the set B(W,σ)

of σ-conjugacy classes of W . See [HZ16, �1.2] for details. The inclusion map W → G(L), w 7→ ẇ induces a
map Ψ : B(W,σ)→ B(G), which is independent of the choice of the representatives ẇ. By [He14], the map
Ψ is surjective and we have a commutative diagram

B(W,σ)
Ψ // //

(ν̄,κ)

((

B(G)
iI

(ν̄,κ)

ww
(X∗(T )+

Q )σ × π1(G)Γ

.
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The map B(W,σ)→ B(G) is not injective. However, there exists a canonical lifting to the set of straight
σ-conjugacy classes.

By de�nition, an element w ∈W is called σ-straight if for any n ∈ N,

`(wσ(w) · · ·σn−1(w)) = n`(w).

This is equivalent to the condition that `(w) = 〈ν̄w, 2ρ〉, where ρ is the half sum of all positive roots. A
σ-conjugacy class of W is called straight if it contains a σ-straight element. It is easy to see that the minimal
length elements in a given straight σ-conjugacy class are exactly the σ-straight elements.

The following result is proved in [He14, Theorem 3.7].

Theorem 2.3.1. The restriction of Ψ : B(W,σ) → B(G) gives a bijection from the set of straight σ-

conjugacy classes of W to B(G). �

2.4. The a�ne Deligne�Lusztig variety XP,w(b). Let P be a standard σ-invariant parahoric subgroup
of G(L), i.e. a σ-invariant parahoric subgroup that contains I. In the following, we will generally abuse of
notation to use the same symbol to denote a parahoric subgroup and the underlying parahoric group scheme.
We denote by P ⊂ S the set of simple re�ections corresponding to P. Then σ(P ) = P . We have

G(L) =
⊔

w∈WP \W/WP

P(OL)ẇP(OL).

For any w ∈WP \W/WP and b ∈ G(L), we set

XP,w(b)(k) := {gP(OL) ∈ G(L)/P(OL)|g−1bσ(g) ∈ P(OL)ẇP(OL)}.

If P = I (corresponding to P = ∅), we simply write Xw(b)(k) for X∅,w(b)(k).
We freely use the standard notations concerning loop groups and partial a�ne �ag varieties (i.e. a�ne

Grassmannians associated to parahoric group schemes over OL.) See [BS17, �9] or [Zhu17, �1.4]. When
charF > 0, it is known that XP,w(b)(k) could be naturally identi�ed with the set of k-points of a locally
closed sub-ind scheme XP,w(b) of the partial a�ne �ag variety GrP . When charF = 0, thanks to the recent
breakthrough by Bhatt�Scholze [BS17, Corollary 9.6] (cf. also [Zhu17]), we can again identify XP,w(b)(k)

with the k-points of a locally closed perfect sub-ind scheme XP,w(b) of the Witt vector partial a�ne �ag
variety GrP . In both cases, the (perfect) ind-scheme XP,w(b) is called an a�ne Deligne�Lusztig variety, and
all topological notions related to the Zariski topology on XP,w(b) are well-de�ned. In particular, we have
notions of Krull dimension and irreducible components for XP,w(b).

We are mainly interested in the case when P = GOL . In this case the corresponding set of simple
re�ections is K = S0. We have an identi�cation

X∗(T )+ ∼= X∗(T )/W0
∼= WK\W/WK .

For µ ∈ X∗(T )+, we write Xµ(b) for XK,tµ(b).
We simply write GrG for GrGOL . The relationship between the hyperspecial a�ne Deligne�Lusztig variety

Xµ(b) ⊂ GrG and the Iwahori a�ne Deligne�Lusztig varieties Xw(b) ⊂ GrI is as follows. We have a
projection

π : FL → GrG(2.4.1)

which exhibits FL := GrI as an étale �bration over GrG. Indeed the �ber of this map is isomorphic to
the fpqc quotient L+G/L+I where L+G,L+I are the positive loop groups attached to G and I. More
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concretely, L+G/L+I is a �nite type �ag variety over k when charF > 0, and is the perfection of a �nite
type �ag variety over k when charF = 0. We have

π−1(Xµ(b)) = X(µ, b)K :=
⋃

w∈W0tµW0

Xw(b).

2.5. Basic information about Xµ(b). Let µ ∈ X∗(T )+. We �rst recall the de�nition of the neutral
acceptable set B(G,µ) in [RV14]. We have the dominance order ≤ on X∗(T )+

Q de�ned as follows. For
λ, λ′ ∈ X∗(T )Q, we write λ ≤ λ′ if λ′ − λ is a non-negative rational linear combination of positive coroots.
Set

B(G,µ) = {[b] ∈ B(G);κ([b]) = µ\, ν̄b ≤ µ�}.

Here µ\ denotes the image of µ in π1(G)Γ, and µ� ∈ X∗(T )Q denotes the Galois average of µ.
The following result, conjectured by Kottwitz and Rapoport in [KR03], is proved in [Gas10].

Theorem 2.5.1. For b ∈ G(L), the a�ne Deligne�Lusztig variety Xµ(b) is non-empty if and only if [b] ∈
B(G,µ). �

We now let µ ∈ X∗(T )+ and let b ∈ G(L) such that [b] ∈ B(G,µ).

Theorem 2.5.2. If charF > 0, then Xµ(b) is a scheme locally of �nite type over k. If charF = 0, then

Xµ(b) is a perfect scheme locally of perfectly �nite type over k. In both cases the Krull dimension of Xµ(b)

is equal to

〈µ− ν̄b, ρ〉 −
1

2
defG(b),

where

defG(b) := rkFG− rkFJb.

Proof. The local (perfectly) �niteness is shown in [HV17, Lemma 1.1], using an earlier argument in [HV11].
The dimension formula is proved in [Ham15] and [Zhu17]. �

Corollary 2.5.3. Let w ∈ W0t
µW0. If charF > 0, then Xw(b) is a scheme locally of �nite type over k. If

charF = 0, then Xw(b) is a perfect scheme locally of perfectly �nite type over k.

Proof. This follows from Theorem 2.5.2 and the fact that Xw(b) is an ind-(perfect) scheme locally closed
inside π−1(Xµ(b)), where π is the �bration (2.4.1). �

De�nition 2.5.4. For any (perfect) ind-scheme X, we write Σ(X) for the set of irreducible components
of X. When X is of �nite Krull dimension, we write Σtop(X) for the set of top dimensional irreducible
components of X.

De�ne the group scheme Jb over F by

Jb(R) =
{
g ∈ G(R⊗F L)|g−1bσ(g) = b

}
(2.5.1)

for any F -algebra R. Then Jb is an inner form of a Levi subgroup of G, see [RZ96, �1.12] or [RR96, �1.11].
The group Jb(F ) acts on Xµ(b) via algebraic automorphisms. In particular Jb(F ) acts on Σ(Xµ(b)) and
on Σtop(Xµ(b)). The following �niteness result is proved in [HV17, Lemma 1.3], building on the result of
Rapoport�Zink [RZ99].

Lemma 2.5.5. The set Jb(F )\Σ(Xµ(b)) is �nite. �

De�nition 2.5.6. We write N (µ, b) for the cardinality of Jb(F )\Σtop(Xµ(b)).
9



2.6. The Chen�Zhu conjecture. In this paper we shall utilize the usual Langlands dual group (as a
reductive group over C equipped with a pinned action by the Galois group), rather than the Deligne�Lusztig
dual group which is used in [HV17]. As a result, our formulation of the Chen�Zhu conjecture below di�ers
from [HV17, Conjecture 1.4, �2.1]. However it can be easily checked that the two formulations are equivalent.

The Frobenius σ acts on X∗(T ) via a �nite-order automorphism, which we denote by θ. Let Ĝ be the
usual dual group of G over C, which is a reductive group over C equipped with the following structures:

• a Borel pair (B̂, T̂ ).
• isomorphisms X∗(T̂ ) ∼= X∗(T ), X∗(T̂ ) ∼= X∗(T ), which we think of as equalities. These isomorphisms
identify the positive roots in X∗(T̂ ) with the positive coroots in X∗(T ), and identify the positive coroots
in X∗(T̂ ) with the positive roots in X∗(T ). We denote by θ̂ the automorphism of X∗(T̂ ) corresponding to
the automorphism θ of X∗(T ).

For more details on the dual group see �5.1 below.
For any �nitely generated abelian group X, we write Xfree for the free quotient of X. The following lemma

is elementary, and we omit its proof.

Lemma 2.6.1. Let Γ be a �nite group. Let X be a Z[Γ]-module which is a �nite free Z-module. We write

XΓ (resp. XΓ) for the invariants (resp. coinvariants) of X under Γ. As usual de�ne the norm map:

N : X → X, x 7→
∑
γ∈Γ

γ(x).

Let Y ⊂ X be a Γ-stable subgroup. Then the following statements hold.

(1) The kernel of the map Y → XΓ,free is equal to {y ∈ Y |N(y) = 0} . In particular, it is also equal to the

kernel of Y → YΓ,free.

(2) Suppose Y has a �nite Z-basis which is stable under Γ as a set. Then the Γ-orbits in this Z-basis de�ne
distinct elements of YΓ, which form a Z-basis of YΓ. In particular YΓ is a �nite free Z-module.

(3) The map N : X → X factors through a map

N : XΓ → XΓ.

Both the compositions

XΓ
N−→ XΓ ⊂ X → XΓ

and

XΓ ⊂ X → XΓ
N−→ XΓ

are given by multiplication by |Γ|. In particular we have a canonical isomorphism

1

|Γ|
N : XΓ ⊗Q ∼−→ XΓ ⊗Q.

�

De�nition 2.6.2. Let Ŝ be the identity component of the θ̂-�xed points of T̂ . Equivalently, Ŝ is the
sub-torus of T̂ such that the map X∗(T̂ )→ X∗(Ŝ) is equal to the map X∗(T̂ ) −→ X∗(T̂ )θ̂,free.

De�nition 2.6.3. For µ ∈ X∗(T )+ = X∗(T̂ )+, let Vµ be the highest weight representation of Ĝ of highest
weight µ. For all λ ∈ X∗(T̂ ), we write Vµ(λ) for the λ-weight space in Vµ for the action of T̂ . For all
λ′ ∈ X∗(Ŝ), we write Vµ(λ′)rel for the λ′-weight space in Vµ for the action of Ŝ.

10



As in �2.4, let µ ∈ X∗(T )+, and let [b] ∈ B(G,µ). Recall from (2.3.1) that the Newton point of [b] is an
element

ν̄b ∈ (X∗(T )+
Q )σ ⊂ X∗(T )σQ = X∗(T )θQ

By Lemma 2.6.1 (3) we identify X∗(T )θQ with

X∗(T )θ ⊗Q = X∗(T )θ,free ⊗Q = X∗(T̂ )θ̂,free ⊗Q = X∗(Ŝ)⊗Q,

and we shall view ν̄b as an element of X∗(Ŝ)⊗Q. We also have κ(b) ∈ π1(G)Γ = π1(G)σ, which is equal to
the image of µ.

Let Q̂ be the root lattice inside X∗(T̂ ). Applying Lemma 2.6.1 to X = X∗(T̂ ) and Y = Q̂, we obtain:

• Q̂θ̂ is a free Z-module. It injects into X∗(T̂ )θ̂ and also injects into X∗(T̂ )θ̂,free = X∗(Ŝ).

• The image of the simple roots in Q̂ in Q̂θ̂ (as a set) is a Z-basis of Q̂θ̂. We call members of this Z-basis
the relative simple roots in Q̂θ̂.

Lemma 2.6.4. There is a unique element λ̃b ∈ X∗(T̂ )θ̂ satisfying the following conditions:

(1) The image of λ̃b in π1(G)σ is equal to κ(b).

(2) In X∗(Ŝ) ⊗ Q, the element (λ̃b)|Ŝ − ν̄b is equal to a linear combination of the relative simple roots in

Q̂θ̂, with coe�cients in Q ∩ (−1, 0]. Here (λ̃b)|Ŝ denotes the image of λ̃b under the map X∗(T̂ )θ̂ →
X∗(T̂ )θ̂,free = X∗(Ŝ).

Proof. This is just a reformulation of [HV17, Lemma 2.1]. We repeat the proof in our setting for completeness.
The uniqueness follows from the fact that the preimage of κ(b) ∈ π1(G)σ in X∗(T̂ )θ̂ is a Q̂θ̂-coset. To show
the existence, it su�ces to �nd an element λ ∈ X∗(T̂ )θ̂ lifting κ(b) such that λ|Ŝ − ν̄b is equal to a Q-linear
combination of the relative simple roots in Q̂θ̂. In fact, if such λ exists, we can then modify λ by a suitable
element in Q̂θ̂ to obtain the desired λ̃b. Now let λ be any element of X∗(T̂ )θ̂ lifting κ(b). By the compatibility
of the two invariants of b, we know that the image of ν̄b ∈ X∗(T̂ )θ̂ ⊗Q in π1(G)σ ⊗Q is equal to the natural
image of κ(b) ∈ π1(G)σ. It follows that the element λ|Ŝ − ν̄b ∈ X

∗(Ŝ)⊗Q should map to zero in π1(G)σ⊗Q.
On the other hand we have a short exact sequence

0 −→ Q̂θ̂ −→ X∗(T̂ )θ̂ −→ π1(G)σ −→ 0,

from which we obtain the short exact sequence

0 −→ Q̂θ̂ ⊗Q −→ X∗(T̂ )θ̂ ⊗Q = X∗(Ŝ)⊗Q −→ π1(G)σ ⊗Q −→ 0.

It follows that the element λ|Ŝ − ν̄b ∈ X
∗(Ŝ)⊗Q is in Q̂θ̂ ⊗Q, as desired. �

De�nition 2.6.5. Let λ̃b ∈ X∗(T̂ )|θ̂ be as in Lemma 2.6.4. We write λb for (λ̃b)|Ŝ ∈ X
∗(Ŝ).

Conjecture 2.6.6 (Miaofen Chen, Xinwen Zhu). Let µ ∈ X∗(T )+ and let [b] ∈ B(G,µ). There exists a

natural bijection between Jb(F )\Σtop(Xµ(b)) and the Mirkovi¢�Vilonen basis of Vµ(λb)rel.

In [Nie18b, �1], Nie showed that in order to prove Conjecture 2.6.6, it su�ces to prove it when the group G
is adjoint and [b] ∈ B(G) is basic. Moreover he de�ned a natural surjective map from the Mirkovi¢-Vilonen
basis of Vµ(λb)rel to the set Jb(F )\Σtop(Xµ(b)). Thus in order to prove the conjecture, it su�ces to prove
the following numerical result.

Conjecture 2.6.7 (Numerical Chen�Zhu). Let µ ∈ X∗(T )+ and let [b] ∈ B(G,µ). Let N (µ, b) be the

cardinality of Jb(F )\Σtop(Xµ(b)). We have

N (µ, b) = dimVµ(λb)rel.
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A further standard argument, for example [HZ16, �6], shows that one can also reduce to the case when G
is F -simple. Therefore we have:

Proposition 2.6.8. In order to prove Conjecture 2.6.6, it su�ces to prove Conjecture 2.6.7 when G is

adjoint, F -simple, and b ∈ G(L) represents a basic σ-conjugacy class. �

3. The action of Jb(F )

3.1. The stabilizer of a component. In this section we study the stabilizer in Jb(F ) of an irreducible
component of Xµ(b). Here as before we let µ ∈ X∗(T )+ and [b] ∈ B(G,µ). The �rst main result is the
following.

Theorem 3.1.1. The stabilizer in Jb(F ) of each Z ∈ Σ(Xµ(b)) is a parahoric subgroup of Jb(F ).

We �rst reduce this statement to a question about the Iwahori a�ne Deligne�Lusztig varieties Xw(b), w ∈
W0t

µW0. Note that Jb(F ) acts on each Xw(b) via automorphisms.

Proposition 3.1.2. The projection π in (2.4.1) induces a bijection between Σ(Xµ(b)) and Σ(X(µ, b)K)

compatible with the action of Jb(F ). Moreover, this bijection maps Σtop(Xµ(b)) onto Σtop(X(µ, b)K).

Proof. This follows from the fact that the �ber of π is (the perfection of) a �ag variety. �

In view of Proposition 3.1.2, the proof of Theorem 3.1.1 reduces to showing that the stabilizer of each
irreducible component of X(µ, b)K is a parahoric subgroup of Jb(F ).

Now let Y ∈ Σ(X(µ, b)K). Then since each Xw(b) is locally closed in FL, there exists w ∈W0t
µW0 such

that Y ∩Xw(b) is open dense in Y and is an irreducible component of Xw(b). Since the action of Jb(F ) on
X(µ, b)K preserves Xw(b), it follows that j ∈ Jb(F ) stabilizes Y if and only if j stabilizes Y ∩Xw(b). Hence
we have reduced to showing that the stabilizer in Jb(F ) of any element of Σ(Xw(b)) is a parahoric subgroup.
We will show that this is indeed the case in Proposition 3.1.4 below.

One important tool needed in our proof is the following result, which is [GH10, Corollary 2.5.3].

Proposition 3.1.3. Let w ∈W , and let s ∈ S be a simple re�ection.

(1) If `(swσ(s)) = `(w), then there exists a universal homeomorphism Xw(b)→ Xswσ(s)(b).

(2) If `(swσ(s)) < `(w), then there is a decomposition Xw(b) = X1tX2, where X1 is closed and X2 is open,

and such that there exist morphisms X1 → Xswσ(s)(b) and X2 → Xsw(b), each of which is the composition

of a Zariski-locally trivial �ber bundle with one-dimensional �bers and a universal homeomorphism.

Moreover the universal homeomorphism in (1) and the morphisms X1 → Xswσ(s)(b) and X2 → Xsw(b) in

(2) are all equivariant for the action of Jb(F ). �

Proposition 3.1.4. Assume Xw(b) 6= ∅ and let Z ∈ Σ(Xw(b)). The stabilizer in Jb(F ) of Z is a parahoric

subgroup of Jb(F ).

Proof. We prove this by induction on `(w). Assume �rst that w ∈W is of minimal length in its σ-conjugacy
class. Then Xw(b) 6= ∅ implies Ψ(w) = b, i.e. w and b represent the same σ-conjugacy class in B(G), by
[He14, Theorem 3.5]. In this case, by [He14, Theorem 4.8] and its proof, there is an explicit description of
the stabilizer of an irreducible component which we recall.

Let PW ⊂ W (resp. Wσ(P ) ⊂ W ) denote the set of minimal representatives for the cosets WP \W
(resp. W/Wσ(P )). Let PWσ(P ) be the intersection PW ∩Wσ(P ) (cf. [He14, �1.6]). By [He14, Theorem 2.3],
there exists P ⊂ S, x ∈ PWσ(P ), and u ∈WP , such that:

• WP is �nite.
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• x is σ-straight and x−1σ(P )x = P .

In this case, there is a Jb(F )-equivariant universal homeomorphism between Xw(b) and Xux(b), and we have
Ψ(ux) = Ψ(w), see [He14, Corollary 4.4]. Hence we may assume w = ux. By [He14, Lemma 3.2] we have
Ψ(x) = Ψ(w), and therefore we may assume b = ẋ. Upon replacing P , we may assume P is minimal with
respect to a �xed choice of x and u satisfying the above properties.

Let P denote the parahoric subgroup of G(L) corresponding to P . The proof of [He14, Theroem 4.8]
shows that

Xux(ẋ) ∼= Jẋ(F )×Jẋ(F )∩P X
P
ux(ẋ),

where XPux(ẋ) is the reduced k-subscheme of the (perfectly) �nite type scheme L+P/L+I whose k-points
are

XPux(ẋ)(k) = {g ∈ P(OL)/I(OL)|g−1ẋσ(g) ∈ I(OL)u̇ẋI(OL)}.

Thus it su�ces to show the stabilizer in Jẋ(F )∩P(OL) of an irreducible component of XPux(ẋ) is a parahoric
subgroup of Jẋ(F ).

Let P denote the algebraic group over k, which is the reductive quotient of the special �ber of P. Recall
its Weyl group is naturally identi�ed with WP . Then I is the preimage of a Borel subgroup I of P under
the reduction map P → P. Let σẋ denote the automorphism of P given by p 7→ ẋ−1σ(p)ẋ. Then the natural
map L+P/L+I → P/I induces an identi�cation between XPu̇ẋ(ẋ) and the (perfection of the) �nite type
Deligne-Lusztig variety

X ′ = {p ∈ P/I|p−1σẋ(p) ∈ Iu̇I}.

The natural projection map P → P takes Jẋ(F )∩P(OL) to Pσẋ , and the action of Jẋ(F )∩P(OL) factors
through this map. Since P is minimal satisfying u ∈ WP and since x−1σ(P )x = P , it follows that u is not
contained in any σẋ-stable parabolic subgroup of WP . Therefore by [G�09, Corollary 1.2], X ′ is irreducible.
It follows that the stabilizer of the irreducible component 1×XPux(ẋ) ⊂ Xux(ẋ) is Jẋ(F ) ∩ P(OL), which is
a parahoric of Jẋ(F ). It also follows that the stabilizer of any other irreducible component of Xux(ẋ) is a
conjugate parahoric.

Now we assume w is not of minimal length in its σ-conjugacy class. By [HN14, Corollary 2.10], there
exists w′≈̃σw and s ∈ S such that sw′σ(s) < w′. Then by Proposition 3.1.3, there is a Jb(F )-equivariant
universal homeomorphism between Xw(b) and Xw′(b). Thus it su�ces to prove the result for Xw′(b).

Let Z ′ ∈ Σ(Xw′(b)), and let X1 and X2 be as in Proposition 3.1.3. We have either Z ′ ∩X1 or Z ′ ∩X2

is open dense in Z ′. Assume Z ′ ∩X1 is open dense in Z ′; the other case is similar. Since Jb(F ) preserves
X1, it su�ces to show that the stabilizer of Z ′ ∩X1 is a parahoric. From the description of X1, there exists
an element V ∈ Σ(Xsw′σ(s)(b)) such that Z ′ ∩X1 → V is a �bration and is Jb(F )-equivariant. Therefore by
induction, the stabilizer of V is a parahoric of Jb(F ), and hence so is the stabilizer of Z ′ ∩X1. �

3.2. Volumes of stabilizers and independence of F . The second main result of this section is that
the set of Jb(F )-orbits of irreducible components of Xµ(b) and the volume of the stabilizer of an irreducible
component depend only on the a�ne root system together with the action of the Frobenius. In particular,
it is independent of F in a manner which we will now make precise. This fact is a key observation that we
will need for later applications.

By [He14, �6], the set of Jb(F )-orbits of top dimensional irreducible components of Xw(b) depends only
on the a�ne root system of G together with the action of σ. This is proved by using the Deligne�Lusztig
reduction method to relate the number of orbits to coe�cients of certain class polynomials, which can be
de�ned purely in terms of the a�ne root system for G, see loc. cit. for details. In view of the �bration

π : X(µ, b)K → Xµ(b)
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it follows that the same is true for Xµ(b). In particular, the number N (µ, b) depends only on the a�ne root
system and hence does not depend on the local �eld F .

We will need the following stronger result. To state it, we introduce some notations. Let F ′ be another
local �eld with residue �eld Fq′ . Let G′ be a connected reductive group over OF ′ . Let T ′ ⊂ B′ ⊂ G′F ′ be
analogous to T ⊂ B ⊂ GF as in �2.1. De�ne the hyperspecial vertex s′, the apartement V ′, and the anti-
dominant chamber a′ analogously to s, V, a. Assume there is an identi�cation V ∼= V ′ that maps X∗(T )+ into
X∗(T )+, maps a into a′, maps s to s′, and induces a σ-σ′ equivariant bijection between the a�ne root systems.
Here σ′ denotes the q′-Frobenius acting on the a�ne roots system of G′. We �x such an identi�cation once
and for all. To the pair (µ, b), we attach a corresponding pair (µ′, b′) for G′ as follows. The cocharacter
µ′ ∈ X∗(T ′)+ is de�ned to be the image of µ under the identi�cation X∗(T )+ ∼= X∗(T

′)+. To construct b′,
we note that since b is basic, it is represented by a unique σ-conjugacy class in Ω. The identi�cation �xed
above induces an identi�cation of Iwahori�Weyl groups W ∼= W ′, which induces a bijection on length-zero
elements. Then b′ is represented by the corresponding length-zero element in W ′.

By our choice of b′, the a�ne root systems of Jb and Jb′ together with the actions of Frobenius are
identi�ed. We thus obtain a bijection between standard parahorics of Jb and those of Jb′ . Let J ⊂ Jb(F )

and J ′ ⊂ Jb′(F
′) be parahoric subgroups. We say that J and J ′ are conjugate, if the standard parahoric

conjugate to J is sent to the standard parahoric conjugate to J ′ under the above-mentioned bijection. In
the following, we write J := Jb(F ) and J ′ := Jb′(F

′).

Proposition 3.2.1. There is a bijection

J\Σtop(Xµ(b))
∼−→ J ′\Σtop(Xµ′(b

′))

with the following property. If Z ∈ Σtop(Xµ(b)) and Z ′ ∈ Σtop(Xµ′(b
′)) are such that JZ is sent to J ′Z ′,

then the parahoric subgroups StabZ(J) ⊂ J and StabZ′(J
′) ⊂ J ′ are conjugate.

The proposition will essentially follow from the next lemma.

Lemma 3.2.2. Let w′ ∈ W ′ correspond to w ∈ W under the identi�cation W ∼= W ′. Then there is a

bijection

Θ : J\Σtop(Xw(b))
∼−→ J ′\Σtop(Xw′(b

′))

with the following property. If Z ∈ Σtop(Xw(b)) and Z ′ ∈ Σtop(Xw′(b
′)) are such that Θ(JZ) = J ′Z ′, then

StabZ(J) and StabZ′(J
′) are conjugate.

Proof. We induct on `(w). First assume w is minimal length in its σ-conjugacy class. Then by [He14],
Xw(b) 6= ∅ if and only if Ψ(w) = b, which holds if and only if Ψ(w′) = b′, if and only if Xw′(b

′) 6= ∅. If this
holds, then by [He14] the group J acts transitively on Σtop(Xw(b)), and similarly the group J ′ acts transitively
on Σtop(Xw′(b

′)). Hence the two sets J\Σtop(Xw(b)) and J ′\Σtop(Xw′(b
′)) are both singletons. Let Θ be

the unique map between them. The desired conjugacy of the stabilizers follows from the computation of
StabZ(J) in Proposition 3.1.4.

Now assume w is not of minimal length in its σ-conjugacy class. Let Z ∈ Σtop(Xw(b)). Then as in the
proof of Proposition 3.1.4, there exists w1≈̃σw and s ∈ S such that sw1σ(s) < w1. Then Xw(b) is universally
homeomorphic to Xw1(b). We �x such a universal homeomorphism and we obtain a corresponding element
Z1 ∈ Σtop(Xw1

(b)). By Proposition 3.1.3, there exists U ∈ Σtop(Xsw1σ(s)(b)) or U ∈ Σtop(Xsw1
(b)) such

that Z1 is universally homeomorphic to a �ber bundle over U . We assume U ∈ Σtop(Xsw1σ(s)(b)); the other
case is similar. Then StabZ(J) = StabU (J). Note that the choice of U depends on the choice of w1 and a
universal homeomorphism Xw(b) ∼= Xw1

. However upon �xing these choices, the J-orbit of U is canonically
associated to the J-orbit of Z.
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By the induction hypothesis, we have a bijection

Θ1 : J\Σtop(Xsw1σ(s)(b))
∼−→ J ′\Σtop(Xs′w′1σ

′(s′)(b
′)),

where s′, w′1 ∈W ′ correspond to s, w1 respectively. Choose

U ′ ∈ Σtop(Xs′w′1σ
′(s′)(b

′))

such that J ′U ′ = Θ1(JU). By the induction hypothesis, StabU (J) is conjugate to StabU ′(J
′). Reversing the

above process we obtain Z ′ ∈ Σtop(Xw′(b
′))) such that StabU ′(J

′) = StabZ′(J
′). Again the J ′-orbit of Z ′ is

canonically associated to U ′ upon �xing the universal homeomorphism Xw′(b′)
∼= Xw′1

(b′).
We de�ne the map Θ to send JZ to J ′Z ′. Switching the roles of G and G′, we obtain the inverse map of

Θ, and so Θ is a bijection as desired. �

Remark 3.2.3. In the situation of Lemma 3.2.2, note that since dimXw(b) = dimXw′(b
′), we have dimZ =

dimZ ′ whenever Θ(JZ) = J ′Z ′.

Proof of Proposition 3.2.1. For each w ∈W , �x a bijection

Θ : J\Σtop(Xw(b))
∼−→ J ′\Σtop(Xw′(b

′))

as in Lemma 3.2.2. Let Z ∈ Σtop(Xµ(b)). Then the preimage π−1(Z) under the projection π : X(µ, b)K →
Xµ(b) is a top dimensional irreducible component of X(µ, b)K . Hence there exists a unique w ∈ W such
that Xw(b) ∩ π−1(Z) is open dense in Z. Moreover we have Xw(b) ∩ π−1(Z) ∈ Σtop(Xw(b)). Write Y for
Xw(b) ∩ π−1(Z), and choose Y ′ ∈ Σtop(Xw′(b

′)) such that Θ(JY ) = J ′Y ′. Then since dimX(µ, b)K =

dimX(µ′, b′)K
′
, the closure of Y ′ in X(µ′, b′)K

′
gives an element of Σtop(X(µ′, b′)K

′
), whose J ′-orbit is

independent of the choice of Y ′. Taking the image of the last element under the projection X(µ′, b′)K
′ →

Xµ′(b
′) we obtain an element Z ′ ∈ Σtop(Xµ′(b

′)) by dimension reasons, and the orbit J ′Z ′ is independent of
the choice of Y ′. Moreover StabZ(J) is conjugate to StabZ′(J

′) since StabY (J) is conjugate to StabY ′(J
′).

The association JZ 7→ J ′Z ′ gives a well-de�ned map

J\Σtop(Xµ(b)) −→ J ′\Σtop(Xµ′(b
′))

which satis�es the condition in the proposition. Switching the roles of G and G′ we obtain the inverse
map. �

Proposition 3.2.1 implies that the truth of Conjecture 2.6.6 depends only on the a�ne root system as-
sociated to G together with the Frobenius action. In the proof of Conjecture 2.6.6 for unrami�ed elements
[XZ17, Theorem 4.4.14], the authors made the assumption that p 6= 2, 3. The following corollary is then
immediate.

Corollary 3.2.4. Theorem 4.4.14 in [XZ17] also holds for p = 2, 3. �

For later applications we need the following. We now assume that b is basic, so that G and Jb are inner
forms. Since b is basic we may choose a representative τ̇ for b where τ ∈ Ω ⊂W . Using this one may identify
the a�ne Weyl groups for Jb and G respecting the base alcoves. However the Frobenius action on W (or
S), de�ned by Jb, is given by τσ, where τ acts via left multiplication. See for example [HZ16, �5] for more
details.

Since G and Jb are inner forms, the choice of a Haar measure on G(F ) determines a Haar measure on
Jb(F ), and vice versa, see for example [Kot88, �1].
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Corollary 3.2.5. Fix the Haar measure on Jb(F ) such that the volume of G(OF ) is 1. For Z ∈ Σtop(Xµ(b))

there exists a rational function R(t) ∈ Q(t) such that

vol(StabZ(Jb)) = R(q).

Moreover this rational function satis�es R(0) = e(Jb) and is independent of the local �eld F . Here e(Jb) is

the Kottwitz sign (−1)rkF Jb−rkFG. More precisely, in the notation of Proposition 3.2.1, if JZ ′ corresponds

to JZ, then vol(StabZ′(Jb′)) = R(q′).

Proof. Since Jb splits over an unrami�ed extension, the volume of a standard parahoric of Jb(F ) correspond-
ing to any τσ-stable subset KJ ⊂ S can be calculated in terms of the a�ne root system. More precisely let
KJ be the corresponding parahoric subgroup of Jb(F ) and IJ be the standard Iwahori subgroup of Jb(F ).
Then we have

vol(KJ(OF )) =
vol(KJ(OF ))

vol(IJ(OF ))
. vol(I(OF )).

vol(IJ(OF ))

vol(I(OF ))

=
[KJ(OF ) : IJ(OF )]

[G(OF ) : I(OF )]
.
vol(IJ(OF ))

vol(I(OF ))

where I is the standard Iwahori subgroup of G(F ) (whereas previously we denoted by I the standard Iwahori
subgroup of G(L)). The term [KJ(OF ) : IJ(OF )] (resp. [G(OF ) : I(OF )]) is just the number of Fq-points in
the �nite-type full �ag variety corresponding to the reductive quotient of the special �ber of KJ (resp. G).

For any connected reductive group H over Fq and B a Borel subgroup, let WH denote the absolute Weyl
group. Then we have the Bruhat decomposition

H/B(Fq) =
⊔

w∈WH

Sw.

We have Sw(Fq) 6= ∅ if and only if σ(w) = w, in which case Sw is an a�ne space of dimension `(w) de�ned
over Fq. In particular

H/B(Fq) =
∑

w∈Wσ
H

q`(w).

It follows that [KJ(OF ) : IJ(OF )] and [G(OF ) : I(OF )] are both polynomials in q with coe�cients in
Z and constant coe�cient 1, and the polynomials depend only on the root systems of the corresponding
reductive quotients of the special �ber.

Similarly the ratio vol(IJ (OF ))
vol(I(OF )) can be computed as the ratio

det(1− q−1ςJ |V )

det(1− q−1ς|V )
=

det(q − ςJ |V )

det(q − ς|V )

where ς denotes the linear action of the Frobenius on V = X∗(T )R, and similarly for ςJ , see [Kot88, �1].
This is also a ratio of polynomials in q with coe�cients in Z, and the ratio at q = 0 is equal to

det(ςJ)/ det(ς) = (−1)rkFJb−rkFG = e(Jb).

Moreover the polynomials depend only on the a�ne root system of G and the element b. The result
follows. �

Finally in this section we record the following immediate consequence of Proposition 3.2.1.

Corollary 3.2.6. If Conjecture 2.6.7 is true for all p-adic �elds F , then it is true for all local �elds F . �

From now on we will assume F is a p-adic �eld. The upshot of this, as we will see in the next
section, is that we are able to apply the Base Change Fundamental Lemma to count points on the a�ne
Deligne�Lusztig variety.
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4. Counting points

4.1. The decent case. For each s ∈ N, let Fs be the degree s unrami�ed extension of F in L. Let Os be the
valuation ring of Fs, and let ks be residue �eld. The number N (µ, b) depends on b only via its σ-conjugacy
class [b] ∈ B(G). Recall that given b ∈ G(L), one can associate a slope cocharacter νb ∈ HomL(D, G), where
D is the pro-torus with character group Q.

De�nition 4.1.1. Let s ∈ N. We say that an element b ∈ G(L) is s-decent, if sνb is an integral cocharacter
Gm → G (as opposed to a fractional cocharacter), and

bσ(b) · · ·σs−1(b) = (sνb)(πF ).(4.1.1)

Lemma 4.1.2. Assume b ∈ G(L) is s-decent. Then sνb is de�ned over Fs, and b belongs to G(Fs).

Proof. The proof is identical to the proof of [RZ96, Corollary 1.9]. �

Lemma 4.1.3. Any class in B(G) contains an element b which is s-decent for some s ∈ N.

Proof. This follows from [Kot85, �4.3]. �

In the following, we assume that b is s0-decent, for some �xed s0 ∈ N. By the above lemma there is no
loss of generality in making this assumption. We may and shall also assume that s0 is divisible enough so
that T is split over Fs0 .

De�nition 4.1.4. Let s ∈ s0N. Let Gs := ResFs/F G, so that b ∈ Gs(F ). Let Θ be the F -automorphism
of Gs corresponding to the Frobenius σ ∈ Gal(Fs/F ). Let Gs,bΘ be the centralizer of bΘ in Gs, which is a
subgroup of Gs de�ned over F . De�ne

G(Fs)bσ :=
{
g ∈ G(Fs)|g−1bσ(g) = b

}
.

Thus G(Fs)bσ is naturally identi�ed with Gs,bΘ(F ).

Lemma 4.1.5. For s ∈ s0N, there is a natural isomorphism of F -groups:

Jb ∼= Gs,bΘ.

Moreover, Jb(F ) = G(Fs)bσ as subgroups of G(L).

Proof. Let R be an F -algebra. Recall from (2.5.1) that

Jb(R) =
{
g ∈ G(R⊗F L)|g−1bσ(g) = b

}
.

It su�ces to prove that for any g ∈ Jb(R) we have g ∈ G(R ⊗F Fs0). Now such a g commutes with b o σ,
and so it commutes with (bo σ)s0 . By (4.1.1), we have (bo σ)s0 = (s0νb)(πf )o σs0 . On the other hand, by
the functoriality of the association b 7→ νb, we know that g commutes with νb. It follows that g commutes
with σs0 , and so g ∈ G(R⊗F Fs0) as desired. �

4.1.6. We keep assuming that F is p-adic. In �2.4, we discussed the geometric structure on Xµ(b), as
a locally closed subscheme of the Witt vector Grassmannian over k = kF . In the current setting, Xµ(b)

is naturally �de�ned over ks0 �. More precisely, we can work with the version of the Witt vector a�ne
Grassmannian as an ind-scheme over ks0 rather than over k. See [BS17, Corollary 9.6], cf. [Zhu17, �1.4].
Then the a�ne Deligne�Lusztig variety can be de�ned as a locally closed ks0-subscheme of the Witt vector
a�ne Grassmannian, as in [Zhu17, �3.1.1]. The key point here is that since T is split over Fs0 , all the
Schubert cells in the Witt vector a�ne Grassmannian are already de�ned over ks0 , see [Zhu17, �1.4.3]. We
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denote by GrG and Xµ(b) the Witt vector a�ne Grassmannian and the a�ne Deligne�Lusztig variety over
ks0 , and continue to use GrG and Xµ(b) to denote the corresponding objects over k. Thus

GrG = GrG ⊗ks0 k

Xµ(b) = Xµ(b)⊗ks0 k.

Let us recall the moduli interpretations of GrG and Xµ(b). For any perfect ks0-algebra R, denote

Ws0(R) := W (R)⊗W (ks0 ) Os0 .

We have (see [Zhu17, Lemma 1.3])

GrG(R) =
{

(E , β)|E is a GWs0
(R)-torsor on Ws0(R), β is a trivialization of E on Ws0(R)[1/p]

}
.

We also have (see [Zhu17, (3.1.2)])

Xµ(b)(R) =
{

(E , β) ∈ GrG(R)|Invx(β−1bσ(β)) = µ, ∀x ∈ specR
}
.

Lemma 4.1.7. For any s ∈ s0N, we have

Xµ(b)(ks) =
{
g ∈ G(Fs)/G(Os)|g−1bσ(g) ∈ G(Os)µ(πF )G(Os)

}
.

Proof. We only need to show that GrG(ks) = G(Fs)/G(Os). For this it su�ces to show that any GOs-torsor
over Os is trivial (cf. the proof of [Zhu17, Lemma 1.3]). By smoothness this reduces to the Lang�Steinberg
theorem, namely that any Gks -torsor over the �nite �eld ks is trivial. �

Lemma 4.1.8. The action of Jb(F ) on Xµ(b) descends to a natural action on Xµ(b) via ks0-automorphisms.

Proof. By Lemma 4.1.5, Jb(F ) = G(Fs0)bσ. The group G(Fs0)bσ naturally acts on Xµ(b)(R) by acting on
the trivializations β, for each perfect ks0 -algebra R. �

Lemma 4.1.9. Up to enlarging s0, all the irreducible components of Xµ(b) are de�ned over ks0 , i.e. come

from base change of irreducible components of Xµ(b).

Proof. This follows from Lemma 2.5.5 and Lemma 4.1.8. �

4.2. Twisted orbital integrals and point counting. We �x s0 ∈ N to be divisible enough so as to satisfy
all the conclusions in �4.1. In particular G is split over Fs0 and the conclusion of Lemma 4.1.9 holds. Let
s ∈ s0N.

For any C-valued function f ∈ C∞c (G(Fs)), de�ne the twisted orbital integral

TOb(f) :=

∫
G(Fs)bσ\G(Fs)

f(g−1bσ(g))dg,(4.2.1)

where G(Fs)bσ is equipped with an arbitrary Haar measure, and G(Fs) is equipped with the Haar measure
giving volume 1 to G(Os). The general convergence of TOb(f) follows from the result of Ranga Rao [RR72].
However, in our case, by the decency equation (4.1.1) we know that bΘ is a semi-simple element of Gso 〈Θ〉,
from which it follows that the twisted orbit is closed in G(Fs). The convergence of TOb(f) then follows
easily, cf. [Clo90, p. 266].

De�nition 4.2.1. Let fµ,s ∈ C∞c (G(Fs)) be the characteristic function of G(Os)µ(πF )G(Os).

In the following we study the relationship between the twisted orbital integral TOb(fµ,s) and point count-
ing on Xµ(b).
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Lemma 4.2.2. Each irreducible component Z of Xµ(b) is quasi-compact, and is isomorphic to the perfection

of a quasi-projective variety over k. Moreover, Z has non-empty intersection only with �nitely many other

irreducible components of Xµ(b).

Proof. Since Xµ(b) is a perfect scheme by Theorem 2.5.2, the generic point η of Z and its residue �eld k(η)

make sense. Moreover k(η) is a perfect �eld containing k. Let (E , β) ∈ Xµ(b)(k(η)) ⊂ GrG(k(η)) correspond
to η, and de�ne λ := Inv(β) ∈ X∗(T )+. Since {η} is dense in Z, it follows from [Zhu17, Lemma 1.22] that Z
is contained in GrG,≤λ, the Schubert variety inside GrG associated to λ. On the other hand, it follows from
[Zhu17, �1.4.1, Lemma 1.22] and [BS17, Theorem 8.3] that GrG,≤λ is the perfection of a projective variety
over k. Since Z is closed in Xµ(b) and Xµ(b) is locally closed in GrG, we conclude that Z is locally closed in
GrG,≤λ, and hence Z is quasi-compact and isomorphic to the perfection of a quasi-projective variety over k.

Since Xµ(b) is locally of perfectly �nite type by Theorem 2.5.2, each point in Xµ(b) has an open neigh-
borhood that intersects with only �nitely many irreducible components of Xµ(b). Since Z is quasi-compact,
it also intersects with only �nitely many irreducible components of Xµ(b). �

Lemma 4.2.3. The set Jb(F )\Xµ(b)(ks) is �nite. For all x̃ ∈ Xµ(b)(ks), the stabilizer Stabx̃ Jb(F ) in Jb(F )

is a compact open subgroup of Jb(F ). We have

TOb(fµ,s) =
∑

x∈Jb(F )\Xµ(b)(ks)

vol(Stabx̃ Jb(F ))−1,

where for each x ∈ Jb(F )\Xµ(b)(ks) we pick a representative x̃ ∈ Xµ(b)(ks). Here vol(Stabx̃ Jb(F )) is

computed with respect to the chosen Haar measure on Jb(F ) = G(Fs)bσ (cf. Lemma 4.1.5).

Proof. Write G = G(Fs), J = G(Fs)bσ,K = G(Os). Let C =
{
g ∈ J\G|g−1bσ(g) ∈ Kµ(πF )K

}
. By the

discussion below (4.2.1), we know that C is a compact subset of J\G (as C is the intersection of the compact
set Kµ(πF )K with the closed twisted orbit of bσ which is homeomorphic to J\G), and TOb(fµ,s) is nothing
but the volume of C. Consider the action of K on C by right multiplication. The orbits are open subsets
of C, and form a �nite partition of C. On the other hand, by Lemma 4.1.7 and Lemma 4.1.8, these orbits
are in one-to-one correspondence with Jb(F )\Xµ(b)(ks). In particular Jb(F )\Xµ(b)(ks) is �nite.2 Hence we
write this �nite partition as

C =
⊔

x∈Jb(F )\Xµ(b)(ks)

Cx.

From the above discussion we obtain

TOb(fµ,s) =
∑

x∈Jb(F )\Xµ(b)(ks)

vol(Cx).(4.2.2)

Next we compute vol(Cx) for a �xed x ∈ Jb(F )\Xµ(b)(ks). Let x̃ ∈ Xµ(b)(ks) be a lift of x. Fix r ∈ G
representing x̃, see Lemma 4.1.7. Then by the de�nition of the quotient measure we have

1 =

∫
G

1rK(g)dg =

∫
J\G

∫
J

1rK(hg)dhdg =

∫
J\G

vol(J ∩ rKg−1)dg.(4.2.3)

Here the function

G 3 g 7→ vol(J ∩ rKg−1) (volume computed with respect to the Haar measure on J)

2Alternatively, one could also show the �niteness using the result of Rapoport�Zink [RZ99, Theorem 1.4] as interpreted in

[HV17, Lemma 1.3].
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descends to J\G. We have

vol(J ∩ rKg−1) =

vol(J ∩ rKr−1), g ∈ Cx
0, g ∈ J\G− Cx.

Hence (4.2.3) reads

1 = vol(Cx) vol(J ∩ rKr−1).

Note that J = Jb(F ) (Lemma 4.1.5), and J ∩ rKr−1 is obviously a compact open subgroup of J. Moreover
J ∩ rKr−1 = Stabx̃ Jb(F ). Hence we have

vol(Cx) = vol(Stabx̃ Jb(F ))−1.(4.2.4)

At this point we have already seen that Jb(F )\Xµ(b)(ks) is �nite, and that Stabx̃ Jb(F ) is a compact open
subgroup of Jb(F ). The rest of the lemma follows from (4.2.2) and (4.2.4). �

Proposition 4.2.4. For s ∈ N divisible by s0, we have

TOb(fµ,s) =
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(StabZ(Jb(F )))−1 |ks|dimXµ(b)
+ o(|ks|dimXµ(b)

), s� 0.

Here Z runs over a set of representatives for the Jb(F )-orbits in Σtop(Xµ(b)), and for each such Z we denote

by vol(StabZ(Jb(F ))) the volume of the compact open subgroup StabZ(Jb(F )) of Jb(F ) (see Theorem 3.1.1)

under the Haar measure of Jb(F ).

Proof. Write d = dimXµ(b). By Lemma 2.5.5, we let Z1, · · · , ZM be a complete set of representatives of
the Jb(F )-orbits in Σ(Xµ(b)). Up to reordering, assume that Z1, · · · , ZN are of dimension d, and all of
ZN+1, · · · , ZM (if any) are of smaller dimensions. Write di := dimZi.

Our starting point is Lemma 4.2.3. Note that if x ∈ Jb(F )\Xµ(b)(ks) and if x̃ ∈ Xµ(b)(ks) is any
representative of x, then the term vol(Stabx̃ Jb(F )) only depends on x. We henceforth denote it by volx.

For each 1 ≤ i ≤M , de�ne

Ui := Zi −
⋃

1≤j<i,γ∈Jb(F )

γZj −
⋃

γ∈Jb(F ),γZi 6=Zi

γZi

Vi := Zi ∩
⋃

Z∈Σ(Xµ(b)),Z 6=Zi

Z

Ji := StabUi(Jb(F )).

By Lemma 4.2.2, we know that Ui is open dense in Zi, and Vi is a proper closed subset of Zi. Since the
action of StabZi(Jb(F )) on Zi obviously stabilizes Ui, it immediately follows that

Ji = StabZi(Jb(F )),

and in particular Ji is open compact in Jb(F ) by Theorem 3.1.1. By Lemma 4.1.9, we know that all Zi, Ui, Vi
come from base change of locally closed ks0 -subschemes Zi,Ui,Vi of Xµ(b) respectively, where Zi,Ui,Vi are
perfections of quasi-projective varieties over ks0 . Moreover, Zi,Ui are irreducible.

For each 1 ≤ i ≤M and each y ∈ Ui(ks), de�ne

ε(y) := [Staby(Jb(F )) : Staby(Jb(F )) ∩ Ji] = [Staby(Jb(F )) : Staby(Ji)].

Thus ε(y) is not larger than the number of irreducible components of Xµ(b) that intersect Zi at y. By
Lemma 4.2.2 we know that ε(y) is �nite.
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By construction, the natural map

π :
⊔

1≤i≤M

Ui(ks) −→ Jb(F )\Xµ(b)(ks)

is a surjection (between �nite sets). By the construction of the Ui's, for any x ∈ Jb(F )\Xµ(b)(ks) we know
that:

• The �ber π−1(x) is contained in Ui(x)(ks), for a unique 1 ≤ i(x) ≤M .
• The group Ji(x) acts transitively on π−1(x).

Note that by the second property above, the function ε(·) descends along π. We have

volx ·
∣∣π−1(x)

∣∣ =
∑

y∈π−1(x)

vol(Staby(Jb(F ))) =
∑

y∈π−1(x)

ε(y) vol(Staby(Ji(x))) = ε(x) vol(Ji(x)),(4.2.5)

where the last equality follows from the orbit-stabilizer relation applied to the Ji(x)-orbit π−1(x). Hence we
compute:

TOb(fµ,s)
Lemma 4.2.3

============
∑

x∈Jb(F )\Xµ(b)(ks)

vol−1
x =

M∑
i=1

∑
y∈Ui(ks)

vol−1
π(y) ·

∣∣π−1(π(y))
∣∣−1

(4.2.5)
======

M∑
i=1

vol(Ji)−1
∑

y∈Ui(ks)

ε(y)−1.(4.2.6)

Now let Ui be a quasi-projective variety whose perfection is Ui. Then Ui is irreducible, and Ui(ks) = Ui(ks).
By the Lang�Weil bound (see [LW54]) applied to Ui, we know that

|Ui(ks)| = |ks|di + o(|ks|di), s� 0.(4.2.7)

Similarly we have

|Vi(ks)| = |Zi(ks)| − |(Zi − Vi)(ks)| = o(|ks|di), s� 0.(4.2.8)

We observe that for any y ∈ Ui(ks), we have ε(y) ≥ 2 only if y ∈ Vi(ks) ∩ Ui(ks). Hence by (4.2.6) (4.2.7)
(4.2.8) we have

TOb(fµ,s) =

M∑
i=1

vol(Ji)−1

[
|ks|di + o(|ks|di)

]
=

N∑
i=1

vol(Ji)−1 |ks|d + o(|ks|d), s� 0.

This is what we want to prove. �

4.3. Applying the Base Change Fundamental Lemma in the basic case. Recall that we assumed
that [b] ∈ B(G,µ) and b is s0-decent. We now assume in addition that b is basic.

For s ∈ N, recall from [Kot82, �5] that the s-th norm map is a map

Ns : {σ-conjugacy classes in G(Fs)} −→ {stable conjugacy classes in G(F )} .

By [Kot82, Proposition 5.7], two σ-conjugacy classes in G(Fs) are in the same �ber of Ns precisely when
they are stably σ-conjugate, a notion that is de�ned in [Kot82, �5].

Lemma 4.3.1. Let s ∈ s0N. Then Ns(b), as a stable conjugacy class in G(F ), consists of the single element

(sνb)(πF ). Moreover, the cocharacter sνb : Gm → G is de�ned over F .

Proof. By [Kot82, Corollary 5.3], any element in Ns(b) is G(F )-conjugate to bσ(b) · · ·σs−1(b) ∈ G(Fs), which
is equal to (sνb)(πF ) since b is s-decent. Now since (sνb)(πF ) is central, we know that Ns(b) = {(sνb)(πF )}
and that (sνb)(πF ) ∈ G(F ). It follows from the last statement that sνb is de�ned over F . �
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Lemma 4.3.2. Let s ∈ s0N. Let b′ ∈ G(Fs) be an element in the stable σ-conjugacy class of b. Then

νb′ = νb, and b
′ is s-decent. In particular b′ is basic. Moreover, if [b′] ∈ B(G,µ), then b′ is σ-conjugate to b

in G(Fs).

Proof. By hypothesis we have Ns(b) = Ns(b
′). By Lemma 4.3.1 applied to b, we know that the Ns(b)

consists of the single central element (sνb)(πF ) ∈ G(F ). On the other hand any element of Ns(b
′) should be

G(F )-conjugate to b′σ(b′) · · · σs−1(b′) (by [Kot82, Corollary 5.3]). Therefore

b′σ(b′) · · · σs−1(b′) = (sνb)(πF ).

By the characterization of νb′ (see [Kot85, �4.3]), the above equality implies that νb′ = νb and that b′ is
s-decent. The �rst part of the lemma is proved.

Now we assume [b′] ∈ B(G,µ). Since B(G,µ) contains a unique basic class, we have [b′] = [b]. Finally, by
[RZ96, Corollary 1.10], we know that b and b′ must be σ-conjugate in G(Fs), since they are both s-decent
and represent the same class in B(G). �

Let s ∈ s0N. We now consider stable twisted orbital integrals along b. By our assumption that b is
s-decent and basic, we know that

bσ(b) · · ·σs−1(b) = (sνb)(πF )

is a central element of G(Fs), and is in fact an element of G(F ) by Lemma 4.3.1. In particular, this element
is semi-simple, and the centralizer of this element (namely G) is connected. Therefore, with the terminology
of [Kot82], an element b′ ∈ G(Fs) is stably σ-conjugate to b if and only if it is F -σ-conjugate to b. This
observation justi�es our de�nition of the stable twisted orbital integral in the following, cf. [Hai09, �5.1].

For any C-valued function f ∈ C∞c (G(Fs)), we let STOb(f) be the stable twisted orbital integral

STOb(f) :=
∑
b′

e(Gs,b′Θ)TOb′(f),

where the summation is over the set of σ-conjugacy classes b′ in G(Fs) that are stably σ-conjugate to b, and
e(·) denotes the Kottwitz sign. Here each TOb′ is de�ned using the Haar measure on G(Fs) giving volume 1

to G(Os), and the Haar measure on G(Fs)b′σ = Gs,b′Θ(F ) that is transferred from the �xed Haar measure
on G(Fs)bσ = Gs,bΘ(F ).

De�nition 4.3.3. Denote by Hs the unrami�ed Hecke algebra H(G(Fs)//G(Os)). Denote by BCs the base
change map Hs → H1.

De�nition 4.3.4. For s ∈ s0N, we write γs for (sνb)(πF ), and write γ0 for γs0 . Thus γ0 belongs to G(F )

(see Lemma 4.3.1) and γs = γ
s/s0
0 .

Proposition 4.3.5. Assume s ∈ s0N. For any f ∈ Hs, we have

STOb(f) = vol(G(OF ))−1(BCs f)(γs),

where vol(G(OF )) is de�ned in terms of the Haar measure on G(F ) transferred from the �xed Haar measure

on Gs,bΘ(F ), for the inner form Gs,bΘ of G.

Proof. By Lemma 4.3.1, Ns(b) consists of the single central semi-simple element γs ∈ G(F ). By the Base
Change Fundamental Lemma proved by Clozel [Clo90, Theorem 7.1] and Labesse [Lab90], we know that
STOb(f) is equal to the stable orbital integral of BCs f at Ns(b). The latter degenerates to

e(Gγs) ·
µ1

µ2
· (BCs f)(γsg)
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since γs is central. Here µ1 denotes the Haar measure on G(F ) giving volume 1 to G(OF ), and µ2 denotes
the Haar measure on Gγs(F ) = G(F ) transferred from Gs,bΘ(F ). The notation µ1

µ2
denotes the ratio between

these two Haar measures on the same group G(F ). Obviously this ratio is equal to vol(G(OF ))−1 as in the
proposition. Finally, since Gγs = G is quasi-split, e(Gγs) = 1. �

Lemma 4.3.6. For s divisible by s0, we have

STOb(fµ,s) = e(Jb)TOb(fµ,s).

Proof. Firstly, by Lemma 4.1.5 we have Gs,bΘ = Jb. We need to check that TOb′(fµ,s) = 0, for any b′ ∈ G(Fs)

that is stably σ-conjugate to b but not σ-conjugate to b in G(Fs). Assume the contrary. Then there exists
g ∈ G(Fs) such that fµ,s(g−1b′σ(g)) 6= 0, from which g−1b′σ(g) ∈ G(Os)µ(πF )G(Os). Hence κ([b′]) = µ\ by
Theorem 2.5.1. But this contradicts Lemma 4.3.2. �

Corollary 4.3.7. Keep the notation in Proposition 4.2.4. For s� 0, we have

e(Jb) vol(G(OF ))−1(BCs fµ,s)(γs) =
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(StabZ(Jb(F )))−1 |ks|dimXµ(b)
+ o(|ks|dimXµ(b)

).

Proof. This follows from Proposition 4.2.4, Proposition 4.3.5, and Lemma 4.3.6. �

5. Matrix coefficients for the Satake transform

5.1. General de�nitions and facts. In this subsection we expose general facts concerning the Satake
isomorphism, for unrami�ed reductive groups over F . The aim is to give an interpretation of the coe�cients
for the matrix of the inverse Satake isomorphism in terms of a q-analogue of Kostant's partition function.
This is well-known by work of Kato [Kat82] in the case when G is split; we will need the case of non-split G.
Our main reference is [CCH16, �1], which we follow closely. We also refer to [KS99, �1] for some of the facts.

Let G be an unrami�ed reductive group over F . At this moment it is not necessary to �x a reductive
model over OF of G. Inside G we �x a Borel pair, namely a Borel subgroup B and a maximal torus T ⊂ B,
both de�ned over F . In particular, T is a minimal Levi, and is split over F un.

We denote by

BRD(B, T ) = (X∗(T ),Φ ⊃ ∆, X∗(T ),Φ∨ ⊃ ∆∨)

the based root datum associated to (B, T ). This based root datum has an automorphism θ induced by the
Frobenius σ ∈ Gal(F un/F ). Let d = dθ <∞ be the order of θ.

Fix an F -pinning (B, T,X+) of G. Since the Galois action on BRD(B, T ) factors through the cyclic group
generated by θ, we know that θ is a Galois-equivariant automorphism of BRD(B, T ), and so it lifts uniquely
to an F -automorphism of G preserving (B, T,X+). We denote this F -automorphism of G still by θ. We are
thus in a special case of the situation considered in [KS99, �1.3].

Let A be the maximal split sub-torus of T . We have3

X∗(A) = X∗(T )θ

X∗(A) = [X∗(T )/(1− θ)X∗(T )]free.

Let FΦ ⊂ X∗(A) be the image of Φ ⊂ X∗(T ). It is well known (see for instance [Spr09, Theorem 15.3.8])
that the triple (X∗(A), FΦ, X∗(A)) naturally extends to a (possibly non-reduced) root datum

(X∗(A), FΦ, X∗(A), FΦ∨).

3In [CCH16, �1.1], it is stated that X∗(A) = X∗(T )/(1− θ)X∗(T ), which is not true in general.
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Elements of FΦ are by de�nition θ-orbits in Φ. For α ∈ Φ, we write [α] for its θ-orbit. The θ-orbits in ∆

give rise to a set of simple roots in FΦ, which we denote by F∆. As usual, we denote the structural bijection

FΦ
∼−→ FΦ∨ by [α] 7→ [α]∨.

We let Φ1 ⊂ FΦ be the subset of indivisible elements, namely, those [α] ∈ FΦ such that 1
2 [α] /∈ FΦ. The

image of Φ1 under the bijection FΦ
∼−→ FΦ∨ is denoted by Φ1,∨. The tuple

(X∗(A),Φ1, X∗(A),Φ1,∨)(5.1.1)

has the structure of a reduced root datum. We note that F∆ is also a set of simple roots in Φ1. We
henceforth denote F∆ also by ∆1. For the sets Φ, FΦ,Φ1,Φ∨, FΦ∨,Φ1,∨, we put a superscript + to denote
their respective subsets of positive elements.

Recall that we denoted by W0 the absolute Weyl group of G. We let W 1 ⊂ W0 be the subgroup of
elements that commute with θ. Then W 1 is a Coxeter group (see [CCH16, �1.1]), and we denote by `1 the
length function on it.

Remark 5.1.1. Following [KS99, �1.1], consider the identity component G1 of the θ-�xed points of G. Denote
B1 := B ∩ G1. Then G1 is a connected split reductive group over F , and (B1, A) is a Borel pair in G1.
The root datum of (G1, A) can be identi�ed with (5.1.1), and the Borel B1 corresponds to the simple roots
∆1 ⊂ Φ1. Moreover, we can naturally identify W 1 with the Weyl group of (G1, A). See loc. cit. for these
statements.4

We next form the complex dual group of G. Let Ĝ be the dual group of G over C. Thus Ĝ is a connected
reductive group over C, equipped with a Borel pair (B̂, T̂ ) and an isomorphism

BRD(B̂, T̂ )
∼−→ BRD(B, T )∨,

where BRD(B̂, T̂ ) denotes the based root datum associated to (B̂, T̂ ), and BRD(B, T )∨ denotes the dual
based root datum to BRD(B, T ). In particular, we have canonical identi�cations X∗(T̂ ) ∼= X∗(T ), X∗(T̂ ) ∼=
X∗(T ), which we think of as equalities. We �x a pinning (B̂, T̂ , X̂+). The action of θ on BRD(B, T ) translates
to an action on BRD(B̂, T̂ ), and the latter lifts to a unique automorphism θ̂ of Ĝ that preserves (B̂, T̂ , X̂+).
The L-group LG is by de�nition the semi-direct product Ĝo 〈θ̂〉, where 〈θ̂〉 denotes the cyclic group of order
d generated by θ̂.

De�ne the torus

Â := T̂ /
{
t · θ̂(t)−1|t ∈ T̂

}
.

We write Y ∗ for X∗(Â). Thus we have

Y ∗ = X∗(T̂ )θ̂ = X∗(T )θ = X∗(A).

(Hence Â is indeed the dual torus of A.) De�ne

P+ := {λ ∈ Y ∗|〈λ, α〉 ≥ 0, ∀α ∈ ∆} =
{
λ ∈ Y ∗|〈λ, [α]〉 ≥ 0, ∀[α] ∈ ∆1

}
.

R+ := the Z≥0-span of FΦ∨,+ ⊂ Y ∗.

In the following we adopt the exponential notation for group algebras. The C-vector space C[Y ∗]W
1

has
a basis given by

mµ :=
∑

λ∈W 1µ

eλ,

for µ ∈ P+. Here W 1µ denotes the orbit of µ under W 1.

4It is obvious that the torus T 1 := G1 ∩ T in [KS99, �1.1] is equal to A in our case.
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De�nition 5.1.2. Let V be a �nite dimensional representation of LG over C. Let

V =
⊕

µ∈X∗(T̂ )

V (µ)

be the weight space decomposition of V as a representation of T̂ . Let γ be an element of (NĜT̂ ) o 〈θ̂〉 of
�nite order. Let w ∈W 1 and ε ∈ {±1}. De�ne a C[X∗(T̂ )]-linear operator Eεw on V ⊗CC[X∗(T̂ )] by letting
Eεw act on each V (µ) via the scalar eεwµ ∈ C[X∗(T̂ )]. If ε = 1 and w = 1, we simply write E for Eεw.5 For
a formal variable q, de�ne

D(V, γ,Eεw,q) := det(1− qγEεw, V ) ∈ C[X∗(T̂ )][q]

P (V, γ,Eεw,q) := D(V, γ,Eεw,q)−1 ∈ Frac

(
C[X∗(T̂ )][q]

)
.

De�nition 5.1.3. Let n̂ be the Lie algebra of the unipotent radical of B̂, equipped with the adjoint action
of LG (see [CCH16, �1.3.1]). Let w ∈W 1 and ε ∈ {±1}. We de�ne

D(Eεw,q) := D(n̂, θ̂, Eεw,q).

P (Eεw,q) := P (n̂, θ̂, Eεw,q) = D(Eεw,q)−1.

De�nition 5.1.4. Let [α] ∈ Φ1 ⊂ FΦ. We say that [α] is of type I, if 2[α] /∈ FΦ. Otherwise we say that [α]

is of type II. For [α] ∈ Φ1, we de�ne

b([α]) :=

#[α], if [α] is of type I
1
2#[α] if [α] is of type II

where #[α] denotes the size of [α] viewed as a θ-orbit in Φ. Then b([α]) ∈ Z≥1, see [CCH16, �1.1], cf. Remark
5.1.7 below.

De�nition 5.1.5. For any element β = [α]∨ ∈ Φ1,∨ (with [α] ∈ Φ1), we de�ne b(β) to be b([α]), and we
say that β has type I or II if [α] has type I or II. For any β′ ∈ FΦ∨ that is homothetic to β ∈ Φ1,∨ ⊂ FΦ∨,
we de�ne b(β′) to be b(β). Thus we obtain a function

b : FΦ∨ −→ Z≥1.

De�nition 5.1.6. For β ∈ Φ1,∨, we de�ne dβ(q) ∈ C[Y ∗][q] as follows:

dβ(q) :=

1− qb(β)eβ , if β is of type I

(1− q2b(β)eβ/2)(1 + qb(β)eβ/2), if β is of type II.

Here, when β is of type II, β/2 is always an element of FΦ∨ and in particular an element of Y ∗, see [CCH16,
�1.1] or [KS99, �1.3], cf. Remark 5.1.7 below.

Remark 5.1.7. To compare De�nitions 5.1.4, 5.1.5, 5.1.6 with [CCH16, �1.3.2], we inform the reader that
the symbols α, [β∨], β used in [CCH16, �1.3.2] correspond to our β, [α], α∨, respectively. Our choice of
symbols is however compatible with [CCH16, Lemma 1.1.1]. Our type I or type II respectively correspond
to diagram A1 or A2 in [CCH16, (1.3.6)]. Let b(·) be the function in [CCH16, (1.3.6)]. It is a function on
both Φ and Φ∨, and satis�es b(ω) = b(ω∨) for all ω ∈ Φ. For any ω∨ ∈ Φ∨ with image [ω∨] ∈ FΦ∨, we have
b(ω∨) = b([ω∨]).

5Note that for ε = −1 and w = 1, Eεw = E−1 is indeed the inverse of E, so the notation is compatible.
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De�nition 5.1.8. Let R be an integral domain, and let q be a formal variable. We write R[[q]]′ for the
intersection of Frac(R[q]) and R[[q]], inside (FracR)((q)).

Lemma 5.1.9. For ε ∈ {±1}, we have

D(Eε,q) =
∏

εβ∈Φ1,∨,+

dβ(q)

P (Eε,q) =
∏

εβ∈Φ1,∨,+

dβ(q)−1

In particular, D(Eε,q) ∈ C[Y ∗][q] and P (Eε,q) ∈ C[Y ∗][[q]]′.

Proof. The case ε = 1 is [CCH16, Lemma 1.3.7], cf. Remark 5.1.7. The case ε = −1 is proved in the same
way, by switching the roles of positive elements and negative elements in Φ1,∨. �

De�nition 5.1.10. For each λ ∈ Y ∗, we de�ne P(λ,q) ∈ C[q] as follows. In view of De�nition 5.1.6 and
Lemma 5.1.9, we have an expansion

P (E−1,q) =
∑
λ∈R+

P(λ,q)e−λ,(5.1.2)

where each P(λ,q) ∈ C[q] is a polynomial in q. We set P(λ,q) := 0 for all λ ∈ Y ∗ −R+.

Corollary 5.1.11. Let λ ∈ R+ − {0}. Then the polynomial P(λ,q) ∈ C[q] has constant term 0.

Proof. This immediately follows from Lemma 5.1.9 and De�nition 5.1.10. �

De�nition 5.1.12. Let ρ∨ ∈ X∗(T )⊗Z
1
2Z be the half sum of elements in Φ∨,+, and let ρ ∈ X∗(T )⊗Z

1
2Z

be the half sum of elements in Φ+. Then ρ∨ in fact lies in Y ∗⊗Z
1
2Z, and is equal to the half sum of elements

in Φ1,∨,+, see [CCH16, �1.2]. For w ∈W 1 and µ ∈ Y ∗, we denote

w • µ := w(µ+ ρ∨)− ρ∨ ∈ Y ∗.

We also write w • (·) for the induced action of w on C[Y ∗]. De�ne the operator

J : C[Y ∗] −→ C[Y ∗]

f 7→ J(f) :=
∑
w∈W 1

(−1)`1(w)w • f.(5.1.3)

De�nition 5.1.13. For λ ∈ P+ and for a formal variable q, de�ne

τλ(q) := J(eλ)P (E−1,q) =
∑
µ∈R+

J(eλ)P(µ,q)e−µ ∈ C[Y ∗][[q]]′.(5.1.4)

In particular, τλ(q) de�nes a C[[q]]′-valued function on Â, by evaluating Y ∗ on Â. Moreover, for any
particular value q ∈ C of q, it is clear from Lemma 5.1.9 that τλ(q) de�nes a rational function on Â.

De�nition 5.1.14. Let λ ∈ P+ ⊂ Y ∗ = X∗(T̂ )θ̂. Let Vλ be the irreducible representation of Ĝ of highest
weight λ.

Theorem 5.1.15 ([CCH16, Theorem 1.4.1]). Let λ ∈ P+. The character of Vλ, as a function on T̂ , descends

to a function on Â. Moreover the following statements hold.

(1) (Weyl character formula.) We have τλ(1) ∈ C[Y ∗]W
1

. Moreover, τλ(1) is equal to the character of Vλ,

when viewed as a function on Â.

(2) (Weyl denominator formula.) τ0(1) = 1.

�
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5.2. Matrix coe�cients. We now �x a reductive model of G over OF as in �2.1. As before we denote by
H1 the spherical Hecke algebra H(G(F )//G(OF )). For each µ ∈ X∗(A), we let fµ ∈ H1 be the characteristic
function of G(OF )µ(πF )G(OF ). Then the C-vector space H1 has a basis given by fµ, for µ ∈ P+ ⊂ X∗(A).

Recall that the Satake isomorphism is a C-algebra isomorphism

Sat : H1
∼−→ C[Y ∗]W

1

.

In the following, we simply write fµ for Sat(fµ), if there is no confusion. At this point we have introduced
three bases of the C-vector space C[Y ∗]W

1

, namely {mµ} , {τµ} , {fµ}, all indexed by µ ∈ P+. We denote
some of the transition matrices as follows:

mµ =
∑
λ

nλµτλ

τµ =
∑
λ

tλµfλ

mµ =
∑
λ

Mλ
µfλ.

We are mainly interested inMλ
µ. There are known formulas for nλµ and t

λ
µ which we recall below, see Theorem

5.2.2 and Theorem 5.2.3. Then Mλ
µ is just given by the multiplication of the other two transition matrices.

De�nition 5.2.1. As in [CCH16, �1.7], we have a partition

Y ∗ = Y ∗0 t
⊔

w∈W 1

Y ∗w ,

where

Y ∗0 :=
{
λ ∈ Y ∗|∃w ∈W 1, w is a re�ection, w • λ = λ

}
Y ∗w :=

{
λ ∈ Y ∗|w • λ ∈ P+

}
, w ∈W 1.

For each x ∈W 1 t {0} we let ex : Y ∗ → {0, 1} be the characteristic function of Y ∗x .

Theorem 5.2.2 (van Leeuwen's formula, [CCH16, Lemma 1.7.4]). For µ, λ ∈ P+, we have

nλµ =
∑

w′∈W 1/W 1
µ

∑
w∈W 1

(−1)`1(w)ew(w′µ)δ(w • (w′µ), λ).(5.2.1)

Here δ(·, ·) is the Kronecker delta, and W 1
µ is the subgroup of W 1 generated by the re�ections attached to

those [α] ∈ ∆1 such that 〈µ, [α]〉 = 0. �

Combining (5.1.3) (5.1.4), for λ′ ∈ P+ we have

τλ′(q) =
∑
µ∈R+

J(eλ
′
)P(µ,q)e−µ =

∑
w∈W 1

(−1)`1(w)
∑
µ∈R+

P(µ,q)ew•λ
′−µ.

For each λ ∈ P+, we denote by Kλ′,λ(q) the contribution of eλ in the above formula, or more precisely

Kλ′,λ(q) :=
∑
w∈W 1

(−1)`1(w) P(w • λ′ − λ,q).(5.2.2)

This notation is compatible with [Kat82] when G is split.

Theorem 5.2.3 (Kato�Lusztig formula, [CCH16, Theorem 1.9.1]). For µ, λ ∈ P+, we have

tλµ = Kµ,λ(q−1)q−〈λ,ρ〉
∣∣∣
q=|kF |

. �(5.2.3)
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Corollary 5.2.4. For µ, λ ∈ P+, we have

Mλ
µ = q−〈λ,ρ〉

∑
w′∈W 1/W 1

µ

∑
w∈W 1

(−1)`1(w) (1− e0(w′µ))P
(
w • (w′µ)− λ,q−1

)∣∣∣∣∣∣
q=|kF |

.

Proof. We write q for |kF |. We have

Mλ
µ =

∑
λ′∈P+

nλ
′

µ t
λ
λ′

(5.2.1),(5.2.3)
==========

∑
λ′∈P+

∑
w′∈W 1/W 1

µ

∑
w′′∈W 1

(−1)`1(w′′)ew′′(w
′µ)δ(w′′ • (w′µ), λ′)Kλ′,λ(q−1)q−〈λ,ρ〉

5.2.2
=====

∑
λ′∈P+

∑
w′∈W 1/W 1

µ

∑
w′′∈W 1

(−1)`1(w′′)ew′′(w
′µ)δ(w′′ • (w′µ), λ′)q−〈λ,ρ〉

∑
w∈W 1

(−1)`1(w) P(w • λ′ − λ, q−1)

λ′=w′′•(w′µ)
==========

∑
w′∈W 1/W 1

µ

∑
w′′∈W 1

(−1)`1(w′′)ew′′(w
′µ)q−〈λ,ρ〉

∑
w∈W 1

(−1)`1(w) P
(

(ww′′) • (w′µ)− λ, q−1

)

ww′′ 7→w
======= q−〈λ,ρ〉

∑
w′∈W 1/W 1

µ

∑
w′′∈W 1

∑
w∈W 1

(−1)`1(w)ew′′(w
′µ)P

(
w • (w′µ)− λ, q−1

)

∑
w′′∈W1 ew′′ (·)=1−e0(·)

================== q−〈λ,ρ〉
∑

w′∈W 1/W 1
µ

∑
w∈W 1

(−1)`1(w) (1− e0(w′µ))P
(
w • (w′µ)− λ, q−1

)
.

�

Motivated from Corollary 5.2.4, we make the following de�nition.

De�nition 5.2.5. For µ, λ ∈ P+ and a formal variable q−1/2, we set

Mλ
µ(q−1) := q−〈λ,ρ〉

∑
w′∈W 1/W 1

µ

∑
w∈W 1

(−1)`1(w) (1− e0(w′µ))P
(
w • (w′µ)− λ,q−1

)
∈ C[Y ∗][q−1/2].

As a special case, we de�ne

M0
µ(q−1) : =

∑
w′∈W 1/W 1

µ

∑
w∈W 1

(−1)`1(w) (1− e0(w′µ))P
(
w • (w′µ),q−1

)
∈ C[Y ∗][q−1].(5.2.4)

Lemma 5.2.6. Let µ, λ ∈ P+. Let ν ∈ X∗(A ∩ ZG). Then Mλ
µ(q−1) = Mλ−ν

µ−ν(q−1).

Proof. In fact, we have

〈λ, ρ〉 = 〈λ− ν, ρ〉,W 1
µ = W 1

µ−ν , e0(w′µ) = e0(w′(µ− ν)),

w • (w′µ)− λ = w • (w′(µ− ν))− (λ− ν),

for all w′ ∈W 1/W 1
µ and w ∈W 1. �

28



5.3. Interpretation in terms of Kostant partitions. In certain cases the polynomials P(λ,q) ∈ C[q] in
De�nition 5.1.10 have a concrete description as a q-analogue of Kostant's partition function, which we now
explain. Let P be the set of all functions

FΦ∨,+ −→ Z≥0.

We shall typically denote an element of P by m, and denote its value at any β ∈ FΦ∨,+ by m(β). For m ∈ P,
we de�ne

Σ(m) :=
∑

β∈FΦ∨,+

m(β)β ∈ R+ ⊂ Y ∗

|m| :=
∑

β∈FΦ∨,+

m(β)b(β) ∈ Z≥0.

Here b(β) is as in De�nition 5.1.5.
For all λ ∈ Y ∗, we de�ne

P(λ) := {m ∈ P : Σ(m) = λ} ,

which is of course empty unless λ ∈ R+. Elements of P(λ) are called Kostant partitions of λ. For any
L ∈ Z≥0, we de�ne

P(λ)L := {m ∈ P(λ) : |m| = L} .

For λ ∈ Y ∗, we de�ne
PKos(λ,q) :=

∑
m∈P(λ)

q|m| ∈ C[q].

This is known in the literature as the q-analogue of Kostant's partition function, at least when G is split.

Remark 5.3.1. In the sequel the function PKos(λ,q) will only be used when FΦ = Φ1.

Proposition 5.3.2. The following statements hold.

(1) Assume FΦ = Φ1. For all λ ∈ Y ∗ we have P(λ,q) = PKos(λ,q).

(2) In general, to each m ∈ P, we can attach a polynomial Q(m,q) ∈ C[q], with the following properties:

(a) For all 0 < x < 1, we have |Q(m,x)| ≤ 1.

(b) For any λ ∈ Y ∗ we have

P(λ,q) =
∑

m∈P(λ)

Q(m,q)q|m|.

Proof. Part (1) immediately follows from De�nitions 5.1.6, 5.1.10. For part (2), we note that if β ∈ Φ1,∨ is
of type II, then β′ := β/2 is an element of FΦ∨, and we have

dβ(q)−1 =

[ ∞∑
i=0

(q2b(β)eβ/2)i

][ ∞∑
i=0

(−qb(β)eβ/2)i

]
=

[ ∞∑
i=0

(q2b(β′)eβ
′
)i

][ ∞∑
i=0

(−qb(β′)eβ
′
)i

]
,

which is a formal power series in the variable eβ
′
qb(β′), with coe�cients in C[q]. Explicitly we have

dβ(q)−1 =

∞∑
n=0

Rβ,n(q)(qb(β′)eβ
′
)n,

with

Rβ,n(q) =

n∑
i=0

(−1)n−iqib(β
′) ∈ C[q]

for each n ≥ 0. We observe that for all 0 < x < 1 we have

|Rβ,n(x)| ≤ 1.(5.3.1)
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Now for each β′ ∈ FΦ∨ and each n ≥ 0, de�ne

Qβ′,n(q) :=

R2β′,n(q), if 2β′ ∈ Φ1,∨

1, if 2β′ /∈ Φ1,∨.

We take

Q(m,q) :=
∏

β′∈FΦ∨

Qβ′,m(β′)(q).

Then condition (a) follows from the construction and the observation (5.3.1). Condition (b) follows from
Lemma 5.1.9 and De�nition 5.1.10. �

5.4. Computation with the base change. We keep the setting of �4.3 and �5.1. We assume that s0 is
divisible by the order d of θ, and consider s ∈ s0N.

The Satake isomorphism for Hs is

Sat : Hs
∼−→ C[X∗(T̂ )]W0 .

For each µ ∈ X∗(T̂ )+, let τ ′µ be the character of the highest weight representation Vµ of Ĝ of highest weight
µ. Then {

τ ′µ
}
µ∈X∗(T̂ )+

is a basis of C[X∗(T̂ )]W0 . This basis is the absolute analogue of the basis {τµ}µ∈P+ of C[Y ∗]W
1

(i.e., they
are the same if θ = 1).

Recall from �2.6 and �5.1 that we have

Y ∗ = X∗(A) = X∗(T̂ )θ̂

X∗(Ŝ) = X∗(T̂ )θ̂,free.

By Lemma 2.6.1 (3), the composition

Y ∗ ⊗Q→ X∗(T̂ )⊗Q→ X∗(Ŝ)⊗Q

is invertible. We denote its inverse by

λ 7→ λ(1).

We denote sλ(1) by λ(s). Then since s is divisible by d, for all λ ∈ X∗(Ŝ) we have λ(s) ∈ Y ∗. Thus we have
a map

X∗(Ŝ) −→ Y ∗, λ 7→ λ(s),(5.4.1)

which is an isomorphism after ⊗Q. In the case θ = 1, this is none other than the multiplication-by-s map
from Y ∗ to itself. In general, we denote by X∗(Ŝ)+ ⊂ X∗(Ŝ) the natural image of X∗(T̂ )+. Then (5.4.1)
maps X∗(Ŝ)+ into P+ ⊂ Y ∗. Moreover, the action of W 1 on X∗(T̂ ) induces an action of W 1 on X∗(Ŝ), and
the map (5.4.1) is W 1-equivariant.

Proposition 5.4.1. Under the Satake isomorphisms, the base change map BCs : Hs → H1 becomes

BCs : C[X∗(T̂ )]W0 −→ C[Y ∗]W
1

∀µ ∈ X∗(T̂ )+, τ ′µ 7→
∑

λ∈X∗(Ŝ)+

dimVµ(λ)rel ·mλ(s) .
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Proof. To simplify notation we write X∗ for X∗(T̂ ). To compute BCs as a map C[X∗]W0 → C[Y ∗]W
1

, it
su�ces to compose the map with the natural inclusion C[Y ∗]W

1 ⊂ C[X∗]. For each µ ∈ X∗,+, let

m′µ :=
∑

λ∈W0(µ)

eλ.

Then
{
m′µ
}
µ∈X∗,+ is a basis of C[X∗]W0 . This basis is just the absolute analogue of the basis {mµ}µ∈P+ of

C[Y ∗]W
1

. It easily follows from de�nitions (see for example [Bor79]) that BCs as a map

C[X∗]W0 −→ C[X∗]

sends each m′µ to ∑
λ∈W0(µ)

eλ+θ̂λ+···+θ̂s−1λ.

It follows that for all µ ∈ X∗,+, we have

BCs τ
′
µ =

∑
λ∈X∗

dimVµ(λ)eλ+θ̂λ+···+θ̂s−1λ.(5.4.2)

Here the summation is over X∗ and not over X∗,+. For each λ ∈ X∗, the element

λ+ θ̂λ+ · · ·+ θ̂s−1λ ∈ X∗

lies in Y ∗ ⊂ X∗, and its image under the natural map

Y ∗ = (X∗)θ̂ −→ X∗(Ŝ) = (X∗)θ̂,free

is equal to the image of sλ ∈ X∗ under the natural map

X∗ −→ X∗(Ŝ).

In other words, we have

λ+ θ̂λ+ · · ·+ θ̂s−1λ = (λ|Ŝ)(s),

where λ|Ŝ ∈ X
∗(Ŝ) denotes the image of λ under X∗ → X∗(Ŝ). Hence by (5.4.2) we have

BCs τ
′
µ =

∑
λ∈X∗

dimVµ(λ)e(λ|Ŝ)(s)

,

which is easily seen to be equal to∑
λ∈X∗(Ŝ)

dimVµ(λ)rel e
λ(s)

=
∑

λ∈X∗(Ŝ)+

dimVµ(λ)rel mλ(s) .

�

Since b is basic and s0-decent, and since s is divisible by s0, by Lemma 4.3.1 the cocharacter sνb : Gm → G

is a cocharacter of ZG de�ned over F . In particular we may view sνb ∈ X∗(A) = Y ∗.

Corollary 5.4.2. For µ ∈ X∗(T̂ )+, we have

(BCs τ
′
µ)(γs) =

∑
λ∈X∗(Ŝ)+

dimVµ(λ)rel M
0
λ(s)−sνb(|kF |

−1
).
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Proof. By Proposition 5.4.1 we have

(BCs τ
′
µ)(γs) =

∑
λ∈X∗(Ŝ)+

dimVµ(λ)rel mλ(s)(γs).

Recall from Lemma 4.3.1 that sνb is a central cocharacter of G de�ned over F . By Corollary 5.2.4, De�nition
5.2.5, and Lemma 5.2.6, each mλ(s)(γs) is equal to

Msνb
λ(s)(|kF |

−1
) = M0

λ(s)−sνb(|kF |
−1

).

�

5.5. Some inductive relations. We keep the setting and notation of �2.6 and �5.1. We assume in addition
that G is adjoint, and that G is F -simple. As in De�nition 5.2.5, we have the polynomials

M0
λ(q−1) ∈ C[Y ∗][q−1], λ ∈ P+.

To emphasize the group G we write M0
λ,G(q) for M0

λ(q). In the following we discuss how to reduce the
understanding of these polynomials to the case where G is absolutely simple.

We write DynkG for the Dynkin diagram of G (or more precisely that of (G,B, T )). By our assumption
that G is adjoint and F -simple, the action of 〈θ〉 on DynkG is transitive on the connected components. In
particular all the connected components of DynkG are isomorphic. Let d0 be the smallest natural number
such that θd0 stabilizes each of the connected components. Thus d0 is also equal to the total number of
connected components of DynkG. Fix one connected component Dynk+

G of DynkG once and for all. The
connected Dynkin diagram Dynk+

G , together with the automorphism θd0 , determines an unrami�ed adjoint
group G′ over F , equipped with an F -pinning (B′, T ′,X′+). By construction G′ is absolutely simple. We
apply the constructions in �5.1 to G′, adding an apostrophe in the notation when we denote an object
associated to G′, e.g., A′, (Y ∗)′, (P+)′,P ′(λ′,q).

We have natural identi�cations

(X∗(A), FΦ, X∗(A), FΦ∨) ∼= (X∗(A′), (FΦ)′, X∗(A
′), (FΦ∨)′)

Φ1 ∼= (Φ1)′, Φ1,∨ ∼= (Φ1,∨)′

Y ∗ ∼= (Y ∗)′

W 1 ∼= (W 1)′.

To be more precise, all the above identi�cations are derived from an identi�cation

X∗(T ) ∼=
d0−1⊕
i=0

X∗(T
′),(5.5.1)

under which the automorphism θ on the left hand side translates to the following automorphism on the right
hand side:

(χ0, χ1, · · · , χd0−1) 7→ (θ′χd0−1, χ0, χ1, · · · , χd0−2).

In particular, the identi�cation (Y ∗)′ ∼= Y ∗, when composed with Y ∗ = X∗(A) ⊂ X∗(T ) and with (5.5.1), is
the diagonal map

(Y ∗)′ −→
d0−1⊕
i=0

X∗(T
′)(5.5.2)

χ′ 7→ (χ′, · · · , χ′).
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Proposition 5.5.1. For λ ∈ Y ∗ and λ′ ∈ (Y ∗)′ that correspond to each other, we have

M0
λ,G(q−1) = M0

λ′,G′(q
−d0),

as an element of C[Y ∗][q−1] ∼= C[(Y ∗)′][q−1].

Proof. When β ∈ Φ1,∨ corresponds to β′ ∈ (Φ1,∨)′, we know that β is of the same type (I or II) as β′, and
we have

b(β) = d0b
′(β′).

It follows from Lemma 5.1.9 and De�nition 5.1.10 that

P(λ,q) = P ′(λ′,qd0) ∈ C[q],

for all λ ∈ Y ∗ and λ′ ∈ (Y ∗)′ that correspond to each other. The proposition then follows from De�nition
5.2.5. �

Next we deduce a relation between the construction of λb in �2.6 for G and for G′. Denote by Ŝ ′ the
counterpart of Ŝ for G′. Since G (resp. G′) is adjoint, we know that X∗(T̂ ) (resp. X∗(T̂ ′)) has a Z-basis
consisting of the fundamental weights. It then easily follows from Lemma 2.6.1 (2) that we have

X∗(T̂ )θ̂ = X∗(T̂ )θ̂,free = X∗(Ŝ)

X∗(T̂ ′)θ̂′ = X∗(T̂ ′)θ̂′,free = X∗(Ŝ ′),
and we have natural identi�cations

X∗(Ŝ) ∼= X∗(Ŝ ′)
Q̂θ̂
∼= Q̂′

θ̂′

π1(G)σ ∼= π1(G′)σ.

Fix an arbitrary µ ∈ X∗(T ). Choose µ′ ∈ X∗(T ′), such that the image of µ′ in X∗(Ŝ ′) corresponds to the
image of µ in X∗(Ŝ). Such µ′ always exists because the map X∗(T ′) = X∗(T̂ ′) → X∗(Ŝ ′) is surjective. It
then follows that the image µ\ ∈ π1(G)σ of µ and the image (µ′)\ ∈ π1(G′)σ of µ′ correspond to each other.
Let [b] (resp. [b′]) be the unique basic element of B(G,µ) (resp. B(G′, µ′)).

Proposition 5.5.2. In the above setting, the elements λb ∈ X∗(Ŝ) and λb′ ∈ X∗(Ŝ ′) correspond to each

other, under the identi�cation X∗(Ŝ) ∼= X∗(Ŝ ′).

Proof. This immediately follows from the uniqueness in Lemma 2.6.4. �

6. The main result

6.1. The number of irreducible components in terms of combinatorial data. We keep the setting
of �2.6 and �4.1. Thus we �x a reductive group scheme G over OF , an element µ ∈ X∗(T )+, and a basic class
[b] ∈ B(G,µ). In this section, we relate the number of irreducible components N (µ, b) to some combinatorial
data.

As in �4.1, we �x s0 ∈ N such that b is s0-decent. As in �5.4 we assume s0 is divisible by the order d of
θ, and various natural numbers s ∈ N that are divisible by s0. In particular, G will always be split over the
extension Fs of F . We shall write

qs := |ks| = |kF |s .
By Corollary 4.3.7, we have

(6.1.1)
e(Jb) vol(G(OF ))−1(BCs fµ,s)(γs) =

∑
Z∈Jb(F )\Σtop(Xµ(b))

vol(StabZ(Jb(F )))−1qdimXµ(b)
s + o(qdimXµ(b)

s ).
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By the dimension formula in Theorem 2.5.2, we have

dimXµ(b) = 〈µ, ρ〉 − 1

2
defG(b)(6.1.2)

(since ν̄b is central). In particular, from (6.1.1) we get

(BCs fµ,s)(γs) = O(q
〈µ,ρ〉− 1

2 defG(b)
s ).(6.1.3)

Proposition 6.1.1. With the notation in �5.4, we have

BCs(τ
′
µ)(γs) = q−〈µ,ρ〉s (BCs fµ,s)(γs) + o(q

− 1
2 defG(b)

s ).

Proof. For λ running over X∗(T̂ )+, the Satake transforms of fλ,s, which we still denote by fλ,s, form a basis
of C[X∗(T̂ )]W0 . By the split case of Theorem 5.2.3, we have

τ ′µ =
∑

λ∈X∗(T̂ )+

K ′µ,λ(q−1
s )q−〈λ,ρ〉s fλ,s,

where K ′µ,λ(·) is the absolute analogue of (5.2.2), i.e., it is de�ned by (5.2.2) with θ replaced by 1. It is clear
from De�nition 5.1.10, Corollary 5.1.11, and (5.2.2), that K ′µ,λ(q−1

s ) = 0 unless λ ≤ µ, that

K ′µ,µ(q−1
s ) = 1 +O(q−1

s ),

and that
K ′µ,λ(q−1

s ) = O(q−1
s )

for λ < µ. Therefore

τ ′µ = q−〈µ,ρ〉s fµ,s +
∑

λ∈X∗(T̂ )+, λ≤µ

O(q−1−〈λ,ρ〉
s )fλ,s(6.1.4)

Note that (6.1.3) is valid with µ replaced by each λ ∈ X∗(T̂ )+, λ ≤ µ, because we still have [b] ∈ B(G,λ). The
proposition then follows from (6.1.4) and the above-mentioned bounds provided by (6.1.3) with µ replaced
by each λ ≤ µ. �

Corollary 6.1.2. We have

BCs(τ
′
µ)(γs) = e(Jb)

∑
Z∈Jb(F )\Σtop(X)

vol(StabZ(Jb(F )))−1q
− 1

2 defG(b)
s + o(q

− 1
2 defG(b)

s ).(6.1.5)

Proof. This follows by combining (6.1.1), (6.1.2), and Proposition 6.1.1. �

Theorem 6.1.3. Assume the Haar measures are normalized such that vol(G(OF )) = 1. There exists a

rational function Sµ,b(t) ∈ Q(t) that is independent of the local �eld F (in the same sense as Corollary

3.2.5), such that

(6.1.6) Sµ,b(0) = N (µ, b),

Sµ,b(q1) = e(Jb)
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(StabZ(Jb(F )))−1,(6.1.7)

and such that

Sµ,b(q1)q
− 1

2 defG(b)
s =

∑
λ∈X∗(Ŝ)+

dimVµ(λ)rel M
0
λ(s)−sνb(q

−1
1 ) + o(q

− 1
2 defG(b)

s ).(6.1.8)

In particular

Sµ,b(q1) = lim
s→∞

q
1
2 defG(b)
s

∑
λ∈X∗(Ŝ)+

dimVµ(λ)rel M
0
λ(s)−sνb(q

−1
1 ).(6.1.9)
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Proof. Fix a set of representatives {Zi|1 ≤ i ≤ N (µ, b)} for the Jb(F )-orbits in Σtop(Xµ(b)). For each Zi,
let RZi(t) ∈ Q(t) be rational function associated to Zi as in Corollary 3.2.5. Let

Sµ,b(t) := e(Jb)

N (µ,b)∑
i=1

RZi(t)
−1.

Then Sµ,b(t) ∈ Q(t) and it satis�es (6.1.6), (6.1.7). It follows from Corollary 3.2.5 and (6.1.5) that

BCs(τ
′
µ)(γs) = Sµ,b(q1)q

− 1
2 defG(b)

s + o(q
− 1

2 defG(b)
s ).

Comparing this with Corollary 5.4.2, we obtain (6.1.8). �

The upshot of this theorem is that the right hand side of (6.1.9) is purely combinatorial and can be
computed in certain instances using Kostant's partition function PKos(λ,q). Moreover the fact that Sµ,b(t)
is a rational function independent of the local �eld F , means that it is in principle determined by its values
Sµ,b(q1) for in�nitely many choices of q1. Once Sµ,b(t) is determined, the number N (µ, b) can be read o�
from (6.1.6).

6.2. The case of unrami�ed elements. In this subsection we apply Theorem 6.1.3 to prove Conjecture
2.6.6 for unrami�ed and basic b. This is a new proof of a theorem of Xiao and Zhu [XZ17, Theorem 4.4.14].

We keep the setting of �6.1. Assume in addition that b is unrami�ed, in the sense of [XZ17, �4.2]. Then
we have Jb ∼= G, and hence defG(b) = 0, e(Jb) = 1. By Theorem 6.1.3, we would like to compute

lim
s→∞

∑
λ∈X∗(Ŝ)+

dimVµ(λ)rel M
0
λ(s)−sνb(q

−1
1 ).

We have the following result.

Proposition 6.2.1. Let λ ∈ X∗(Ŝ)+. Consider s ∈ s0N. We have

M0
λ(s)−sνb(q

−1
1 ) =

1, if λ = λb

O(q−as1 ) for some a ∈ R>0, otherwise

Proof. Firstly, by [XZ17, Lemma 4.2.3], λb ∈ X∗(Ŝ) is the unique element such that λ(s)
b = sνb for one (and

hence all) s ∈ s0N. (In particular, λb ∈ X∗(Ŝ)+ as νb is central.) Thus the dichotomy in the proposition is
the same as whether λ(s) − sνb = 0 for one (and hence all) s ∈ s0N.

Let w ∈W 1. Since wρ∨− ρ∨ is not in R+ for w 6= 1, it follows from De�nition 5.1.10 and De�nition 5.2.5
that

M0
0(q−1) = 1 ∈ C[q−1].

This proves the case λ(s) = sνb.
Now assume λ(s) 6= sνb (for all s). Fix an arbitrary Q-basis {f1, · · · , fr} of

spanQ(FΦ∨,+) ⊂ Y ∗ ⊗Q.

For any v ∈ spanQ(FΦ∨,+), we write

v =

r∑
i=1

ci(v)fi, ci(v) ∈ Q

for the expansion.
Fix w,w′ ∈ W 1. We write µs := λ(s) − sνb and ψs := w • (w′µs). By the formula (5.2.4), it su�ces to

show that

P(ψs, q
−1
1 ) = O(q−as1 )(6.2.1)
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for some a > 0.
If ψs /∈ R+ for some value of s, then by de�nition P(ψs, q

−1) = 0 ∈ C[q−1]. Hence we may ignore these
values of s.

On the other hand, we claim that if ψs ∈ R+ for some s ∈ s0N, then ψns ∈ R+ for all n ∈ N. In fact, the
assumption that ψs ∈ R+ is equivalent to that

ww′µs ∈ R+ + ρ∨ − wρ∨.(6.2.2)

From (6.2.2) it follows that

ww′µns = n(ww′µs) ∈ nR+ + n(ρ∨ − wρ∨) ⊂ R+ + ρ∨ − wρ∨,

from which ψns ∈ R+.
We thus assume that ψs ∈ R+ for all su�ciently divisible s. Then (6.2.2) holds, and in particular

ww′µs ∈ spanQ(FΦ∨,+)− {0} .

Hence there exists i0 ∈ {1, · · · , r} and c0 ∈ Q− {0}, such that for all su�ciently divisible s, we have

ci0(ww′µs) = s · c0.(6.2.3)

By Proposition 5.3.2 (2), we have ∣∣P(ψs, q
−1
1 )
∣∣ ≤ #P(ψs) · q−Ns1 ,(6.2.4)

where
Ns := min {|m| : m ∈ P(ψs)} .

Let
A := |ci0(wρ∨ − ρ∨)| ∈ R≥0

B := max
{
|ci0(β)| : β ∈ FΦ∨,+

}
+ 1 ∈ R>0.

Then for all su�ciently divisible s we have

|ci0(ψs)− ci0(ww′µs)| ≤ A,

∀m ∈ P(ψs), B |m| ≥ ci0(ψs).

It follows that
Ns ≥ B−1 · ci0(ψs) ≥ B−1(ci0(ww′µs)−A)

(6.2.3
===== B−1(sc0 −A).

Since B−1 and c0 are both non-zero, there is a constant N0 > 0 such that

Ns > N0 · s(6.2.5)

for all su�ciently divisible s.
On the other hand, because for each 1 ≤ i ≤ r the coe�cient ci(ψs) ∈ Q is an a�ne function in s, there

exists a constant L > 0 such that
max {|m| : m ∈ P(ψs)} ≤ Ls

for all su�ciently divisible s. It then easily follows that

#P(ψs) =

Ls∑
l=1

#P(ψs)l ≤
Ls∑
l=1

l#(FΦ∨,+) ≤ (Ls)M(6.2.6)

for some constant M > 0. The desired estimate (6.2.1) then follows from (6.2.4), (6.2.5), and (6.2.6). �

Theorem 6.2.2. In the current setting, N (µ, b) = dimVµ(λb)rel. Moreover, for any Z ∈ Σtop(Xµ(b)), the

group StabZ(Jb(F )) is a hyperspecial subgroup of Jb(F ) = G(F ).
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Proof. Let Sµ,b(t) ∈ Z(t) be as in Theorem 6.1.3. By (6.1.9) and Proposition 6.2.1, we have

Sµ,b(q1) = dimVµ(λ)rel,

where λ is the unique element of X∗(Ŝ)+ such that λ(s0) = s0νb. By varying the local �eld F , we see that
Sµ,b(t) is the constant dimVµ(λb)rel. In particular

N (µ, b) = Sµ,b(0) = dimVµ(λb)rel.

For the second part, recall that according to our normalization each

vol(StabZ(Jb(F ))) ≤ 1,

where equality holds if and only if StabZ(Jb(F )) is hyperspecial. On the other hand, combining (6.1.6) and
(6.1.7) and the fact that Sµ,b(t) is constant, we have

N (µ, b) =
∑

Z∈Jb(F )\Σtop(Xµ(b))

vol(StabZ(Jb(F )))−1.

It follows that each vol(StabZ(Jb(F ))) must be 1. �

Remark 6.2.3. Arguably the hardest part of the proof of the corresponding result in [XZ17] is to show that
the stabilizer of any irreducible component in Σtop(Xµ(b)) is hyperspecial.

Remark 6.2.4. In Theorem 6.2.2 we assume that b is basic. One can show as in Proposition 2.6.8 that the
general unrami�ed case of Conjecture 2.6.6 reduces to the basic unrami�ed case.

6.3. The general case. We now prove the general case of Conjecture 2.6.6. By Proposition 2.6.8, there is
no loss of generality in assuming that G is adjoint and F -simple, and that [b] ∈ B(G) is basic. In particular
ν̄b = 0. We keep the setting and notation of �6.1. In the following, we do not �x a prescribed µ ∈ X∗(T )+

such that [b] ∈ B(G,µ).
As in De�nition 2.6.5, we have λb ∈ X∗(Ŝ). Denote by λ+

b the unique element in the W 1-orbit of λb that
is in X∗(Ŝ)+. We de�ne (cf. the discussion before Lemma 2.6.4)

Λ(b) :=
{
λ ∈ X∗(Ŝ)+|λ 6= λ+

b , λ− λb ∈ Q̂θ̂
}
.

Since G is F -simple, all the simple factors of GF have the same Dynkin type. We refer to this type as
the type of G. The following proposition is the key result towards the proof of Conjecture 2.6.7.

Proposition 6.3.1 (Key estimate). Assume G is adjoint, F -simple, and not of type A. Let [b] ∈ B(G) be

a basic class. Assume [b] is not unrami�ed.

(1) Assume G is not a Weil restriction of the split adjoint E6. For all λ ∈ Λ(b), there exists a > 0, such

that

M0
λ(s)(q

−1
1 ) = O(q

−s( 1
2 defG(b)+a)

1 ).(6.3.1)

Moreover, there exists µ1 ∈ X∗(T̂ )+ that is minuscule, such that [b] ∈ B(G,µ1) and dimVµ1
(λb)rel = 1.

(2) Assume G is a Weil restriction of the split adjoint E6 (necessarily along an unrami�ed extension of F ).

Then there is an element λbad ∈ Λ(b) with the following properties:

• For all λ ∈ Λ(b)− {λbad}, there exists a > 0, such that

M0
λ(s)(q

−1
1 ) = O(q

−s( 1
2 defG(b)+a)

1 ).(6.3.2)
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• There exist µ1, µ2 ∈ X∗(T̂ )+, such that µ1 is minuscule and µ2 is a sum of dominant minuscule

elements, such that b ∈ B(G,µ1) ∩B(G,µ2), and such that

dimVµ1
(λb)rel = 1, Vµ1

(λbad)rel = 0, Vµ2
(λbad)rel 6= 0.

The proof of Proposition 6.3.1 will occupy �7, �8, �9 below. We now admit this proposition.

Theorem 6.3.2. Conjecture 2.6.7 holds for G adjoint, F -simple, not of type A, and for [b] ∈ B(G) basic.

More precisely:

• If [b] is unrami�ed, then our proof is logically independent of the approaches in [XZ17], [HV17], or [Nie18a].
• If [b] is not unrami�ed, and if we are in the situation of Proposition 6.3.1 (1), then our proof depends on

results from [HV17].
• If [b] is not unrami�ed, and if we are in the situation of Proposition 6.3.1 (2), then our proof depends on

results from [Nie18a].

Proof. If [b] is unrami�ed, then the present theorem is just Theorem 6.2.2 (which is also valid for type A).
From now on we assume [b] is not unrami�ed.

Assume we are in the situation of Proposition 6.3.1 (1). By Theorem 6.1.3 and Proposition 6.3.1 (1), for
all µ ∈ X∗(T )+ such that [b] ∈ B(G,µ), we have

Sµ,b(q1) = dimVµ(λb)rel lim
s→∞

q
1
2 defG(b)
s M0

λ
+,(s)
b

(q−1
1 ).

In particular, we have

Sµ,b(q1) =
dimVµ(λb)rel

dimVµ1(λb)rel
Sµ1,b(q1) = dimVµ(λb)relSµ1,b(q1).

By varying the local �eld F (whilst preserving the a�ne root system of G) we conclude that

Sµ,b(t) = dimVµ(λb)relSµ1,b(t) ∈ C(t).

In particular

N (µ, b) = Sµ,b(0) = dimVµ(λb)relSµ1,b(0) = dimVµ(λb)relN (µ1, b).

On the other hand, since µ1 is minuscule, it is shown in [HV17, Theorem 1.5] that

N (µ1, b) ≤ dimVµ1(λb)rel.

Since N (µ1, b) is a positive natural number and dimVµ1
(λb)rel = 1, it follows that N (µ1, b) = 1, and that

N (µ, b) = dimVµ(λb)rel,

as desired.
Now assume we are in the situation of Proposition 6.3.1 (2). Denote

d1 := dimVµ2
(λb)rel, d2 := dimVµ2

(λbad)rel.

By assumption d2 6= 0. By Theorem 6.1.3 and Proposition 6.3.1 (2), for all µ ∈ X∗(T )+ such that [b] ∈
B(G,µ), we have

Sµ,b(q1) = lim
s→∞

[
dimVµ(λb)relq

1
2 defG(b)
s M0

λ
+,(s)
b

(q−1
1 ) + dimVµ(λbad)relq

1
2 defG(b)
s M0

λ
(s)
bad

(q−1
1 )

]
.(6.3.3)

In particular, taking µ = µ1 and µ2, we obtain

Sµ1,b(q1) = lim
s→∞

q
1
2 defG(b)
s M0

λ
+,(s)
b

(q−1
1 )(6.3.4)
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Sµ2,b(q1) = lim
s→∞

[
d1q

1
2 defG(b)
s M0

λ
+,(s)
b

(q−1
1 ) + d2q

1
2 defG(b)
s M0

λ
(s)
bad

(q−1
1 )

]
.(6.3.5)

Comparing (6.3.3) (6.3.4) (6.3.5), we obtain

Sµ,b(q1) = dimVµ(λb)relSµ1,b(q1) +
dimVµ(λbad)rel

d2
(Sµ2,b(q1)− d1Sµ1,b(q1)).

By varying F , we obtain

Sµ,b(t) = dimVµ(λb)relSµ1,b(t) +
dimVµ(λbad)rel

d2
(Sµ2,b(t)− d1Sµ1,b(t)),(6.3.6)

as an equality in C(t). Since µ1, µ2 are sums of dominant minuscule elements, the main result of [Nie18a]
implies that

N (µ1, b) = dimVµ1(λb)rel = 1

N (µ2, b) = dimVµ2(λb)rel = d1.

Consequently we have Sµ1,b(0) = 1 and Sµ2,b(0) = d1. Evaluating (6.3.6) at t = 0, we obtain

N (µ, b) = Sµ,b(0) = dimVµ(λb)rel +
dimVµ(λbad)rel

d2
(d1 − d1) = dimVµ(λb)rel

as desired. �

Corollary 6.3.3. Conjecture 2.6.7 is true in full generality.

Proof. By Proposition 2.6.8, we reduce to the case where G is adjoint and F -simple, and [b] is basic. If G is
not of type A, the conjecture is proved in Theorem 6.3.2. If G is of type A, the conjecture is proved by Nie
[Nie18a]. �

The rest of the paper is devoted to the proof of Proposition 6.3.1.

6.4. Reduction to the absolutely simple case.

Lemma 6.4.1. Proposition 6.3.1 holds true if it holds for all G that are absolutely simple and adjoint, not

of type A.

Proof. Let G be as in Proposition 6.3.1, not necessarily absolutely simple. Fix a basic [b] ∈ B(G) as in
Proposition 6.3.1. Let G′ be the auxiliary absolutely simple and adjoint group over F , constructed in �5.5.
We keep the notation established there. Note that [b] is completely determined by κG(b) ∈ π1(G)σ. We
construct a basic [b′] ∈ B(G′) as in �5.5, such that κG(b) and κG′(b′) correspond to each other under the
identi�cation

π1(G)σ ∼= π1(G′)σ.

We write EDynkG for the extended Dynkin diagram of G and write Aut(EDynkG) for its automorphism
group. We write |EDynkG| for the set of nodes in EDynkG. Similarly for G′.

We claim that

defG(b) = defG′(b
′).(6.4.1)

In fact, there is a natural embedding π1(G)o 〈θ〉 ↪→ Aut(EDynkG) given by the identi�cation of π1(G) with
the stabilizer of the base alcove Ω, and defG(b) is computed as the number of θ-orbits minus the number
of [µ] o θ-orbits in |EDynkG|. Here [µ] ∈ π1(G) is any lift of κG(b) ∈ π1(G)σ. Similarly, choosing a lift
[µ′] ∈ π1(G′) of κG′(b′), we compute defG′(b

′) as the number of θ′-orbits minus the number of [µ′] o θ′-
orbits in |EDynkG′ |. Now by construction, EDynkG′ is identi�ed with a particular connected component of
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EDynkG. We may thus embed Aut(EDynkG′) into Aut(EDynkG) by extending the action trivially to other
connected components. Then inside Aut(EDynkG) we have the following relations:

θ′ = θd0 , π1(G) =

d0−1⊕
i=0

θiπ1(G′)θ−i.

In particular, we have an embedding π1(G′) = θ0π1(G′)θ0 ↪→ π1(G). We may arrange that [µ] is the image
of [µ′] under this embedding. Then we have

# {θ-orbits in |EDynkG|} = # {θ′-orbits in |EDynkG′ |}

# {[µ] o θ-orbits in |EDynkG|} = # {[µ′] o θ′-orbits in |EDynkG′ |} .

The claim is proved.
Next, we naturally identify X∗(Ŝ) with X∗(Ŝ ′). Then it is easy to see that λb corresponds to λb′ under

this identi�cation. For clarity, we denote the analogue of the map (5.4.1) for G′ as:

X∗(Ŝ ′) −→ (Y ∗)′, λ 7→ λ((s)).

The target of the above map is identi�ed with Y ∗. Then since the identi�cation Y ∗ ∼= (Y ∗)′ amounts to the
diagonal map (5.5.2), we see that

λ(d0s) = λ((s))(6.4.2)

for all λ ∈ X∗(Ŝ).
Combining (6.4.1), (6.4.2) with Propositions 5.5.1, 5.5.2, we see that the bounds (6.3.1) and (6.3.2) in

Proposition 6.3.1 for (G, b, s := d0s
′) reduce to the corresponding bounds for (G′, b′, s′). In the situation

of Proposition 6.3.1 (2), we de�ne λbad for (G, b) to be equal to that for (G′, b′), under the identi�cation
Λ(b) ∼= Λ(b′).

Finally, by hypothesis the desired µ′1 or {µ′1, µ′2} are already de�ned for (G′, b′), as in Proposition 6.3.1.
Under the identi�cation (5.5.1) we de�ne µi ∈ X∗(T )+ to be (µ′i, 0, · · · , 0) for i = 1, 2. �

7. Proof of the key estimate, Part I

In this section we provide the �rst part of the proof of Proposition 6.3.1. In Lemma 6.4.1 we already
reduced to the absolutely simple case. From now on until the end of the paper, we assume that G

is an absolutely simple adjoint group over F , not of type A.

As in the proof of Lemma 6.4.1, we denote by EDynkG the extended Dynkin diagram of G, denote by
Aut(EDynkG) its automorphism group, and denote by |EDynkG| the set of nodes. Since b is not unrami�ed,
we have κG(b) 6= 0, and in particular the groups π1(G) and Aut(EDynkG) are non-trivial. Since G is
absolutely simple, adjoint, and not of type A, we see that the following are the only possibilities for DynkG
and θ (viewed as an automorphism of DynkG):

(1) Type Bn, n ≥ 2, θ = id.
(2) Type Cn, n ≥ 3, θ = id.
(3) Type Dn, n ≥ 4, θ = id.
(4) Type Dn, n ≥ 5, θ has order 2.
(5) Type D4, θ has order 2.
(6) Type D4, θ has order 3.
(7) Type E6, θ = id.
(8) Type E6, θ has order 2.
(9) Type E7, θ = id.
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In fact, the above are the only cases where Aut(EDynkG) is non-trivial.
In this part of the proof, we de�ne an explicit subset Λ(b)good of Λ(b), and prove the estimate (6.3.1) or

(6.3.2) for all λ ∈ Λ(b)good.

7.1. Types B,C,D, θ = id.

7.1.1. The norm method. We follow [Bou68, Chapitre VI �4] for the presentation of the root systems of
types Bn, Cn, Dn, and for the choice of simple roots. The root systems will be embedded in a vector space
E = Rn, with standard basis e1, · · · , en, and standard inner product 〈ei, ej〉 = δij so that we may identify
the coroots and coweights with subsets of the same vector space. Following loc. cit., we de�ne the following
lattices in E:

L0 := {(ξ1, · · · , ξn) ∈ E|ξi ∈ Z}

L1 :=

{
(ξ1, · · · , ξn) ∈ L0|

n∑
i=1

ξi ∈ 2Z

}

L2 := L0 + Z(
1

2

n∑
i=1

ei).

We assume θ = id, so that T = A, Ŝ = T̂ = Â. The cocharacter lattice X∗(T ) is identi�ed with the
coweight lattice in E. Moreover π1(G) is equal to the quotient of the coweight lattice modulo the the coroot
lattice in E.

Since [b] ∈ B(G) is basic, it is uniquely determined by κG(b) ∈ π1(G)σ = π1(G). The defect defG(b) of b
is computed in the way indicated in the proof of Lemma 6.4.1.

For any v = (ξ1, · · · , ξn) ∈ E, we write

|v| := |ξ1|+ · · ·+ |ξn|.(7.1.1)

It is easy to verify the following three facts.

(1) |·| is a norm on E.
(2) |wv| = |v| for any w ∈W0 and v ∈ E.
(3) For any coroot α∨ ∈ Φ∨, we have |α∨| ≤ δ, where δ = 2.

Now given any subset S of Λ(b), we de�ne

D(S) := min
λ∈S
|λ| .(7.1.2)

(The minimum obviously exists.) In the following, we will specify a subset Λ(b)good of Λ(b), satisfying

D(Λ(b)good) > δ · defG(b)/2.(7.1.3)

We show how to get the bound (6.3.1) for all λ ∈ Λ(b)good, from (7.1.3).
Let λ ∈ Λ(b)good. Fix w,w′ ∈W 1. We write ψs := w • (w′λ(s)). By the formula (5.2.4), it su�ces to show

that

P(ψs, q
−1
1 ) = O(q

−s( 1
2 defG(b)+a)

1 )(7.1.4)

for some a > 0.
The same as (6.2.4), we have the bound∣∣P(ψs, q

−1
1 )
∣∣ ≤ #P(ψs) · q−Ns1 ,(7.1.5)

where

Ns := min {|m| : m ∈ P(ψs)} .
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Suppose m ∈ P(ψs). Then

δ
∑

β∈FΦ∨,+

m(β) ≥

∣∣∣∣∣∣
∑

β∈FΦ∨,+

m(β)β

∣∣∣∣∣∣ = |ψs| ≥
∣∣∣ww′λ(s)

∣∣∣− |wρ∨ − ρ∨| = s |λ| − C ≥ s ·D(Λ(b)good)− C,

where C is a constant independent of s, and |·| is the norm de�ned in (7.1.1). Since θ = id, we have

FΦ∨,+ = Φ∨,+, and b(β) = 1 for all β ∈ Φ∨,+. Hence the leftmost term in the above inequalities is none
other than δ |m|. It follows that

Ns ≥ (sD(Λ(b)good)− C)δ−1.

By the above estimate and (7.1.3), we have

q−Ns1 = O(q
−s( 1

2 defG(b)+a′)
1 )(7.1.6)

for some a′ > 0.
On the other hand, by the same argument as in the proof of Proposition 6.2.1, we have

#P(ψs) ≤ (Ls)M(7.1.7)

for some constants L,M > 0. The desired estimate (7.1.4) then follows from (7.1.5) (7.1.6) (7.1.7).
In the following we specify the de�nition of Λ(b)good satisfying (7.1.3), for types B,C,D with θ = id.

7.1.2. Type Bn, n ≥ 2, θ = id. The simple roots are

α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en, αn = en.

The simple coroots are

α∨i = αi, 1 ≤ i < n, α∨n = 2en.

The fundamental weights are

$i = e1 + · · ·+ ei, 1 ≤ i < n, $n =
1

2
(e1 + · · ·+ en).

The coroot lattice is L1, the coweight lattice is L0. We have

P+ = {(ξ1, · · · , ξn)|ξi ∈ Z, ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ 0} .

We have π1(G) ∼= Z/2Z, and the non-trivial element is represented by e1 ∈ L0. Recall that we assumed that
κG(b) is non-trivial, so there is only one choice of κG(b) (and hence only one choice of the basic b ∈ B(G,µ)).
We have

λb = −en, λ+
b = e1.

Since κG(b) acts on EDynkG via its unique non-trivial automorphism, we easily see (both for n = 2 and for
n ≥ 3) that

defG(b) = 1.

We take

Λ(b)good := Λ(b),

and we have D(Λ(b)) = 2. The inequality (7.1.3) is satis�ed.
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7.1.3. Type Cn, n ≥ 3, θ = id. The simple roots are

α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en, αn = 2en.

The simple coroots are
α∨i = αi, 1 ≤ i < n, α∨n = en.

The fundamental weights are
$i = e1 + · · ·+ ei, 1 ≤ i ≤ n.

The coroot lattice is L0, the coweight lattice is L2. We have

P+ = {(ξ1, · · · , ξn) ∈ L2|ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ 0} .

We have π1(G) ∼= Z/2Z, and the non-trivial element is represented by ( 1
2 , · · · ,

1
2 ) ∈ L2. Since κG(b) is

non-trivial, we have

λb = (−1

2
,

1

2
,−1

2
, · · · , (−1)n

1

2
), λ+

b = (
1

2
, · · · , 1

2
).

Since κG(b) acts on the EDynkG via its unique non-trivial automorphism, we easily see that

defG(b) = dn
2
e

(i.e. the smallest integer ≥ n/2.) We take

Λ(b)good := Λ(b)

and we have D(Λ(b)) = (n+ 2)/2. The inequality (7.1.3) is satis�ed.

7.1.4. Type Dn, n ≥ 4, θ = id. The simple roots are

α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en, αn = en−1 + en.

The simple coroots are
α∨i = αi.

The fundamental weights are
$i = e1 + · · ·+ ei, 1 ≤ i ≤ n− 2

$n−1 =
1

2
(e1 + e2 + · · ·+ en−1 − en)

$n =
1

2
(e1 + e2 + · · ·+ en).

The coroot lattice is L1, the coweight lattice is L2. We have

P+ = {(ξ1, · · · , ξn) ∈ L2|ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ |ξn|} .

Case: n is odd. We have π1(G) ∼= Z/4Z, and a generator is represented by ( 1
2 , · · · ,

1
2 ) ∈ L2. For

i = 1, 2, 3, we let bi ∈ B(G) correspond to the image of i( 1
2 , · · · ,

1
2 ) in π1(G). Then

λb1 =

n−2∑
i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)(n+1)/2

2
en, λ+

b1
= (

1

2
, · · · , 1

2
)(7.1.8)

λb2 = −en−1, λ+
b2

= e1(7.1.9)

λb3 =

n−2∑
i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)(n−1)/2

2
en, λ+

b3
= (

1

2
, · · · , 1

2
,−1

2
).(7.1.10)

Since up to automorphisms of Z/4Z, there is only one way that Z/4Z could act on EDynkG, we easily see
that

defG(b1) = defG(b3) =
n+ 3

2
, defG(b2) = 2.
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Let

λ1,bad := (
3

2
,

1

2
, · · · , 1

2
,−1

2
)

λ3,bad := (
3

2
,

1

2
, · · · , 1

2
,

1

2
).

For i = 1, 3, we obviously have λi,bad ∈ Λ(bi). We take

Λ(bi)good := Λ(bi)− {λi,bad} .(7.1.11)

Then

D(Λ(bi)good) =
n+ 4

2
.

The inequality (7.1.3) is satis�ed.
For i = 2, we take

Λ(b2)good := Λ(b2),

and we have D(Λ(b2)) = 3. The inequality (7.1.3) is satis�ed.
Case: n is even. We have π1(G) ∼= Z/2Z × Z/2Z. The three non-trivial elements are represented by

( 1
2 , · · · ,

1
2 ), e1, (

1
2 , · · · ,

1
2 ) + e1 ∈ L2. Correspondingly we have

λb1 =

n−2∑
i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)n/2

2
en, λ+

b1
= (

1

2
, · · · , 1

2
)(7.1.12)

λb2 = −en−1, λ+
b2

= e1(7.1.13)

λb3 =

n−2∑
i=1

(−1)i

2
ei −

1

2
en−1 +

(−1)n/2+1

2
en, λ+

b3
= (

1

2
, · · · , 1

2
,−1

2
).(7.1.14)

Since κG(b1) and κG(b3) are related to each other by the automorphism of the based root system en 7→ −en,
it is clear that they correspond to the two horizontal symmetries of order two of EDynkG. On the other
hand, the action of κG(b2) on EDynkG is of order two, is distinct from the two horizontal symmetries, and
commutes with the two horizontal symmetries. Hence this must correspond to the vertical symmetry of
EDynkG that has precisely two orbits of size two and �xes all the other nodes. Thus we have

defG(b1) = defG(b3) =
n

2
, defG(b2) = 2.

For i = 1, 2, 3 we take

Λ(bi)good := Λ(bi).

Then we have

D(Λ(b1)) = D(Λ(b3)) =
n+ 2

2
, ,D(Λ(b2)) = 3.

The inequality (7.1.3) is satis�ed.

7.2. Type Dn, n ≥ 5, θ has order 2. The simple (absolute) roots and coroots are the same as in �7.1.4,
embedded in E = Rn. We identify E with X∗(T )⊗Z R. Then θ acts on E by

(ξ1, · · · , ξn) 7→ (ξ1, · · · , ξn−1,−ξn).

The subgroup X∗(A) ⊂ X∗(T ) = L2 is given by {(ξ1, · · · , ξn) ∈ L2|ξn = 0}. Let L′2 ⊂ Qn−1 be the analogue
of L2, namely L′2 = Zn−1 + Z( 1

2 , · · · ,
1
2 ). The quotient X∗(T ) = L2 → X∗(Ŝ) is the same as

L2 −→ L′2, (ξ1, · · · , ξn) 7→ (ξ1, · · · , ξn−1).

The map

(s) : X∗(Ŝ) −→ X∗(A), λ 7→ λ(s)
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(for s ∈ 2Z≥1) is given by

L′2 −→ X∗(A), (ξ1, · · · , ξn−1) 7→ (sξ1, · · · , sξn−1, 0).(7.2.1)

The set FΦ∨,+, as a subset of X∗(A), is equal to

{ei ± ej |1 ≤ i < j ≤ n− 1} ∪ {2ei|1 ≤ i ≤ n− 1} .

We have
b(ei ± ej) = 1, 1 ≤ i < j ≤ n− 1

b(2ei) = 2, 1 ≤ i ≤ n− 1.

Moreover FΦ∨ is reduced. We have

P+ = {(ξ1, · · · , ξn) ∈ L2|ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ ξn = 0}

X∗(Ŝ)+ =
{

(ξ1, · · · , ξn−1) ∈ X∗(Ŝ) = L′2|ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ 0
}
.

We again write e1, · · · , en−1 for the standard basis of X∗(Ŝ) ⊗ Q = Qn−1. The relative simple roots in
Q̂θ̂ ⊂ X

∗(Ŝ) are:
e1 − e2, e2 − e3, · · · , en−2 − en−1, en−1

(i.e., the same as type Bn−1.)
Case: n is odd. We have π1(G) ∼= Z/4Z, and σ acts on π1(G) by the unique non-trivial automorphism

of π1(G). Hence π1(G)σ ∼= Z/2Z, and the non-trivial element is represented by

−1

2
(e1 − e2)− 1

2
(e3 − e4) · · · − 1

2
(en−2 − en−1) +

1

2
en ∈ L2 = X∗(T ).

The image of the above element in X∗(Ŝ) ⊗ Q = Qn−1 is obviously equal to a linear combination of the
relative simple roots in Q̂θ̂ with coe�cients in Q ∩ (−1, 0]. Hence this image is λb, and so

λb = (−1

2
,

1

2
, · · · ,−1

2
,

1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

If γ is any generator of π1(G) ∼= Z/4Z, then the number of orbits of γ o θ in |EDynkG| is 2 + n−3
2 , while

the number of orbits of θ in |EDynkG| is n. Hence

defG(b) =
n− 1

2
.(7.2.2)

We have

Λ(b) =

{
(ξ1 +

1

2
, · · · , ξn−1 +

1

2
) ∈ X∗(Ŝ) = L′2|ξi ∈ Z, ξ1 ≥ ξ2 ≥ · · · ≥ ξn−1 ≥ 0, ξ1 > 0

}
.(7.2.3)

We take
Λ(b)good := Λ(b).

In the following we show (6.3.1) for all λ ∈ Λ(b). The proof is similar to the argument in �7.1.1.
Fix w,w′ ∈W 1. We write ψs := w • (w′λ(s)). By the formula (5.2.4), it su�ces to show that

P(ψs, q
−1
1 ) = O(q

−s( 1
2 defG(b)+a)

1 )(7.2.4)

for some a > 0. Again we have the bound∣∣P(ψs, q
−1
1 )
∣∣ ≤ #P(ψs) · q−Ns1 ,(7.2.5)

where
Ns := min {|m| : m ∈ P(ψs)} .
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Suppose m ∈ P(ψs). We keep the de�nition (7.1.1) of the norm |·| on E = Rn. Then

2
∑

β∈FΦ∨,+

m(β) ≥

∣∣∣∣∣∣
∑

β∈FΦ∨,+

m(β)β

∣∣∣∣∣∣ = |ψs| ≥
∣∣∣ww′λ(s)

∣∣∣− |wρ∨ − ρ∨| = ∣∣∣λ(s)
∣∣∣− C,

where C is a constant independent of s. By (7.2.1) and (7.2.3), we have∣∣∣λ(s)
∣∣∣ ≥ s · n+ 1

2
.

On the other hand

2 |m| := 2
∑

β∈FΦ∨,+

m(β)b(β) ≥ 2
∑

β∈FΦ∨,+

m(β).

In conclusion we have

2 |m| ≥ s · n+ 1

2
+ C.(7.2.6)

Combining (7.2.2) (7.2.6) and (7.1.7) (which holds in general), we obtain the desired (7.2.4). Note that in
the above proof, we only used the fact that n+1

2 > defG(b).
Case: n is even. We have π1(G) ∼= Z/2Z×Z/2Z. The action of σ on π1(G) swaps the classes represented

by ( 1
2 , · · · ,

1
2 ) and ( 1

2 , · · · ,
1
2 ) + e1 ∈ L2, and �xes the class represented by e1. Hence π1(G)σ ∼= Z/2Z, and

the non-trivial element is represented by

−1

2
(e1 − e2)− 1

2
(e3 − e4) · · · − 1

2
(en−1 − en) ∈ L2 = X∗(T ).

The image of the above element in X∗(Ŝ) ⊗ Q = Qn−1 is obviously equal to a linear combination of the
relative simple roots in Q̂θ̂ with coe�cients in Q ∩ (−1, 0]. Hence this image is λb, and so

λb = (−1

2
,

1

2
, · · · ,−1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

Let γ ∈ π1(G) be the class of ( 1
2 , · · · ,

1
2 ) ∈ L2. We have seen in �7.1.4 that γ acts on EDynkG via one

of the two order-two horizontal symmetries of EDynkG. Hence γ o σ acts on EDynkG via one of the two
order-four horizontal symmetries of EDynkG, and the number of orbits is 1 + n−2

2 = n
2 . On the other hand

the number of orbits of θ in |EDynkG| is n. Hence

defG(b) =
n

2
.

The set Λ(b) is again given by (7.2.3). We take

Λ(b)good := Λ(b).

The proof of (6.3.1) for all λ ∈ Λ(b) is exactly the same as in the odd case, using the fact that n+1
2 > defG(b).

7.3. Type D4, θ has order 2. The di�erence between this case and �7.2 is that the D4 Dynkin diagram
has three (rather than one) automorphisms of order two. However we explain why the proof of (6.3.1) for
all λ ∈ Λ(b)good := Λ(b) is the same. In fact, there exists a permutation τ of {1, 3, 4}, such that the root
system can be embedded into R4 with simple roots:

ατ(1) = e1 − e2, α2 = e2 − e3, ατ(3) = e3 − e4, ατ(4) = e3 + e4,

and such that θ acts on R4 by e4 7→ −e4.
If τ = 1, then the extra node in EDynkG is given by α0 = −e1 − e2, and the proof is exactly the same

as �7.2. For general τ , we still have π1(G)σ ∼= Z/2Z and hence a unique choice of b, and the only place
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in the proof in �7.2 that could change is the computation of defG(b), as the extra node in EDynkG is no
longer given by −e1 − e2. However, it can still be easily checked that as long as κG(b) ∈ π1(G)σ ∼= Z/2Z is
non-trivial, we have

defG(b) = 2 =
4

2
.

In fact, this follows from the observation that for any order-two element γ ∈ π1(G) ∼= Z/2× Z/2 that is not
�xed by σ, the action of γ o θ on |EDynkG| must be of order four and have two orbits.

7.4. Type D4, θ has order 3. In this case π1(G) = Z/2Z × Z/2Z. We know that θ acts on π1(G) by an
order-three permutation of the three non-trivial elements. Thus π1(G)σ = 0 and any basic b is unrami�ed.

7.5. Type E6, θ = id. We consider the root system E6 embedded in R9, which we will consider as R3 ⊕
R3 ⊕ R3. The set of roots is given by the 18 elements consisiting of permutations of

(1,−1, 0; 0, 0, 0; 0, 0, 0)

(0, 0, 0; 1,−1, 0; 0, 0, 0)

(0, 0, 0; 0, 0, 0; 1,−1, 0)

under the group S3 × S3 × S3, together with the 54 elements given by the permutations of

(
2

3
,−1

3
,−1

3
;

2

3
,−1

3
,−1

3
:

2

3
,−1

3
,−1

3
)

(−2

3
,

1

3
,

1

3
;−2

3
,

1

3
,

1

3
: −2

3
,

1

3
,

1

3
)

under the same group. We will call the �rst set of roots type A roots, and the second set type B roots. A
type A root is positive if and only if the coordinate 1 appears to the left of the -1. A type B root is positive
if and only if the �rst coordinate is positive.

A choice of simple roots is given by

α1 = (0, 0, 0; 0, 1,−1; 0, 0, 0)

α2 = (0, 0, 0; 1,−1, 0; 0, 0, 0)

α3 = (
1

3
,−2

3
,

1

3
;−2

3
,

1

3
,

1

3
: −2

3
,

1

3
,

1

3
)

α4 = (0, 1,−1; 0, 0, 0; 0, 0, 0)

α5 = (0, 0, 0; 0, 0, 0; 1,−1, 0)

α6 = (0, 0, 0; 0, 0, 0; 0, 1,−1).

The corresponding Dynkin diagram is

1◦ 2◦ 3◦ 5◦ 6◦

◦
4

Under the standard pairing of R9 with itself, each root is equal to its own corresponding coroots. We
therefore identify R9 with its dual and do not distinguish between roots and coroots. The subspace of R9

generated by the roots is given by the equations

x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = 0(7.5.1)

where xi are the standard coordinates. The fundamental weights are given by

$1 = (
2

3
,−1

3
,−1

3
;

1

3
,

1

3
,−2

3
; 0, 0, 0)
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$2 = (
4

3
,−2

3
,−2

3
;

2

3
,−1

3
,−1

3
; 0, 0, 0)

$3 = (2,−1,−1; 0, 0, 0; 0, 0, 0)

$4 = (1, 0,−1; 0, 0, 0; 0, 0, 0)

$5 = (
4

3
,−2

3
,−2

3
; 0, 0, 0;

2

3
,−1

3
,−1

3
)

$6 = (
2

3
,−1

3
,−1

3
; 0, 0, 0;

1

3
,

1

3
,−2

3
)

For an element λ =
∑6
i=1 ai$i with ai ∈ Z, we have λ lies in the root lattice if and only

(7.5.2) a5 − a6 − a2 + a1 ≡ 0 mod 3

and we have π1(G) ∼= Z/3Z, with the isomorphism being given by

λ =

6∑
i=1

ai$i 7→ a5 − a6 − a2 + a1 mod 3.

Moreover λ is dominant if and only ai ≥ 0 for i = 1, . . . , 6.
We let bi, i = 1, 2 denote the non-trivial elements in π1(G). We have

λ+
b1

= $1, λ+
b2

= $6

We set
Λ(b1)good := Λ(b1)− {$5, $4 +$1, $2 +$6, 2$6}

Λ(b2)good := Λ(b2)− {$2, $4 +$6, $5 +$1, 2$1}
We let |·| be the standard Euclidean norm on R9. Then |·| is W0-invariant, and we have |α∨| ≤ δ :=

√
2,

for all α∨ ∈ Φ∨. Given any subset S of Λ(bi), we de�ne

D(S) := min
λ∈S
|λ| .

We claim that
D(Λ(b1)good) >

√
8, D(Λ(b2)good) >

√
8.

Since defG(b) = 4 (which we know by counting orbits of the unique non-trivial symmetry of EDynkG) and
δ =

√
2, the claim will imply the inequality (7.1.3), and by exactly the same argument as in �7.1.1, we

conclude that (6.3.1) holds for all λ ∈ Λ(bi)good.
We now prove the claim. By the obvious symmetry of the Dynkin diagram

1↔ 6

2↔ 5

3↔ 3

4↔ 4,

it su�ces to only discuss Λ(b1)good.
Let λ =

∑6
i=1 ai$i ∈ Λ(b1), with ai ∈ Z≥0, and suppose |λ| ≤

√
8. We will show

|λ| ∈ {$5, $4 +$1, $2 +$6, 2$6}.

Since λ ∈ Λ(b1), we have by (7.5.2) that

a5 − a6 − a2 + a1 ≡ 1 mod 3.(7.5.3)

By looking at the �rst three coordinates of λ and using the triangle inequality, we easily obtain the inequalities

a1 ≤ 3, a2 ≤ 1, a3 ≤ 1, a4 ≤ 3, a5 ≤ 1, a6 ≤ 3.
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If a3 = 1, then we have ai > 0 for some i 6= 3 since λ ∈ Λ(b1), hence a3 = 0.
If a2 = 1, we have a5 = 0 and a1, a4, a6 ≤ 1 (by looking at the �rst 3 coordinates). We check each case

and see that only λ = $2 +$6 is possible.
If a5 = 1, we similarly obtain that λ = $5 is the only possibility using (7.5.3).
The only cases left are when the only non-zero coe�cients are a1, a4, a6. Again by looking at the �rst

three coordinates, we see that a1 + a4 + a6 ≤ 3. We check each case and see that the only possibilities are
λ = $1 +$4 and λ = 2$6.

7.6. Type E6, θ has order 2. We keep the notation �7.5. Then θ acts on the root system via the action
on R9 given by

(x1, x2, x3;x4, x5, x6;x7, x8, x9) 7→ (x1, x2, x3;x7, x8, x9;x4, x5, x6).

It therefore acts on π1(G) by switching the two non-trivial elements. Hence π1(G)σ = 0 and all basic elements
are unrami�ed.

7.7. Type E7, θ = id. We consider the root system E7 as a subset of R8. The set of roots is given by the
56 permutations of

(1,−1, 0, 0, 0, 0, 0, 0)

and the
(

8
4

)
permutations of

(
1

2
,

1

2
,

1

2
,

1

2
,−1

2
,−1

2
,−1

2
,−1

2
).

A set of simple roots is given by
α1 = (0, 0, 0, 0, 0, 0,−1, 1)

α2 = (0, 0, 0, 0, 0,−1, 1, 0)

α3 = (0, 0, 0, 0,−1, 1, 0, 0)

α4 = (0, 0, 0,−1, 1, 0, 0, 0)

α5 = (
1

2
,

1

2
,

1

2
,

1

2
,−1

2
,−1

2
,−1

2
,−1

2
)

α6 = (0, 0,−1, 1, 0, 0, 0, 0)

α7 = (0,−1, 1, 0, 0, 0, 0, 0)

The corresponding Dynkin diagram is

1◦ 2◦ 3◦ 4◦ 6◦ 7◦

◦
5

Under the standard pairing of R8 with itself, roots correspond to coroots and we therefore do not distin-
guish between them. The subspace of R8 generated by the roots is the hyperplane given by the equation∑8
i=1 xi = 0.
The corresponding fundamental weights are given by

$1 = (
3

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,

3

4
)

$2 = (
3

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,

1

2
,

1

2
)

$3 = (
9

4
,−3

4
,−3

4
,−3

4
,−3

4
,

1

4
,

1

4
,

1

4
)

$4 = (3,−1,−1,−1, 0, 0, 0, 0)
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$5 = (
7

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
)

$6 = (2,−1,−1, 0, 0, 0, 0, 0)

$7 = (1,−1, 0, 0, 0, 0, 0, 0).

For an element λ =
∑7
i=1 ai$i, ai ∈ Z, we know λ lies in the root lattice if and only if

(7.7.1) a1 + a3 + a5 ≡ 0 mod 2

and we have π1(G) ∼= Z/2Z. By assumption κG(b) ∈ π1(G) is the non-trivial element. Then we have

λ+
b = $1.

We set

Λ(b)good := Λ(b)− {$5}.

We let |·| be the standard Euclidean norm on R8. Then |·| is W0-invariant, and we have |α∨| ≤ δ :=
√

2,
for all α∨ ∈ Φ∨. Given any subset S of Λ(b), we de�ne

D(S) := min
λ∈S
|λ| .

We claim that

D(Λ(b)good) ≥
√

22

2
.

Since defG(b) = 3 and δ =
√

2, the claim will imply the inequality (7.1.3), and by exactly the same argument
as in �7.1.1, we conclude that (6.3.1) holds for all λ ∈ Λ(b)good.

We now prove the claim. Suppose λ =
∑7
i=1 aiλi ∈ Λ(b) with ai ∈ Z≥0, and |λ| ≤

√
22/2. We will show

that λ = $5. By looking at the �rst four coordinates, we obtain the trivial inequalities:

$1 ≤ 2, $2 ≤ 1, $3 = 0, $4 = 0, $5 ≤ 1, $6 ≤ 1, $7 ≤ 1.

We also obtain
∑7
i=1 ai ≤ 2. It is not hard to see that λ = $5 is the only possibility.

8. Proof of the key estimate, Part II

In this part, we �nish the proof of the bounds (6.3.1) and (6.3.2) in Proposition 6.3.1.
In �7, we already proved (6.3.1) and (6.3.2) for all λ ∈ Λ(b)good. Moreover the Λ(b)good ⊂ Λ(b) is a proper

subset only in the following three cases:

Proper-I: Type Dn, n ≥ 5, n is odd, θ = id, b = b1 or b3. See �7.1.4.
Proper-II: Type E6, θ = id, b = b1 or b2. See �7.5.
Proper-III: Type E7, θ = id. See �7.7.

8.1. Combinatorics for Dn. In order to treat the case Proper-I, we need some combinatorics for the type
Dn root system. The material in this subsection is only needed in the proof of Proposition 8.2.1 below.

Let n be an integer ≥ 5. We keep the presentation of the type Dn root system in a vector space Rn, as in
�7.1.4. In particular we keep the choice of positive roots. We do not distinguish between roots and coroots.
Let ΦDn be the set of roots and let Φ+

Dn
be the set of positive roots. Thus

Φ+
Dn

= {ei ± ej |1 ≤ i < j ≤ n} .

If m > n is another integer, we embed Rn into Rm via the inclusion {e1, · · · , en} ↪→ {e1, · · · , em} of the
standard bases. Thus we view ΦDn (resp. Φ+

Dn
) as a natural subset of ΦDm (resp. Φ+

Dm
).
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8.1.1. We introduce some terminology for trees. An out-tree is a tree where one vertex is speci�ed as the
origin6, denoted by O, and all the edges are oriented away from the origin. On an out-tree T , for every
vertex v except the origin, there is a unique vertex w that is connected to v by an edge pointing from w to
v. This vertex w is called the parent of v. Conversely, v is a child of its parent. A vertex that does not have
children is called an end vertex. By a path on T , we mean a sequence of vertices (v0, v1, · · · , vk), such that
each vi is the parent of vi+1. Such a path is called complete, if v0 = O and vk is an end vertex.

De�nition 8.1.2. By an admissible Dn-decorated tree, we mean a triple (T , α, β), where T is a �nite
out-tree that has at least three vertices, and α, β are maps

α : {vertices of T except the origin} −→ Φ+
Dn

v 7→ α(v)

β : {vertices of T except the end vertices} −→ Φ+
Dn

v 7→ β(v),

satisfying the following conditions:

(1) Each vertex is either an end vertex or has precisely two children. (In other words T is binary.)
(2) For each vertex w that is not an end vertex, let v, v̄ be the two children of w. We require that α(v)−α(v̄) ∈
{±β(w)}. Moreover, if α(v)−α(v̄) = β(w), then we call v a positive vertex and call v̄ a negative vertex.

(3) For every complete path (v0 = O, v1, · · · , vk), we require that β(vi) are distinct, for 0 ≤ i ≤ k − 1.
(4) For every complete path (v0 = O, v1, · · · , vk), we require that α(vi) are distinct, for 1 ≤ i ≤ k.

Example 8.1.3. We can visualize an admissible Dn-decorated tree in a diagram as follows. At the location
of the origin, we mark O ‖ β(O) . At the location of each vertex v 6= O, we mark α(v) ‖ β(v) if v is not

an end vertex, and we mark α(v) if v is an end vertex. For example, the diagram

O ‖ e2 − e3

e1 − e2 ‖ e3 − e4

e1 − e3 e1 − e4

e1 − e3

depicts an admissible D5-decorated tree, with �ve vertices and four edges.

De�nition 8.1.4. Fix an arbitrary sequence of signs ν = (ν2, · · · , νn) ∈ {±1}n−1. We say that an admissible
Dn-decorated tree (T , α, β) is good with respect to ν, if for every complete path (O, v1, · · · , vk) the intersection

{e1 + νjej |2 ≤ j ≤ n} ∩ {α(vi)|1 ≤ i ≤ k}

has exactly n− 2 elements.

Proposition 8.1.5. For each odd n ≥ 5 and each sequence of signs ν = (ν2, · · · , νn) ∈ {±1}n−1
, there exists

an admissible Dn-decorated tree that is good with respect to ν.

6This is usually called the root of the tree, but we avoid this terminology to prevent confusion.
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Proof. We prove by induction on n. We use the graphic presentation introduced in Example 8.1.3. The base
case is n = 5. It can be easily checked that the following is an admissible D5-decorated tree that is good
with respect to ν.

O ‖ e2 − ν2ν3e3

e1 + ν2e2 ‖ e3 − ν3ν4e4

e1 + ν3e3 ‖ e4 − ν4ν5e5

e1 + ν4e4 e1 + ν5e5

e1 + ν4e4 ‖ e3 − ν3ν5e5

e1 + ν3e3 e1 + ν5e5

e1 + ν3e3 ‖ e2 − ν2ν4e4

e1 + ν2e2 ‖ e4 − ν4ν5e5

e1 + ν4e4 e1 + ν5e5

e1 + ν4e4 ‖ e2 − ν2ν5e5

e1 + ν2e2 e1 + ν5e5

Now assume the proposition is proved for n, and we prove it for n+ 2. Let ν = (ν2, · · · , νn+2) ∈ {±1}n+1

be arbitrary. Denote by ν′ the sequence (ν2, · · · , νn). By induction hypothesis there exists an admissible
Dn-decorated tree (T ′, α′, β′) that is good with respect to ν′. For each end vertex v of T ′, we shall glue a
new admissible Dn+2-decorated tree to v (i.e., we identify v with the origin of this new out-tree). We then
check that after all the gluing we obtain an admissible Dn+2-decorated tree that is good with respect to ν.
In the following we denote for simplicity fj := νjej , for 2 ≤ j ≤ n+ 2.

Let v be an end vertex of T ′, and let (O, v1, · · · , vk = v) be the complete path from O to v. By assumption,
the intersection

I = {e1 + fj |2 ≤ j ≤ n} ∩ {α(vi)|1 ≤ i ≤ k}

has exactly n − 2 elements. Let 2 ≤ j ≤ n be the unique index such that e1 + fj /∈ I. In this case we glue
the following admissible Dn+2-decorated tree to v:

v ‖ ej − νjfn+2

e1 + fj ‖ en+1 − νn+1fn+2

e1 + fn+1 e1 + fn+2

e1 + fn+2 ‖ ej − νjfn+1

e1 + fj e1 + fn+1

We check that after all the gluing we obtain an admissible Dn+2-decorated tree (T , α, β) which is good
with respect to ν. Conditions (1) and (2) in De�nition 8.1.2 are obviously satis�ed. To see condition (3),
note that each complete path on T is of the form (v0 = O, v1, · · · , vk, vk+1, vk+2), where (v0, v1, · · · , vk) is
a complete path on T ′. By induction hypothesis β(vi) are distinct for 0 ≤ i ≤ k− 1. By construction β(vk)

and β(vk+1) are always distinct, and they cannot be the same as any of the β(vi), 0 ≤ i ≤ k − 1, because
β(vk), β(vk+1) are in Φ+

Dn+2
−Φ+

Dn
. Thus condition (3) from De�nition 8.1.2 is satis�ed. Similarly, condition

(4) from De�nition 8.1.2, and the statement that (T , α, β) is good with respect to ν, follow easily from the
construction and the induction hypothesis. �
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Remark 8.1.6. In fact, the admissible Dn-decorated tree constructed in the above proof satis�es the following
extra property: For any complete path (O, v1, · · · , vk), we have k = n − 2, and the set {α(vi)|1 ≤ i ≤ k}
consists of n− 2 distinct elements of {e1 + νiei|2 ≤ i ≤ n}.

Lemma 8.1.7. Let n ≥ 5 be an odd integer. Fix a real number M > n/2. Let Φ+
Dn

be the positive (co)roots

in the type Dn root system in Rn, and let |·| be the norm on V , as in (7.1.1). Let ν = (ν2, · · · , νn) ∈ {±1}n−1

and t ∈ N be arbitrary. Let λ be an element in the (co)root lattice, such that

|λ− (6t, 2tν2, 2tν3, · · · , 2tνn)| < t/M.

We keep the notation in �5.3, with respect to FΦ∨,+ = Φ+
Dn

and b ≡ 1. Let m ∈ P(λ). Assume there is a

subset I ⊂ {2, · · · , n} of cardinality n− 2, such that m(e1 + νiei) = 0 for all i ∈ I. Then

|m| ≥ (n+ 4− n

2M
)t.

Proof. Assume the contrary. For each 2 ≤ i ≤ n we write fi for νiei. Let j0 be the unique element of
{2, · · · , n} − I. De�ne m′ ∈ P by:

∀β ∈ Φ+
Dn
, m′(β) :=

0, β ∈ {e1 ± fi|2 ≤ i ≤ n}

m(β), else

De�ne

λ′ := Σ(m′).

Write

λ = λ1e1 +

n∑
i=2

λifi,

with λ1, · · · , λn ∈ R. In fact it easily follows from our assumption that each λi > 0, as λi is close to either
6t or 2t. We have

λ′ =
∑
i∈I

(λi +m(e1 − fi))fi + λ′j0fj0 ,

for some λ′j0 ∈ R. Obviously
|m′| = |m| − λ1,

so we have

2 |m′| = 2 |m| − 2λ1 ≥ |λ′| ≥
∑
i∈I

λi +m(e1 − fi),

from which we get

0 ≤
∑
i∈I

m(e1 − fi) ≤ 2 |m| − 2λ1 −
∑
i∈I

λi

< 2(n+ 4− n

2M
)t− 2(6t− t/M)− |I| (2t− t/M) = 0,

i.e., 0 < 0, a contradiction. �

Proposition 8.1.8. Let n ≥ 5 be an odd integer. Let ν = (ν2, · · · , νn) ∈ {±1}n−1
and t ∈ N. Let

λ = λt := (6t, 2tν2, 2tν3 · · · , 2tνn).

We keep the notation in �5.3, with respect to FΦ∨,+ = Φ+
Dn

and b ≡ 1. We write Φ+ for Φ+
Dn

. When t is

su�ciently large, the following is true: For any integer L in the interval [0, (n+ 3.5)t], we have∑
S⊂Φ+

(−1)|S|#P(λ−
∑
β∈S

β)L = 0.
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Proof. To simplify notation, in the proof we write λ− S for λ−
∑
β∈S β, for any subset S ⊂ Φ+.

We �x an admissible Dn-decorated tree (T , α, β) which is good with respect to ν. This exists by Propo-

sition 8.1.5. As usual let O denote the origin of T . Let 2Φ+

denote the power set of Φ+. For each vertex v
of T not equal to O, we de�ne a subset Cv ⊂ 2Φ+

as follows. Let w be the parent of v. If v is a positive
vertex, we let

Cv :=
{
S ∈ 2Φ+

|β(w) /∈ S
}
.

If v is a negative vertex, we let
Cv :=

{
S ∈ 2Φ+

|β(w) ∈ S
}
.

Now for each vertex v 6= O, we let (O, v1, · · · , vk = v) be the unique path from O to v, and de�ne

Dv :=

k⋂
i=1

Cvi ⊂ 2Φ+

.

Also de�ne
DO := 2Φ+

.

From condition (3) in De�nition 8.1.2, it is easy to see that if v, v̄ are the two children of any vertex w, then

Dw = Dv tDv̄.(8.1.1)

More precisely, if v is the positive vertex among v, v̄, then

Dv = {S ∈ Dw|β(w) /∈ S}(8.1.2)

Dv̄ = {S ∈ Dw|β(w) ∈ S} ,(8.1.3)

and there is a bijection

Dv
∼−→ Dv̄(8.1.4)

S 7→ S ∪ {β(w)} .
Next, for any subset {γ1, · · · , γk} ⊂ Φ+ and any λ′ in the root lattice, we de�ne the following subset of

P(λ′)L:
P(λ′)γ1,··· ,γk

L := {m ∈ P(λ′)L|m(γ1) = · · · = m(γk) = 0} .
For any vertex v 6= O with (O, v1, · · · , vk = v) the unique path from O to v, we de�ne

P(λ′)vL := P(λ′)
α(v1),··· ,α(vk)
L .

Also de�ne
P(λ′)OL := P(λ′)L.

For any two vertices v1, v2, we de�ne

P(λ′)v1

L,v2
:= P(λ′)v1

L − P(λ′)v2

L .

Claim 1. Assume v, v̄ are the two children of a vertex w. Then∑
S∈Dw

(−1)|S|#P(λ− S)wL =
∑
S∈Dv

(−1)|S|#P(λ− S)vL +
∑
S∈Dv̄

(−1)|S|#P(λ− S)v̄L.

To prove the claim, we may assume v is positive. In view of (8.1.1), it su�ces to show that∑
S∈Dv

(−1)|S|#P(λ− S)wL,v +
∑
S∈Dv̄

(−1)|S|#P(λ− S)wL,v̄ = 0.

In view of (8.1.2), (8.1.3), and the bijection (8.1.4), it su�ces to show that for each S ∈ Dv we have

#P(λ− S)wL,v = #P(λ− S − β(w))wL,v̄.
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To show this we construct a bijection

φ : P(λ− S)wL,v
∼−→ P(λ− S − β(w))wL,v̄

sending m to φ(m) given by:

∀β ∈ Φ+, φ(m)(β) :=


m(β)− 1, β = α(v)

m(β) + 1, β = α(v̄)

m(β), else

Note that we indeed have m(α(v)) ≥ 1 because m ∈ P(λ − S)wL,v. Also it is obvious that φ(m) lies in the
desired set, using the fact that α(v) − α(v̄) = β(v) and condition (4) from De�nition 8.1.2. Finally, φ is a
bijection because by the same reasoning the following map is a well-de�ned inverse map:

ψ : P(λ− S − β(w))wL,v̄ → P(λ− S)wL,v

m′ 7→ ψ(m′)

∀β ∈ Φ+, ψ(m′)(β) :=


m′(β) + 1, β = α(v)

m′(β)− 1, β = α(v̄)

m′(β), else

We have proved Claim 1.
Using Claim 1, we deduce that∑

S⊂Φ+

(−1)|S|#P(λ− S)L =
∑
S∈DO

(−1)|S|#P(λ− S)OL =
∑
v

∑
S∈Dv

(−1)|S|#P(λ− S)vL,

where v runs over all the end vertices of T . Hence the proposition is proved once we show the following
claim:
Claim 2. When t is su�ciently large, the following is true. For each L ∈ Z ∩ [0, 3.5t] and for each end

vertex v, we have ∑
S∈Dv

(−1)|S|#P(λ− S)vL = 0.

To prove the claim, we �x a real number M > n. It is obvious that when t is su�ciently large (in a way
that depends on M), the following is true: For all S ∈ 2Φ+

,∣∣∣∣∣∣
∑
β∈S

β

∣∣∣∣∣∣ < t/M.

Thus we can apply Lemma 8.1.7 to each λ− S. Since our (T , α, β) is good with respect to ν, we know that
any m ∈ P(λ − S)vL satis�es the hypothesis in Lemma 8.1.7 (with respect to λ − S) about the vanishing of
m(e1 + νiei). Hence by that lemma we know that P(λ− S)vL is non-empty only if

L ≥ (n+ 4− n

2M
)t > (n+ 3.5)t.

We have proved Claim 2. The proof of the proposition is complete. �
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8.2. The case Proper-I. We treat type Dn with n ≥ 5 odd, and θ = id, b = b1 or b3. See �7.1.4. By
symmetry we only need to consider b = b1. Recall in this case

Λ(b1)− Λ(b1)good =

{
λ1,bad = (

3

2
,

1

2
, · · · , 1

2
,−1

2
)

}
,

and we have defG(b1) = n+3
2 .

Proposition 8.2.1. The bound (6.3.1) holds for λ = λ1,bad.

Proof. The proof uses the results from �8.1. By the formula (5.2.4), it su�ces to show for each w′′ ∈W 1 =

W0, that ∑
w∈W 1=W0

(−1)`1(w)P(w′′λ
(s)
1,bad + wρ∨ − ρ∨, q−1

1 ) = O(q
−s( 1

2 defG(b)+a)
1 )(8.2.1)

for some a > 0. Here we have made the change of variable ww′ 7→ w′′ in (5.2.4), and have used the fact that
e0(w′λ

(s)
1,bad) ≡ 0 for all w′ ∈W 1, as long as s� 0.

Fix w′′, and write ζs := w′′λ
(s)
1,bad. Let |·| be the norm on Rn de�ned in (7.1.1). Since W0 ⊂ {±1}n o Sn,

there exist 1 ≤ j ≤ n, ε ∈ {±1}, and ν = (ν2, · · · , νn) ∈ {±1}n−1
, such that

ζs = (
1

2
sν2,

1

2
sν3, · · · ,

1

2
sνj ,

3

2
sε,

1

2
sνj+1, · · · ,

1

2
sνn),

where 3
2sε is at the j-th place.

Assume either j 6= 1 or ε = −1. Then for s � 0 and all w ∈ W0, we have ζs + wρ∨ − ρ∨ /∈ R+, and so
P(ζs + wρ∨ − ρ∨, q−1

1 ) = 0. We are done in this case.
Hence we assume j = 1 and ε = 1. Assume without loss of generality that s = 4t for t ∈ N. By the Weyl

character formula, the left hand side of (8.2.1) is equal to∑
S⊂Φ∨,+

(−1)|S|P(ζs −
∑
β∈S

β, q−1
1 ).

By Proposition 5.3.2 (1) and Proposition 8.1.8, the above is equal to∑
L∈Z, L>(n+3.5)t

q−L1

∑
S⊂Φ∨,+

(−1)|S|#P(ζs −
∑
β∈S

β)L,(8.2.2)

By the same argument as in the proof of Proposition 6.2.1, the expression∣∣∣∣∣∣
∑
L∈Z≥0

∑
S⊂Φ∨,+

(−1)|S|#P(ζs −
∑
β⊂S

β)L

∣∣∣∣∣∣
is of polynomial growth in s (or in t). Hence (8.2.2) is bounded by O(q

−(n+3.4)t
1 ). Since s·defG(b)/2 = (n+3)t,

the desired bound (8.2.1) follows. �

8.3. The case Proper-II. We now treat type E6, θ = id, b = b1 or b2. See �7.5. By symmetry, it su�ces
to treat the case of b1. Recall in this case

Λ(b1)− Λ(b1)good = {$5, $4 +$1, $2 +$6, 2$6},

and we have defG(b1) = 4.

Proposition 8.3.1. The bound (6.3.2) holds for all λ ∈ {$4 + $1, $2 + $6, 2$6}. In other words, in

Proposition 6.3.1 (2) (for b = b1) we may take λbad to be $5.
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Proof. We de�ne a function |·|′ : R9 → R≥0 in the following way. For any v =
∑9
i=1 xiei ∈ R9, we de�ne

|v|′ := max
i,j∈{0,1,2},i6=j;
k,l∈{1,2,3}

|x3i+k − x3j+l|.

In other words, we think of R9 as (R3)3, and we take the largest di�erence between a coordinate in one
factor of R3 and a coordinate in a di�erent factor. Then |·|′ is a semi-norm, i.e., it is compatible with scalar
multiplication by R and satis�es the triangle inequality. Note that |·|′ is not W0-invariant. By the explicit
description of the roots, we have |α|′ = 1 for all positive roots α.
Claim. |µ|′ ≥ 7/3 for all µ ∈W0λ.
We prove the claim. We �rst record explicitly the W0-orbit of λ. To state it we need some notation. Let

C3 be the cyclic group of order 3 with a �xed generator c. We let C3 act on S3 × S3 × S3 via

c : (σ1, σ2, σ3) 7→ (σ2, σ3, σ1).

Let H denote the semi-direct product (S3 × S3 × S3) o C3. Then we have an action of H on R9, where
S3 × S3 × S3 acts naturally on the coordinate indices, and c ∈ C3 acts via

c : (x1, x2, x3;x4, x5, x6;x7, x8, x9) 7→ (x4, x5, x6;x7, x8, x9;x1, x2, x3)

For λ = $2 +$6, its W0-orbit is given by the union of the H-orbits of the following vectors:

(2,−1,−1;
2

3
,−1

3
,−1

3
;

1

3
,

1

3
,−2

3
)

(
2

3
,−1

3
,−1

3
;

1

3
,

1

3
,−2

3
; 3, 3,−6)

(
4

3
,

1

3
,−5

3
; 1, 0,−1;

2

3
,−1

3
,−1

3
)

(
1

3
,

1

3
,

2

3
; 1, 0,−1;

5

3
,−1

3
,−4

3
)

(
4

3
,

1

3
,−5

3
; 0, 0, 0;

2

3
,

2

3
,−4

3
)

(
4

3
,−2

3
,−2

3
; 0, 0, 0;

5

3
,−1

3
,−4

3
)

(
4

3
,−2

3
,−2

3
; 1, 0,−1;

2

3
,

2

3
,−4

3
).

For λ = $1 +$4, its W0-orbit is the union of the H-orbits of the following:

(
4

3
,−1

3
,−5

3
; 0, 0, 0;

2

3
,−1

3
,−1

3
)

(
1

3
,

1

3
,−2

3
; 0, 0, 0;

5

3
,−1

3
,−4

3
)

(
4

3
,−2

3
,−2

3
; 1, 0,−1;

2

3
,−1

3
,−1

3
)

(
1

3
,

1

3
,−2

3
; 1, 0,−1;

2

3
,

2

3
,−4

3
).

For λ = 2$6, its W0-orbit is the H-orbit of

(
4

3
,−2

3
,−2

3
; 0, 0, 0;

2

3
,

2

3
,−4

3
).

One sees easily that |·|′ of all the above vectors are ≥ 7/3. Since |.|′ is invariant under the action of H, it
follows that |µ|′ ≥ 7/3 holds for all µ ∈W0λ. The claim is proved.
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Based on the claim, we prove (6.3.2) for λ ∈ {$4 + $1, $2 + $6, 2$6}, using an argument similar to
�7.1.1. By the formula (5.2.4), it su�ces to show for each w,w′ ∈W0 that

P(ψs, q
−1
1 ) = O(q

−s( 1
2 defG(b1)+a)

1 )

for some a > 0, where ψs := w • (w′λ(s)). By the same argument as in �7.1.1, we easily reduce to proving:
For some constant a > 0,

min {|m| : m ∈ P(ψs)} ≥ s(
1

2
defG(b1) + a) = s(2 + a),(8.3.1)

for all s� 0. By the previous claim, for all m ∈ P(ψs) we have

1 ·
∑

β∈Φ∨,+

m(β) ≥

∣∣∣∣∣∣
∑

β∈Φ∨,+

m(β)β

∣∣∣∣∣∣
′

= |ψs|′ ≥
∣∣∣ww′λ(s)

∣∣∣′ − |wρ∨ − ρ∨|′ = s |ww′λ|′ − C ≥ s · 7

3
− C,

where C is a constant independent of s. Here the number 1 appearing in the leftmost term is equal to
minβ∈Φ∨,+ |β|

′. Since θ = id, the leftmost term in the above inequalities is none other than |m|. The desired
(8.3.1) follows. �

8.4. The case Proper-III. We now treat type E7, θ = id, and [b] ∈ B(G) being the unique basic class such
that κG(b) is the non-trivial element of π1(G) = Z/2Z. See �7.7. Recall in this case

Λ(b)− Λ(b)good = {$5},

and defG(b) = 3.

Proposition 8.4.1. The bound (6.3.1) holds for λ = $5.

Proof. Firstly, the W0-orbit of λ is given by all permutations under S8 of the following vectors:

λ1 = (
7

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
,−1

4
)

λ2 = (
5

4
,−3

4
,−3

4
,−3

4
,

1

4
,

1

4
,

1

4
,

1

4
)

λ3 = (−7

4
,

1

4
,

1

4
,

1

4
,

1

4
,

1

4
,

1

4
,

1

4
)

λ4 = (−5

4
,

3

4
,

3

4
,

3

4
,−1

4
,−1

4
,−1

4
,−1

4
).

Indeed it is easy to see that all these elements lie in W0λ (using the fact that the W0 contains the copy of
S8), and one easily computes the size of W0λ to prove that these are all the elements of W0λ.

For 1 ≤ i ≤ 8 and τ ∈ S8, we de�ne functions

|·|i : R8 → R≥0

|·|τ : R8 → R≥0

in the following way. For any v =
∑8
i=1 xiei ∈ R8, we de�ne

|v|i := |xi| , |v|τ :=
∣∣xτ(1)

∣∣+
∣∣xτ(2)

∣∣+
∣∣xτ(3)

∣∣+
∣∣xτ(4)

∣∣ .
Then |·|i , |·|τ are all semi-norms.

Note that in the proof of Proposition 8.3.1, we reduced to proving (8.3.1) for each �xed w,w′ ∈ W0.
During the proof (8.3.1) for the �xed w,w′, we only needed to apply the semi-norm |·|′ to ww′λ, and not to
any other element of W0λ. Hence for each element in W0λ, we could use a semi-norm, which is speci�cally
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designed for that element, to �nish the proof. In the current case, we reduce to proving that each µ ∈ W0λ

satis�es at least one of the following inequalities:

|µ|i >
defG(b)

2
min

β∈Φ∨,+
|β|i =

3

2
min

β∈Φ∨,+
|β|i(8.4.1)

|µ|τ >
defG(b)

2
min

β∈Φ∨,+
|β|τ =

3

2
min

β∈Φ∨,+
|β|τ(8.4.2)

for some 1 ≤ i ≤ 8 or some τ ∈ S8.
When µ is an S8-permutation of λ1 or λ3, assume the i0-th coordinate of µ is ±7/4. Then µ satis�es the

inequality (8.4.1) indexed by i0. In fact, any β ∈ Φ∨,+ satis�es |β|i0 ≤ 1, and we have |µ|i0 = 7/4.
When µ is an S8-permutation of λ2 or λ4, there exists τ ∈ S8 such that

|µ|τ =
5

4
+

3

4
+

3

4
+

3

4
=

7

2
.

On the other hand |β|τ ≤ 2 for all β ∈ Φ∨,+ and all τ ∈ S8. Therefore (8.4.2) holds for some τ . �

9. Proof of the key estimate, Part III

We have proved all the statements in Proposition 6.3.1, except the existence of µ1 in Proposition 6.3.1
(1), and the existence of µ1, µ2 in Proposition 6.3.1 (2). In this section we construct these.

First assume that G is not of type E6, and that θ = id. We easily examine all such cases in �7 and see that
λ+
b ∈ X∗(T̂ )+ is always minuscule. Hence we may take µ1 := λ+

b . Since G is adjoint and θ = id, the condition
that b ∈ B(G,µ1) is equivalent to the condition that b and µ1 have the same image in π1(G)σ = π1(G), which
is true by construction. Moreover, we have dimVµ1

(λb)rel = dimVλ+
b

(λ+
b ) = 1. The proof of Proposition

6.3.1 is complete in these cases.
The only remaining cases are the following:

Nonsplit-I: Type Dn, n ≥ 5, θ has order 2. See �7.2.
Nonsplit-II: Type D4, θ has order 2. See �7.3.
Split-E6: Type E6, θ = id. See �7.5

In fact, in all the other cases listed in the beginning of �7 where θ is non-trivial, namely cases (6) and (8),
we have shown in �7.4 and �7.6 that any basic [b] ∈ B(G) is unrami�ed, so we do not need to consider these
cases.

9.1. The case Nonsplit-I. As we showed in �7.2, we have π1(G)σ ∼= Z/2Z, and there is a unique choice of
basic [b] ∈ B(G) corresponding to the non-trivial element in π1(G)σ. Moreover we have

λ+
b = (

1

2
, · · · , 1

2
) ∈ Qn−1 = X∗(Ŝ)⊗Q.

Recall that X∗(T ) = X∗(T̂ ) = L2 ⊂ Rn. We take

µ1 := (
1

2
, · · · , 1

2
) ∈ L2 = X∗(T ) = X∗(T̂ ).

Then µ1 is in X∗(T̂ )+ and is minuscule. From the description of the action of σ on π1(G) in �7.2, the image
of µ1 in π1(G)σ is the non-trivial element, and hence [b] ∈ B(G,µ1). Finally, the only weights in X∗(T̂ ) of
Vµ1

are the elements of W0µ1. Among all these weights, there is precisely one that restricts to λ+
b ∈ X∗(Ŝ),

namely µ1. Hence we have

dimVµ1
(λb)rel = dimVµ1

(λ+
b )rel = dimVµ1

(µ1) = 1.
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9.2. The case Nonsplit-II. We keep the notation of �7.3. Note that what τ is does not a�ect {α1, α2, α3, α4}
as a subset of R4. Nor does it a�ect the coroot lattice and the coweight lattice. Moreover, no matter what
τ is, the quotient map X∗(T )→ X∗(Ŝ) is always the same as

L2 → L′2, (ξ1, ξ2, ξ3, ξ4) 7→ (ξ1, ξ2, ξ3),

where L2 = Z4 + Z( 1
2 ,

1
2 ,

1
2 ,

1
2 ) and L′2 = Z4 + Z( 1

2 ,
1
2 ,

1
2 ). Hence the situation is precisely the same as the

case Nonsplit-I, see �9.1. Namely, for the unique basic [b] ∈ B(G) that maps to the non-trivial element in
π1(G)σ ∼= Z/2Z, we have λb = (− 1

2 ,
1
2 ,−

1
2 ), λ+

b = ( 1
2 ,

1
2 ,

1
2 ), and we take µ1 := ( 1

2 ,
1
2 ,

1
2 ,

1
2 ).

9.3. The case Split-E6. We keep the notation of �7.5. To �nish the proof of Proposition 6.3.1 (2), we
need to construct µ1 and µ2. By symmetry we only need to consider b1, among b1, b2. Recall from �7.5 that
λ+
b1

= $1. Recall from Proposition 8.3.1 that the distinguished element λbad in Λ(b1) is $5. Since θ = id,
we have Ŝ = T̂ .

Note that λ+
b1

= $1 is minuscule. We take µ1 := $1. Then the only weight of Vµ1 in X∗(Ŝ)+ = X∗(T̂ )+

is µ1 = λ+
b1
, and dimVµ1(λb1)rel = dimVµ1(µ1) = 1. We have b1 ∈ B(G,µ1), because the image of µ1 = λ+

b1

in π1(G)σ = π1(G) is the same as that of λb1 , which is the same as κ(b1).
Note that $6 is also minuscule. We take µ2 := 2$1 + $6. Then µ2 is a sum of dominant minuscule

coweights. By (7.5.2) we know that µ2 −$1 is in the coroot lattice. Hence µ2 represents the same element
in π1(G)σ = π1(G) as $1, and in particular b1 ∈ B(G,µ2). We are left to check that Vµ2

(λbad)rel, which
is Vµ2

($5), is non-zero. One computes that dimVµ2
($5) = 14, see for example [LiE]. 7 The proof of

Proposition 6.3.1 is complete.

7Note that in [LiE], our α2, α3, α4 are indexed by 3, 4, 2 respectively.
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Appendix A. Irreducible components for quasi-split groups

We explain in this appendix how we can use our results combined with [He14] to obtain a description
of the number of Jb(F )-orbits of irreducible components of a�ne Deligne-Lusztig varieties associated to a
group which is quasi-split but not necessarily unrami�ed. The main result Theorem A.3.1 is a generalization
of Conjecture 2.6.7.

A.1. Basic de�nitions. We extend the notations introduced in �2. We let F,L, kF , k, σ,Γ be as in �2.
However now we only assume that G is a quasi-split reductive group over F . Let T ⊂ G be the centralizer
of a �xed maximal F -split torus. Then T is a maximal torus of G since G is quasi-split. We �x B to be a
Borel subgroup of G (over F ) containing T . Let Ă ⊂ TL be the maximal L-split sub-torus of TL. Note that
TL is a minimal Levi of GL, so Ă is also a maximal L-split torus of GL. Let N ⊂ GL denote the normalizer
of Ă. Let V be the apartment of GL corresponding to Ă. Let a be a σ-stable alcove in V , and let s be a
σ-stable special vertex lying in the closure of a. Denote by I the Iwahori group scheme over OF associated
to a, and denote by K the special parahoric group scheme over OF associated to s. Let Γ0 ⊂ Γ denote the
inertia subgroup, which is also identi�ed with Gal(L/L). The choice of s gives an identi�cation

V ∼= X∗(T )Γ0
⊗Z R,

sending s to 0. In the following we freely use the identi�cation in Lemma 2.6.1 (3). We assume that under
the identi�cation

V ∼= X∗(T )Γ0
⊗Z R ∼= X∗(T )Γ0

R ,(A.1.1)

the image of a is contained in the anti-dominant chamber −X∗(T )+
R .

The Iwahori�Weyl group is de�ned to be

W := N(L)/(T (L) ∩ I(OL)).

For any w ∈ W we choose a representative ẇ ∈ N(L). We write W0 := N(L)/T (L) for the relative Weyl
group of G over L. Then we have a natural exact sequence:

0 −→ X∗(T )Γ0
−→W −→W0 −→ 0.

For µ ∈ X∗(T )Γ0
we write tµ for the corresponding element in W . The Frobenius σ induces an action on W

which preserves the set of simple roots S. See [HR08] for more details.
Let B(G) (resp. B(W,σ)) denote the set of σ-conjugacy classes of G(L) (resp. W ). Let X∗(T )+

Γ0,Q denote
the intersection of X∗(T )Γ0

⊗Q ∼= X∗(T )Γ0

Q with X∗(T )+
Q . Similar to �2, we have an injective map

(ν̄, κ) : B(G)→ (X∗(T )+
Γ0,Q)σ × π1(G)Γ,

a surjective map

Ψ : B(W,σ)→ B(G),

and a commutative diagram

B(W,σ)
Ψ // //

(ν̄,κ)

((

B(G)
iI

(ν̄,κ)

vv
(X∗(T )+

Γ0,Q)σ × π1(G)Γ

,(A.1.2)

where the map (ν̄, κ) on B(W,σ) can be described explicitly. These are proved in [He14]. See [HZ16, �1.2]
for more details.
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Let w ∈W and b ∈ G(L). We de�ne the a�ne Deligne�Lusztig variety Xw(b) as follows:

Xw(b) := {gI(OL) ∈ G(L)/I(OL)|g−1bσ(g) ∈ I(OL)ẇI(OL)}.

Now let µ ∈ X∗(T )Γ0 be the image of an element µ ∈ X∗(T )+. Similarly we de�ne the a�ne Deligne�
Lusztig variety Xµ,K(b) as follows:

Xµ,K(b) := {gK(OL) ∈ G(L)/K(OL)|g−1bσ(g) ∈ K(OL)ṫµK(OL)}.

When non-empty, Xw(b) and Xµ,K(b) are (perfect) schemes locally of (perfectly) �nite type over k.
We de�ne the set

B(G,µ) = {[b] ∈ B(G);κ([b]) = µ\, ν̄b ≤ µ�}.

Here µ\ denotes the image of µ in π1(G)Γ, and µ� ∈ (X∗(T )+
Γ0,Q)σ denotes the average over the σ-orbit of

µ ∈ X∗(T )Γ0
. Note that both µ\ and µ� depend only on µ.

For b ∈ G(L), the group Jb(F ) acts by left multiplication on Xµ,K(b) via algebraic automorphisms. Our
goal is to understand the cardinality

#

(
Jb(F )\Σtop(Xµ,K(b))

)
.(A.1.3)

Along the way we shall also show that Xµ,K(b) 6= ∅ if and only if [b] ∈ B(G,µ), which should be well known
to experts.
For simplicity, from now on we assume that G is adjoint. The general case reduces to this case

by a standard argument.

A.2. Dual group construction. The desired formula for (A.1.3) will be expressed in terms of a canonical
reductive subgroup of the dual group Ĝ. We keep the assumption that G is adjoint.

As in �5.1, we let
BRD(B, T ) = (X∗(T ),Φ ⊃ ∆, X∗(T ),Φ∨ ⊃ ∆∨)

be the based root datum associated to (B, T ), equipped with an action by Γ. Let Ĝ be the dual group of G
over C, which is equipped with a Borel pair (B̂, T̂ ) and an isomorphism

BRD(B̂, T̂ )
∼−→ BRD(B, T )∨.

We �x a pinning (B̂, T̂ , X̂+). The action of Γ on BRD(B, T ) translates to an action on BRD(B̂, T̂ ), and the
latter lifts to a unique action of Γ on Ĝ via algebraic automorphisms that preserve (B̂, T̂ , X̂+).

We de�ne
Ĥ := ĜΓ0,0,

namely the identity component of the Γ0-�xed points of Ĝ. This construction was also considered by Zhu
[Zhu15] and Haines [Hai18]. By [Hai18, Proposition 5.1], the group Ĥ is a reductive subgroup of Ĝ, and it
has a pinning of the form (B̂Γ0,0, T̂Γ0,0, X̂′+). Moreover, the induced action of the Frobenius σ ∈ Γ/Γ0 on Ĥ
preserves this pinning. We write B̂H := B̂Γ0,0 and T̂H := T̂Γ0,0. Let θ̂ denote the automorphism of Ĥ given
by σ. We de�ne

Ŝ := (T̂H)θ̂,0.

Note that since G is adjoint, the fundamental coweights of G form a Γ-stable Z-basis of X∗(T ). It then
follows from Lemma 2.6.1 (2) that X∗(T )Γ0 and X∗(T )Γ are both free. Hence we in fact have T̂H = T̂Γ0 and
Ŝ = T̂Γ. This observation will simplify our exposition.

Lemma A.2.1. Let b ∈ G(L). There is a unique element λb ∈ X∗(Ŝ) satisfying the following conditions:

(1) The image of λb under X
∗(Ŝ) = X∗(T )Γ → π1(G)Γ is equal to κ(b).

62



(2) In X∗(Ŝ)Q = X∗(T̂ )Γ ⊗ Q = (X∗(T )Γ0)σ ⊗ Q ∼= (X∗(T )Γ0,Q)σ, the element λb − ν̄b is equal to a linear

combination of the restrictions to Ŝ of the simple roots in Φ∨ ⊂ X∗(T̂ ), with coe�cients in Q ∩ (−1, 0].

Proof. The proof is the same as Lemma 2.6.4. �

A.3. The main result.

Theorem A.3.1. Assume G is adjoint and quasi-split over F . Let µ ∈ X∗(T )Γ0
be the image of an element

µ ∈ X∗(T )+. Let b ∈ G(L).

(1) We have Xµ,K(b) 6= ∅ if and only if [b] ∈ B(G,µ).

(2) Assume that [b] ∈ B(G,µ). Then

#

(
Jb(F )\Σtop(Xµ,K(b))

)
= dimV Ĥµ (λb)rel.

Here V Ĥµ denotes the highest weight representation of Ĥ of highest weight µ ∈ X∗(T̂H)+. We denote by

V Ĥµ (λb)rel the λb-weight space in V
Ĥ
µ , for the action of Ŝ. The element λb ∈ X∗(Ŝ) is de�ned in Lemma

A.2.1.

Remark A.3.2. The appearance of the representation V Ĥµ of the subgroup Ĥ of Ĝ in Theorem A.3.1 is
compatible with the rami�ed geometric Satake in [Zhu15].

Proof of Theorem A.3.1. The idea of the proof is to reduce to the unrami�ed case. For this we �rst construct
an auxiliary unrami�ed reductive group over F .

From Ĥ and its pinned automorphism θ̂, we obtain an unrami�ed reductive group H over F , whose dual
group is Ĥ. By de�nition H is equipped with a Borel pair (BH , TH), and a σ-equivariant isomorphism of
based root data BDR(BH , TH)

∼−→ BDR(B̂H , T̂H)∨. We write

BDR(BH , TH) = (X∗(TH),ΦH , X∗(TH),Φ∨H).

Then we have canonical σ-equivariant identi�cations

X∗(TH) ∼= X∗(T̂H) ∼= X∗(T̂ )Γ0 ∼= X∗(T )Γ0

and
X∗(TH) ∼= X∗(T̂H) ∼= X∗(T̂ )Γ0

∼= X∗(T )Γ0
,

which we shall think of as identities. Here as we noted before X∗(T )Γ0
is indeed free.

Note that TH,L is a maximal split torus of HL. Let VH be the corresponding apartment, and �x a
hyperspecial vertex sH in VH (coming from the apartment of H corresponding to the maximal F -split
sub-torus of TH). We �x a σ-stable alcove aH ⊂ VH whose closure contains sH . We identify

VH ∼= X∗(TH)⊗ R,(A.3.1)

sending sH to 0, such that the image of aH is in the anti-dominant chamber.
Since X∗(TH) = X∗(T )Γ0

, the two identi�cations (A.1.1) and (A.3.1) give rise to a σ-equivariant identi�-
cation

V ∼= VH ,(A.3.2)

which maps a onto aH , and maps s to sH .
By [Hai18, Corollary 5.3], the set of coroots Φ∨H ⊂ X∗(TH) = X∗(T )Γ0 is given by Σ̆∨, where Σ̆ is the

échelonnage root system of Bruhat�Tits, see [Hai18, �4.3]. In particular, the coroot lattice in X∗(TH) is
isomorphic to the Γ0-coinvariants of the coroot lattice in X∗(T ). Moreover from Φ∨H = Σ̆∨ we know that
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the a�ne Weyl group of G and the a�ne Weyl group of H are equal, under the identi�cation (A.3.2. See
[HR08] for more details. Moreover, since the translation groups X∗(TH) and X∗(T )Γ0 are also identi�ed, we
have an identi�cation between the Iwahori�Weyl group W of G and the Iwahori�Weyl group WH of H. This
identi�cation is σ-equivariant.

Note that the bottom group in the diagram (A.1.2) and its analogue for H are identi�ed. Using the
identi�cation of W and WH , and using the surjectivity of the map Ψ : B(W,σ) → B(G) and its analogue
ΨH : B(WH , σ)→ B(H), we construct [bH ] ∈ B(H) whose invariants are the same as those of [b]. Since the
set B(G,µ) is de�ned in terms of the invariants (ν̄, κ) and ditto for B(H,µ), we see that [b] ∈ B(G,µ) if and
only if [bH ] ∈ B(H,µ). Here in writing B(H,µ) we view µ as an element of X∗(TH)+.

To relate the geometry of Xµ,K(b) with the geometry of Xµ(bH), we use the class polynomials in [He14].
For each w ∈W and each σ-conjugacy class O in W , we let

fw,O ∈ Z[v − v−1]

denote the class polynomial de�ned in [He14, �2.3].
Proof of (1)

Using the �bration ⋃
w∈W0t

µW0

Xw(b)→ Xµ,K(b),(A.3.3)

we see that Xµ,K(b) is non-empty if and only Xw(b) is non-empty for some w ∈W0t
µW0. The proof of [He14,

Theorem 6.1] shows that Xw(b) 6= ∅ if and only if fw,O 6= 0 for some O such that (ν, κ)(O) = (ν, κ)(b). This
latter condition is a condition on the quadruple Q(b) := (W,σ, µ, (ν, κ)(b)). By construction we have an
identi�cation of quadruples Q(b) ∼= Q(bH), where Q(bH) := (WH , σ, µ, (ν, κ)(bH)). Hence Xµ,K(b) 6= ∅ if and
only if Xµ(bH) 6= ∅. On the other hand we have already seen that [b] ∈ B(G,µ) if and only if [bH ] ∈ B(H,µ).
Thus the result reduces to the statement that Xµ(bH) 6= ∅ if and only if bH ∈ B(H,µ). But this is the main
result of [Gas10].
Proof of (2)

We write N (µ, b) for the cardinality of Jb(F )\Σtop(Xµ,K(b)). Using the �bration A.3.3 we have an
identi�cation

Jb(F )\Σtop

 ⋃
w∈W0t

µW0

Xw(b)

 ∼= Jb(F )\Σtop(Xµ,K(b)).(A.3.4)

By [He14, Theorem 6.1], we have the formula

dimXw(b) = max
O

1

2
(`(w) + `(O) + deg fw,O))− 〈νb, 2ρ〉.

where O runs through σ-conjugacy classes in W such that (ν, κ)(O) = (ν, κ)(b) and where `(O) denotes
the length of a minimal length element in O. Moreover the proof of [He14, Theorem 6.1] also shows that
the cardinality of Jb(F )\Σtop(Xw(b)) is equal to the leading coe�cient of

∑
O v

`(w)+`(O)fw,O. Since each
Xw(b) is locally closed in the union

⋃
w∈W0t

µW0
Xw(b), any top dimensional irreducible component in the

union is the closure of a top dimensional irreducible component in Xw(b) for a unique w. It follows that the
cardinality of

Jb(F )\Σtop

 ⋃
w∈W0t

µW0

Xw(b)
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is equal to the leading coe�cient of

(A.3.5)
∑

w∈W0t
µW0

∑
O
vl(w)+l(O)fw,O.

By (A.3.4), this number is just N (µ, b). Since the term (A.3.5) only depends on the quadruple Q(b), the
same is true for N (µ, b).

Applying the same argument to H, we see that N (µ, bH) only depends on the quadruple Q(bH). Again,
since the quadruples Q(b) and Q(bH) are identi�ed, we have N (µ, b) = N (µ, bH).

It thus remains to check

N (µ, bH) = dimV Ĥµ (λb)rel.(A.3.6)

By assumption [b] ∈ B(G,µ), and so [bH ] ∈ B(H,µ). The right hand side of (A.3.6) is easily seen to be
the same as the right hand side of Conjecture (2.6.7), with respect to (H,µ, bH). Hence the desired (A.3.6)
follows from the main result of the paper Corollary 6.3.3. �
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