TWISTED ORBITAL INTEGRALS AND IRREDUCIBLE COMPONENTS OF AFFINE

DELIGNE-LUSZTIG VARIETIES

RONG ZHOU AND YIHANG ZHU

ABsTrACT. We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study
of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and g-
analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen
and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the
action of the o-centralizer group to the Mirkovié—Vilonen basis of a certain weight space of a representation

of the Langlands dual group.
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1.1. The main result. First introduced by Rapoport [Rap05|, the affine Deligne-Lusztig varieties play
an important role in arithmetic geometry and the Langlands program. One of the main motivations to

study affine Deligne—Lusztig varieties comes from the theory of p-adic uniformization, which was studied
by various authors including Cerednik |C76|, Drinfeld [Dri76], Rapoport—Zink [RZ96], and more recently
Howard-Pappas and Kim [Kim18|. In this theory, a p-adic formal scheme known as the Rapoport—
Zink space uniformizes a tubular neighborhood in an integral model of a Shimura variety around a Newton

stratum. The reduced subscheme of the Rapoport—Zink space is a special example of affine Deligne—Lusztig

varieties. In a parallel story over function fields, affine Deligne-Lusztig varieties also arise naturally in the

study of local shtukas, see for instance Hartl-Viehmann [HV11].
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Understanding of basic geometric properties of affine Deligne-Lusztig varieties has been fruitful for arith-
metic applications. For instance an understanding of the connected components [CKV15|] was applied to the
proof of a version of Langlands—Rapoport conjecture by Kisin [Kis17]. The geometry of the supersingular
locus of Hilbert modular varieties, which is also a question closely related to affine Deligne-Lusztig varieties
via p-adic uniformizatoin, was applied to arithmetic level raising in the recent work of Liu-Tian [LT17].

In this paper, we concern the problem of parameterizing the irreducible components of affine Deligne—
Lusztig varieties. This problem was initiated in the work of Xiao—Zhu [XZ17]. These authors studied this
problem in some special cases, as an essential ingredient in their proof of a version of Tate’s conjecture
for special fibers of Shimura varieties. After that, Miaofen Chen and Xinwen Zhu formulated a general
conjecture, relating the set of top dimensional irreducible components of general affine Deligne—Lusztig
varieties to the Mirkovi¢—Vilonen cycles in the affine Grassmannian, and thus to the representation theory
of the Langlands dual group via the geometric Satake. Partial results towards this conjecture have been
obtained by Xiao-Zhu [XZ17|, Hamacher—Viehmann [HV17], and Nie [Niel8al, based on a common idea of
reduction to the superbasic case (which goes back to [GHKRO6]).

In this paper we present a new method and prove:

Theorem. The Chen—Zhu Conjecture (see Conjecture holds in full generality.

Our proof is based on an approach completely different from the previous works. The problem is to
compute the number of top dimensional irreducible components of an affine Deligne-Lusztig variety (modulo
a certain symmetry group). We use the Lang—Weil estimate to relate this number to the asymptotic behavior
of the number of points on the affine Deligne-Lusztig variety over a finite field, as the finite field grows. We
show that the number of points over a finite field is computed by a twisted orbital integral, and thus we
reduce the problem to the asymptotic behavior of twisted orbital integrals. We study the latter using explicit
methods from local harmonic analysis and representation theory, including the Base Change Fundamental
Lemma and the Kato—Lusztig formula.

An interesting point in our proof is that we apply the Base Change Fundamental Lemma, which is only
available in general for mixed characteristic local fields as the current known proofs of it rely on trace
formula methods. Thus our method crucially depends on the geometric theory of mixed characteristic affine
Grassmannians as in [BS17] and [Zhul7]. To deduce the Chen-Zhu Conjecture also for equal characteristic
local fields, we use results of He [Hel4], which imply that the number of irreducible components (modulo a
symmetry group) only depends on the affine Hecke algebra, and thus the truth of the conjecture transfers
between different local fields.

In our proof, certain polynomials that are linear combinations of the g-analogue of Kostant partition
functions appear, and the key computation is to estimate the sizes of them. These polynomials can be
viewed as a non-dominant generalization of the g-analogue of Kostant’s weight multiplicity formula. Some
properties of them are noted in [Pan16], but beyond this there does not seem to have been a lot of study into
these objects. From our proof, it seems reasonable to expect that a more thorough study of the combinatorial
and geometric properties of these polynomials would shed new light on the structure of affine Deligne—Lusztig
varieties, as well as the structure of twisted orbital integrals.

In Appendix [A] we combine our main result with the work of He [Hel4] to generalize the Chen-Zhu

Conjecture to quasi-split groups that are not necessarily unramified.

1.2. The precise statement. We now give a precise statement of the Chen-Zhu Conjecture. Let F be a
non-archimedean local field with valuation ring Op and residue field kr = F,. Let L be the completion of

the maximal unramified extension of F. Let G be a connected reductive group scheme over O and o the
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Frobenius automorphism of L over F. We fix T' C G to be the centralizer of a maximal Opg-split torus, and
fix a Borel subgroup B C G containing 7. For p € X.(T)" and b € G(L), the affine Deligne-Lusztig variety
associated to (G, u,b) is defined to be

Xu(b) = {g € G(L)/G(Or)lg~"bo(g) € G(OL)u(rr)G(OL)},

where 7 € F is a uniformizer. More precisely, the above set is the set of F,-points of a locally closed, locally
of (perfectly) finite type subscheme of the (Witt vector) affine Grassmannian of G, while the (Witt vector)
affine Grassmannian of G is an inductive limit of (perfections of) projective varieties over F, along closed
immersions. Here the parentheses apply when F is of mixed characteristic, and the geometric structure
stated in this case is due to the recent breakthrough by Bhatt—Scholze [BS17| (cf. [Zhul7]).

Let X'P be the set of top-dimensional irreducible components of X, (b). Let

J = Jy(F) = {g € G(L)|g”"bo(g) = b}.

Then the group J naturally acts by left multiplication on X, (b), and hence on XtP. The set J\X*P is in
fact finite.

Let G denote the Langlands dual group of G over C, equipped with a Borel pair T cC B, where T is a
maximal torus dual to 7" and equipped with an algebraic action by o. Let S be the identity component of the
o-fixed points of T. In X*(§), there is a distinguished element )\;, determined by b. It is the “best integral
approximation” of the Newton cocharacter of b, but we omit its precise definition here (see Definition [2.6.5)).
For p € X,.(T)*" = X*(IA“)JF, we write V,, for the highest weight representation of G with highest weight .
We write V,,(A\y)rel for the Ap-weight space in V,, with respect to the action of S.

Conjecture 1.2.1 (Miaofen Chen, Xinwen Zhu). There exists a natural bijection between J\X*°P and the

Mirkovié—Vilonen basis of V,,(Ap)re1. In particular,
(1.2.1) | J\ZP| = dim V), (Ap )rel-

The first time this conjecture was considered in the form stated above was in [XZ17]. In loc. cit. Xiao—Zhu
proved the conjecture for general G, general p, and unramified b, meaning that J, and G are assumed to
have equal F-rank.

Hamacher—Viehmann [HV17] proved the conjecture under either of the following assumptions:

e The cocharacter p is minuscule, and G is split over F.
e The cocharacter p is minuscule, and b is superbasic in M, where M is the largest Levi of G inside which
b is basic. (In particular if b is basic then they assume that b is superbasic).

More recently, Nie [Niel8a] proved the conjecture for arbitrary G under the assumption that p is a sum of
dominant minuscule coweights. In particular it holds when the Dynkin diagram of G4 only involves factors
of type A. Moreover, Nie constructed a surjection from the Mirkovié-Vilonen basis to the set J\X'P in all
cases. Thus in order to prove the conjecture, it suffices to prove the numerical relation for groups
without type A factorsE

1.3. Overview of the proof. We now explain our proof of the Chen—Zhu Conjecture. A standard reduction
allows us to assume that b is basic, and that G is adjoint and F-simple. Throughout we also assume that
G is not of type A, which is already sufficient by the work of Nie [Niel8a]. To simplify the exposition, we
also assume that G is split and not of type Eg. Then S= f, and we drop the subscript “rel” for the weight
spaces in Conjecture [[.2.1]

L After we finished this work, Nie uploaded online a new version of the preprint [NieI8al, in which he also proves the Chen—Zhu
Conjecture. However our work only uses the weaker result of Nie as stated here. See Remark
3



For any s € Z~g, we let F; be the unramified extension of F' of degree s, with residue field k5. We denote
by Hs the spherical Hecke algebra H(G(Fs)//G(OF,)). We may assume without loss of generality that b is
sp-decent for a fixed sg € N, meaning that b € G(Fy,) and

bo(b)--- o (b) = 1.

As mentioned above, our idea is to use the Lang-Weil estimate to relate the number of irreducible
components to the asymptotics of twisted orbital integrals. Since X, (b) is only locally of (perfectly) finite
type and we are only counting J-orbits of irreducible components, we need a suitable interpretation of the
Lang—Weil estimate. The precise output is the following (Proposition [4.2.4):

(1.3.1) TOy(fu,s) = Z vol(Staby J)~1g* dmXu(®) 4 o(g#dimXu®)) - 5 e 5N, 5> 0.
ZeJ\Stop
Here f, s € Hs is the characteristic function of G(OF,)u(rr)G(OF,), and TOy(f,,s) denotes the twisted
orbital integral of f, ; along b € G(F).
To proceed, we need the following variant of (1.3.1)):

(1.3.2) TOy(1,) = Z vol(Staby J)~1¢*° 4+ 0(¢*?), s € soN, s> 0.
ZeJ\Stop

Here 7, € H, denotes the function whose Satake transform is the character of the representation V), of @,
and

1
0= —§(TkFG —rkpJp).

The proof of is based on (L.3.1), the dimension formula for X, (b) by Hamacher [Ham15] and Zhu
[Zhul7], and asymptotics of the Kato—Lusztig formula [Kat82].

We next apply the Base Change Fundamental Lemma to compute TOy(7,,). There are two problems
in this step. Firstly, the Base Change Fundamental Lemma can only be applied to stable twisted orbital
integrals. This problem is solved because one can check that the twisted orbital integral in is already
stable. Secondly, the general Base Change Fundamental Lemma is only available for charF' = 0. In fact, the
proofs of this result by Clozel [Clo90] and Labesse [Lab90] rely on methods only available over characteristic
zero, for example the trace formula of Deligne-Kazhdan. To circumvent this, we show using the reduction
method of [Held] (in that the truth of the Chen—Zhu Conjecture depends only on the affine root system
associated to G. Hence it suffices to prove the conjecture just for p-adic fields.

After computing the left hand side of using the Base Change Fundamental Lemma, we obtain

(1.3.3) > dimV,(A) - M (¢ ) =+ D vol(Stabz J)"'¢* +0(g™), s> 0,
AeX*(T)+ A<p ZeJ\xtor

where each MY, (q) € C|q] is a polynomial given explicitly in terms of the g-analogues of Kostant’s partition

functions (see Definition and §5.3).

The key computation of our paper is summarized in the following

Proposition 1.3.1. Let /\g' € X"‘(f)Jr be the dominant conjugate of \y. For all A € X"F(f)+ — {/\2'}, we
have

M (q7") = o(q*), s> 0.

When G is the split adjoint Eg, we only prove a weaker form of the proposition, which also turns out to
be sufficient for our purpose.



Proposition tells us that on the left hand side of ll only the summand indexed by A = )\;r has
the “right size”. We thus obtain

(1.3.4) dimV,(A\) - % =+ Y vol(Staby J)™ !,
ZeJ\Ztop

where

2 = lim smgw (¢ YHg*®

5— 00

is a constant that depends only on b and not on p.

In we already see both the number dim V,,(A) and the set J\X*P. In order to deduce the desired
(L:2.1), onme still needs some information on the volume terms vol(Stabz.J). It turns out that even very
weak information will suffice. In §3| we show that the right hand side of is equal to R(q), where
R(T) € Q(T) is a rational function which is independent of F' in the following sense. It turns out that the
triple (G, p, b) can be encoded combinatorially in terms of the affine root system of G. The rational function

R(T) only depends on this combinatorial information and not on F. Moreover we show that
R(0) = |J\XP|.

Therefore, the desired will follow from , if we can show that

(1.3.5) % = S(q), forsome S(T) € Q(T) with S(0) = 1.

A remarkable feature of the formulation is that it is independent of p. We recall that in the works
of Hamacher—Viehmann and Nie, special assumptions on p are made. Hence we are able to bootstrap from
known cases of the Chen—Zhu Conjecture (for example when p = )\;) to establish l) and hence to
establish the Chen—Zhu Conjecture in general.

We end our discussion with several remarks.

Remark 1.3.2. We refer to the statements of Theorem and Corollary for the logical dependence
of our work on previous works of other people.

Remark 1.3.3. In Appendix[A] we prove a generalization of Conjecture [I.2.1]for possibly ramified quasi-split
groups G over F. See Theorem

Remark 1.3.4. At the moment, we are unable to directly compute the rational functions S(T") appearing in
in general. To do this would require a much better understanding of the polynomials zmg \(a). We are
however able to compute S(T) in a very special case. When b is a basic unramified element in the sense of
X717, we show directly that is satisfied by S(T) = 1, see From this we deduce the conjecture
for b, as well as the equality vol(Stabz J) = 1 for each Z € ¥*°P. This last equality implies (according to our
normalization) that Staby J is a hyperspecial subgroup of J = J,(F'). This gives another proof of a result
in [XZ17], avoiding their use of Littelmann paths.

Remark 1.3.5. Our proof of Proposition [I.3.1] in the case G is split of type D,, with n odd turns out to be
different from the other cases. In this case we devise a combinatorial method to compute the polynomials
oMY, (q), using certain binary trees whose vertices are decorated by pairs of roots in the root system, see

This method could possibly be generalized to compute more instances of MY, (q).
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1.4. Outline of paper. In we introduce notations and state precisely our formulation of the Chen-Zhu
conjecture. In §3) we study the J,(F)-action on the top-dimensional irreducible components of X, (b). We
prove using the reduction method of [Hel4] that the set of orbits and the stabilizers only depend on the
affine root system of G. In we prove the relation , and then apply the Base Change Fundamental
Lemma to compute twisted orbital integrals. In we review the relationship between the coeflicients of
the Satake transform and the g-analogue of Kostant’s partition functions, and draw some consequences. In
we state Proposition [6.3.1] as a more technical version of Proposition We then deduce Conjecture
[:2:3] from Proposition [6.3.1] The proof of Proposition [6.3.1] is given in §7 §8} and §9] by analyzing each
root system case by case. In Appendix [A] we generalize our main result to quasi-split groups.

Notation. We order N by divisibility, and write s > 0 to mean “for all sufficiently divisible s € N”.
Limits lim,_, ., as well as the big-O and little-o notations, are all with respect to the divisibility on N. For
example, we write f(s) = o(g(s)) to mean that f, g are C-valued functions defined for all sufficiently divisible
s € N, such that

Ve > 03sg € NVs € soN, |f(s)/g(s)| < e.

Similarly, we write f(s) = O(g(s)) to mean that f(s)/g(s) is eventually bounded, namely
M >0 3sg € NVs € 9N, [f(s)/g(s)| < M,

without requiring boundedness on all of N.
For any finitely generated abelian group X, we write Xge for the free quotient of X.

We use q or g~ and sometimes q~'/2 to denote the formal variable in a polynomial or power series ring.

Ackowledgements: We would like to thank Michael Harris, Xuhua He, Chao Li, Shizhang Li, Thomas
Haines, Michael Rapoport, Liang Xiao, Zhiwei Yun, and Xinwen Zhu for useful discussions concerning this
work, and for their interest and encouragement. R. Z. is partially supported by NSF grant DMS-1638352
through membership at the Institute for Advanced Study. Y. Z. is supported by NSF grant DMS-1802292.

2. NOTATIONS AND PRELIMINARIES

2.1. Basic notations. Let F' be a non-archimedean local field with valuation ring Op and residue field
krp = F,. Let mp € F be a uniformizer. Let p be the characteristic of kr. Let L be the completion of the
maximal unramified extension of F', with valuation ring Oy, and residue field k = kr. Let I' = Gal(F/F) be
the absolute Galois group. Let o be the Frobenius of L over F. We have o-equivariant isomorphisms

L=W(k) Ow (kp) I O 2 W(k) QW (kp) OF.

Let G be a connected reductive group over Op. In particular its generic fiber G is an unramified reductive
group over F, i.e. is quasi-split and splits over an unramified extension of F. Then G(Op) is a hyperspecial
subgroup of G(F). Fix a maximal Op-split torus A of G. Let T be the centralizer of Ar in G, and fix a
Borel subgroup B C G containing 7. Hence T is an unramified maximal torus of Gr. In the following we
often abuse notation and simply write G for Gp.

Note that 77, is a maximal L-split torus of G;. Let V be the apartment of G corresponding to T7,.
The hyperspecial vertex s corresponding to G(Qp) is then contained in V. We have an identification
V =2 X.(T) ® R sending s to 0. Let a C V be the alcove whose closure contains s, such that the image of a
under V = X, (T) ® R is contained in the anti-dominant chamber. The action of o induces an action on V,
and both a and s are stabilized under this action. We let Z be the Iwahori subgroup of G(L) corresponding
to a.



2.2. The Iwahori Weyl group. The relative Weyl group Wy over L and the Iwahori-Weyl group W are
defined by

Wy = N(L)/T(L), W =N(L)/T(L)NT,

where N denotes the normalizer of T in G. Note that Wy is equal to the absolute Weyl group, as T7, is split.

The Iwahori-Weyl group W is a split extension of Wy by the subgroup X,.(T'). The splitting depends
on the choice of a hyperspecial vertex, which we fix to be s defined above. See [HRO8] for more details.
When considering an element A\ € X, (T) as an element of W, we write t*. For any w € W, we choose a
representative w € N(L).

Let W, be the associated affine Weyl group, and S be the set of simple reflections associated to a. Since
a is o-stable, there is a natural action of o on S. We let Sy C S be set of simple reflections fixing 5. The
Iwahori—-Weyl group W contains the affine Weyl group W, as a normal subgroup and we have a natural
splitting

W =W, xQ,

where  is the normalizer of a and is isomorphic to 71 (G). The length function ¢ and the Bruhat order <
on the Coxeter group W, extend in a natural way to W.
For any subset P of S, we shall write Wp for the subgroup of W generated by P.
For w,w’ € W and s € S, we write w >, w’ if w' = swo(s) and £(w') < £(w). We write w —, w' if there
. 12 . . Si
is a sequence w = wg, w1, ..., w, = w’ of elements in W such that for any i, w;_1 —, w; for some s; € S.
Note that if moreover, £(w’) < £(w), then there exists i such that ¢(w) = ¢(w;) and $;11w;0(8i41) < w;.
We write w ~, w’ if w =, w’ and w’' —, w. It is easy to see that w ~, w’ if w —, w’ and £(w) = L(w’).

We write w &,w’ if there exists 7 €  such that w ~, Tw'o(7)L.

2.3. The set B(G). For any b € G(L), we denote by [b] = {g~'bo(g);g € G(L)} its o-conjugacy class. Let
B(G) be the set of o-conjugacy classes of G(L). The o-conjugacy classes have been classified by Kottwitz
in [Kot85] and [Kot97], in terms of the Newton map v and the Kottwitz map . The Newton map is a map

(2.3.1) 7: B(G) = (X.(T)§)°,
where X*(T)a is the set of dominant elements in X, (T)g := X+ (T) ® Q. The Kottwitz map is a map
k= kg B(G) = m1(G)p.
By [Kot97, §4.13], the map
(7,£) : B(G) = (X (T)§)” x m(G)r
is injective.

The maps 7 and & can be described in an explicit way via the map W — G(L),w — w. As a result, we
obtain an explicit map (7,x) : W — (X, (T)a)" x 7m1(G)r. Moreover, this map descends to the set B(W, o)
of o-conjugacy classes of W. See [HZ16| §1.2] for details. The inclusion map W — G(L),w — w induces a
map U : B(W, o) — B(G), which is independent of the choice of the representatives «w. By [Held], the map

V¥ is surjective and we have a commutative diagram

B(W,0)

B(@G) .
(7,K) (7,K)

(X (T)g)7 x m(G)r



The map B(W, o) — B(G) is not injective. However, there exists a canonical lifting to the set of straight
o-conjugacy classes.
By definition, an element w € W is called o-straight if for any n € N,

lwo(w) - o™ Hw)) = nb(w).

This is equivalent to the condition that ¢(w) = (i, 2p), where p is the half sum of all positive roots. A
o-conjugacy class of W is called straight if it contains a o-straight element. It is easy to see that the minimal
length elements in a given straight o-conjugacy class are exactly the o-straight elements.

The following result is proved in [Held, Theorem 3.7].

Theorem 2.3.1. The restriction of ¥V : B(W,0) — B(G) gives a bijection from the set of straight o-
conjugacy classes of W to B(G). O

2.4. The affine Deligne—Lusztig variety Xp,(b). Let P be a standard o-invariant parahoric subgroup
of G(L), i.e. a o-invariant parahoric subgroup that contains Z. In the following, we will generally abuse of
notation to use the same symbol to denote a parahoric subgroup and the underlying parahoric group scheme.
We denote by P C S the set of simple reflections corresponding to P. Then o(P) = P. We have

G(L) = L] POLWPOL).

weWp\W/Wp

For any w € Wp\W/Wp and b € G(L), we set
Xpw(b)(k) = {gP(OL) € G(L)/P(OL)lg~"bo(g) € P(OL)wP(Or)}.

If P =T (corresponding to P = (), we simply write X,,(b)(k) for Xy, (b)(k).

We freely use the standard notations concerning loop groups and partial affine flag varieties (i.e. affine
Grassmannians associated to parahoric group schemes over Oyp.) See [BS17, §9] or [Zhul7, §1.4]. When
charF > 0, it is known that Xp,,(b)(k) could be naturally identified with the set of k-points of a locally
closed sub-ind scheme Xp ,,(b) of the partial affine flag variety Grp. When charF = 0, thanks to the recent
breakthrough by Bhatt—Scholze [BS17, Corollary 9.6] (cf. also [Zhul7]), we can again identify Xp,,(b)(k)
with the k-points of a locally closed perfect sub-ind scheme Xp,,(b) of the Witt vector partial affine flag
variety Grp. In both cases, the (perfect) ind-scheme Xp,,(b) is called an affine Deligne—Lusztig variety, and
all topological notions related to the Zariski topology on Xp,,(b) are well-defined. In particular, we have
notions of Krull dimension and irreducible components for Xp,,(b).

We are mainly interested in the case when P = Gp,. In this case the corresponding set of simple

reflections is K = Sy. We have an identification
X ()" =2 X (T)/Wo 2 W \W/Wkg.

For p € X.(T)", we write X,,(b) for X 4u(b).

We simply write Grg for Grg,,, . The relationship between the hyperspecial affine Deligne-Lusztig variety
X,(b) C Grg and the Iwahori affine Deligne-Lusztig varieties X,,(b) C Grz is as follows. We have a
projection

(2.4.1) m: FL = Grg

which exhibits FL := Grz as an étale fibration over Grg. Indeed the fiber of this map is isomorphic to

the fpqc quotient LTG/L*Z where LTG, LT are the positive loop groups attached to G and Z. More
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concretely, LYG/L*Z is a finite type flag variety over k when charF > 0, and is the perfection of a finite
type flag variety over k& when charF = 0. We have

X)) = X(w0) = ] Xu().
weWoth Wy

2.5. Basic information about X, (b). Let u € X, (T)". We first recall the definition of the neutral
acceptable set B(G, ) in [RV14]. We have the dominance order < on X, (T)a defined as follows. For
AN € X (T)g, we write A < X if M — X is a non-negative rational linear combination of positive coroots.
Set
B(G, ) = {[t] € B(G); k(b)) = u*, 7 < °}.
Here p* denotes the image of  in 71 (G)r, and p® € X.(T)q denotes the Galois average of .
The following result, conjectured by Kottwitz and Rapoport in [KR03], is proved in [Gas10].

Theorem 2.5.1. For b € G(L), the affine Deligne-Lusztig variety X, (b) is non-empty if and only if [b] €
B(G, ). o

We now let u € X,.(T)" and let b € G(L) such that [b] € B(G, p).

Theorem 2.5.2. If charF' > 0, then X, (b) is a scheme locally of finite type over k. If charF' = 0, then
Xu(b) is a perfect scheme locally of perfectly finite type over k. In both cases the Krull dimension of X, (b)
is equal to
(1= 7.} — gdef(b),
where
def(b) :=1kpG — rkpJ.

Proof. The local (perfectly) finiteness is shown in [HV17, Lemma 1.1], using an earlier argument in [HV11].
The dimension formula is proved in [Ham15] and [Zhul7]. O

Corollary 2.5.3. Let w € Wyt'Wy. If charF > 0, then X,,(b) is a scheme locally of finite type over k. If
charF = 0, then X,,(b) is a perfect scheme locally of perfectly finite type over k.

Proof. This follows from Theorem and the fact that X,,(b) is an ind-(perfect) scheme locally closed
inside 7~ (X, (b)), where 7 is the fibration (2.4.1). O

Definition 2.5.4. For any (perfect) ind-scheme X, we write 3(X) for the set of irreducible components
of X. When X is of finite Krull dimension, we write ¥*°P(X) for the set of top dimensional irreducible

components of X.

Define the group scheme J, over F' by
(2.5.1) Jo(R) ={g € G(R®p L)|g~"bo(g) = b}

for any F-algebra R. Then J, is an inner form of a Levi subgroup of G, see [RZ96, §1.12] or [RR96], §1.11].
The group Jy(F) acts on X, (b) via algebraic automorphisms. In particular J,(F') acts on (X, (b)) and
on X'P(X,(b)). The following finiteness result is proved in [HV17, Lemma 1.3], building on the result of
Rapoport—Zink [RZ99].

Lemma 2.5.5. The set Jp(F)\X(X, (b)) is finite. O

Definition 2.5.6. We write .4 (p1, b) for the cardinality of J,(F)\X'"P(X,(b)).
9



2.6. The Chen—Zhu conjecture. In this paper we shall utilize the usual Langlands dual group (as a
reductive group over C equipped with a pinned action by the Galois group), rather than the Deligne-Lusztig
dual group which is used in [HV17]. As a result, our formulation of the Chen—Zhu conjecture below differs
from [HV17, Conjecture 1.4, §2.1]. However it can be easily checked that the two formulations are equivalent.
The Frobenius ¢ acts on X, (7T) via a finite-order automorphism, which we denote by 6. Let G be the
usual dual group of G over C, which is a reductive group over C equipped with the following structures:

e a Borel pair (B,T).

e isomorphisms X*(T) = X,(T), X.(T) = X*(T), which we think of as equalities. These isomorphisms
identify the positive roots in X*(f) with the positive coroots in X, (T'), and identify the positive coroots
in X, (T) with the positive roots in X*(T). We denote by  the automorphism of X*(T)) corresponding to

the automorphism 0 of X, (7).
For more details on the dual group see below.

For any finitely generated abelian group X, we write Xg... for the free quotient of X. The following lemma

is elementary, and we omit its proof.

Lemma 2.6.1. Let T be a finite group. Let X be a Z[T']-module which is a finite free Z-module. We write
XT (resp. Xr) for the invariants (resp. coinvariants) of X under I'. As usual define the norm map:

N: X — X, mHZ’y(x).
el
Let Y C X be a I'-stable subgroup. Then the following statements hold.

(1) The kernel of the map Y — Xr free 45 equal to {y € Y|N(y) = 0}. In particular, it is also equal to the
kernel of Y — YT free.

(2) Suppose Y has a finite Z-basis which is stable under T as a set. Then the T-orbits in this Z-basis define
distinct elements of Yr, which form a Z-basis of Yr. In particular Yr is a finite free Z-module.

(8) The map N : X — X factors through a map

N:Xr— X"
Both the compositions
Xr 5 XTc X = Xp
and
X'cXx - xp 5 xT
are given by multiplication by |T'|. In particular we have a canonical isomorphism

1 ~
mN:Xp@QHXF@)Q.

]

Definition 2.6.2. Let S be the identity component of the O-fixed points of T. Equivalently, S is the
sub-torus of T such that the map X*(T) — X*(g) is equal to the map X*(f) — X*(f)é froe

Definition 2.6.3. For y € X, (T)" = X*(f)*, let V,, be the highest weight representation of G of highest
weight . For all A € X*(T), we write V() for the A-weight space in V), for the action of T. For all

Ne X*(g), we write V(A )rer for the N'-weight space in V), for the action of S.
10



As in let p € X, (T)*, and let [b] € B(G, u). Recall from (2.3.1) that the Newton point of [b] is an
element
v € (X.(T)$)7 € Xu(T)g = X.(T)§

By Lemma we identify X, (T)¢ with
Xou(T)o @ Q = Xu(T)p,tree ® Q= X*(T)5 .. ®Q = X*(5) ®Q,

and we shall view 7, as an element of X*(S ) ® Q. We also have £(b) € m1(G)r = m1(G),, which is equal to
the image of .
Let CAQ be the root lattice inside X*(T\) Applying Lemma to X = X*(f) and Y = @, we obtain:
. @é is a free Z-module. It injects into X*(f)é and also injects into X*(f)é,free = X*(S).
e The image of the simple roots in @ in @é (as a set) is a Z-basis of Qé. We call members of this Z-basis
the relative simple roots in @é.

Lemma 2.6.4. There is a unique element ;\b S X*(f)é satisfying the following conditions:

(1) The image of Ny in m(G), is equal to r(b).

(2) In X*(S) ® Q, the element (\y)|g — b is equal to a linear combination of the relative simple roots in
Qg, with coefficients in Q N (—1,0]. Here (\y)|g denotes the image of A, under the map X*(T); —
X (T e = X*(S).

Proof. This is just a reformulation of [HV17, Lemma 2.1]. We repeat the proof in our setting for completeness.
The uniqueness follows from the fact that the preimage of k(b) € m(G), in X*(f)é is a @é—coset. To show
the existence, it suffices to find an element A € X*(T ) lifting () such that A\|g — 7 is equal to a Q-linear
combination of the relative simple roots in Qo In fact, if such A exists, we can then modify A by a suitable
element in Qe to obtain the desired \,. Now let \ be any element of X* (T ) lifting x(b). By the compatibility
of the two invariants of b, we know that the image of i, € X*(T)G ®Q in m (G), ® Q is equal to the natural
image of x(b) € m1(G),. It follows that the element \|g— 7, € X*(8) ®Q should map to zero in 71 (G), @ Q.
On the other hand we have a short exact sequence

0— @é — X*(f)é — m(G)y — 0,
from which we obtain the short exact sequence
0—Q;eQ — X (1);2Q=X"(5)®Q — m(G); ®Q — 0.
It follows that the element \|g — 7, € X*(S) ®Qis in Qé ® Q, as desired. O

-~

Definition 2.6.5. Let A\, € X*(T )|9 be as in Lemma We write A, for ()\b)|s € X*(S).

Conjecture 2.6.6 (Miaofen Chen, Xinwen Zhu). Let u € X.(T)" and let [b] € B(G,u). There ezists a
natural bijection between J,(F)\X*P (X, (b)) and the Mirkovic-Vilonen basis of V,,(Ap)rel-

In [Niel8b} §1], Nie showed that in order to prove ConJecture | it suffices to prove it when the group G
is adjoint and [b] € B(G) is basic. Moreover he defined a natural surjective map from the Mirkovi¢-Vilonen
basis of V,(Ap)rel to the set J,(F)\X*P(X,(b)). Thus in order to prove the conjecture, it suffices to prove
the following numerical result.

Conjecture 2.6.7 (Numerical Chen-Zhu). Let p € X.(T)" and let [b] € B(G,u). Let A (u,b) be the
cardinality of Jy(F)\X'*P(X,(b)). We have

JV(/.L, b) = dim Vu()\b)rel-
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A further standard argument, for example [HZ16], §6], shows that one can also reduce to the case when G
is F-simple. Therefore we have:

Proposition 2.6.8. In order to prove Conjecture |2.6.6, it suffices to prove Conjecture when G is

adjoint, F-simple, and b € G(L) represents a basic o-conjugacy class. O

3. THE ACTION OF J,(F)

3.1. The stabilizer of a component. In this section we study the stabilizer in J,(F') of an irreducible
component of X,,(b). Here as before we let 4 € X, (T)* and [b] € B(G, ). The first main result is the
following.

Theorem 3.1.1. The stabilizer in J,(F') of each Z € ¥(X,, (b)) is a parahoric subgroup of Jy(F').

We first reduce this statement to a question about the Iwahori affine Deligne-Lusztig varieties X, (b), w €
Wot“Ws. Note that J,(F') acts on each X,,(b) via automorphisms.

Proposition 3.1.2. The projection 7 in (m induces a bijection between %(X,, (b)) and (X (u,b)¥)
compatible with the action of J,(F). Moreover, this bijection maps %*°P(X (b)) onto $*°P(X (1, b)¥).

Proof. This follows from the fact that the fiber of 7 is (the perfection of) a flag variety. a

In view of Proposition the proof of Theorem reduces to showing that the stabilizer of each
irreducible component of X (i, b)¥ is a parahoric subgroup of J,(F).

Now let Y € %(X (i, b)¥). Then since each X,,(b) is locally closed in FL, there exists w € Wyt*W, such
that ¥ N X, (b) is open dense in Y and is an irreducible component of X, (). Since the action of J,(F') on
X (p, b)X preserves X,,(b), it follows that j € J,(F) stabilizes Y if and only if j stabilizes Y N X,,(b). Hence
we have reduced to showing that the stabilizer in J;,(F') of any element of (X, (b)) is a parahoric subgroup.
We will show that this is indeed the case in Proposition below.

One important tool needed in our proof is the following result, which is [GH10, Corollary 2.5.3].

Proposition 3.1.3. Let w € W, and let s € S be a simple reflection.

(1) If L(swo(s)) = £(w), then there exists a universal homeomorphism X, (b) = Xgupo(s) (D).

(2) If L(swo(s)) < £(w), then there is a decomposition X,,(b) = X1UXs, where X is closed and X5 is open,
and such that there exist morphisms X1 — X,0(s)(b) and Xo — X4 (D), each of which is the composition
of a Zariski-locally trivial fiber bundle with one-dimensional fibers and a universal homeomorphism.

Moreover the universal homeomorphism in and the morphisms X1 — Xg0(5)(b) and Xo — Xy (D) in
@) are all equivariant for the action of J,(F). O

Proposition 3.1.4. Assume X, (b) # 0 and let Z € (X, (b)). The stabilizer in Jy(F) of Z is a parahoric
subgroup of Jy(F).

Proof. We prove this by induction on ¢(w). Assume first that w € W is of minimal length in its o-conjugacy
class. Then X, (b) # (0 implies ¥(w) = b, i.e. w and b represent the same o-conjugacy class in B(G), by
[Held, Theorem 3.5]. In this case, by [Held, Theorem 4.8] and its proof, there is an explicit description of
the stabilizer of an irreducible component which we recall.

Let "W ¢ W (resp. W(P) ¢ W) denote the set of minimal representatives for the cosets Wp\W
(resp. W/W,(py). Let PWe(P) be the intersection PW N W) (cf. [Held, §1.6]). By [Held, Theorem 2.3],
there exists P C S, z € PW?(P), and u € Wp, such that:

o Wp is finite.
12



e 1 is o-straight and x~lo(P)x = P.

In this case, there is a Jj,(F')-equivariant universal homeomorphism between X, (b) and X,,; (), and we have
U(uz) = ¥(w), see [Held, Corollary 4.4]. Hence we may assume w = ux. By [Held, Lemma 3.2] we have
U(x) = ¥(w), and therefore we may assume b = &. Upon replacing P, we may assume P is minimal with
respect to a fixed choice of z and u satisfying the above properties.

Let P denote the parahoric subgroup of G(L) corresponding to P. The proof of [Held, Theroem 4.8]
shows that

Xua(£) 2 T (F) X g (mynp X (),
where X7 (i) is the reduced k-subscheme of the (perfectly) finite type scheme LTP/L*Z whose k-points
are
X (@) (k) = {g € P(OL)/Z(O1)lg™ i (g) € Z(Op)uiZ(OL)}.
Thus it suffices to show the stabilizer in J;(F)NP(OL) of an irreducible component of X7 (i) is a parahoric
subgroup of J;(F).

Let P denote the algebraic group over k, which is the reductive quotient of the special fiber of P. Recall
its Weyl group is naturally identified with Wp. Then T is the preimage of a Borel subgroup Z of P under
the reduction map P — P. Let o; denote the automorphism of P given by p ~— &~ o (p)#. Then the natural
map LYP/LTZ — P/I induces an identification between X7 (%) and the (perfection of the) finite type
Deligne-Lusztig variety

X' ={p€P/I|p ‘0:(p) € TuT}.

The natural projection map P — P takes Jz(F)NP(OL) to P *, and the action of J;(F)NP(Oy) factors
through this map. Since P is minimal satisfying u € Wp and since 2~ 'o(P)x = P, it follows that u is not
contained in any o;-stable parabolic subgroup of Wp. Therefore by [G09, Corollary 1.2], X' is irreducible.
It follows that the stabilizer of the irreducible component 1 x X7 (i) C X,,,.(%) is J:(F) NP(OL), which is
a parahoric of J;(F). It also follows that the stabilizer of any other irreducible component of X, (%) is a
conjugate parahoric.

Now we assume w is not of minimal length in its o-conjugacy class. By [HN14, Corollary 2.10], there
exists w'~,w and s € S such that sw'c(s) < w’. Then by Proposition there is a Jp(F)-equivariant
universal homeomorphism between X,,(b) and X, (b). Thus it suffices to prove the result for X, (b).

Let Z' € %(X, (b)), and let X; and X, be as in Proposition We have either Z' N X; or Z' N X,
is open dense in Z’. Assume Z’ N X is open dense in Z’; the other case is similar. Since J,(F') preserves
X1, it suffices to show that the stabilizer of Z’ N X is a parahoric. From the description of X, there exists
an element V' € X(X;,4(s)(b)) such that Z’N X; — V is a fibration and is .J,(F')-equivariant. Therefore by
induction, the stabilizer of V' is a parahoric of J,(F'), and hence so is the stabilizer of Z’' N X;. |

3.2. Volumes of stabilizers and independence of F. The second main result of this section is that
the set of J,(F)-orbits of irreducible components of X,,(b) and the volume of the stabilizer of an irreducible
component depend only on the affine root system together with the action of the Frobenius. In particular,
it is independent of F in a manner which we will now make precise. This fact is a key observation that we
will need for later applications.

By [Heldl §6], the set of J,(F')-orbits of top dimensional irreducible components of X,,(b) depends only
on the affine root system of G together with the action of ¢. This is proved by using the Deligne—Lusztig
reduction method to relate the number of orbits to coefficients of certain class polynomials, which can be
defined purely in terms of the affine root system for G, see loc. cit. for details. In view of the fibration

7 X (u,0) % — X,(b)
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it follows that the same is true for X, (b). In particular, the number .4#"(z1,b) depends only on the affine root
system and hence does not depend on the local field F.

We will need the following stronger result. To state it, we introduce some notations. Let F’ be another
local field with residue field Fy. Let G’ be a connected reductive group over Op/. Let 7" C B’ C G be
analogous to T'C B C Gp as in Define the hyperspecial vertex s, the apartement V', and the anti-
dominant chamber a’ analogously to s, V, a. Assume there is an identification V' 2 V' that maps X, (T)* into
X.(T)*, maps ainto a’, maps s to s’, and induces a 0-0’ equivariant bijection between the affine root systems.
Here o’ denotes the ¢’-Frobenius acting on the affine roots system of G’. We fix such an identification once
and for all. To the pair (u,b), we attach a corresponding pair (u/,0’) for G’ as follows. The cocharacter
p' € X.(T')" is defined to be the image of x under the identification X, (T)" = X, (T’)*. To construct v/,
we note that since b is basic, it is represented by a unique o-conjugacy class in 2. The identification fixed
above induces an identification of Iwahori-Weyl groups W = W’  which induces a bijection on length-zero
elements. Then b’ is represented by the corresponding length-zero element in W’

By our choice of ¥, the affine root systems of J, and Jy together with the actions of Frobenius are
identified. We thus obtain a bijection between standard parahorics of J, and those of Jy. Let J C Jp(F)
and J' C Jy (F') be parahoric subgroups. We say that J and J’ are conjugate, if the standard parahoric
conjugate to J is sent to the standard parahoric conjugate to J' under the above-mentioned bijection. In
the following, we write J := J,(F) and J' := Jy (F”).

Proposition 3.2.1. There is a bijection
J\EP (X, (b)) —> J\EP (X (b))

with the following property. If Z € X'°P(X,(b)) and Z' € X*°P(X /(b)) are such that JZ is sent to J'Z,
then the parahoric subgroups Stabz(J) C J and Stabz/ (J') C J' are conjugate.

The proposition will essentially follow from the next lemma.

Lemma 3.2.2. Let w' € W' correspond to w € W under the identification W = W'. Then there is a
bijection

O : J\XP(X, (b)) = J\XP (X, (b))
with the following property. If Z € X*P(X,, (b)) and Z' € ¥*°P(X /(b)) are such that ©(JZ) = J'Z', then
Stabz(J) and Stabz/ (J') are conjugate.

Proof. We induct on £(w). First assume w is minimal length in its o-conjugacy class. Then by [Held],
X (b) # 0 if and only if ¥(w) = b, which holds if and only if ¥(w’) =¥, if and only if X, (b") # 0. If this
holds, then by [Hel4] the group J acts transitively on X*°P(X,, (b)), and similarly the group J' acts transitively
on X%P(X,,(b)). Hence the two sets J\XP(X,, (b)) and J'\X*P (X, (b)) are both singletons. Let © be
the unique map between them. The desired conjugacy of the stabilizers follows from the computation of
Stabz(J) in Proposition

Now assume w is not of minimal length in its o-conjugacy class. Let Z € X'P(X,,(b)). Then as in the
proof of Proposition there exists w1~,w and s € S such that swyo(s) < wy. Then X,,(b) is universally
homeomorphic to X, (b). We fix such a universal homeomorphism and we obtain a corresponding element
7y € ¥*P(X,, (b)). By Proposition there exists U € X'P (X, 5(s) (D)) or U € X'P(X,,, (b)) such
that Z; is universally homeomorphic to a fiber bundle over U. We assume U € X*P(X,,,, 5(5)()); the other
case is similar. Then Stabz(J) = Staby(J). Note that the choice of U depends on the choice of w; and a
universal homeomorphism X, (b) = X,,,. However upon fixing these choices, the J-orbit of U is canonically

associated to the J-orbit of Z.
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By the induction hypothesis, we have a bijection
01 1 \EP (X o) (b)) — J\EP (Xt (5 (D)),
where s, w} € W’ correspond to s,w; respectively. Choose
U' € B (Xupor(sn) ()

such that J'U’ = ©1(JU). By the induction hypothesis, Staby (J) is conjugate to Staby/(J’). Reversing the
above process we obtain Z’ € X%P(X,,/('))) such that Staby.(J') = Stabz (J'). Again the J'-orbit of Z’ is
canonically associated to U” upon fixing the universal homeomorphism X, () = Xy (b').

We define the map © to send JZ to J'Z’. Switching the roles of G and G’, we obtain the inverse map of

O, and so O is a bijection as desired. O

Remark 3.2.3. In the situation of Lemma [3.2.2] note that since dim X,,(b) = dim X, (V'), we have dim Z =
dim Z’ whenever ©(JZ) = J' Z'.

Proof of Proposition|3.2.1. For each w € W, fix a bijection
O : J\ZP(X, (b)) — J\XP (X, (b))

as in Lemma Let Z € X'°P(X,,(b)). Then the preimage 7—'(Z) under the projection 7 : X (u,b)% —
X, (b) is a top dimensional irreducible component of X (u,b). Hence there exists a unique w € W such
that X,,(b) N 7~1(Z) is open dense in Z. Moreover we have X,,(b) N7~ 1(Z) € X*P(X,,(b)). Write Y for
Xo(b) N 7=Y(Z), and choose Y’ € t°P(X,/ (b)) such that ©(JY) = J'Y’. Then since dim X (u,b)" =
dim X (/, b))%, the closure of Y’ in X (u/,b')% gives an element of Xt°P(X (1/,0')5"), whose J'-orbit is
independent of the choice of Y’. Taking the image of the last element under the projection X (p/, b’)K/ —
X,/ (b') we obtain an element Z’ € 3*P (X, (b')) by dimension reasons, and the orbit J'Z’ is independent of
the choice of Y. Moreover Stabz(J) is conjugate to Stabyz:(J') since Staby (J) is conjugate to Staby (J').
The association JZ — J'Z’ gives a well-defined map

J\EP (X, (b)) — JN\EP (X (b))

which satisfies the condition in the proposition. Switching the roles of G and G’ we obtain the inverse

map. O

Proposition [3.2.1] implies that the truth of Conjecture depends only on the affine root system as-
sociated to G together with the Frobenius action. In the proof of Conjecture for unramified elements
[XZ17, Theorem 4.4.14], the authors made the assumption that p # 2,3. The following corollary is then
immediate.

Corollary 3.2.4. Theorem 4.4.14 in [XZ17)] also holds for p = 2, 3. |

For later applications we need the following. We now assume that b is basic, so that G and J;, are inner
forms. Since b is basic we may choose a representative 7 for b where 7 € 2 C W. Using this one may identify
the affine Weyl groups for J, and G respecting the base alcoves. However the Frobenius action on W (or
S), defined by J;, is given by 7o, where 7 acts via left multiplication. See for example [HZ16| §5] for more
details.

Since G and J, are inner forms, the choice of a Haar measure on G(F') determines a Haar measure on

Jp(F), and vice versa, see for example [Kot88| §1].
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Corollary 3.2.5. Fiz the Haar measure on J,(F) such that the volume of G(OF) is 1. For Z € ¥*P(X,(b))
there ezists a rational function R(t) € Q(t) such that

vol(Stabz(Jy)) = R(q).

Moreover this rational function satisfies R(0) = e(Jy) and is independent of the local ﬁeld F. Here e(Jp) is
the Kottwitz sign (—1)"<F7o=keG  More precisely, in the notation of Proposztwn 1, if JZ' corresponds
to JZ, then vol(Stabz: (Jy)) = R(¢').

Proof. Since Jj, splits over an unramified extension, the volume of a standard parahoric of J,(F’) correspond-
ing to any To-stable subset K; C S can be calculated in terms of the affine root system. More precisely let
K s be the corresponding parahoric subgroup of J,(F) and Z; be the standard Iwahori subgroup of Jy(F).
Then we have

vol(K ;(OF)) = vol(ky OF)))),V(ﬂ( (OF)). vol(Z,(Or))

(
VOI(IJ(OF OI(I(OF))
_ [Ks(OF) : Z,(0F)] vol(Z,(OF))
[G(OF) : Z(OF)] ~ vol(Z(OF))
where 7 is the standard Iwahori subgroup of G(F') (whereas previously we denoted by Z the standard Iwahori
subgroup of G(L)). The term [K;(OF) : Z;(Or)] (resp. [G(OF) : Z(Op)]) is just the number of F,-points in
the finite-type full flag variety corresponding to the reductive quotient of the special fiber of K (resp. G).

For any connected reductive group H over F, and B a Borel subgroup, let W denote the absolute Weyl

group. Then we have the Bruhat decomposition
H/BFE)= || S
weWx

We have S,,(Fy) # 0 if and only if o(w) = w, in which case S,, is an affine space of dimension ¢(w) defined

H/B Z qi(w)

wGW"
It follows that [KC;(OF) : Z;(OF)] and [G(OF) : Z(Op)] are both polynomials in ¢ with coefficients in
Z and constant coefficient 1, and the polynomials depend only on the root systems of the corresponding

over F,. In particular

reductive quotients of the special fiber.

Similarly the ratio % can be computed as the ratio

det(1 — g ey [V) _ det(q —<s|V)
det(1 —q=%[V)  det(q —<|V)
where ¢ denotes the linear action of the Frobenius on V = X, (T)g, and similarly for ¢;, see [Kot88| §1].

This is also a ratio of polynomials in g with coefficients in Z, and the ratio at ¢ = 0 is equal to
det(cs)/ det(s) = (—1)keJomrke G — o( 1),

Moreover the polynomials depend only on the affine root system of G and the element b. The result
follows. |

Finally in this section we record the following immediate consequence of Proposition |3.2.1
Corollary 3.2.6. If Conjecture[2.6.7 is true for all p-adic fields F, then it is true for all local fields F. O

From now on we will assume F' is a p-adic field. The upshot of this, as we will see in the next
section, is that we are able to apply the Base Change Fundamental Lemma to count points on the affine

Deligne—Lusztig variety.
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4. COUNTING POINTS

4.1. The decent case. For each s € N, let F; be the degree s unramified extension of F' in L. Let O, be the
valuation ring of F§, and let k4 be residue field. The number 4" (u,b) depends on b only via its o-conjugacy
class [b] € B(G). Recall that given b € G(L), one can associate a slope cocharacter v, € Homp (D, G), where
D is the pro-torus with character group Q.

Definition 4.1.1. Let s € N. We say that an element b € G(L) is s-decent, if s, is an integral cocharacter
G,» — G (as opposed to a fractional cocharacter), and

(4.1.1) bo(b)--- o1 (b) = (s ().

Lemma 4.1.2. Assume b € G(L) is s-decent. Then svy is defined over Fy, and b belongs to G(F).

Proof. The proof is identical to the proof of [RZ96, Corollary 1.9]. |
Lemma 4.1.3. Any class in B(G) contains an element b which is s-decent for some s € N.

Proof. This follows from [Kot85] §4.3]. O

In the following, we assume that b is sg-decent, for some fixed sy € N. By the above lemma there is no
loss of generality in making this assumption. We may and shall also assume that sg is divisible enough so
that T is split over F,.

Definition 4.1.4. Let s € soN. Let G := Resp,/p G, so that b € G4(F). Let © be the F-automorphism
of G corresponding to the Frobenius o € Gal(F,/F). Let G0 be the centralizer of b© in G, which is a
subgroup of GG defined over F'. Define

G(Fs)bo := {9 € G(Fy)|g~"bo(g) = b} .
Thus G(F5s)p, is naturally identified with G pe(F).
Lemma 4.1.5. For s € soN, there is a natural isomorphism of F-groups:
Jp = G5 po.
Moreover, Jo(F) = G(Fs)ps as subgroups of G(L).
Proof. Let R be an F-algebra. Recall from that
Jp(R) = {9 € G(R@F L)|g”"bo(g) = b} .

It suffices to prove that for any g € Jp(R) we have g € G(R ®p Fs,). Now such a g commutes with b x o,
and so it commutes with (bx 0)%. By (f.1.1), we have (b x 0)® = (sovp)(ms) x 0*°. On the other hand, by
the functoriality of the association b — v, we know that g commutes with v,. It follows that g commutes
with 0%, and so g € G(R®p Fs,) as desired. O

&

4.1.6. We keep assuming that F' is p-adic. In §2.4] we discussed the geometric structure on X, (b), as
a locally closed subscheme of the Witt vector Grassmannian over k = kp. In the current setting, X, (b)
is naturally “defined over k,,”. More precisely, we can work with the version of the Witt vector affine
Grassmannian as an ind-scheme over kg, rather than over k. See [BS17, Corollary 9.6], cf. [Zhul7, §1.4].
Then the affine Deligne-Lusztig variety can be defined as a locally closed k,-subscheme of the Witt vector
affine Grassmannian, as in [Zhul7, §3.1.1]. The key point here is that since T is split over Fy,, all the

Schubert cells in the Witt vector affine Grassmannian are already defined over ks, see [Zhul7, §1.4.3]. We
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denote by Grg and X, (b) the Witt vector affine Grassmannian and the affine Deligne-Lusztig variety over

ks,, and continue to use Grg and X, (b) to denote the corresponding objects over k. Thus

505
Grg = Grg @k, k
X,.(b) = X,,(b) @, k.
Let us recall the moduli interpretations of Grg and X, (b). For any perfect kg, -algebra R, denote
Wso(R) := W(R) @w (k,,) Oso-

We have (see [Zhul7, Lemma 1.3])

Grg(R) = {(5,ﬁ)|5 is a Gy, (r)-torsor on Wy, (R), B is a trivialization of £ on Wi, (R)[l/p]} .
We also have (see [Zhul7, (3.1.2)])

Xu(B)(R) = {(€, 8) € Gra(R)|Inv, (B~ 'ba(8)) = p, Var € specR)} .

Lemma 4.1.7. For any s € soN, we have

Xu(b)(ks) = {g € G(F,)/G(Os)lg™"bo(g) € G(Os)u(np)G(Os)} .

Proof. We only need to show that Grg(ks) = G(Fs)/G(Os). For this it suffices to show that any Go_-torsor
over O; is trivial (cf. the proof of [Zhul7, Lemma 1.3]). By smoothness this reduces to the Lang—Steinberg
theorem, namely that any Gy -torsor over the finite field k; is trivial. O

Lemma 4.1.8. The action of Jy(F') on X, (b) descends to a natural action on X,,(b) via ks, -automorphisms.

Proof. By Lemma Jy(F) = G(Fsy)ve- The group G(Fy,)ps naturally acts on X, (b)(R) by acting on
the trivializations 3, for each perfect k -algebra R. O

Lemma 4.1.9. Up to enlarging so, all the irreducible components of X,,(b) are defined over ks, i.e. come

from base change of irreducible components of X,,(b).
Proof. This follows from Lemma [2.5.5] and Lemma [.1.8] O

4.2. Twisted orbital integrals and point counting. We fix sq € N to be divisible enough so as to satisfy
all the conclusions in In particular G is split over Fy, and the conclusion of Lemma holds. Let
s € soN.

For any C-valued function f € C°(G(Fy)), define the twisted orbital integral

(4.2.1) TO,(f) == / F(g~"bo(g))dg,

G(Fs)po \G(Fs)

where G(Fs)po is equipped with an arbitrary Haar measure, and G(Fy) is equipped with the Haar measure
giving volume 1 to G(Os). The general convergence of T'Oy(f) follows from the result of Ranga Rao [RR72].
However, in our case, by the decency equation we know that O is a semi-simple element of G x (O},
from which it follows that the twisted orbit is closed in G(Fs). The convergence of TOy(f) then follows
easily, cf. [Clo90} p. 266].

Definition 4.2.1. Let f, ; € C°(G(F5s)) be the characteristic function of G(O;)u(mr)G(Os).

In the following we study the relationship between the twisted orbital integral T'Oy( f,,s) and point count-
ing on X, (b).
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Lemma 4.2.2. Each irreducible component Z of X,,(b) is quasi-compact, and is isomorphic to the perfection
of a quasi-projective variety over k. Moreover, Z has non-empty intersection only with finitely many other

irreducible components of X, (D).

Proof. Since X,,(b) is a perfect scheme by Theorem the generic point 1 of Z and its residue field k(n)
make sense. Moreover k(n) is a perfect field containing k. Let (£, 8) € X,,(b)(k(n)) C Grg(k(n)) correspond
to n, and define \ := Inv(8) € X, (T)". Since {n} is dense in Z, it follows from [Zhul7, Lemma 1.22] that Z
is contained in Grg, <, the Schubert variety inside Grg associated to A. On the other hand, it follows from
[Zhul7, §1.4.1, Lemma 1.22] and [BS17, Theorem 8.3] that Grg < is the perfection of a projective variety
over k. Since Z is closed in X, (b) and X, (b) is locally closed in Gr¢g, we conclude that Z is locally closed in
Grg,<», and hence Z is quasi-compact and isomorphic to the perfection of a quasi-projective variety over k.

Since X,,(b) is locally of perfectly finite type by Theorem each point in X,,(b) has an open neigh-
borhood that intersects with only finitely many irreducible components of X, (b). Since Z is quasi-compact,
it also intersects with only finitely many irreducible components of X, (b). |

Lemma 4.2.3. The set J,(F)\X,(b)(ks) is finite. For all z € X,(b)(ks), the stabilizer Stabz Jy(F) in Jy(F)
is a compact open subgroup of Jy(F'). We have

TOy(fus) = > vol(Stabgz J,(F)) !,
x€Jp (F)\X,, (0) (ks )
where for each x € Jy(F)\X,(b)(ks) we pick a representative & € X, (b)(ks). Here vol(Stabz J,(F)) is
computed with respect to the chosen Haar measure on Jy(F) = G(Fy)ps (cf. Lemma[{.1.5).

Proof. Write G = G(F,),J = G(Fy)po, K = G(O;). Let C = {g € I\G|g~'bo(g) € Ku(rp)K}. By the
discussion below , we know that C' is a compact subset of J\G (as C' is the intersection of the compact
set Ku(mp)K with the closed twisted orbit of bo which is homeomorphic to J\G), and TOy(f,,s) is nothing
but the volume of C. Consider the action of K on C' by right multiplication. The orbits are open subsets
of C, and form a finite partition of C. On the other hand, by Lemma [£.1.7 and Lemma [£.1.8] these orbits
are in one-to-one correspondence with Ji,(F')\X,(b)(ks). In particular J,(F)\X,(b)(ks) is ﬁniteﬂ Hence we
write this finite partition as
C= | ] o

€ Jy (F)\X, (b) (ks)
From the above discussion we obtain
(4.2.2) TOy(fu.s) = > vol(Cy).
€ Jy (F)\Xp (b) (ks)

Next we compute vol(C;) for a fixed x € Jp(F)\X,(b)(ks). Let & € X,(b)(ks) be a lift of . Fixr € G
representing z, see Lemma[4.1.7] Then by the definition of the quotient measure we have

(4.2.3) 1:/1,,K(g)dg=/ /hﬂ((hg)dhdgz/ vol(J NrKg~1)dg.
G NG JI NG

Here the function

G 3 g~ vol(JNrKg™!) (volume computed with respect to the Haar measure on J)

2Alternatively, one could also show the finiteness using the result of Rapoport—Zink [RZ99, Theorem 1.4] as interpreted in
[HV17, Lemma 1.3].
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descends to J\G. We have

1JNrKr™ 1), ¢geC,
vol(JNrKg™') = vol@nrkr™), g

Hence (4.2.3|) reads
1 = vol(C,) vol(J N rKr~1).

Note that J = J,(F) (Lemma [4.1.5), and J N rKr~! is obviously a compact open subgroup of J. Moreover
JNnrKr~! = Stabz J,(F). Hence we have

(4.2.4) vol(C,) = vol(Stab; J,(F)) ™ .

At this point we have already seen that J,(F)\X,(b)(ks) is finite, and that Stabs J;(F) is a compact open
subgroup of J,(F). The rest of the lemma follows from (4.2.2) and (4.2.4). O

Proposition 4.2.4. For s € N divisible by sg, we have

TOy(fu5) = > vol(Staby (Jy(F))) ™" ks | W™ X1 ®) 4 ok, Xe®)y 5> 0.
ZeJp(F)\E4P (X, (b))
Here Z runs over a set of representatives for the J,(F)-orbits in X*°P (X, (b)), and for each such Z we denote
by vol(Staby (J,(F))) the volume of the compact open subgroup Stabz(J,(F)) of J,(F) (see Theorem[3.1.1))
under the Haar measure of Jy(F).

Proof. Write d = dim X,,(b). By Lemma we let Zy,---,Zy; be a complete set of representatives of
the Jp(F)-orbits in 3(X,(b)). Up to reordering, assume that Zi,---,Zy are of dimension d, and all of
ZN+1, -+, Zp (if any) are of smaller dimensions. Write d; := dim Z;.
Our starting point is Lemma Note that if z € J,(F)\X,(b)(ks) and if € X,(b)(ks) is any
representative of x, then the term vol(Stabz J,(F')) only depends on x. We henceforth denote it by vol,.
For each 1 <1i < M, define

Uii=2; — U V45 — U Vi
1<j<i,yE€Jp(F) YEJW(F) Y Zi#Z;
Vi = 2Z;N U Z

ZEX(X, (b)), Z#Z;
J; := Staby, (J(F)).

By Lemma [£.2.2] we know that U; is open dense in Z;, and V; is a proper closed subset of Z;. Since the
action of Stabz, (J,(F)) on Z; obviously stabilizes U;, it immediately follows that

Ji = Stabzi (Jb(F)),

and in particular J; is open compact in J,(F') by Theorem By Lemma we know that all Z;, U,, V;
come from base change of locally closed ks,-subschemes Z;,U,,V; of Xu(b) respectively, where Z;,U;,V; are
perfections of quasi-projective varieties over kg,. Moreover, Z;, U, are irreducible.

For each 1 <14 < M and each y € U;(ks), define

€(y) := [Staby (Jp(F)) : Stab, (J(F)) N J;] = [Staby (J,(F)) : Staby, (I;)].

Thus €(y) is not larger than the number of irreducible components of X, (b) that intersect Z; at y. By

Lemma we know that e(y) is finite.
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By construction, the natural map
m | Uik — HENK(B) (k)
1<i<M
is a surjection (between finite sets). By the construction of the U;’s, for any x € J,(F)\X,,(b)(ks) we know
that:

e The fiber 7~!(z) is contained in Ui(a) (ks), for a unique 1 <i(z) < M.

e The group J;(,) acts transitively on 7! (x).

Note that by the second property above, the function €(-) descends along m. We have

(4.2.5) voly - |7T*1(:c)| = Z vol(Staby (Jy(F))) = Z €(y) vol(Staby (Ji(x))) = €(x) vol(Jj(a)),
yemr—1(z) yen—1(x)

where the last equality follows from the orbit-stabilizer relation applied to the J;(,)-orbit 7 1(x). Hence we

compute:
L a:zg _
TOy(f,.,) = Bt Z vol ! = Z Z volﬁ(y “r(y))| !
€Sy (F)\X,u (b) (k) i=1 yeU; (k,)
S
(4.2.6) === "vol(li)' D ely)h
i=1 y€eU; (ks)

Now let U; be a quasi-projective variety whose perfection is U;. Then U; is irreducible, and U; (ks) = U;(ks).
By the Lang—Weil bound (see [LW54]) applied to U;, we know that

(4.2.7) Ui (ks)| = ks|™ + o(|ks|™), s> 0.
Similarly we have
(4.2.8) Vi(ks)| = |1 Zi(ko)| = |(Zi — Vi) (ks)| = o(|ks| "), 5> 0.

We observe that for any y € U;(ks), we have e(y) > 2 only if y € V;(k;) NU;(ks). Hence by (4.2.6) (4.2.7)
(4.2.8) we have

TOy(fos) Zvom {

‘4o

} ZVOI k| + o(|ks|h), s> 0.
This is what we want to prove. |

4.3. Applying the Base Change Fundamental Lemma in the basic case. Recall that we assumed
that [b] € B(G, ) and b is so-decent. We now assume in addition that b is basic.
For s € N, recall from [Kot82, §5] that the s-th norm map is a map

N, : {o-conjugacy classes in G(F,)} — {stable conjugacy classes in G(F)}.

By [Kot82l Proposition 5.7], two o-conjugacy classes in G(Fy) are in the same fiber of 91, precisely when
they are stably o-conjugate, a notion that is defined in [Kot82] §5].

Lemma 4.3.1. Let s € sgN. Then 94(b), as a stable conjugacy class in G(F), consists of the single element
(swp)(mF). Moreover, the cocharacter svy, : G, — G is defined over F.

Proof. By [Kot82] Corollary 5.3], any element in N4 (b) is G(F)-conjugate to ba(b) - - - 0~ 1(b) € G(F}), which
is equal to (svp)(7F) since b is s-decent. Now since (svp)(7p) is central, we know that N, (b) = {(svp)(7F)}

and that (svp)(7r) € G(F). It follows from the last statement that sv, is defined over F. O
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Lemma 4.3.2. Let s € 5oN. Let b’ € G(Fs) be an element in the stable o-conjugacy class of b. Then

vy = vy, and b’ is s-decent. In particular V' is basic. Moreover, if [V'] € B(G, ), then V' is o-conjugate to b
in G(Fy).

Proof. By hypothesis we have 915(b) = MNs(¥'). By Lemma applied to b, we know that the 9i4(b)
consists of the single central element (svp)(mr) € G(F). On the other hand any element of 9, (') should be

G(F)-conjugate to t'a (') --- o5~ 1(¥') (by [Kot82) Corollary 5.3]). Therefore
Vo) - o H(b) = (sv)(mF).

By the characterization of v, (see [Kot85, §4.3|), the above equality implies that v,y = v, and that ¥’ is
s-decent. The first part of the lemma is proved.

Now we assume [b'] € B(G, u). Since B(G, p) contains a unique basic class, we have ['] = [b]. Finally, by
[RZ96], Corollary 1.10], we know that b and &' must be o-conjugate in G(Fy), since they are both s-decent

and represent the same class in B(G). O

Let s € soN. We now consider stable twisted orbital integrals along b. By our assumption that b is

s-decent and basic, we know that
bo(b) - o* 7 (b) = (sw)(7r)

is a central element of G(F}), and is in fact an element of G(F) by Lemma In particular, this element
is semi-simple, and the centralizer of this element (namely G) is connected. Therefore, with the terminology
of [Kot82], an element b’ € G(F,) is stably o-conjugate to b if and only if it is F-o-conjugate to b. This
observation justifies our definition of the stable twisted orbital integral in the following, cf. [Hai09} §5.1].

For any C-valued function f € C°(G(Fs)), we let STOp(f) be the stable twisted orbital integral

STOW(f) ==Y e(Gswe)TOy (f),
b/

where the summation is over the set of o-conjugacy classes b’ in G(Fy) that are stably o-conjugate to b, and
e(-) denotes the Kottwitz sign. Here each T'Oy is defined using the Haar measure on G(F;) giving volume 1
to G(Os), and the Haar measure on G(Fy)y, = Gspro(F) that is transferred from the fixed Haar measure
on G(Fs)bg = Gs,b@(F).

Definition 4.3.3. Denote by H; the unramified Hecke algebra H(G(Fs)//G(Os)). Denote by BC; the base
change map Hs, — H;.

Definition 4.3.4. For s € 59N, we write v for (svp)(7mp), and write v for v,,. Thus 7o belongs to G(F)

(see Lemma D and , = ,Yg/s[).

Proposition 4.3.5. Assume s € soN. For any f € H,, we have

STOu(f) = vol(G(OF)) " (BC, f)(7s),

where vol(G(Opr)) is defined in terms of the Haar measure on G(F') transferred from the fived Haar measure
on Gspe(F), for the inner form G e of G.

Proof. By Lemma [4.3.1] 915(b) consists of the single central semi-simple element 75 € G(F). By the Base
Change Fundamental Lemma proved by Clozel [Clo90, Theorem 7.1] and Labesse [Lab90], we know that
STOy(f) is equal to the stable orbital integral of BCy f at 915(b). The latter degenerates to
1
e(G'Ys) . (BCs f)(7s9)

M2
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since 75 is central. Here p; denotes the Haar measure on G(F) giving volume 1 to G(OF), and ps denotes
the Haar measure on G, (F)) = G(F) transferred from G, e (F). The notation £ denotes the ratio between
these two Haar measures on the same group G(F). Obviously this ratio is equal to vol(G(Or))~! as in the
proposition. Finally, since G, = G is quasi-split, e(G,,) = 1. |

s

Lemma 4.3.6. For s divisible by sg, we have

STO(fe) = (T)TOL(fs)-

Proof. Firstly, by Lemmawe have G5 0 = Jp. We need to check that TOy (f,,s) = 0, for any ¥/ € G(Fj)
that is stably o-conjugate to b but not o-conjugate to b in G(F). Assume the contrary. Then there exists
g € G(Fy) such that f, (g7'b'a(g)) # 0, from which g0 (g) € G(Os)u(mr)G(Os). Hence s([b']) = pf by
Theorem R.5.11 But this contradicts Lemma [£.3.2] O

Corollary 4.3.7. Keep the notation in Proposition[{.2 For s >0, we have

e(Jp) vol(G(Or)) T (BC fou,s)(vs) = > vol(Stabz (Jy(F))) ™" [k M X2 @ 4 o, |1 X)),
ZEeJy(F)\EP (X, (b))
Proof. This follows from Proposition Proposition and Lemma, O

5. MATRIX COEFFICIENTS FOR THE SATAKE TRANSFORM

5.1. General definitions and facts. In this subsection we expose general facts concerning the Satake
isomorphism, for unramified reductive groups over F'. The aim is to give an interpretation of the coefficients
for the matrix of the inverse Satake isomorphism in terms of a g-analogue of Kostant’s partition function.
This is well-known by work of Kato [Kat&2] in the case when G is split; we will need the case of non-split G.
Our main reference is [CCHI6, §1], which we follow closely. We also refer to [KS99, §1] for some of the facts.

Let G be an unramified reductive group over F. At this moment it is not necessary to fix a reductive
model over Of of G. Inside G we fix a Borel pair, namely a Borel subgroup B and a maximal torus 7' C B,
both defined over F'. In particular, T" is a minimal Levi, and is split over F™".

We denote by

BRD(B,T) = (X*(T),® D> A, X.(T),®" > AY)
the based root datum associated to (B,T). This based root datum has an automorphism 6 induced by the
Frobenius o € Gal(F""/F). Let d = dg < oo be the order of 6.

Fix an F-pinning (B, T,X; ) of G. Since the Galois action on BRD(B, T') factors through the cyclic group
generated by 6, we know that 6 is a Galois-equivariant automorphism of BRD(B, T'), and so it lifts uniquely
to an F-automorphism of G preserving (B, T, X, ). We denote this F-automorphism of G still by §. We are
thus in a special case of the situation considered in [KS99, §1.3].

Let A be the maximal split sub-torus of 7. We have|

X.(A) = X.(T)°
X*(A) = [X*(T)/(1 = ) X™(T)]sree-

Let p® C X*(A) be the image of ® C X*(T). It is well known (see for instance [Spr09, Theorem 15.3.8])
that the triple (X*(A), p®, X.(A4)) naturally extends to a (possibly non-reduced) root datum

(X"(A), p®, X.(A), p2Y).

3In [CCHI®, §1.1], it is stated that X*(A) = X*(T)/(1 — ) X*(T), which is not true in general.
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Elements of p® are by definition #-orbits in ®. For oo € ®, we write [a] for its f-orbit. The -orbits in A
give rise to a set of simple roots in p®, which we denote by rA. As usual, we denote the structural bijection
r® = F(I)V by [Oé] — [Oz]v.

We let ®' C p® be the subset of indivisible elements, namely, those [a] € p® such that 1[a] ¢ p®. The
image of ®! under the bijection p® = p®" is denoted by ®''V. The tuple

(5.1.1) (X*(A), @', X.(A), ")

has the structure of a reduced root datum. We note that A is also a set of simple roots in ®'. We
henceforth denote A also by Al. For the sets ®, p®, ®', ®V, p®Y, 1V, we put a superscript + to denote
their respective subsets of positive elements.

Recall that we denoted by Wj the absolute Weyl group of G. We let W' C Wy be the subgroup of
elements that commute with §. Then W1 is a Coxeter group (see [CCHI®, §1.1]), and we denote by ¢; the
length function on it.

Remark 5.1.1. Following [KS99, §1.1], consider the identity component G* of the f-fixed points of G. Denote
B! := BN G!'. Then G! is a connected split reductive group over F, and (B!, A) is a Borel pair in G'.
The root datum of (G, A) can be identified with (5.1.1)), and the Borel B! corresponds to the simple roots
A' C ®!. Moreover, we can naturally identify W1 with the Weyl group of (G, A). See loc. cit. for these
statements[]

We next form the complex dual group of G. Let G be the dual group of G over C. Thus G is a connected
reductive group over C, equipped with a Borel pair (]EA?, IA“) and an isomorphism
BRD(B,T) = BRD(B,T)",
where BRD(B,T) denotes the based root datum associated to (B,T), and BRD(B,T)" denotes the dual

based root datum to BRD(B,T). In particular, we have canonical identifications X*(T) & X, (T), X, (T) =
X*(T), which we think of as equalities. We fix a pinning (B, T, X, ). The action of § on BRD(B, T') translates
to an action on BRD(E, f), and the latter lifts to a unique automorphism 6 of G that preserves (ﬁ, T, XQ
The L-group L@ is by definition the semi-direct product G x (é), where <é> denotes the cyclic group of order
d generated by 6.
Define the torus
A=T/ {t ()t e f} :
We write Y* for X*(A). Thus we have
YV = X*(T)? = X.(T)° = X.(A).
(Hence A is indeed the dual torus of A.) Define
Pri={AeY*|(N\a)>0, Vae A} ={XeY*|(\[a]) >0, V[a] € A'}.

R* := the Zs>¢-span of p®"F C Y™

In the following we adopt the exponential notation for group algebras. The C-vector space (C[Y*]W1 has

o A
my = E e,

AEW
for y € P*. Here W'y denotes the orbit of 1 under W1,

a basis given by

41t is obvious that the torus 7! := G1 N T in [KS99, §1.1] is equal to A in our case.
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Definition 5.1.2. Let V be a finite dimensional representation of “G over C. Let

V= @D Vi

neEX™(T)

be the weight space decomposition of V' as a representation of T. Let ~ be an element of (N@JA") X (é> of
finite order. Let w € W' and € € {#1}. Define a C[X*(T)]-lincar operator E<* on V ®¢ C[X*(T)] by letting
E act on each V(u) via the scalar e=*# € C[X*(T)]. If e = 1 and w = 1, we simply write E for E“” For

a formal variable q, define
D(V,7, E®,q) :=det(1 — qyE™, V) € C[X*(T)][q]
PV, B,q) = DV, B,) ! € Frac( CX" (D)]a] )
Definition 5.1.3. Let n be the Lie algebra of the unipotent radical of E, equipped with the adjoint action
of “G (see [CCHIE, §1.3.1]). Let w € W' and € € {+1}. We define
D(E.q) == D(,0, B, q).
P(Eew’ CI) — P(a7 é, Eew,q) — D(Eew, q>—1.

Definition 5.1.4. Let [a] € ®! C p®. We say that [o] is of type I, if 2[a] ¢ p®. Otherwise we say that [a]
is of type IL. For [a] € ®!, we define

#la], if [o] is of type I

b(|la]) :=
(le) 1#[a] if [o] is of type II

where #[a] denotes the size of [a] viewed as a §-orbit in ®. Then b([a]) € Z>1, see [CCH16), §1.1], cf. Remark
below.

Definition 5.1.5. For any element 8 = [a]Y € ®1V (with [a] € ®!), we define b(3) to be b([a]), and we
say that 3 has type I or II if [a] has type I or II. For any ' € ®" that is homothetic to 3 € ®1V C p®V,
we define b(8’) to be b(S). Thus we obtain a function

b: F‘I)V — Zzl'
Definition 5.1.6. For 3 € ®V, we define dz(q) € C[Y*][q] as follows:
1—q*PeP, if B is of type I

ds(q) := ) ) o
(1 —q®Peh/2)(1 4 q?Pef/?), if B is of type IL

Here, when 8 is of type II, 3/2 is always an element of p®" and in particular an element of Y*, see [CCHI6,
§1.1] or [KS99, §1.3], cf. Remark below.

Remark 5.1.7. To compare Definitions [5.1.4] [5.1.5] [5.1.6] with [CCH16| §1.3.2], we inform the reader that
the symbols «, [3Y], 8 used in [CCHI6, §1.3.2] correspond to our 3, [a], aV, respectively. Our choice of

symbols is however compatible with [CCH16, Lemma 1.1.1]. Our type I or type II respectively correspond
to diagram A; or As in [CCHI6, (1.3.6)]. Let b(-) be the function in [CCHI6, (1.3.6)]. It is a function on
both ® and ®V, and satisfies b(w) = b(w") for all w € ®. For any w¥ € ¥ with image [w"] € p®", we have
b(w") =b([w"]).

5Note that for € = —1 and w = 1, E°Y = E~! is indeed the inverse of F, so the notation is compatible.
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Definition 5.1.8. Let R be an integral domain, and let q be a formal variable. We write R[[q]]’ for the
intersection of Frac(R[q]) and R[[q]], inside (FracR)((q)).

Lemma 5.1.9. For e € {£1}, we have

DESa) = ][ ds(a)

eBEDLVH

P(Eq) = ][] dsla)”
efedlV.+
In particular, D(E€,q) € C[Y*][q] and P(E<,q) € C[Y*][[d]]’-

Proof. The case e = 1 is [CCH16, Lemma 1.3.7], cf. Remark The case e = —1 is proved in the same
way, by switching the roles of positive elements and negative elements in ®1V. O

Definition 5.1.10. For each A € Y*, we define P(),q) € C[q] as follows. In view of Definition and
Lemma [5.1.9] we have an expansion

(5.1.2) P(E™q)= Y P\qe

ARt
where each P()\, q) € C|q] is a polynomial in q. We set P(\,q) :=0 for all A € Y* — R*.

Corollary 5.1.11. Let A € R™ — {0}. Then the polynomial P()\,q) € C[q] has constant term 0.
Proof. This immediately follows from Lemma [5.1.9] and Definition [5.1.10 ]

Definition 5.1.12. Let p¥ € X, (T) ®z 3Z be the half sum of elements in ®VF, and let p € X*(T) ®z 3Z

be the half sum of elements in ®*. Then p" in fact lies in Y* ®y %Z, and is equal to the half sum of elements
in LV T see [CCHI6, §1.2]. For w € W' and u € Y*, we denote

wep:=w(p+p’)—p’ €Y
We also write w e (-) for the induced action of w on C[Y*]. Define the operator

J:C[Y*] — C[Y7]

(5.1.3) fedf) =Y ()" ™uwer.
weWw?

Definition 5.1.13. For A € P* and for a formal variable q, define

(5.1.4) ma(q) = J(P(E™ @)= > J(e)P(u,q)e ™ € C[Y*][[q]]".
HERT

In particular, 7\(q) defines a C|[q]]’-valued function on ﬁ, by evaluating Y* on A. Moreover, for any
particular value ¢ € C of q, it is clear from Lemma that 7)(q) defines a rational function on A.

Definition 5.1.14. Let A € PT C Y* = X*(f)é. Let Vy be the irreducible representation of G of highest
weight .

Theorem 5.1.15 (J[CCHI6, Theorem 1.4.1]). Let A\ € PT. The character of Vy, as a function on f, descends
to a function on A. Moreover the following statements hold.

(1) (Weyl character formula.) We have 75(1) € (C[Y*]Wl. Moreover, 7»(1) is equal to the character of Vi,
when viewed as a function on A.
(2) (Weyl denominator formula.) 19(1) = 1.
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5.2. Matrix coefficients. We now fix a reductive model of G over O as in As before we denote by

7, the spherical Hecke algebra #(G(F')//G(OF)). For each € X,(A), we let f,, € H; be the characteristic

function of G(Op)u(mp)G(OF). Then the C-vector space H; has a basis given by f,, for p € Pt C X, (A).
Recall that the Satake isomorphism is a C-algebra isomorphism

Sat : H; — C[Y*]W

In the following, we simply write f,, for Sat(f,), if there is no confusion. At this point we have introduced
three bases of the C-vector space C[Y*]"", namely {mu} , {7.},{f.}, all indexed by p € P*. We denote

some of the transition matrices as follows:

my = anﬁ)\
A
=Dt
A
=D Mifr.
A

We are mainly interested in 9. There are known formulas for n;, and ¢, which we recall below, see Theorem
and Theorem Then E)JTf; is just given by the multiplication of the other two transition matrices.

Definition 5.2.1. Asin [CCHIG6, §1.7], we have a partition

=Yyu ||

weWw?!
where
Yy = {A€Y*3w e W' wis a reflection, w e A = A}
Yo ={AeY*lwere P}, weW"
For each x € W' U {0} we let e, : Y* — {0, 1} be the characteristic function of Y,*.
Theorem 5.2.2 (van Leeuwen’s formula, [CCH16, Lemma 1.7.4]). For u, A € P*, we have

(5.2.1) = Y (=) ey(w'p)d(w e (wp), A).

weWL/W}weW?

Here §(-,-) is the Kronecker delta, and Wﬁ is the subgroup of W' generated by the reflections attached to
those [a] € Al such that (i, [a]) = 0. O

Combining (5.1.3] - for M € P we have
T)\/ Z J )6 L Z (_1)51(111) Z ’P(,u,q)e“")‘/_“.

HERT wew? HERT

For each A € P*, we denote by Ky (q) the contribution of ¢ in the above formula, or more precisely

(5.2.2) Kyval@:= > ()™ PweX -\ q).

weW?

This notation is compatible with [Kat82] when G is split.
Theorem 5.2.3 (Kato-Lusztig formula, [CCHT6, Theorem 1.9.1]). For u, A € P*, we have

(5.2.3) th =K,\(q g )
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Corollary 5.2.4. For u,\ € P*, we have

M= T 1 P (e - ra)
w eW /W wew!

q=|kr|

Proof. We write ¢ for |kr|. We have

§ A A
TLM t)\/

NepPt

(5.2.1),(5.2.3) w'! _ _
Y Y (0t e s s ). Xy g

NEPT weWl /Wl w'eW?

S Y A e i e ('), X)gm N 3 () Pwe X — A g

NEPT w eWl /Wl w'eW? weWl

N=w"e(w' 1) Z Z Zl(w )e u(w'u)q_<’\7”> Z (_1)Zl(w)zp ((ww/) (U) ;U') A q—l)

weW /Wi w”eWw?! weW?

aannUACED DD DRD DN C VA "(w’u)P(w%w’u)—A,q‘l)

weW! /Wi w’eW! wew!

1" Ew!! )=1—eo(- _ _
Eeten OO 0SS ()M (- o) P (we ()~ )

w eW /Wl wew?

Motivated from Corollary [5.2.4] we make the following definition.
Definition 5.2.5. For y, A € PT and a formal variable q—1/2, we set
mﬁ(q—l) — q—(/\,P) Z Z £1(w) (1— eo(w/u))P (w . (w/'u) . )\7q—1) c (C[Y*][q_l/Q].
w eW?! /Wi weW!
As a special case, we define
(524)  Mgh:i= S 3 (-1 (1 - epw ) P (w . <w'u>,q-1) e Cly*]la!)
w eW?! /Wi weWw!
Lemma 5.2.6. Let u, A\ € PT. Let v € X, (AN Zg). Then M) (q™) =M "4(q ).
Proof. In fact, we have
Moy =A—vp), Wy =W,_,, eow'n)=eo(w'(n—v)),
we (wp)—A=we W (p-v))—(A-v),
for all w’er/Wj and w € W' a
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5.3. Interpretation in terms of Kostant partitions. In certain cases the polynomials P(\,q) € C[q] in
Definition [5.1.10| have a concrete description as a g-analogue of Kostant’s partition function, which we now
explain. Let P be the set of all functions

F(I)v’+ — ZZO'
We shall typically denote an element of P by m, and denote its value at any 8 € p®"" by m(3). For m € P,
we define

S(m):= > m(B)BeRT CY*

BEFDV T

m[:= Y m(B)b(B) € Zxo.

BERPV T

Here b(3) is as in Definition
For all A € Y*, we define

PA) :={m e P:X(m) = A},
which is of course empty unless A € RT. Elements of P()\) are called Kostant partitions of \. For any
L € Z>q, we define
PN :={m € P() : |m| = L}.
For A € Y*, we define

Pros(h @)= Y g™ e Clq).
meP(X)

This is known in the literature as the q-analogue of Kostant’s partition function, at least when G is split.
Remark 5.3.1. In the sequel the function Pkes(A, q) will only be used when p® = ®!.

Proposition 5.3.2. The following statements hold.

(1) Assume p® = ®1. For all A € Y* we have P(\,q) = Pkos(\, q)-

(2) In general, to each m € P, we can attach a polynomial Q(m,q) € C[q], with the following properties:
(a) For all 0 < x < 1, we have |Q(m,x)| < 1.
(b) For any A\ € Y* we have

Pha)= > Q(m.q)q™.

meP(N)

Proof. Part (1) immediately follows from Definitions [5.1.6} [5.1.10l For part (2), we note that if 3 € ®1V is
of type I, then 8’ := 3/2 is an element of p®V, and we have

da(q) ™t = [Z(q%(ﬁ)eﬁ/?)i] [Z(_qb(ﬁ)eﬁﬂ)i] — [Z(q%(ﬁ’)eﬁ’)i] [Z(_qb(ﬁ’)eﬁ’)i] 7
i=0 i=0 i=0 i=0

which is a formal power series in the variable eﬁ/qb(ﬁ/), with coefficients in C[q]. Explicitly we have
dg(@)™" = Rgn(a)(@e”)",
n=0

with

n

Rpm(@) =Y (-1)""'q®7) e C[q]
i=0
for each n > 0. We observe that for all 0 < z < 1 we have
(5.3.1) |Rpgn(x)] <1
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Now for each 8’ € z®" and each n > 0, define

Roprn(q), if 28" € LY

Q,@",n(q) =
1, if 28" ¢ BLV.
We take
Qm.q):= [[ Qsme)(@).
perpdY
Then condition (a) follows from the construction and the observation (5.3.1). Condition (b) follows from
Lemma [5.1.9] and Definition [5.1.101 O

5.4. Computation with the base change. We keep the setting of and We assume that s is
divisible by the order d of #, and consider s € sgN.

The Satake isomorphism for H; is
Sat : H, 5 C[X*(T))We.

For each p € X *(f)*, let 7/, be the character of the highest weight representation V), of G of highest weight
. Then

{Tﬁ}uex*(fﬁ
is a basis of C[X*(T)]"o. This basis is the absolute analogue of the basis {mu},cps Of ClY*]"" (ie., they
are the same if § = 1).

Recall from and that we have

nerP

By Lemma (3), the composition
V*'eQ—- X (T)oQ— X*(S)®Q

is invertible. We denote its inverse by

A A,

We denote sA) by A(®), Then since s is divisible by d, for all X € X*(S) we have ) € Y*. Thus we have
a map

-~

(5.4.1) X*(S8) —Y*, A=A\,

which is an isomorphism after ®Q. In the case § = 1, this is none other than the multiplication-by-s map
from Y* to itself. In general, we denote by X*(S)* C X*(8) the natural image of X*(T)*. Then (5.4.1)
maps X*(S)* into P+ C Y*. Moreover, the action of W' on X*(T) induces an action of W' on X*(S), and

the map (5.4.1) is W!-equivariant.
Proposition 5.4.1. Under the Satake isomorphisms, the base change map BC; : Hy — H1 becomes
BC, : C[X*(T)]"o — C[y*|V'
Y e X*(f)"‘7 T, Z dim V,(A)rel - Mo

AeX*(8)+
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Proof. To simplify notation we write X* for X*(f) To compute BCy as a map C[X*|"Vo — (C[Y*]Wl, it
suffices to compose the map with the natural inclusion C[Y*]W" ¢ C[X*]. For each u € X*7, let

[ E A
mu.— e .

AEWH (1)

Then {m;t}uex*# is a basis of C[X*]"o. This basis is just the absolute analogue of the basis {m,,} ,p of

(C[Y*]Wl. It easily follows from definitions (see for example [Bor79]) that BC, as a map
C[x*|"e — C[X*

sends each mL to

Z MO 057N

AEWo (1)
It follows that for all u € X**, we have
(5.4.2) BC, Tllt = Z dim V#(A)6A+éA+---+éS—1,\.
Aex*

Here the summation is over X* and not over X* . For each A\ € X*, the element
At OA+ -+ 0N e X
lies in Y* C X*, and its image under the natural map
Y= (X)) = X8 = (X)j e
is equal to the image of s\ € X* under the natural map
X' — X*(S).
In other words, we have
A+ON+-+ 07 h = (M),

where A[g € X™( A) denotes the image of A under X* — X*( A). Hence by lb we have

BC, T Z dim V,,( (Mg
Aex+
which is easily seen to be equal to
Z dim V,,(A) el e Z dim V,,(A)ret Mo
rex*(8) AeX*(SA)+

]

Since b is basic and sp-decent, and since s is divisible by sg, by Lemma[@.3.T]the cocharacter sv, : G,,, = G

is a cocharacter of Zg defined over F. In particular we may view sy, € X, (A4) = Y™*.
Corollary 5.4.2. For u € X*(f)"’, we have

(BC, T;i)('ys) = Z dim Vu()‘)rel 9ﬁ§<s>fsyb(\kF|_1)~
Aex*(8)+
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Proof. By Proposition we have

(BCS T,;)('VS) = Z dim Vu()‘)rel My (s) ('78)-
Aex*(8)+

Recall from Lemma[£.3.T] that s is a central cocharacter of G defined over F'. By Corollary [5.2.4] Definition

5.2.5, and Lemma [5.2.6] each my ) (7s) is equal to

M (k| ™) = M, (Ikr| )

O

5.5. Some inductive relations. We keep the setting and notation of §2.6|and §5.1] We assume in addition
that G is adjoint, and that G is F-simple. As in Definition [5.2.5] we have the polynomials

M(q ") eCY*]lq”!], rePt.

To emphasize the group G' we write M3 ;(q) for MG(q). In the following we discuss how to reduce the
understanding of these polynomials to the case where G is absolutely simple.

We write Dynk for the Dynkin diagram of G (or more precisely that of (G, B,T)). By our assumption
that G is adjoint and F-simple, the action of () on Dynk. is transitive on the connected components. In
particular all the connected components of Dynk, are isomorphic. Let dy be the smallest natural number
such that 6% stabilizes each of the connected components. Thus dy is also equal to the total number of
connected components of Dynk. Fix one connected component Dynkg, of Dynk. once and for all. The
connected Dynkin diagram Dynkg , together with the automorphism #%, determines an unramified adjoint
group G’ over F, equipped with an F-pinning (B’,7",X’ ). By construction G’ is absolutely simple. We
apply the constructions in to G’, adding an apostrophe in the notation when we denote an object
associated to G/, e.g., A", (Y*)", (P*),P'(N,q).

We have natural identifications
(X*(A)a F(pa X, (A)’ F(I)v) &= (X*(A/)7 (F@)/a X (A/)a (F(I)v)/)

(bl o ((bl)/ @1,\/ o (@1,\/)/

whe w'hy.
To be more precise, all the above identifications are derived from an identification

do—1
(5.5.1) X.(T) = @ X.(1"),
1=0

under which the automorphism 6 on the left hand side translates to the following automorphism on the right
hand side:

(X07 X1, axdo—l) = (Q,Xdo—h X0, X1, " 7Xd0—2)-
In particular, the identification (Y*)' = Y*, when composed with Y* = X, (A) C X,.(T) and with (5.5.1), is
the diagonal map

do—1
(5.5.2) (V") — P x.(1")
=0

X = O x0)-
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Proposition 5.5.1. For A € Y* and X € (Y*)' that correspond to each other, we have
MY o(a™t) =M e (@™ ™),
as an element of C[Y*][q™!] 2 C[(Y*)'][q™'].

Proof. When 8 € ®1V corresponds to 3 € (®1'V)', we know that 3 is of the same type (I or II) as /', and

we have
b(3) = dob'(3").
It follows from Lemma [5.1.9 and Definition [E.1.10] that
P(A.q) = P'(X,q") € Cld],

for all A € Y* and X € (Y*)’ that correspond to each other. The proposition then follows from Definition
9.2.9) O

Next we deduce a relation between the construction of Ay in for G and for G’. Denote by S’ the
counterpart of S for G'. Since G (resp. ) is adjoint, we know that X*(T)) (resp. X*(T")) has a Z-basis
consisting of the fundamental weights. It then easily follows from Lemma [2.6.1] (2) that we have

X*(T)g = X (1) 00 = X (8)

6,free
XH(T)g = XN(T)g gree = X*(S),

Jree

and we have natural identifications

IIZ

X*(8)
~ Q;,
m1(G)y = m (G,
Fix an arbitrary p € X, (T'). Choose p' € X, (T"), such that the image of y/ in X*(g’) corresponds to the
image of p in X*(S). Such p always exists because the map X.(T") = X*(T') — X*(8’) is surjective. It

\2

X*(8)
Q;

then follows that the image uf € 71(G), of yu and the image ()" € 71 (G"), of i/ correspond to each other.
Let [b] (resp. [V']) be the unique basic element of B(G, u) (resp. B(G’, 1')).

-~

Proposition 5.5.2. In the above setting, the elements A, € X*(S) and Ay € X*(g’) correspond to each
other, under the identification X*(5) = X*(8").

Proof. This immediately follows from the uniqueness in Lemma [2:6.4] O

6. THE MAIN RESULT

6.1. The number of irreducible components in terms of combinatorial data. We keep the setting
of and Thus we fix a reductive group scheme G over O, an element p € X, (T)T, and a basic class
[b] € B(G, 1) In this section, we relate the number of irreducible components .4 (u, b) to some combinatorial
data.

Asin we fix sg € N such that b is sg-decent. As in we assume S is divisible by the order d of
0, and various natural numbers s € N that are divisible by sgp. In particular, G will always be split over the
extension F of F. We shall write

gs = |ks| = [kp|.

By Corollary we have
(6.1.1)

() vol(G(OF)) ™ (BC, fus)(7s) = ST vol(Staby (Jy(F))) gl Xe®) 4 oglim Xu)),

ZeJp(F)\E*P (X, (b))
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By the dimension formula in Theorem [2.5.2] we have
. 1
(6.1.2) dim X, (b) = (u, p) — idef(;(b)
(since 7, is central). In particular, from (6.1.1) we get
p)—Ldefa (b
(6.1.3) (BC: fus)(s) = O(g"" 734100,

Proposition 6.1.1. With the notation in 5.7 we have

—Ldefq(b)

BCS(TL)(%) = q;(u,m (Bcs fu,S)('Ys) =+ O(QS 2 )

Proof. For A running over X *(T)*, the Satake transforms of f s, which we still denote by fy s, form a basis
of C[X *(JA“)]WO By the split case of Theorem [5.2.3] we have

= > Kp(a:)as M fass
xeXx*(T)+
where KZW\(-) is the absolute analogue of (5.2.2), i.e., it is defined by (5.2.2) with ¢ replaced by 1. It is clear
from Definition [5.1.10, Corollary [5.1.11} and (5.2.2), that K}, \(¢;") = 0 unless A < y, that

—1 —1
K, ,(¢5")=14+0(q; ),

and that
iala) =0(g")
for A < p. Therefore
(6.1.4) =g P f + > 0@ M) fas
xeXx=(T)+, A<p

Note that (6.1.3) is valid with 1 replaced by each A € X*(T)*, A < i, because we still have [b] € B(G, A). The
proposition then follows from (6.1.4) and the above-mentioned bounds provided by (6.1.3) with p replaced
by each A < p. ]

Corollary 6.1.2. We have

(6.1.5) BO,(m)() =e(h) D vol(Stabz(Jy(F)~as MO+ (g, HI),
Zedy(F)\Xtor(X)
roof. 1S I0IIOWS compinin 1. 1. all roposition [6.1.
Proof. This follows by combining (6.1.1), (6.1.2), and Propositi 0

Theorem 6.1.3. Assume the Haar measures are normalized such that vol(G(Op)) = 1. There exists a
rational function S, ,(t) € Q(t) that is independent of the local field F' (in the same sense as Corollary
, such that

(6.1.6) Sup(0) = A (u,b),
(6.1.7) Sun(qr) = e(Jy) > vol(Stabz (J,(F))) ™!,
ZeJp(F)\StP (X, (b))

and such that

—Ldef~(b . _ —Lldefa (b
(6.1.8) Susla)as Y = 3T dim V(e My, (a7 + ol 2 ).
AeX*(8)+
In particular
. Ldefg(b) . —
(6.1.9) Supla) = lim g2 Y dim Vi (Wt My, (1)
Aex*(8)+
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Proof. Fix a set of representatives {Z;|1 <i < .4 (u,b)} for the J,(F)-orbits in X*°P(X,(b)). For each Z;,
let Rz, (t) € Q(t) be rational function associated to Z; as in Corollary [3.2.5] Let
N (11,b)
S =e€ J(, Z RZ

Then S, 4(t) € Q(t) and it satisfies (6.1.6), (6.1.7). It follows from Corollary [3.2.5 and (6.1.5) that

Ldefq (b — Ldefg (b
BC,(71)(7s) = Spup(@r)as 217" + o(gs 247 ®),
Comparing this with Corollary [5.4.2) we obtain (6.1.8). .

The upshot of this theorem is that the right hand side of is purely combinatorial and can be
computed in certain instances using Kostant’s partition function Pkos(A, q). Moreover the fact that S, 4(¢)
is a rational function independent of the local field F', means that it is in principle determined by its values
Su.b(gq1) for infinitely many choices of g¢;. Once S, 4(t) is determined, the number .4 (u,b) can be read off

from (6.1.6).

6.2. The case of unramified elements. In this subsection we apply Theorem to prove Conjecture
[2.6.6) for unramified and basic b. This is a new proof of a theorem of Xiao and Zhu Theorem 4.4.14].

We keep the setting of Assume in addition that b is unramified, in the sense of [XZ17, §4.2]. Then
we have J, =2 G, and hence defg(b) = 0,e(Jp) = 1. By Theorem we would like to compute

. . 0 -1
Jim Y dim V(A M, (017).
AeX*(8)+

We have the following result.

-~

Proposition 6.2.1. Let A € X*(S)". Consider s € soN. We have

1, if A=\

m; (@) =
O 1 )
o O(qy *®) for some a € Rsg,  otherwise

Proof. Firstly, by Lemma 4.2.3], Ay € X*(g) is the unique element such that /\1(75) = sv,, for one (and
hence all) s € soN. (In particular, A, € X*(S)* as v, is central.) Thus the dichotomy in the proposition is
the same as whether \(*) — su;, = 0 for one (and hence all) s € soN.

Let w € W1, Since wp¥ — pV is not in Rt for w # 1, it follows from Definition and Definition
that

Mo(q~') =1€Clg™"].

This proves the case A\(¥) = su,.

Now assume \(®) # sy, (for all ). Fix an arbitrary Q-basis {f1, -, f.} of

spang(p® ) CY* @ Q.

For any v € spang(r®¥'"), we write

T

v = Zci(v)fh ci(v) €Q

i=1
for the expansion.

Fix w,w’ € W'. We write p, := \*) — s13, and ¢, := w e (w'p,). By the formula (5.2.4), it suffices to
show that

(6.2.1) P(s a1 ') = O(gr ™)
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for some a > 0.

If 95 ¢ RT for some value of s, then by definition P(¢, ¢~ ') = 0 € C[g~!]. Hence we may ignore these
values of s.

On the other hand, we claim that if 1, € RT for some s € sgN, then v, € R for all n € N. In fact, the
assumption that 1, € RT is equivalent to that

(6.2.2) ww'ps € RT 4+ p¥ —wp”.
From (6.2.2) it follows that
ww' pins = n(ww'pg) € nRT +n(pY —wp¥) C RT +p¥ —wp”,

from which v,, € RT.
We thus assume that 1, € R for all sufficiently divisible s. Then (6.2.2) holds, and in particular

ww' s € spang(p®Y") — {0}

Hence there exists ig € {1, -+ ,r} and ¢y € Q — {0}, such that for all sufficiently divisible s, we have
(6.2.3) i (ww'ps) = s .
By Proposition (2), we have
(6.2.4) PWsar )] < #P(ws) a7,
where

Ng:=min{|m|: m € P(¢s)}.
Let
A= eiy (wp” = pY)| € Rxo
B :=max {[c;,(8)| : B € p®" T} +1 € Ry
Then for all sufficiently divisible s we have
|ciq (¥s) = i (W' )| < A,
Vm € P(ts), Bm| 2 ciy(¥s).

It follows that
N, > B ey (1) > B (e, (wu' ps) — A) B (sco — A).

Since B! and ¢, are both non-zero, there is a constant Ny > 0 such that
(6.2.5) N, > Ngy-s

for all sufficiently divisible s.
On the other hand, because for each 1 < i < r the coefficient ¢;(1s) € Q is an affine function in s, there
exists a constant L > 0 such that
max {|m|:m € P(¢)5)} < Ls

for all sufficiently divisible s. It then easily follows that
Ls Ls

(6.2.6) HP(s) = > #P() < Y 1FEET) < (L)
=1 =1

for some constant M > 0. The desired estimate (6.2.1)) then follows from (6.2.4), (6.2.5), and (6.2.6). O

Theorem 6.2.2. In the current setting, A (p,b) = dimV,,(A\p)re1. Moreover, for any Z € X*°P(X,, (b)), the

group Stabz(Jy(F)) is a hyperspecial subgroup of Jo(F) = G(F).
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Proof. Let S, (t) € Z(t) be as in Theorem By (6.1.9) and Proposition [6.2.1} we have
S,u,b(ql) = dim V,u()\)rcla

where A is the unique element of X*(;SA‘)Jr such that A(*0) = squ,. By varying the local field F, we see that
Su.b(t) is the constant dim V},(Ap)rer. In particular

‘/V(Mv b) = Su,b(o) = dim Vu()\b)rel-
For the second part, recall that according to our normalization each
vol(Staby (J,(F))) < 1,

where equality holds if and only if Staby(J,(F')) is hyperspecial. On the other hand, combining (6.1.6) and
(6.1.7) and the fact that S, ,(¢) is constant, we have

N (1, b) = > vol(Stab (J,(F))) ™.
ZETy(F)\Z'P (X, (b))
It follows that each vol(Stabz(J,(F'))) must be 1. O

Remark 6.2.3. Arguably the hardest part of the proof of the corresponding result in is to show that
the stabilizer of any irreducible component in 3*P(X (b)) is hyperspecial.

Remark 6.2.4. In Theorem we assume that b is basic. One can show as in Proposition that the
general unramified case of Conjecture [2.6.6) reduces to the basic unramified case.

6.3. The general case. We now prove the general case of Conjecture [2:6.6] By Proposition there is
no loss of generality in assuming that G is adjoint and F-simple, and that [b] € B(G) is basic. In particular
7, = 0. We keep the setting and notation of In the following, we do not fix a prescribed pu € X, (T)™
such that [b] € B(G, p).

As in Definition we have A, € X*(§) Denote by )\b+ the unique element in the W!-orbit of A\, that
is in X*(§)+. We define (cf. the discussion before Lemma

A(b) = {)\ EX*(S)TAAN, A— N € @é}.

Since G is F-simple, all the simple factors of G have the same Dynkin type. We refer to this type as
the type of G. The following proposition is the key result towards the proof of Conjecture 2.6.7]

Proposition 6.3.1 (Key estimate). Assume G is adjoint, F-simple, and not of type A. Let [b] € B(G) be
a basic class. Assume [b] is not unramified.

(1) Assume G is not a Weil restriction of the split adjoint Eg. For all X € A(b), there exists a > 0, such
that

_ —s(idefa(b)+a
(6.3.1) MY, (q7h) = Ofg, "2+,

~

Moreover, there exists py € X*(T)" that is minuscule, such that [b] € B(G, 1) and dim 'V, (Ap)re1 = 1.
(2) Assume G is a Weil restriction of the split adjoint Eg (necessarily along an unramified extension of F').

Then there is an element Apaq € A(b) with the following properties:

o For all A € A(b) — {Abad}, there exists a > 0, such that

_ —s(idefa(b)+a
(6.3.2) MY, (g77) = O(gy "o+,
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o There exist i, po € X*(f)“‘, such that py is minuscule and pe is a sum of dominant minuscule
elements, such that b € B(G, u1) N B(G, p2), and such that

dim ‘//Ll (Ab)rel = 17 Vll.l (Abad)rel = Oa V#Q (Abad)rel ?é 0.
The proof of Proposition will occupy §7] below. We now admit this proposition.

Theorem 6.3.2. Conjecture holds for G adjoint, F-simple, not of type A, and for [b] € B(G) basic.

More precisely:

o If[b] is unramified, then our proof is logically independent of the approaches in [XZ17|, [HV1T)], or [Niel8a].

o If [b] is not unramified, and if we are in the situation of Pmposz'tion , then our proof depends on
results from [HV17].

o If [b] is not unmmzﬁed and if we are in the situation of Proposztwnu @ then our proof depends on
results from [Niel&al.

Proof. If [b] is unramified, then the present theorem is just Theorem (which is also valid for type A).
From now on we assume [b] is not unramified.

Assume we are in the situation of Proposition (1). By Theorem and Proposition (1, for
all 4 € X,.(T)* such that [b] € B(G, u), we have

Ldefe(b)

Su7b(q1) dimV, ()\b)rel 1111’1 q m}\+ (5)(q1 )

In particular, we have

dimV, ()\b)rel
dim V,,, (Ap)rel

By varying the local field F' (whilst preserving the affine root system of G) we conclude that

Suplq) = Sy v(q1) = dim Vi, (Ap)re1 Spuy (1)

Sﬁ’b(t) = dim V#()\b)relSﬂl,b(t) S (C(t)
In particular
JV(}L, b) = Sﬂ,b(O) = dlm V#()\b)relSm’b(O) = dlm VH(Ab)rell/V(,Ll,l,b).
On the other hand, since p1 is minuscule, it is shown in Theorem 1.5] that
</V(,u1, b) S dlm V}_L1 ()\b)rel'
Since A" (p1,b) is a positive natural number and dim V),, (Ap)re1 = 1, it follows that .4 (u1,b) = 1, and that
L/V(,LL, b) = dlm Vp(Ab)rely

as desired.
Now assume we are in the situation of Proposition [@). Denote

dy = dim Vuz (Ab)rela ds := dim Vﬂz (Abad)reb

By assumption da # 0. By Theorem and Proposition [6.3.1] “ . for all 4 € X,(T)T such that [b] €
B(G, i), we have

Ldef e (b)

. 1 def (b
(6-3-3) S/A,b(‘h) = Slggo dimV, ()‘b)relqs o )mer( >(Q1 )JF dimV, ()‘bad)relqs Sm}\(s) ( 1) .

In particular, taking 4 = @1 and ps, we obtain

Ldefq (b)

(6.3.4) S p(qr) = lim ¢ fmﬁ (@)
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. Ldefg (b — Ldefg (b —
(6.3.5) Sap(@) = lim |dagd ™M, () + daa? ™M (07|

A bad

Comparing (6.3.3) (6.3.4) (6.3.5), we obtain

dim Vu (Abad)rel

Su,b((h) = dim VM(/\b)reISul,b(Q1) + a5

(Su.6(q1) = d1Sp, b(q1))-

By varying F', we obtain

dim Vp, ()\bad)rel
d2

as an equality in C(¢). Since pq, g2 are sums of dominant minuscule elements, the main result of [Niel8a]

(6.3.6) Sup(t) = dim V,,(Ap)re1Spy v (t) + (Spua,b(t) = diSu, u(1)),

implies that
A (p1,0) =dimV,, (Ap)re =1
N (p2,b) = dim Vy,, (Ap)rel = di.
Consequently we have S,, 4(0) =1 and S,,, 5(0) = d;. Evaluating at t = 0, we obtain

dim V,u, (>\bad ) rel
da

as desired. 0

JV(/L, b) = S,u,b(o) = dim V;L()\b)rel + (d1 — d1) = dim V;L()\b)rel

Corollary 6.3.3. Conjecture [2.6.7 is true in full generality.

Proof. By Proposition [2.6.8] we reduce to the case where G is adjoint and F-simple, and [b] is basic. If G is
not of type A, the conjecture is proved in Theorem If G is of type A, the conjecture is proved by Nie
[Niel8al. O

The rest of the paper is devoted to the proof of Proposition [6.3.1]
6.4. Reduction to the absolutely simple case.

Lemma 6.4.1. Proposition [6.3.1] holds true if it holds for all G that are absolutely simple and adjoint, not
of type A.

Proof. Let G be as in Proposition not necessarily absolutely simple. Fix a basic [b] € B(G) as in
Proposition Let G’ be the auxiliary absolutely simple and adjoint group over F, constructed in
We keep the notation established there. Note that [b] is completely determined by kg (b) € m1(G),. We
construct a basic [V'] € B(G’) as in §5.5] such that kg (b) and kg (b') correspond to each other under the
identification

7T1(G),7 = 7T1(G/)U.

We write EDynk, for the extended Dynkin diagram of G and write Aut(EDynk) for its automorphism
group. We write |EDynk| for the set of nodes in EDynk.. Similarly for G'.
We claim that

(6.4.1) defe(b) = defar (b).

In fact, there is a natural embedding 71 (G) x (6) — Aut(EDynk) given by the identification of 71 (G) with
the stabilizer of the base alcove 2, and def;(b) is computed as the number of #-orbits minus the number
of [u] x 0-orbits in |[EDynks|. Here [u] € 71(G) is any lift of kg(b) € m(G),. Similarly, choosing a lift
1] € m1(G") of kg (b'), we compute defg:(b') as the number of §’-orbits minus the number of [u'] x 6'-

orbits in [EDynk.|. Now by construction, EDynk, is identified with a particular connected component of
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EDynk. We may thus embed Aut(EDynk/) into Aut(EDynk.) by extending the action trivially to other
connected components. Then inside Aut(EDynk;) we have the following relations:

do—1

0 =6%, m(G)=@)o'm (G0
=0

In particular, we have an embedding 71(G’) = %71 (G")0° — 71 (G). We may arrange that [u] is the image
of [/] under this embedding. Then we have

# {0-orbits in |EDynk|} = # {#'-orbits in |EDynk, |}
# {[p] x G-orbits in |EDynk |} = # {[1/] x 6’-orbits in |EDynk.|} .
The claim is proved.

Next, we naturally identify X*(g) with X*(§'). Then it is easy to see that A\, corresponds to A\, under
this identification. For clarity, we denote the analogue of the map (5.4.1)) for G’ as:

X*(8) — (v, A A,

The target of the above map is identified with Y*. Then since the identification Y* 2 (Y*)" amounts to the
diagonal map (5.5.2)), we see that

(6.4.2) \(dos) — ()

-~

for all A € X*(S).

Combining (6.4.1)), with Propositions we see that the bounds (6.3.1) and (6.3.2) in
Proposition for (G,b,s := dps’) reduce to the corresponding bounds for (G’,b’,s’). In the situation
of Proposition @), we define Apaq for (G,b) to be equal to that for (G',¥’), under the identification
A(b) = A(Y).

Finally, by hypothesis the desired u} or {u}, ub} are already defined for (G',1’), as in Proposition
Under the identification we define p; € X.(T)" to be (u},0,---,0) for i = 1,2. O

7. PROOF OF THE KEY ESTIMATE, PART I

In this section we provide the first part of the proof of Proposition In Lemma [6.4.1] we already
reduced to the absolutely simple case. From now on until the end of the paper, we assume that G
is an absolutely simple adjoint group over F, not of type A.

As in the proof of Lemma we denote by EDynk, the extended Dynkin diagram of G, denote by
Aut(EDynk) its automorphism group, and denote by |EDynk| the set of nodes. Since b is not unramified,
we have kg(b) # 0, and in particular the groups 71 (G) and Aut(EDynk) are non-trivial. Since G is
absolutely simple, adjoint, and not of type A, we see that the following are the only possibilities for Dynk
and 6 (viewed as an automorphism of Dynk.):

1) Type B,,n > 2,0 = id.

Type Cp,n > 3,0 =id.

Type D,,,n > 4,0 =id.

Type D,,,n > 5,0 has order 2.
Type Dy, 0 has order 2.

Type Dy, 0 has order 3.

Type Fg,0 = id.

Type FEg, 0 has order 2.

Type E7,0 =id.
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In fact, the above are the only cases where Aut(EDynk;) is non-trivial.
In this part of the proof, we define an explicit subset A(b)go0a of A(b), and prove the estimate (6.3.1) or

" for all \ € A(b)good-
7.1. Types B,C,D,0 = id.

7.1.1. The norm method. We follow [Bou68, Chapitre VI §4] for the presentation of the root systems of
types By, Cy, Dy, and for the choice of simple roots. The root systems will be embedded in a vector space
E = R", with standard basis ei,-- , e,, and standard inner product (e;,e;) = J;; so that we may identify
the coroots and coweights with subsets of the same vector space. Following loc. cit., we define the following
lattices in E:

Lo :={(1, -+, én) € El& € Z}

Ly := {(517"' &n) € Lol Y & € QZ}
i=1

n

1
Ly := Lo+ Z(5 > e

i=1
We assume 6 = id, so that T = A,§ = T = A. The cocharacter lattice X, (T') is identified with the
coweight lattice in E. Moreover 71 (G) is equal to the quotient of the coweight lattice modulo the the coroot
lattice in E.
Since [b] € B(G) is basic, it is uniquely determined by kg (b) € m1(G), = m1(G). The defect def(b) of b
is computed in the way indicated in the proof of Lemma [6.4.1]
For any v = (&1, - ,&,) € E, we write

(7.1.1) v == [&] + -+ [&al-

It is easy to verify the following three facts.

(1) || is @ norm on E.
(2) |wv| = |v] for any w € Wy and v € E.

(3) For any coroot a¥ € ¥, we have |aV| < 4, where § = 2.

Now given any subset S of A(b), we define

(7.1.2) (8) = min ||

(The minimum obviously exists.) In the following, we will specify a subset A(b)go0q of A(b), satisfying
(7.1.3) D(A(b)good) > ¢ - defg(b)/2.

We show how to get the bound (6.3.1)) for all A € A(b)good, from (7.1.3).
Let A € A(b)gooa. Fix w,w’ € W. We write 1 := we (w'A(*)). By the formula (5.2.4), it suffices to show

that
(7.1.4) P (1), qfl) — O(ql—s(%defc(b)-&-a))

for some a > 0.
The same as ([6.2.4]), we have the bound

(7.1.5) 1P(s,ar V)| < #B(bs) - a7 ™,

where

Ny :=min{|m|: m € P(¢s)}.
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Suppose m € P(15). Then

53 mB) 2| S mBE] = 1] = [ww D] — wp = pY = 5] = C = 5 D(AB)go0n) — C.

BEFPV-T BERPV-T

where C' is a constant independent of s, and |-| is the norm defined in (7.1.1). Since § = id, we have
F®VT = &V and b(8) = 1 for all 8 € ®V'F. Hence the leftmost term in the above inequalities is none
other than ¢ |m|. It follows that

Ny > (sZ2(A(b)gooa) — C)6 .
By the above estimate and ([7.1.3)), we have

(7.1.6) ql—Ns _ O(qfs(%defc(b)ﬂ%'))

for some a’ > 0.
On the other hand, by the same argument as in the proof of Proposition [6.2.1] we have

(7.1.7) #P(1,) < (Ls)M

for some constants L, M > 0. The desired estimate (7.1.4) then follows from (7.1.5)) (7.1.6) (7.1.7).
In the following we specify the definition of A(b)ge0a satisfying (7.1.3)), for types B, C, D with 6 = id.

7.1.2. Type B,,,n > 2,0 =id. The simple roots are
Q] = €1 —€2, Qg =€2 —€3,",0p_1 =€p_1 — €Ep, 0y = €Ep.
The simple coroots are
a) =a;,1 <i<n, o =2e,.

The fundamental weights are
) 1
wi=ert el <i<n wy=olert o ten)
The coroot lattice is L, the coweight lattice is Ly. We have

Pr={(&, &G ELEG > &> > &, >0},

We have 71 (G) = Z/27Z, and the non-trivial element is represented by e; € Lg. Recall that we assumed that
kq(b) is non-trivial, so there is only one choice of k¢ (b) (and hence only one choice of the basic b € B(G, u)).
We have

Ap = —€p, )\;r =e;.

Since k¢ (b) acts on EDynk; via its unique non-trivial automorphism, we easily see (both for n = 2 and for
n > 3) that

defg(b) = 1.
We take
A(b)good == A(b),

and we have 2(A(b)) = 2. The inequality (7.1.3) is satisfied.
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7.1.3. Type C,,,n > 3,0 = id. The simple roots are
Q] = €] —€, Qg =€9 — €3, ,0p_1 = €p_1 — Ep, Ay = 2€n,.
The simple coroots are
aiv:ai,lgz’<n, aX:en.
The fundamental weights are
w;=e1+--+e, 1 <1< n.

The coroot lattice is Lo, the coweight lattice is L. We have

P+:{(§17a§n)€L2|§12522anZO}

We have m1(G) = Z/2Z, and the non-trivial element is represented by (3,---,3) € Lo. Since rg(b) is

non-trivial, we have

11 1 1 1 1

M= (—=. = —Z ... (=1)"= AP =(=.... D).
b ( 2a2a 27 a( ) 2)7 b (27 32)
Since kg (b) acts on the EDynk, via its unique non-trivial automorphism, we easily see that
n
defe(b) = (51

(i.e. the smallest integer > n/2.) We take
A(b)gooa = A(b)
and we have Z(A(b)) = (n + 2)/2. The inequality is satisfied.
7.1.4. Type D,,n > 4,0 =id. The simple roots are
Q1 =€) —€, Qg =€ —€3, " ,QAp_1 = €p_1] — €, Ay, = €p_1 + €.

The simple coroots are

oY

i = Oy

The fundamental weights are

wi:€1+"'+6i, 1§Z§TL*2

1
o1 = gler ezt ten1—en)

1
Wy = §(€1+62+"'+6n).
The coroot lattice is Ly, the coweight lattice is Ly. We have

P+:{(€17"' afn)€L2\€1Z§22an—12|§n|}

Case: n is odd. We have m1(G) & Z/4Z, and a generator is represented by (3,---,3) € Lo. For
i=1,2,3, we let b; € B(G) correspond to the image of i(%, -+, 1) in 71 (G). Then
n—2 ;
Ny (-p+v/ + 1 1
(7.1.8) Ap, = ; 5 €~ 5en-1 + — Ay, = (§7~-~ 75)
(7.1.9) >\b2 = —€n—1, )\;; = €1
n—2 ;
(GRS (-pe-br2 L_ 111
7.1.10 Apy = P I w2 A AF = (e 22,
(71.10) w3 e qe+ S L= gs)

Since up to automorphisms of Z/4Z, there is only one way that Z/47 could act on EDynk,, we easily see
that +3
defg(by) = defg(bs) = —
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Let

31 1
)\l,bad = (§7§a 7§a_2)
31 11
)\3,bad = (§a 57 Tty 55 5)
For i = 1,3, we obviously have A; baa € A(b;). We take
(7.1.11) A(bi)good == A(b;) — {Aibaal-
Then A
n -+
P(A(bi)go0a) = "5

The inequality (7.1.3) is satisfied.
For i = 2, we take

A(bQ)good = A(bg),
and we have 2(A(b2)) = 3. The inequality (7.1.3) is satisfied.
Case: n is even. We have m1(G) = Z/2Z x 7/2Z. The three non-trivial elements are represented by

Lo Dy e (L. 1)+ e € Ly Correspondingly we have
(2? 72)7 1?(25 )2 1 2 P gly
n—2 ;
(—1)° 1 (—1)"/? S| 1
(7.1.12) Ny, = ; 5 pen-1 T e, A= (5,... 75)
(7.1.13) Aoy = —€n_1, A=el
n—2 ;i

e (1) 1 (—1)n/241 S| 11

(7.1.14) Ap, = Z; 5~ gen—1 o ——en, M= G35

Since kg (b1) and k¢ (b3) are related to each other by the automorphism of the based root system e, — —e,,
it is clear that they correspond to the two horizontal symmetries of order two of EDynk,. On the other
hand, the action of kg (b2) on EDynk is of order two, is distinct from the two horizontal symmetries, and
commutes with the two horizontal symmetries. Hence this must correspond to the vertical symmetry of
EDynk, that has precisely two orbits of size two and fixes all the other nodes. Thus we have

defg(by) = defg(bs) = —

2, def(;(bg) = 2.

For i =1,2,3 we take
A(bi)good = A(bl>

Then we have )
D(Ab1) = Z(A(bs) = "2, D(A(ba)) = 3.

2
The inequality (7.1.3) is satisfied.

7.2. Type D,,n > 5,0 has order 2. The simple (absolute) roots and coroots are the same as in §7.1.4]
embedded in E = R". We identify E with X, (T) ®z R. Then 6 acts on E by

(617"' 7571) = (517"' 7677,717_677,)'

The subgroup X, (A) C X, (T) = Lo is given by {(&1,-++,&,) € Lalé, = 0}. Let Ly C Q"' be the analogue
of Ly, namely Lj = Z"~' + Z(%,--- , 1). The quotient X.(T) = Ly — X*(S) is the same as

L2 —>L/27 (517"’ 7571) = (51,"' agnfl)-

The map
() : X*(8) — X, (A), A A®)
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(for s € 2Z>1) is given by
(721) L/2 — X*(A)7 (517 e 7§n—1) — (5513 e 75€n—1a 0)

The set »®V'F, as a subset of X,(4), is equal to

{eite1<i<j<n—-1}U{21 <i<n-—1}.
We have
ble; £ej)=1,1<i<j<n-1
b(2e;)=2,1<i<n-—1.
Moreover p®V is reduced. We have
Pr={(&, &) eLlafei 26> > 126 =0}
X*(§)+ = {(61’ T >§ﬂ*1) € X*(S‘\) = L/2|£1 >8> 261 2> 0} '

We again write ey, - ,e,_1 for the standard basis of X*(g) ® Q = Q"!. The relative simple roots in

@é c X*(8) are:
€1 —€2,62 —€3, " ,6p_2 —€Ep—-1,Epn—1

(i-e., the same as type B,_1.)

Case: n is odd. We have 71(G) = Z/4Z, and o acts on 71 (G) by the unique non-trivial automorphism

of m(G). Hence 71 (G), = Z/27Z, and the non-trivial element is represented by

1 1 1 1
—5(61 —eg) — —(e3—eq)- - — i(en,g —en—1)+ ien € Ly = X.(T).

The image of the above element in X *(§) ® Q = Q" ! is obviously equal to a linear combination of the
relative simple roots in Q; with coefficients in Q N (—1,0]. Hence this image is Ay, and so

11 11 1 N
=(—= - . == = n = X*
)\b ( 272a ) 2’2)6(@ (S)®Q
1 1 ~
A;:(i,m,i)eQ”*:X*(S)@o@.

If  is any generator of 71 (G) = Z/4Z, then the number of orbits of v x ¢ in [EDynkg| is 2 + 252, while
the number of orbits of 6§ in |EDynk| is n. Hence
n—1

5

(7.2.2) def(b) =
We have

(7.2.3) A(b) = {(51 + %, yEn—1+ é) € X*(éA‘) =Lh& €T, &1 >8> >6,12>0,6 > O}.

We take
A(D)gooa := A(D).
In the following we show for all A € A(b). The proof is similar to the argument in
Fix w,w’ € W'. We write 1, := w e (w’'\(*)). By the formula , it suffices to show that

_ —s(idefg(b)+a
(7.2.4) Pt qp ") = O(gy “FreOH)
for some a > 0. Again we have the bound
(7.2.5) P, ar V)] < #P(s) - g1 ™,
where

Ng:=min{|m|: m € P(¢s)}.
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Suppose m € P(15). We keep the definition (7.1.1) of the norm |-| on £ = R™. Then

2 > mB)=| D mB)B|=vs| > )wwws) — Jwp” — p¥| = \Ms) -,
BEFPYT BERDV-T
where C is a constant independent of s. By (7.2.1) and (7.2.3)), we have
+1
OIS
‘ =%

On the other hand
2lm[:==2 Y m(BpB) =2 > mp).
BEFRPVT BeER®Vt
In conclusion we have

(7.2.6) 2m| > s - +C.

n+1

2
Combining (7.2.2) (7.2.6) and (7.1.7) (which holds in general), we obtain the desired (7.2.4). Note that in
the above proof, we only used the fact that ”7“ > def(b).

Case: n is even. We have 71 (G) & Z/2Z x Z/2Z. The action of o on 7, (G) swaps the classes represented

by (3,---,4)and (1,--,31) + €1 € Lo, and fixes the class represented by e;. Hence m(G), = Z/2Z, and
the non-trivial element is represented by
1 1 1
75(61 — 62) — 5(63 — 64) s — 5(671_1 — en) S L2 = X*(T)

The image of the above element in X *(§) ® Q = Q" ! is obviously equal to a linear combination of the
relative simple roots in @é with coefficients in Q N (—1,0]. Hence this image is Ay, and so

11 1 _ wy S
Ab:(_§7§7a_§)eQn1:X(8)®Q
1 1 P
N =) e =X"S) e

Let v € m1(G) be the class of (,-+,1) € L. We have seen in that ~ acts on EDynk. via one
of the two order-two horizontal symmetries of EDynk.. Hence v x o acts on EDynk., via one of the two
order-four horizontal symmetries of EDynk., and the number of orbits is 1 + "T_Z = 5. On the other hand
the number of orbits of  in |EDynk| is n. Hence

n
The set A(b) is again given by (7.2.3)). We take

A(D)gooa := A(D).
The proof of (6.3.1) for all A € A(b) is exactly the same as in the odd case, using the fact that %3 > def(b).
7.3. Type Dy4,0 has order 2. The difference between this case and is that the D, Dynkin diagram
has three (rather than one) automorphisms of order two. However we explain why the proof of (6.3.1) for

all X € A(D)good := A(b) is the same. In fact, there exists a permutation 7 of {1, 3,4}, such that the root
system can be embedded into R* with simple roots:

Qr(1) = €1 — €2, Qg = €2 — €3, Qr(3) = €3 — €4, Qr(4) = €3 1 €4,

and such that 6 acts on R* by ey — —ey.
If 7 = 1, then the extra node in EDynk. is given by ag = —e; — e2, and the proof is exactly the same

Q

as §7.20 For general 7, we still have 71(G), = Z/27Z and hence a unique choice of b, and the only place
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in the proof in that could change is the computation of defs(b), as the extra node in EDynk is no
longer given by —e; — es. However, it can still be easily checked that as long as kg (b) € m1(G)s 2 Z/27Z is
non-trivial, we have

4
In fact, this follows from the observation that for any order-two element v € 71 (G) = Z/2 x Z/2 that is not

fixed by o, the action of v x @ on |EDynk| must be of order four and have two orbits.

7.4. Type Dy, 0 has order 3. In this case m1(G) = Z/2Z x 7Z/2Z. We know that 6 acts on 71(G) by an
order-three permutation of the three non-trivial elements. Thus 7 (G), = 0 and any basic b is unramified.

7.5. Type Fg,0 = id. We consider the root system Eg embedded in R, which we will consider as R3 @
R3 @& R3. The set of roots is given by the 18 elements consisiting of permutations of

(1,-1,0;0,0,0;0,0,0)

(0,0,0;1,-1,0;0,0,0)

(0,0,0;0,0,0;1,—1,0)

under the group S3 X S3 x S3, together with the 54 elements given by the permutations of
2 1 12 1 1 2 1 1

(§37§77§7 gafgafg : 5775775)
(211211 211
3’3’3 3’3’3 333

under the same group. We will call the first set of roots type A roots, and the second set type B roots. A
type A root is positive if and only if the coordinate 1 appears to the left of the -1. A type B root is positive
if and only if the first coordinate is positive.

A choice of simple roots is given by
ay = (0,0,0;0,1,—1;0,0,0)

Q2 = (anaoa 17 _1a0507070)

Lo21 211 211
373’3 333 333

ay = (0,1,-1;0,0,0;0,0,0)

a5 = (0,0,0;0,0,0; 13 _170)

ag = (0,0,0;0,0,0;0,1,—1).

g =

The corresponding Dynkin diagram is

1 2 3 5 6
[e] o o o [e]
(¢]

4

Under the standard pairing of R? with itself, each root is equal to its own corresponding coroots. We
therefore identify R? with its dual and do not distinguish between roots and coroots. The subspace of R?

generated by the roots is given by the equations
(7.5.1) T1+Tot+ a3 =24+ T5+x6=207+23+29=0

where x; are the standard coordinates. The fundamental weights are given by

(2 1 111 2000)
W1 =575 5575 5

1 37 37 3a373a 3777
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4 2 2 2 1 1

= 7,77377;7777377;07070
==(373733 7373 )
w5 = (2,—1,-1;0,0,0;0,0,0)

w4 = (1,0,-1;0,0,0;0,0,0)

4 2 2 2 1 1

= (5, -2,-2,0,0,0;2, =, —=

Ws (37 3a 37 y Uy 737 37 3)
2 1 1 11 2
w6_(57_§a_51070a07§7§7_§)

For an element \ = Z?:1 a;w; with a; € Z, we have X lies in the root lattice if and only
(7.5.2) as —ag —as+a; =0 mod 3

and we have 71 (G) = Z/3Z, with the isomorphism being given by
6
A= Zaiwi —as —ag —az +a; mod 3.
i=1
Moreover A is dominant if and only a; > 0 fori =1,...,6.
We let b;, i = 1,2 denote the non-trivial elements in 71 (G). We have
)\2_1 = Wi, )\2_2 = We
We set
A(b1)good 1= A(br) — {ws, @y + w1, w2 + @, 2006}
A(D2)gooa := A(b2) — {w2, w4 + wg, w5 + w1, 201 }
We let |-| be the standard Euclidean norm on R?. Then || is Wy-invariant, and we have |o"| < § := /2,
for all ¥ € ®V. Given any subset S of A(b;), we define
2(S) :=min |}|.
AES
We claim that
D(A(b1)good) > V5, P (A(b2)good) > V8.
Since defg(b) = 4 (which we know by counting orbits of the unique non-trivial symmetry of EDynk.) and

§ = /2, the claim will imply the inequality l) and by exactly the same argument as in 5., we
conclude that (6.3.1)) holds for all A € A(b;)good-
We now prove the claim. By the obvious symmetry of the Dynkin diagram

16
245
33
44,

it suffices to only discuss A(b1)good-
Let A = Z?:1 aiw; € A(b1), with a; € Z>o, and suppose |\| < v/8. We will show

|A| € {ws, w4 + w1, w2 + we, 2006 }-
Since A € A(by), we have by that
(7.5.3) as —ag —az+a; =1 mod 3.
By looking at the first three coordinates of A and using the triangle inequality, we easily obtain the inequalities

a1§37 a2S17 CE3S1, CL4S3, G/5S1, GGSS-
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If ag = 1, then we have a; > 0 for some i # 3 since A € A(by), hence a3 = 0.

If as = 1, we have a5 = 0 and a1, a4,a6 < 1 (by looking at the first 3 coordinates). We check each case
and see that only A\ = ws + wg is possible.

If a5 = 1, we similarly obtain that A = wjy is the only possibility using .

The only cases left are when the only non-zero coefficients are aj, a4, ag. Again by looking at the first
three coordinates, we see that a; + a4 + ag < 3. We check each case and see that the only possibilities are
A =t + wy and A\ = 2.

7.6. Type Eg,0 has order 2. We keep the notation §7.5] Then 6 acts on the root system via the action
on R? given by

(21, X2, T3; T4, T5, Te; T7, T3, Tg) v (T1, T2, T3; X7, Tg, To; T, Ts, Tg)-
It therefore acts on 7 (G) by switching the two non-trivial elements. Hence m1(G), = 0 and all basic elements
are unramified.

7.7. Type E;,0 = id. We consider the root system E7 as a subset of R8. The set of roots is given by the
56 permutations of
(15 _17 Oa 07 07 07 07 0)

and the (i) permutations of

(1 111 1 1 1 1)
272’2’2" 27 27 27 27
A set of simple roots is given by
a1 = (0,0,0,0,0,0,—1,1)
Qg = (070307()’07_17 170)
a3 = (07070a07 717 170’0)
as = (0,0,0,—1,1,0,0,0)
_(1 111 1 1 1 1)
Q5 = 2a272727 27 27 27 9

Qg = (07 07 _15 17 07 Oa 0? 0)
a7 =(0,—-1,1,0,0,0,0,0)
The corresponding Dynkin diagram is

1 2 3 4 6 7
e} [¢] e} e} o o

5

Under the standard pairing of R® with itself, roots correspond to coroots and we therefore do not distin-
guish between them. The subspace of R® generated by the roots is the hyperplane given by the equation
Zf:l zi =0.

The corresponding fundamental weights are given by
31 1 1 1 1 1 3)

4’ 4 4 4 4 4 44

_ (3 1 1 1 1 11 1)

T Ty Ty Ty 22
O 8.3 3 3111
4’ 4 4 4 4°4°4°4

wy = (3,-1,—-1,-1,0,0,0,0)
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r 1111 11 71)
LYY YTy Yy,
we = (2,—1,—1,0,0,0,0,0)

W5:(

w7 = (1,-1,0,0,0,0,0,0).
For an element \ = ZZZI a;w;,a; € Z, we know A lies in the root lattice if and only if
(7.7.1) a1 +as3+as =0 mod 2
and we have 71 (G) = Z/2Z. By assumption kg(b) € m1(G) is the non-trivial element. Then we have
/\2' = wy.
We set
A(b)good := A(b) — {ws}.

We let |-| be the standard Euclidean norm on R®. Then || is Wy-invariant, and we have |o¥| < § := /2,
for all ¥ € ®V. Given any subset S of A(b), we define

2(8) := min Al
We claim that
V22
Z(A(b)good) > 5

Since defg(b) = 3 and 6 = v/2, the claim will imply the inequality 1} and by exactly the same argument
as in §7.1.1 we conclude that (6.3.1)) holds for all A € A(b)good-

We now prove the claim. Suppose A\ = ZZ:1 a;N\; € A(b) with a; € Z>, and |A| < v/22/2. We will show
that A = ws. By looking at the first four coordinates, we obtain the trivial inequalities:

w1 <2, wy<1 wz3=0, wyg=0, w5 <1, wg<1, wr <L

We also obtain ZZ:1 a; < 2. It is not hard to see that A = wy is the only possibility.

8. PROOF OF THE KEY ESTIMATE, PART II

In this part, we finish the proof of the bounds and in Proposition m
In §7| we already proved and for all A € A(b)gooa. Moreover the A(b)gooa C A(b) is a proper
subset only in the following three cases:
Proper-I: Type D,,,n > 5,nis odd, § =id, b = by or bs. See
Proper-II: Type Fg,0 =id,b = by or bs. See
Proper-III: Type E7,0 = id. See

8.1. Combinatorics for D,,. In order to treat the case Proper-I, we need some combinatorics for the type
D,, root system. The material in this subsection is only needed in the proof of Proposition below.

Let n be an integer > 5. We keep the presentation of the type D,, root system in a vector space R", as in
In particular we keep the choice of positive roots. We do not distinguish between roots and coroots.
Let ®p, be the set of roots and let @En be the set of positive roots. Thus

of ={eitel<i<j<n}.

If m > n is another integer, we embed R™ into R™ via the inclusion {e;,---,e,} < {e1, -+ ,en} of the

standard bases. Thus we view ®p, (resp. ®7, ) as a natural subset of ®p,, (resp. ®}, ).
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8.1.1. We introduce some terminology for trees. An out-tree is a tree where one vertex is specified as the
om’ginﬂ denoted by O, and all the edges are oriented away from the origin. On an out-tree .7, for every
vertex v except the origin, there is a unique vertex w that is connected to v by an edge pointing from w to
v. This vertex w is called the parent of v. Conversely, v is a child of its parent. A vertex that does not have
children is called an end vertex. By a path on 7, we mean a sequence of vertices (vg, v1,- -+ , V), such that

each v; is the parent of v;11. Such a path is called complete, if v9 = O and vy, is an end vertex.

Definition 8.1.2. By an admissible D,,-decorated tree, we mean a triple (7, a, ), where .7 is a finite
out-tree that has at least three vertices, and o, 8 are maps

a : {vertices of .7 except the origin} — &7,
v = av)
B : {vertices of .7 except the end vertices} — @7,

v B(v),
satisfying the following conditions:

(1) Each vertex is either an end vertex or has precisely two children. (In other words .7 is binary.)

(2) For each vertex w that is not an end vertex, let v,  be the two children of w. We require that a(v)—«(?) €
{£B(w)}. Moreover, if a(v) —a(t) = B(w), then we call v a positive vertex and call 7 a negative vertex.

(3) For every complete path (vo = O, v1,--- ,vx), we require that G(v;) are distinct, for 0 <i < k — 1.

(4) For every complete path (vg = O, vy, -+ ,vg), we require that a(v;) are distinct, for 1 <14 < k.

Ezample 8.1.3. We can visualize an admissible D,,-decorated tree in a diagram as follows. At the location

of the origin, we mark | O || S(O)|. At the location of each vertex v # O, we mark | a(v) || 8(v) | if v is not
an end vertex, and we mark if v is an end vertex. For example, the diagram

’61762”63764‘ €1 — €3

o a) [a—al

depicts an admissible Ds-decorated tree, with five vertices and four edges.

Definition 8.1.4. Fix an arbitrary sequence of signs v = (13, - -+ ,v,) € {£1}""'. We say that an admissible

D,,-decorated tree (.7, a, B) is good with respect to v, if for every complete path (O, v1, - - - ,vx) the intersection
{e1 +vje;2<j <n}n{a(v)l <i<k}
has exactly n — 2 elements.

Proposition 8.1.5. For each oddn > 5 and each sequence of signs v = (va,--- ,v,) € {£1}" 7", there exists

an admissible D,,-decorated tree that is good with respect to v.

6This is usually called the root of the tree, but we avoid this terminology to prevent confusion.
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Proof. We prove by induction on n. We use the graphic presentation introduced in Example[8.1.3] The base
case is n = 5. It can be easily checked that the following is an admissible Ds-decorated tree that is good
with respect to v.

’O || €9 — VolV3€3

’81 + 1aes || es — vavgey ‘ ’ e1 + vses || ea — vavgey ‘

’61 + vse3 || es — vavses ‘ ’61 + vaeq || e3 — v3uses ‘ ’61 + ey || es — vavses ‘ ’61 + vaeq || e2 — vouses ‘

’61+U464‘ ’614—1/565‘ ’61+V363‘ ’€1+V5€5‘ ’614—1/464‘ ’€1+V5€5‘ ’€1+V2€2‘ ’€1+V565‘
Now assume the proposition is proved for n, and we prove it for n+2. Let v = (va, -+ ,Vp42) € {il}"+1
be arbitrary. Denote by v/ the sequence (vg,--- ,v,). By induction hypothesis there exists an admissible

D,,-decorated tree (9’,@’,@') that is good with respect to v/. For each end vertex v of 7', we shall glue a
new admissible D, o-decorated tree to v (i.e., we identify v with the origin of this new out-tree). We then
check that after all the gluing we obtain an admissible D,,2-decorated tree that is good with respect to v.
In the following we denote for simplicity f; := v;e;, for 2 <j <n+2.

Let v be an end vertex of .7/, and let (O, vy, -+ , v = v) be the complete path from O to v. By assumption,
the intersection

I={ei+ f;|2<j<n}in{a(v)]l <i<k}

has exactly n — 2 elements. Let 2 < j < n be the unique index such that e; + f; ¢ I. In this case we glue
the following admissible D, -decorated tree to v:

vl e = vifars]

’61 + fi |l en+1 — Vngifrso ‘ ’61 + foye |l €5 — Vifat1 ‘

’61+fn+1‘ ’€1+fn+2‘ ’€1+fj‘ ’61+fn+1‘

We check that after all the gluing we obtain an admissible D, ;o-decorated tree (7, , 8) which is good
with respect to v. Conditions (1) and (2) in Definition are obviously satisfied. To see condition (3),
note that each complete path on .7 is of the form (vo = O, vy, , Uk, Vkt1, Vk12), Where (v, vy, -+ ,vk) iS
a complete path on .7’. By induction hypothesis 8(v;) are distinct for 0 < ¢ < k — 1. By construction 5(vg)
and B(vg41) are always distinct, and they cannot be the same as any of the 8(v;),0 < i < k — 1, because
B(vg), B(vgs+1) are in <I>J15n+2 - @gn. Thus condition (3) from Definition is satisfied. Similarly, condition
(4) from Definition and the statement that (.7, o, 8) is good with respect to v, follow easily from the

construction and the induction hypothesis. O
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Remark 8.1.6. In fact, the admissible D,,-decorated tree constructed in the above proof satisfies the following
extra property: For any complete path (O,vq, -+ ,v;), we have k = n — 2, and the set {a(v;)|]1 <i <k}
consists of n — 2 distinct elements of {e; + v;e;|2 < i < n}.

Lemma 8.1.7. Let n > 5 be an odd integer. Fix a real number M > n/2. Let @En be the positive (co)roots
in the type D,, root system in R™, and let |-| be the norm on V', as in CLety = (vg,--- ,vy) € {£1}"F
and t € N be arbitrary. Let \ be an element in the (co)root lattice, such that

[A — (61, 2tvg, 2tvs, - - -, 2twy,)| < t/M.

We keep the notation in with respect to p®V'T = (I)E,, and b =1. Let m € P(\). Assume there is a
subset I C {2,---,n} of cardinality n — 2, such that m(e; + v;e;) =0 for alli € I. Then
n

> 4— )t
lm| > (n + 2M)

Proof. Assume the contrary. For each 2 < i < n we write f; for v;e;. Let jo be the unique element of
{2,---,n} — I. Define m’ € P by:

0, cefert fil2<t1<n
V3 € of , m'(B) = pelatfl J
" m(3), else

Define

A/ — Z(m/)
Write

A=Mer+ Y Aifi,
i=2

with Aq, -+, A, € R. In fact it easily follows from our assumption that each A\; > 0, as \; is close to either

6t or 2t. We have
N = (i +mler = f)) fi + Ny Lo
icl
for some A} € R. Obviously
/
| =

Im'| = [m| — Ay,

so we have
2|m'| = 2|m| = 2M1 > [N = Y N\ +m(er — fi),

il
from which we get
0< Y mler—fi) <2[m| =2\ — > N
i€l el
4— Ve — o6t — /M) — [I] (2t — /M) = 0
i.e., 0 < 0, a contradiction. O

Proposition 8.1.8. Let n > 5 be an odd integer. Let v = (vo, - ,vy) € {:I:l}”_1 and t € N. Let
A= N = (68, 2twg, 2trsg - - -, 2ty,).

We keep the notation in with respect to p®V'T = @En and b = 1. We write T for @Bn. When t is
sufficiently large, the following is true: For any integer L in the interval [0, (n + 3.5)t], we have

D (CDEIHPOA- Y p)r =0.
SCo+t pes
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Proof. To simplify notation, in the proof we write A — S for A — Zﬁes B, for any subset S C ®*.

We fix an admissible D,,-decorated tree (.7, , 3) which is good with respect to v. This exists by Propo-
sition As usual let O denote the origin of 7. Let 2% denote the power set of ®*. For each vertex v
of 7 not equal to O, we define a subset C, C 22" as follows. Let w be the parent of v. If v is a positive

vertex, we let
C, = {s € 2% |B(w) ¢ s} .
If v is a negative vertex, we let
C, = {s € 2% |B(w) s} :
Now for each vertex v # O, we let (O, v1,--- ,vr = v) be the unique path from O to v, and define
k
D, = ﬂ Cy, C 9"
i=1
Also define
DO = 2<I>+.
From condition (3) in Definition |8.1.2} it is easy to see that if v, 7 are the two children of any vertex w, then
(8.1.1) D, = D, U Ds.
More precisely, if v is the positive vertex among v, v, then
(8.1.2) D, ={S € D,|8(w) ¢ S}
(8.1.3) Dy ={S € D,|B(w) € S},

and there is a bijection

(8.1.4) D, =5 Dy
S— Su{Bw)}.
Next, for any subset {v1,--+,7} C ®¥ and any X\ in the root lattice, we define the following subset of
P(\)p:
PO = {m € P(X)L|m(n) = - =m(y) =0}
For any vertex v # O with (O, v, -+, v, = v) the unique path from O to v, we define

]P)(A,)’Z = P()\/)%(Ul)v 70‘(Uk).
Also define

For any two vertices v, v2, we define
P(A’)Zﬁvz =P\ —P(N)P2.
Claim 1. Assume v, ¥ are the two children of a vertex w. Then
> CDEHPO -8 = Y (~DFIHPO - S); + Y (~1)SIHP( - 8)3.
SeD, SeD, 5eDy
To prove the claim, we may assume v is positive. In view of (8.1.1)), it suffices to show that
Do EDEHPO -9, + Y (“D)EIHPO - S)E ;=0

SeD, SeDy

In view of (8.1.2), (8.1.3)), and the bijection (8.1.4), it suffices to show that for each S € D, we have

#P(A = )L, = #PA =5 = B(w))E -
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To show this we construct a bijection
¢: P\ = 8)L, — P(A =S = B(w))L;

sending m to ¢(m) given by:

m(ﬂ) -1, B= a(v)
VB e @t ¢(m)(B) = {m(B)+1, B=av)
m(B), else

Note that we indeed have m(a(v)) > 1 because m € P(A — S)7 . Also it is obvious that ¢(m) lies in the
desired set, using the fact that a(v) — a(?) = S(v) and condition (4) from Definition Finally, ¢ is a
bijection because by the same reasoning the following map is a well-defined inverse map:

P:PA=5-pWw))f, > PA-9),

We have proved Claim 1.
Using Claim 1, we deduce that

Yo CDEHPO -8 = D (D)EHPO -5 =D > (~D)EHP( - 5);,
Sce+ SeDo v SeD,
where v runs over all the end vertices of 7. Hence the proposition is proved once we show the following
claim:
Claim 2. When t is sufficiently large, the following is true. For each L € Z N0, 3.5¢] and for each end
vertex v, we have
> ()P - 8)p =0.
SeD,
To prove the claim, we fix a real number M > n. It is obvious that when ¢ is sufficiently large (in a way
that depends on M), the following is true: For all S € 22"

> Bl <t/M.

Bes
Thus we can apply Lemma to each A — 5. Since our (7, a, ) is good with respect to v, we know that
any m € P(A — 5)Y satisfies the hypothesis in Lemma (with respect to A — S) about the vanishing of
m(e1 + v;e;). Hence by that lemma we know that P(A —.5)? is non-empty only if

n
L> 4 — —— D)t.
> (n+ 2M)t>(n—|—35)t

We have proved Claim 2. The proof of the proposition is complete. O
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8.2. The case Proper-I. We treat type D, with n > 5 odd, and 6§ = id, b = b; or bs. See By
symmetry we only need to consider b = b;. Recall in this case

31 1 1
A(b1) — A(b1)good = {)\Lbad = (5, 3 ’2’_2)} ’

and we have defg(by) = 242

Proposition 8.2.1. The bound holds for A = A1 bad-

Proof. The proof uses the results from By the formula (5.2.4), it suffices to show for each w” € W! =
Wo, that

w _ —s(idefa(b)+a
(8.2.1) Y (D) @P@IAL)  FwpY — pY ) = O(g, (T
weWl=Wy,
for some a > 0. Here we have made the change of variable ww’ — w” in , and have used the fact that
eo(w ’)\g,&ad) =0 for all w’ € W1, as long as s > 0.
Fix w”, and write (5 := w”)\gsl))ad Let || be the norm on R™ defined in 1) Since Wy C {£1}" xSy,

there exist 1 < j <n, e € {£1}, and v = (va, -+ ,vn) € {£1}""", such that
1 13 1 1
Cs = (§SV27 581/3, Tty §8Vj7 5857 §Sl/j+1, Tty isyn)a

where 2se is at the j-th place.

Assume either j # 1 or ¢ = —1. Then for s > 0 and all w € Wy, we have ¢, + wp¥ — p¥ ¢ RT, and so
P(Cs +wpY — p¥,q; ") = 0. We are done in this case.

Hence we assume j = 1 and € = 1. Assume without loss of generality that s = 4t for ¢ € N. By the Weyl
character formula, the left hand side of is equal to

> (CUEPG =D B
Scevi+ pes
By Proposition (1) and Proposition [8.1.8] the above is equal to
(522) )RR DEEILELIA pH
Lez, L>(n+3.5) SCeV+ BeS

By the same argument as in the proof of Proposition [6.2.1} the expression
> > PP -3 O
L€Zoo SCOV+ BCS

is of polynomial growth in s (or in ¢). Hence (8 is bounded by O(g, [(nts 4)t) Since s-defg(b)/2 = (n+3)t,
the desired bound (8.2.1)) follows. O

8.3. The case Proper-II. We now treat type Fg,6 = id,b = by or by. See By symmetry, it suffices
to treat the case of b;. Recall in this case

A(b1) — A(b1)good = {ws, wa + w1, w2 + ws, 2006},
and we have defg(b1) = 4.

Proposition 8.3.1. The bound holds for all \ € {wy + w1, w2 + we,2we}. In other words, in

Proposition (@) (for b =b1) we may take Apaq to be ws.
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Proof. We define a function |-|" : R? — Rs in the following way. For any v = Z?:l x;e; € RY, we define

v = ; ]e{énla;{} i |23tk — T3j 1]
kle{l,2,3}

In other words, we think of R as (R3)3, and we take the largest difference between a coordinate in one
factor of R3 and a coordinate in a different factor. Then H/ is a semi-norm, i.e., it is compatible with scalar
multiplication by R and satisfies the triangle inequality. Note that |-|" is not Wy-invariant. By the explicit
description of the roots, we have |a|’ = 1 for all positive roots c.

Claim. |u|" > 7/3 for all u € Wp.
We prove the claim. We first record explicitly the Wy-orbit of A. To state it we need some notation. Let

C3 be the cyclic group of order 3 with a fixed generator ¢. We let ('3 act on S3 x S3 x S3 via
c:(01,02,03) = (02,03,01).

Let H denote the semi-direct product (S3 x S3 x S3) x C3. Then we have an action of H on R?, where

S3 x S3 x S3 acts naturally on the coordinate indices, and ¢ € C3 acts via
c: (96’173027963;5547%5,366;3377338,%9) = (334,$57$6;$77$87$9;$17l‘2,$3)

For A\ = wy + wg, its Wy-orbit is given by the union of the H-orbits of the following vectors:

2 1 111 2

2 -1 -Lig -3~ 3’3’3’_§)
2 1 111

537333 " ’3’3’_6)
41 5 2 11
Gy yit 0 iy y)
112 5 1 4
Gaght -tz 53
41 5 22 4
33730003373
4 2 2 5 1 4
(373 500053 73)
4 2 2 22 4
33 5ty )

For A = wy + wy, its Wy-orbit is the union of the H-orbits of the following;:
4 1 5 2 1 1
(3737300037373
11 2 5 1 4
(33730003 -3.73)
4 2 2 2 1 1
(3-3 73 b0tz —373)
11 2 292 4
(337310 -z 3 3)
For A\ = 2wg, its Wy-orbit is the H-orbit of

4 2 2 292 4
373730005573

One sees easily that |-|" of all the above vectors are > 7/3. Since |.| is invariant under the action of H, it

follows that ||” > 7/3 holds for all u € WyA. The claim is proved.
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Based on the claim, we prove (6.3.2) for A € {wy + w;,ws + ws, 206}, using an argument similar to
§7.1.1] By the formula (5.2.4)), it suffices to show for each w,w’ € Wy that

_ —s(Ldef by
Py, g L) = O(qy "2t 0T

for some a > 0, where 1, :== w e (w'A\(¥)). By the same argument as in §7.1.1] we easily reduce to proving:

For some constant a > 0,

(8.3.1) min {|m| : m € P(¢s)} > s(%defg(bl) +a) =s(2+a),

for all s > 0. By the previous claim, for all m € P(¢),) we have

/

Y m@) 2| Y me)s =|1/)5|/2‘ww')\(5)

pBedV-+ pedV-+

! \ v/ ANY 7
—|wp” = p’| = s|ww'\| —CZs-g—C,

where C is a constant independent of s. Here the number 1 appearing in the leftmost term is equal to
mingegv.+ |8]". Since 6 = id, the leftmost term in the above inequalities is none other than |m|. The desired

(8.3.1) follows. ‘

8.4. The case Proper-1II. We now treat type E7,6 = id, and [b] € B(G) being the unique basic class such
that kg (D) is the non-trivial element of w1 (G) = Z/2Z. See Recall in this case

A(b) - A<b)g00d = {w5}7
and defg(b) = 3.
Proposition 8.4.1. The bound holds for A\ = ws.

Proof. Firstly, the Wy-orbit of A is given by all permutations under Sg of the following vectors:
1 1 1 1 1 1 1

Ai — — -
1 (47 43 47 43 47 47 47 4)
5 3 3 31111
=GrrTrTrrrry
71111111
=TT
5333 1 1 1 1

A= (— —— =, —=,—=).

4 ( 47474747 47 47 47 4)

Indeed it is easy to see that all these elements lie in Wy (using the fact that the W} contains the copy of
Ss), and one easily computes the size of Wy to prove that these are all the elements of WyA.

For 1 <i <8 and 7 € Sg, we define functions
I; : R® = Rxg
|, : R® = Rxg
in the following way. For any v = Zf:l zie; € RS, we define
ol =il ol = e + e |+ |2r@ | + 2@ -

Then |-, ,|-|, are all semi-norms.
Note that in the proof of Proposition [8.3.1) we reduced to proving (8.3.1) for each fixed w,w’ € Wy.
During the proof (8.3.1) for the fixed w,w’, we only needed to apply the semi-norm |-|' to ww’), and not to

any other element of WyA. Hence for each element in Wy, we could use a semi-norm, which is specifically
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designed for that element, to finish the proof. In the current case, we reduce to proving that each u € WyA

satisfies at least one of the following inequalities:

def(b) 3
(8.4.1) pls > —5~— jmin |B]; =5 min |5];

defg(b) . 3 .
(8.4.2) lule > —5— min 16|, =3 min |5,

for some 1 < ¢ < 8 or some 7 € Sg.

When p is an Ss-permutation of A or A3, assume the ig-th coordinate of u is +7/4. Then u satisfies the
inequality indexed by 4g. In fact, any 8 € ®V'T satisfies 18l;, <1, and we have [u[;, = T7/4.

When g is an Sg-permutation of Ay or Ay, there exists 7 € Sg such that

M= Ty Ty s~ o

On the other hand |8], < 2 for all 8 € &V and all 7 € Ss. Therefore (8.4.2)) holds for some 7. O

9. PROOF OF THE KEY ESTIMATE, PART III

We have proved all the statements in Proposition [6.3.1] except the existence of pq in Proposition [6.3.1]
(1), and the existence of p1, o in Proposition . In this section we construct these.

First assume that G is not of type Fg, and that § = id. We easily examine all such cases in §7and see that
N o€ X*(f)Jr is always minuscule. Hence we may take y; := \/". Since G is adjoint and = id, the condition
that b € B(G, p1) is equivalent to the condition that b and p1 have the same image in 71 (G), = 71(G), which
is true by construction. Moreover, we have dim V), (Ap)re1 = dim V)\;r (A\f) = 1. The proof of Proposition
is complete in these cases.

The only remaining cases are the following;:

Nonsplit-I: Type D,,,n > 5,60 has order 2. See

Nonsplit-IT: Type Dy, 0 has order 2. See

Split-Eg: Type Eg,0 = id. See

In fact, in all the other cases listed in the beginning of §7| where 6 is non-trivial, namely cases (6) and (8),
we have shown in and §7.6that any basic [b] € B(G) is unramified, so we do not need to consider these

cases.

9.1. The case Nonsplit-I. As we showed in we have 7 (G), = Z/27, and there is a unique choice of
basic [b] € B(G) corresponding to the non-trivial element in 71(G),. Moreover we have

1 1 ~
)‘I;‘—:(§7 ,g)e@nilzX*(S)(@Q

Recall that X, (T) = X*(T) = Ly C R™. We take

1 1 T
= (57,_, ,5) € Ly = X,.(T) = X*(T).

Then p; is in X"k(f)+ and is minuscule. From the description of the action of ¢ on 71 (G) in the image
of yq in 71 (G), is the non-trivial element, and hence [b] € B(G, j11). Finally, the only weights in X*(T) of
V., are the elements of Wypu1. Among all these weights, there is precisely one that restricts to /\g exX *(3’),

namely p;. Hence we have

dim V,,, (Ap)ret = dim Vi, (A )rel = dim V,,, (p1) = 1.
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9.2. The case Nonsplit-II. We keep the notation of Note that what 7 is does not affect {ay, s, ag, a4}
as a subset of R*. Nor does it affect the coroot lattice and the coweight lattice. Moreover, no matter what

~

7 is, the quotient map X, (7T) — X*(S) is always the same as

L2 — L/Za (51752,53754) — (51752753);

where Ly = Z* + Z(%,4,3.3) and L = Z* + Z(}, 5, %). Hence the situation is precisely the same as the
case Nonsplit-I, see Namely, for the unique basic [b] € B(G) that maps to the non-trivial element in
m(G)o 2 Z/2Z, we have N, = (—3,%,—2), N = (3,1,2), and we take p1 := (3,1,1,3).

9.3. The case Split-Fg. We keep the notation of To finish the proof of Proposition , we
need to construct u; and p2. By symmetry we only need to consider by, among by, by. Recall from §7.5| that
)\Zrl = w;. Recall from Proposition that the distinguished element Ap,q in A(by) is ws. Since 6 = id,
we have S =T.

Note that A, = @ is minuscule. We take 4 := ;. Then the only weight of V,,, in X*(8)t = X*(T)*+
is pp = )\l‘;, and dim V), (Ap, )rel = dim V), (1) = 1. We have by € B(G, u1), because the image of 1, = )\Zrl
in 71 (G), = m1(G) is the same as that of Ap,, which is the same as % (by).

Note that wg is also minuscule. We take ps := 2w; + wg. Then ps is a sum of dominant minuscule
coweights. By we know that ps — oy is in the coroot lattice. Hence uo represents the same element
in m(G), = m1(G) as wi, and in particular by € B(G, p2). We are left to check that V), (Apad)rel, which
is V,,,(ws), is non-zero. One computes that dimV,,(ws) = 14, see for example [LiE]. |Z| The proof of

Proposition [6.3.1] is complete.

"Note that in |LiEl, our a2, a3, cs are indexed by 3,4, 2 respectively.
60



APPENDIX A. IRREDUCIBLE COMPONENTS FOR QUASI-SPLIT GROUPS

We explain in this appendix how we can use our results combined with [Held] to obtain a description
of the number of J,(F)-orbits of irreducible components of affine Deligne-Lusztig varieties associated to a
group which is quasi-split but not necessarily unramified. The main result Theorem [A.3.T]is a generalization
of Conjecture [2.6.7]

A.1. Basic definitions. We extend the notations introduced in We let F,L,kp,k,o,T be as in §2|
However now we only assume that G is a quasi-split reductive group over F. Let 7" C G be the centralizer
of a fixed maximal F-split torus. Then T is a maximal torus of G since G is quasi-split. We fix B to be a
Borel subgroup of G (over F) containing T'. Let A C Ty, be the maximal L-split sub-torus of T7,. Note that
Tr, is a minimal Levi of G, so A is also a maximal L-split torus of Gy,. Let N C GG, denote the normalizer
of A. Let V be the apartment of G, corresponding to A. Let a be a o-stable alcove in V, and let s be a
o-stable special vertex lying in the closure of a. Denote by Z the Iwahori group scheme over O associated
to a, and denote by K the special parahoric group scheme over O associated to s. Let I'g C I' denote the
inertia subgroup, which is also identified with Gal(L/L). The choice of s gives an identification

V= X.(T)r, @z R,

sending s to 0. In the following we freely use the identification in Lemma [@). We assume that under
the identification

(A.1.1) V= X (T)r, @2 R = X, (T)g°,
the image of a is contained in the anti-dominant chamber — X, (T)3.

The Iwahori-Weyl group is defined to be
W i= N(L)/(T(L) N Z(Oy)).

For any w € W we choose a representative w € N(L). We write Wy := N(L)/T(L) for the relative Weyl
group of G over L. Then we have a natural exact sequence:

0— X.(T)r, — W — Wy —0.

For p € X, (T)r, we write t* for the corresponding element in W. The Frobenius ¢ induces an action on W
which preserves the set of simple roots S. See [HRO8| for more details.
Let B(G) (resp. B(W, o)) denote the set of o-conjugacy classes of G(L) (resp. W). Let X, (T)IJIOQ denote
the intersection of X, (T)r, ® Q & X, (T)(g0 with X, (T)a Similar to §2} we have an injective map
(7,5) : B(G) = (X (T)f, o) x m(G)r,
a surjective map
U : B(W,o) = B(G),

and a commutative diagram

(A.1.2) B(W, o)

& (7,K)

(X.(T)f, )7 x m(G)r

where the map (7, k) on B(W, o) can be described explicitly. These are proved in [Held]. See [HZ16, §1.2]

for more details.
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Let w € W and b € G(L). We define the affine Deligne-Lusztig variety X, (b) as follows:
Xu(b) = {9Z(O1) € G(L)/Z(OL)|g~"bo(g) € Z(OL)WwI(OL)}-

Now let 4 € X, (T)p, be the image of an element p € X, (7). Similarly we define the affine Deligne—
Lusztig variety X,, x(b) as follows:

Xk (b) = {gK(Or) € G(L)/K(OL)lg~"bo(g) € K(OL)iK(OL)}.

When non-empty, X,,(b) and X, x(b) are (perfect) schemes locally of (perfectly) finite type over k.
We define the set -
B(G, p) = {[b] € B(G); w([b]) = ¥, 7 < %}
Here pf denotes the image of y in 71 (G)r, and p® € (X, (T)IJSOQ)" denotes the average over the o-orbit of
€ X.(T)r,. Note that both pf and £ depend only on A
For b € G(L), the group J,(F) acts by left multiplication on X, x(b) via algebraic automorphisms. Our

goal is to understand the cardinality

(A13) #(@(F)\zw%xm(b»)-

Along the way we shall also show that X, rc(b) # 0 if and only if [b] € B(G, i), which should be well known
to experts.
For simplicity, from now on we assume that G is adjoint. The general case reduces to this case

by a standard argument.

A.2. Dual group construction. The desired formula for will be expressed in terms of a canonical
reductive subgroup of the dual group G. We keep the assumption that G is adjoint.
As in §5.1] we let
BRD(B,T) = (X*(T),® > A, X.(T),®" > AY)
be the based root datum associated to (B,T), equipped with an action by I'. Let G be the dual group of G

over C, which is equipped with a Borel pair (ﬁ, f) and an isomorphism
BRD(B,T) -~ BRD(B,T)".
We fix a pinning (B, T, §/§+) The action of I' on BRD(B, T) translates to an action on BRD(B,T'), and the
)-

latter lifts to a unique action of I" on G via algebraic automorphisms that preserve (ﬁ, T , §A§+
We define
H:= @FO’O,
namely the identity component of the I'g-fixed points of G. This construction was also considered by Zhu
[Zhul5] and Haines [Hail8]. By [Hail8, Proposition 5.1], the group H is a reductive subgroup of G, and it
has a pinning of the form (B0, 7700, XQF) Moreover, the induced action of the Frobenius o € T'/T on H
preserves this pinning. We write EH := BTo:0 and fH := TT0:0, Let § denote the automorphism of a given
by 0. We define
S = (Ty)".
Note that since G is adjoint, the fundamental coweights of G form a I'-stable Z-basis of X.(T"). It then
follows from Lemma that X, (T)r, and X, (T)r are both free. Hence we in fact have fH =TT and
S = T'. This observation will simplify our exposition.

Lemma A.2.1. Let b € G(L). There is a unique element X\, € X*(g) satisfying the following conditions:

~

(1) The image of Ay under X*(S) = X.(T)r — 71(G)r is equal to k(b).
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-~ ~

(2) In X*(S)og =X"(T)r®Q = (Xu(T)ry)e @ Q = (Xu(T)ry.0)7, the element A\, — 7y, is equal to a linear
combination of the restrictions to S of the simple roots in ®V C X*(f), with coefficients in QN (—1,0].

Proof. The proof is the same as Lemma [2.6.4] O
A.3. The main result.

Theorem A.3.1. Assume G is adjoint and quasi-split over I'. Let i € X,(T)r, be the image of an element
we X (T)". Let be G(L).

(1) We have X, k(b) # 0 if and only if [b] € B(G, ).
(2) Assume that [b] € B(G,p). Then

4 ( Jy(F)\5top( XmK(b))) = dim VL: (Ab)rel-

Here Vf denotes the highest weight representation of H of highest weight p € X* (T“H)"’. We denote by
Vf()\b)re] the A\y-weight space in V;Lﬁ, for the action of 8. The element N, € X*(8) is defined in Lemma
i 22

Remark A.3.2. The appearance of the representation Vf[ of the subgroup H of G in Theorem [A.3.1 s

compatible with the ramified geometric Satake in [Zhul5].

Proof of Theorem[A.3.1 The idea of the proof is to reduce to the unramified case. For this we first construct
an auxiliary unramified reductive group over F.

From H and its pinned automorphism 6, we obtain an unramified reductive group H over F', whose dual
group is H. By definition H is equipped with a Borel pair (By,Tx), and a o-equivariant isomorphism of
based root data BDR(Bp, Ty) — BDR(By, Ty)". We write

Then we have canonical o-equivariant identifications
X*(Tw) = Xo(Ty) = X (T)'° = X*(D)"
and
Xo(Ty) = X*(Tu) = X" (T)r, = Xu(T)ry,
which we shall think of as identities. Here as we noted before X, (T)r, is indeed free.
Note that Ty, is a maximal split torus of H;. Let Vi be the corresponding apartment, and fix a

hyperspecial vertex sy in Vg (coming from the apartment of H corresponding to the maximal F-split
sub-torus of Ty). We fix a o-stable alcove ag C Vi whose closure contains sg. We identify

(A.3.1) Vi = X.(Ty) @ R,

sending sy to 0, such that the image of ay is in the anti-dominant chamber.
Since X, (Tx) = X«(T)r,, the two identifications (A.1.1) and (A.3.1) give rise to a o-equivariant identifi-

cation

(A.3.2) V2~ Vy,

which maps a onto ay, and maps s to sy.
By [Hail8, Corollary 5.3], the set of coroots ®}, C X, (Tx) = X.(T)r, is given by %V, where ¥ is the
échelonnage root system of Bruhat-Tits, see [Hail8 §4.3]. In particular, the coroot lattice in X, (Ty) is

isomorphic to the Tg-coinvariants of the coroot lattice in X, (T). Moreover from ®} = ¥V we know that
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the affine Weyl group of G and the affine Weyl group of H are equal, under the identification See
[HRO8] for more details. Moreover, since the translation groups X, (7Tx) and X.(T)r, are also identified, we
have an identification between the Iwahori-Weyl group W of G and the Iwahori-Weyl group Wy of H. This
identification is o-equivariant.

Note that the bottom group in the diagram and its analogue for H are identified. Using the
identification of W and Wy, and using the surjectivity of the map ¥ : B(W,0) — B(G) and its analogue
Uy : B(Wyg,0) — B(H), we construct [by] € B(H) whose invariants are the same as those of [b]. Since the
set B(G, u) is defined in terms of the invariants (7, x) and ditto for B(H, i), we see that [b] € B(G, p) if and
only if [by] € B(H, ). Here in writing B(H, i) we view p as an element of X, (Ty)™".

To relate the geometry of X, i (b) with the geometry of X,,(bg), we use the class polynomials in [Hel4].
For each w € W and each a—co;ljugacy class O in W, we let B

fw,0 € Z[v — vil]

denote the class polynomial defined in [Hel4) §2.3].
Proof of (1)
Using the fibration

(A.3.3) U Xul®) = Xux ),
wEWotE W,

we see that X, x(b) is non-empty if and only X, (b) is non-empty for some w € Wyt£Wy. The proof of [Hel4,
Theorem 6.1] shows that X, (b) # 0 if and only if f, o # 0 for some O such that (7, k)(O) = (¥, x)(b). This
latter condition is a condition on the quadruple Q(b) := (W, 0,u, (7,k)(b)). By construction we have an
identification of quadruples Q(b) = Q(by), where Q(byr) := (Wg, 0, p, (7, %) (brr)). Hence X, i (b) # 0 if and
only if X, (bgr) # 0. On the other hand we have already seen that [b] € B(G, ) if and only if[bH] € B(H, ).
Thus the result reduces to the statement that X u(br) # 0 if and only if by € B(H, ). But this is the main
result of [Gas10]. -

Proof of (2)

We write 4" (p,b) for the cardinality of J,(F)\X'P(X, x(b)). Using the fibration we have an
identification

(A:3.4) BENE [ | Xul®) | = HENSP (X, (1)),
weWuthWy

By [Hel4, Theorem 6.1], we have the formula
1
dim X, (b) = max 5 (¢(w) + £(O) + deg fu,0)) — (71, 2p)-

where O runs through o-conjugacy classes in W such that (7, k)(O) = (7, k)(b) and where £(O) denotes
the length of a minimal length element in @. Moreover the proof of [Heldl Theorem 6.1] also shows that
the cardinality of J,(F)\X%P(X,, (b)) is equal to the leading coefficient of Y, v/ T4O)f, . Since each
X.(b) is locally closed in the union Uwewotﬂ,[,0 Xw(b), any top dimensional irreducible component in the
union is the closure of a top dimensional irreducible component in X,,(b) for a unique w. It follows that the
cardinality of

Jy(F)\xtop U  Xu®
weEWotEWy
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is equal to the leading coefficient of

(435 TSy,

WEWLthEW, O
By , this number is just .4#"(y,b). Since the term only depends on the quadruple Q(b), the
same is true for 4" (p, b).
Applying the same argument to H, we see that .4 (u, by ) only depends on the quadruple Q(by). Again,
since the quadruples Q(b) and Q(bg) are identified, we have A4 (u,b) = A (u, brr).
It thus remains to check

(A.3.6) N (. bar) = dim VI (Ap) e,

By assumption [b] € B(G,p), and so [bg] € B(H, p). The right hand side of (A.3.6) is easily seen to be
the same as the right hand side of Conjecture (2.6.7), with respect to (H, p,br). Hence the desired (A.3.6)

follows from the main result of the paper Corollary O
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