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Abstract. Using a construction of Hassett and Várilly-Alvarado, we produce derived
equivalent twisted K3 surfaces over Q, Q2, and R, where one has a rational point and
the other does not. This answers negatively a question recently raised by Hassett and
Tschinkel.

1. Introduction

A twisted K3 surface is a pair (X,α), where X is a K3 surface and α ∈ Br(X)
is a Brauer class. In a recent survey paper [5], Hassett and Tschinkel asked whether
the existence of a rational point on a twisted K3 surface is invariant under derived
equivalence. More precisely, they asked:

Question. Let (X1, α1) and (X2, α2) be twisted K3 surfaces over a field k. Suppose
there is a k-linear equivalence

Db(X1, α1) ' Db(X2, α2)

of twisted derived categories. Then is the existence of a k-point of (X1, α1) equivalent
to the existence of a k-point of (X2, α2)?

By definition, a k-point of a twisted K3 surface (X,α) is a point x ∈ X(k) such that
the evaluation α(x) = 0 ∈ Br(k). Equivalently, it is a k-point of the Gm-gerbe over X
associated to α.

In [5], it is shown that for the untwisted case of the question where α1, α2 vanish, the
answer is positive over certain fields k, e.g. R, finite fields, and p-adic fields (provided
the Xi have good reduction, or p ≥ 7 and the Xi have ADE reduction). The purpose
of this paper is to show that if α1, α2 are allowed to be nontrivial, the answer to the
question is negative for k = Q,Q2, and R.

We work over a field k of characteristic not equal to 2, and consider a double cover
Y → P2 × P2 ramified over a divisor of bidegree (2, 2). The projection πi : Y → P2

onto the i-th P2 factor, i = 1, 2, realizes Y as a quadric fibration. Provided that the
discriminant divisor of πi is smooth, the Stein factorization of the relative Fano variety
of lines of πi is a K3 surface Xi, which comes with a natural Brauer class αi. In this
setup, we prove the following result.
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Theorem 1.1. There is a k-linear equivalence Db(X1, α1) ' Db(X2, α2).

We note that this result seems to be known to the experts (at least for k = C), but
we could not find a proof in the literature.

Hassett and Várilly-Alvarado studied the above construction of twisted K3s in re-
lation to rational points [6]. They show that over k = Q, if certain conditions are
imposed on the branch divisor Z ⊂ P2×P2 of Y , the class α1 gives a (transcendental)
Brauer–Manin obstruction to the Hasse principle on X1. A priori, α2 need not obstruct
the existence of rational points on X2. In fact, it is possible that X2 has rational points,
but the conditions imposed on Z result in very large coefficients of the defining equation
of X2, making a computer search for points infeasible.

In this paper, we observe that the 2-adic condition imposed by Hassett and Várilly-
Alvarado can be relaxed, while still guaranteeing α1 gives a Brauer–Manin obstruction
(see Lemma 4.5). The upshot is that the defining coefficients of X2 are much smaller,
making it easy to find rational points with a computer. Up to modifying the αi by a
Brauer class pulled back from k = Q, we obtain the desired example over Q. We also
check the example “localizes” over Q2 and R. More precisely, we prove:

Theorem 1.2. For k = Q,Q2, or R, the divisor Z ⊂ P2 × P2 can be chosen so that
there are Brauer classes α′i ∈ Br(Xi), congruent to αi modulo Im(Br(k) → Br(Xi)),
such that:

(1) There is a k-linear equivalence Db(X1, α
′
1) ' Db(X2, α

′
2),

(2) (X1, α
′
1) has no k-point,

(3) (X2, α
′
2) has a k-point.
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this project, and for his help and encouragement along the way.

2. Construction of the twisted K3 surfaces

In this section, k denotes a base field of characteristic not equal to 2.

2.1. Quadric fibrations. We start by reviewing some terminology on quadric fibra-
tions. Let S be a variety over k, i.e. an integral, separated scheme of finite type over k.
Let E be a rank n ≥ 2 vector bundle on S, i.e. a locally free OS-module of rank n. Our
convention is that the projective bundle of E is the morphism

p : P(E) = ProjS(Sym•(E∗))→ S.

A quadric fibration is determined by a line bundle L on S and a nonzero section

s ∈ Γ(P(E),OP(E)(2)⊗ p∗L) = Γ(S, Sym2(E∗)⊗ L).

Namely, the zero locus of s on P(E) defines a subvarietyQ, and the restriction π : Q→ S
of p : P(E)→ S is the associated quadric fibration, which if flat is of relative dimension
n − 2. Below we will be specifically interested in flat quadric fibrations of relative
dimension 2, which we refer to as quadric surface fibrations.
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Note that the section of Sym2(E∗)⊗ L defining a quadric fibration corresponds to a
morphism q : E→ E∗⊗L. Taking the determinant gives rise to a section of det(E∗)2⊗Ln

whose vanishing defines the discriminant locus D ⊂ S, which is a divisor provided
π : Q → S is generically smooth. The fibration π : Q → S is said to have simple
degeneration if the fiber over every closed point of S is a quadric of corank ≤ 1. We
note that if π : Q→ S is flat and generically smooth and S is smooth over k, then the
discriminant divisor D is smooth over k if and only if Q is smooth over k and π has
simple degeneration [1, Proposition 1.6].

2.2. Twisted K3 surfaces. Let V1 and V2 be 3-dimensional vector spaces over k. We
denote by Hi the hyperplane class on P(Vi); by abuse of notation, we denote by the
same letter the pullback of Hi to any variety mapping to P(Vi). Let

π : Y → P(V1)×P(V2)

be the double cover of P(V1) × P(V2) ramified over a smooth divisor Z in the linear
system |2H1 + 2H2|. Let pri : P(V1) × P(V2) → P(Vi) be the i-th projection, and let
πi = pri ◦ π : Y → P(Vi).

Lemma 2.1. Let E1 = (V2 ⊗ O) ⊕ O(H1) on P(V1) and E2 = (V1 ⊗ O) ⊕ O(H2) on
P(V2). Then for i = 1, 2 there is a commutative diagram

Y

πi
��

ji
// P(Ei)

pi
{{

P(Vi)

where ji is a closed immersion with j∗1OP(E1)(1) = OY (H2) and j∗2OP(E2)(1) = OY (H1).
Moreover, Y is cut out on P(Ei) by a section of OP(Ei)(2) ⊗ O(2Hi), so that πi is a
quadric surface fibration.

Proof. Consider the case i = 1. The morphism j1 : Y → P(E1) is given by the π1-very
ample line bundle OY (H2). More precisely, using π∗(OY ) = O⊕ O(−H1 −H2), we find

π1∗(OY (H2)) = pr1∗(O(H2)⊕ O(−H1))

= (V ∗2 ⊗ O)⊕ O(−H1)

= E∗1.

Working locally on P(V1), we see the canonical map π∗1E
∗
1 = π∗1π1∗(OY (H2))→ OY (H2)

is surjective and the corresponding morphism j1 : Y → P(E1) is an immersion. By
construction j∗1OP(E1)(1) = OY (H2). Moreover, if ζ denotes the class of OP(E1)(1) in
Pic(P(E1)), then it is easy to compute

[Y ] = 2ζ + 2H1 ∈ Pic(P(E1))

by using the intersection numbers H2
1H

2
2 = 2 and H1H

3
2 = 0 on Y . So Y is indeed a

quadric surface fibration, cut out by a section of OP(E1)(2)⊗ O(2H1) on P(E1). �
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Let Di denote the discriminant divisor of πi : Y → P(Vi). It follows from the lemma
that Di is defined by a section of det(E∗i )

2 ⊗ O(8Hi) = O(6Hi), i.e. Di ⊂ P(Vi) is a
sextic curve. Let fi : Xi → P(Vi) be the double cover of P(Vi) ramified over Di. If Di

is smooth (equivalently, if πi has simple degeneration), then Xi is a smooth K3 surface.
Moreover, Xi comes equipped with an Azumaya algebra Ai, as follows.

In general, consider a generically smooth quadric surface fibration π : Q → S over
a smooth k-variety S, with smooth discriminant divisor and simple degeneration. Let
F → S be the relative Fano variety of lines of π. It follows from [7, Proposition 3.3]
that Stein factorization gives morphisms

F g−→ X
f−→ S,

where g is an étale locally trivial P1-bundle over X and f is the double cover of S
branched along the discriminant divisor D. The morphism g corresponds to an Azumaya
algebra A on X.

Applying this discussion to πi : Y → P(Vi), we see that if Di is smooth, then
Xi is equipped with an Azumaya algebra Ai. Of course Ai represents a Brauer class
αi ∈ Br(Xi), so we can regard the pair (Xi,Ai) as a twisted K3 surface.

3. Derived equivalence of the twisted K3 surfaces

In this section, we prove the twisted K3 surfaces (Xi,Ai) of the previous section are
derived equivalent. Our proof works over any field k of characteristic not equal to 2,
and gives an explicit functor inducing the equivalence. The key tool is Kuznetsov’s
semiorthogonal decomposition of the derived category of a quadric fibration [9].

3.1. Conventions. All triangulated categories appearing below will be k-linear, and
functors between them will be k-linear and exact.

For a variety X, we denote by Db(X) the bounded derived category of coherent
sheaves on X, regarded as a triangulated category. More generally, for any sheaf of OX-
algebras A which is coherent as an OX-module, we denote by Db(X,A) the bounded
derived category of coherent sheaves of right A-modules on X. We note that if A is
an Azumaya algebra corresponding to a Brauer class α ∈ Br(X), then the bounded
derived category of α-twisted sheaves Db(X,α) is equivalent to Db(X,A).

As a rule, all functors we consider are derived. More precisely, for a morphism of
varieties f : X → Y , we simply write f∗ : Db(X)→ Db(Y ) for the derived pushforward
(provided f is proper) and f ∗ : Db(Y ) → Db(X) for the derived pullback (provided f
has finite Tor-dimension). Similarly, for F,G ∈ Db(X), we write F⊗G ∈ Db(X) for the
derived tensor product.

3.2. Semiorthogonal decompositions. One way to understand the derived category
of a variety (or more generally a triangulated category) is by “decomposing” it into
simpler pieces. This is formalized by the notion of a semiorthogonal decomposition,
which plays a central role in the rest of this section. We summarize the rudiments of
this theory; see e.g. [3] and [4] for a more detailed exposition.
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Definition 3.1. Let T be a triangulated category. A semiorthogonal decomposition

T = 〈A1, . . . ,An〉
is a sequence of full triangulated subcategories A1, . . . ,An of T — called the components
of the decomposition — such that:

(1) Hom(F,G) = 0 for all F ∈ Ai,G ∈ Aj if i > j.
(2) For any F ∈ T, there is a sequence of morphisms

0 = Fn → Fn−1 → · · · → F1 → F0 = F,

such that Cone(Fi → Fi−1) ∈ Ai.

Semiorthogonal decompositions are closely related to the notion of an admissible
subcategory of a triangulated category. Such a subcategory A ⊂ T is by definition a
full triangulated subcategory such that the inclusion i : A ↪→ T admits right and
left adjoints i! : T → A and i∗ : T → A. For X a smooth proper variety over k,
the components of any semiorthogonal decomposition of Db(X) are in fact admissible
subcategories.

The simplest examples of admissible subcategories come from exceptional objects.
An object F ∈ T of a triangulated category is called exceptional if

Hom(F,F[p]) =

{
k if p = 0,
0 if p 6= 0.

If X is a proper variety and F ∈ Db(X) is exceptional, then the full triangulated
subcategory 〈F〉 ⊂ Db(X) generated by F is admissible and equivalent to the derived
category of a point via Db(Spec(k)) → Db(X) : V 7→ V ⊗ F. To simplify notation,
we write F in place of 〈F〉 when 〈F〉 appears as a component in a semiorthogonal
decomposition, i.e. instead of Db(X) = 〈. . . , 〈F〉, . . . 〉 we write Db(X) = 〈. . . ,F, . . . 〉.

Example 3.2. It is easy to see any line bundle on projective space Pn is exceptional
as an object of Db(Pn). In fact, Beilinson [2] showed Db(Pn) has a semiorthogonal
decomposition into n+ 1 line bundles, namely

Db(Pn) = 〈O,O(1), . . . ,O(n)〉.

Given one semiorthogonal decomposition of a triangulated category T, others can
be obtained via mutation functors. If i : A ↪→ T is the inclusion of an admissible
subcategory, the left and right mutation functors LA : T → T and RA : T → T are
defined by the formulas

LA(F) = Cone(ii!F → F) and RA(F) = Cone(F → ii∗F)[−1],

where ii!F → F and F → ii∗F are the counit and unit morphisms of the adjunctions.
These functors satisfy the following basic properties.

Lemma 3.3. The mutation functors LA and RA annihilate A. Moreover, they restrict
to mutually inverse equivalences

LA|⊥A : ⊥A
∼−→ A⊥ and RA|A⊥ : A⊥

∼−→ ⊥A,
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where A⊥ and ⊥A are the right and left orthogonal categories to A, i.e. the full sub-
categories of T defined by

A⊥ = {F ∈ T | Hom(G,F) = 0 for all G ∈ A} ,
⊥A = {F ∈ T | Hom(F,G) = 0 for all G ∈ A} .

The following lemma describes the action of mutation functors on a semiorthogonal
decomposition.

Lemma 3.4. Let T = 〈A1, . . . ,An〉 be a semiorthogonal decomposition with admissible
components. Then for 1 ≤ i ≤ n− 1 there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ai−1,LAi
(Ai+1),Ai,Ai+2, . . . ,An〉,

and for 2 ≤ i ≤ n there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ai−2,Ai,RAi
(Ai−1),Ai+1, . . . ,An〉.

We will also need the following lemma, which allows us to compute the effect of a
mutation functor in a special case. It follows easily from Serre duality.

Lemma 3.5. Let X be a smooth projective variety over k, and let Db(X) = 〈A1, . . . ,An〉
be a semiorthogonal decomposition. Then L〈A1,...,An−1〉(An) = An ⊗ ωX , where An ⊗ ωX
denotes the image of An under the autoequivalence F 7→ F ⊗ ωX of Db(X).

3.3. Derived categories of quadric fibrations. Let π : Q → S be a quadric fi-
bration associated to a rank n vector bundle E and a section of Sym2(E∗) ⊗ L, as in
Section 2.1. Then there is an associated even Clifford algebra C̀ 0, which is a sheaf of
algebras on S given as a certain quotient of the tensor algebra T•(E⊗ E⊗L∗). For the
precise definition, see [1, Section 1.5] (cf. [9, Section 3.3]). We note that C̀ 0 admits an
OS-module filtration of length bn

2
c with associated graded pieces ∧2iE⊗ (L∗)i.

In case the fibration π : Q → S is flat and S is smooth over k, Kuznestov [9]
established a semiorthogonal decomposition of Db(Q) into a copy of Db(S, C̀ 0) and a
number of copies of Db(S). In fact, Kuznetsov stated his result under the assumption
that k is algebraically closed of characteristic 0, but as explained in [1, Theorem 2.11],
the proof works without this hypothesis.

Theorem 3.6 ([9, Theorem 4.2]). Let π : Q→ S be a flat quadric fibration of relative
dimension n−2 over a smooth k-variety S. Let OQ(1) denote the restriction of OP(E)(1)
to Q. Then the functor π∗ : Db(S)→ Db(Q) is fully faithful, and there is a fully faithful
functor Φ : Db(S, C̀ 0)→ Db(Q) such that there is a semiorthogonal decomposition

Db(Q) = 〈Φ(Db(S, C̀ 0)), π
∗Db(S)⊗ OQ(1), . . . , π∗Db(S)⊗ OQ(n− 2)〉.

Remark 3.7. The functor Φ : Db(S, C̀ 0) → Db(Q) is given by an explicit Fourier–
Mukai kernel, see [9, Section 4].

Now assume π : Q → S is a generically smooth quadric surface fibration over a
smooth k-variety S, with smooth discriminant divisor and simple degeneration. As in
the discussion at the end of Section 2.2, the double cover f : X → S ramified over D
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is equipped with an Azumaya algebra A. In terms of this data, we have the following
alternative description of Db(S, C̀ 0), see [1, Proposition B.3] or [10, Lemma 4.2].

Lemma 3.8. In the above situation, there is an isomorphism f∗A ∼= C̀ 0. In particular,
pushforward by f induces an equivalence f∗ : Db(X,A)

∼−→ Db(S, C̀ 0).

3.4. Derived equivalence. Let π : Y → P(V1)×P(V2) be as in Section 2.2. Assume
the discriminant divisors Di of the quadric fibrations πi : Y → P(Vi) are smooth, so
that we get associated twisted K3 surfaces (Xi,Ai). Let C̀ 0,i denote the even Clifford
algebra of the quadric fibration πi : Y → P(Vi). Then Lemma 3.8 gives an equivalence

fi∗ : Db(Xi,Ai)
∼−→ Db(P(Vi), C̀ 0,i). Finally, let Φi : Db(P(Vi), C̀ 0,i)→ Db(Y ) be the

fully faithful functor from Theorem 3.6. In this setup, we prove the following result.

Theorem 3.9. Assume D1 and D2 are smooth. Then there is an equivalence

Db(X1,A1) ' Db(X2,A2)

given by the composition

f−12∗ ◦ Φ∗2 ◦ ROY (H2) ◦ LOY (H1) ◦ Φ1 ◦ f1∗ : Db(X1,A1)→ Db(X2,A2),

where

• LOY (H1) is the left mutation functor through 〈OY (H1)〉 ⊂ Db(Y ),
• ROY (H2) is the right mutation functor through 〈OY (H2)〉 ⊂ Db(Y ),
• Φ∗2 is the left adjoint of Φ2,
• f−12∗ is the inverse of the equivalence f2∗ : Db(X2,A2)

∼−→ Db(P(V2), C̀ 0,2).

The theorem is an immediate consequence of the following proposition. We note that
the proposition holds without assuming smoothness of the discriminant divisors Di.

Proposition 3.10. There is an equivalence

Db(P(V1), C̀ 0,1) ' Db(P(V2), C̀ 0,2)

given by the composition

Φ∗2 ◦ ROY (H2) ◦ LOY (H1) ◦ Φ1 : Db(P(V1), C̀ 0,1)→ Db(P(V2), C̀ 0,2).

Proof. Set Ci = Φi(D
b(P(Vi), C̀ 0,i)) ⊂ Db(Y ). Theorem 3.6 gives semiorthogonal de-

compositions

Db(Y ) = 〈C1, π
∗
1Db(P(V1))⊗ O(H2), π

∗
1Db(P(V1))⊗ O(2H2)〉,

Db(Y ) = 〈C2, π
∗
2Db(P(V2))⊗ O(H1), π

∗
2Db(P(V2))⊗ O(2H1)〉.

Recall Beilinson’s decomposition Db(P(Vi)) = 〈O,O(Hi),O(2Hi)〉 (see Example 3.2).
In each of the above decompositions of Db(Y ), we replace the first copy of Db(P(Vi))
by Beilinson’s decomposition and the second copy by the same decomposition twisted
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by O(Hi):

Db(Y ) = 〈C1,O(H2),O(H1 +H2),O(2H1 +H2),

O(H1 + 2H2),O(2H1 + 2H2),O(3H1 + 2H2)〉,
(3.1)

Db(Y ) = 〈C2,O(H1),O(H1 +H2),O(H1 + 2H2),

O(2H1 +H2),O(2H1 + 2H2),O(2H1 + 3H2)〉.
(3.2)

We perform a sequence of mutations that identifies the categories generated by the
exceptional objects in (3.1) and (3.2).

First consider (3.1). Mutate O(3H1 + 2H2) to the far left of the decomposition. Note
that Y is smooth with canonical class KY = −2H1 − 2H2, so by Lemma 3.5 the result
of the mutation is

Db(Y ) = 〈O(H1),C1,O(H2),O(H1 +H2),O(2H1 +H2),

O(H1 + 2H2),O(2H1 + 2H2)〉.

Left mutating C1 through O(H1) then gives a decomposition

Db(Y ) = 〈LO(H1)C1,O(H1),O(H2),O(H1 +H2),O(2H1 +H2),

O(H1 + 2H2),O(2H1 + 2H2)〉.
(3.3)

By the same argument, we obtain from (3.2) a similar decomposition

Db(Y ) = 〈LO(H2)C2,O(H2),O(H1),O(H1 +H2),O(H1 + 2H2),

O(2H1 +H2),O(2H1 + 2H2)〉.
(3.4)

Up to permutation, the exceptional objects in the decompositions (3.3) and (3.4) agree,
hence they generate the same subcategory of Db(Y ). It follows that LO(H1)C1 and
LO(H2)C2 coincide, as both are the right orthogonal to the same subcategory. Now the
proposition follows since RO(H2) ◦ LO(H2)

∼= id on ⊥〈O(H2)〉 by Lemma 3.3. �

Remark 3.11. The equivalence Db(X1, α1) ' Db(X2, α2) of Theorem 3.9 implies other
relations between X1 and X2. For instance, over k = C it implies the Picard numbers of
X1 and X2 agree. Indeed, it suffices to note that the equivalence induces an isomorphism
of twisted transcendental lattices T(X1, α1) ∼= T(X2, α2), whose ranks are the same as
the usual transcendental lattices (see [8]).

4. Equations for the twisted K3 surfaces and local invariants

Let k be a number field. Then for any place v of k, class field theory provides an
embedding invv : Br(kv) → Q/Z (which is an isomorphism for nonarchimedian v).
Now let X be a smooth, projective, geometrically integral variety over k. Any subset
S ⊂ Br(X) cuts out a subset X(Ak)

S ⊂ X(Ak) of the adelic points of X, given by

X(Ak)
S =

{
(xv) ∈ X(Ak) |

∑
v

invv α(xv) = 0 for all α ∈ S

}
.
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For fixed (xv) ∈ X(Ak) and α ∈ Br(X), the evaluation α(xv) = 0 for all but finitely
many v, so the above sum is well-defined. Moreover, class field theory gives inclusions

X(k) ⊂ X(Ak)
S ⊂ X(Ak).

Hence, if X(Ak)
S is empty for some S, then X has no k-points. We note that if X(Ak)

S

is empty but X(Ak) is not, then S is said to give a Brauer–Manin obstruction to the
Hasse principle. See [12, 5.2] for more details.

In this section, we describe conditions on the (2, 2) divisor Z ⊂ P(V1)×P(V2) from
Section 2.2, which allow us to control the local invariants invv α1(xv) for any v-adic
point xv ∈ X1(kv). In the end, we will see that if k = Q and enough conditions are met,
then

invv α1(xv) =

{
0 if v is finite,
1
2

if v is real,

for all xv ∈ X1(kv). Hence X1(Ak)
α1 is empty and X1 has no k-points. Our discus-

sion follows [6] very closely, and differs only in the treatment of the 2-adic place (see
Lemma 4.5).

4.1. Equations for the twisted K3 surfaces. Let the notation be as in Section 2.2
(in particular k may be any field of characteristic not equal to 2).

Choose coordinates x0, x1, x2 on P(V1) and y0, y1, y2 on P(V2). The equation defining
Z can be written as

A(x0, x1, x2)y
2
0 +B(x0, x1, x2)y0y1 + C(x0, x1, x2)y0y2 +

D(x0, x1, x2)y
2
1 + E(x0, x1, x2)y1y2 + F (x0, x1, x2)y

2
2,

(4.1)

where A, . . . , F are degree 2 homogeneous polynomials in the xi, or as

A′(y0, y1, y2)x
2
0 +B′(y0, y1, y2)x0x1 + C ′(y0, y1, y2)x0x2 +

D′(y0, y1, y2)x
2
1 + E ′(y0, y1, y2)x1x2 + F ′(y0, y1, y2)x

2
2.

(4.2)

where A′, . . . , F ′ are degree 2 homogeneous polynomials in the yi. The first or second
expression is useful depending on whether we regard Y as a quadric fibration over P(V1)
or P(V2). The following lemma summarizes the computations of [6, Section 3].

Lemma 4.1. (1) Let

M =

2A B C
B 2D E
C E 2F


Then the discriminant curve D1 ⊂ P(V1) is defined by det(M) = 0, and X1 is defined
in the weighted projective space P(1, 1, 1, 3) with coordinates x0, x1, x2, w by

w2 = −1

2
det(M).
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The analogous statements hold for D2 ⊂ P(V2) and X2 with M replaced by

M ′ =

2A′ B′ C ′

B′ 2D′ E ′

C ′ E ′ 2F ′

 .

(2) Define

MA = 4DF − E2, MD = 4AF − C2, MF = 4AD −B2.

Assume D1 ⊂ P(V1) is smooth, so that we have a twisted K3 surface (X1, α1). Then
the image of α1 under the injection Br(X1)→ Br(k(X1)) (where k(X1) is the function
field of X1) can be represented by any of the following Hilbert symbols:

(−MF , A), (−MD, A), (−MF , D), (−MA, D), (−MD, F ), (−MA, F ).

Defining M ′
A′ ,M

′
D′ ,M

′
F ′ similarly, the analogous statement holds for α2 ∈ Br(X2).

From now on, we assume D1 ⊂ P(V1) is smooth, so that (X1, α1) is defined.

4.2. Conditions controlling the local invariants. The following result holds by
Proposition 4.1 and Lemma 4.2 of [6]. It allows us to control local invariants at finite
places of bad reduction, assuming the place is not 2-adic and the singularities are mild.

Proposition 4.2. Let F be a finite extension of Qp for p 6= 2, and denote by OF the
ring of integers of F . Let X be a K3 surface over F . Let X → Spec(OF ) be a flat,
proper morphism from a regular scheme X, with generic fiber Xη

∼= X. Assume the
singular locus of the geometric special fiber Xs consists of less than 8 points, each of
which is an ordinary double point. If X(F ) 6= ∅, then for any 2-power torsion Brauer
class α ∈ Br(X)[2∞], the map X(F )→ Br(F ) given by evaluation of α is constant. In
particular, α(x) = 0 for all x ∈ X(F ) if this holds for a single x.

The next result is [6, Lemma 4.4]. It guarantees that the local invariants of α1 ∈
Br(X1) vanish at finite places of good reduction, away from the prime 2.

Lemma 4.3. Let k be a number field. Let v be a finite place of good reduction for X1

which is not 2-adic. Then invv α1(x) = 0 for all x ∈ X1(kv).

We are left to control the real and 2-adic invariants of α1 ∈ Br(X1). The following
result, which is [6, Corollary 4.6], gives conditions which guarantee α1 is nontrivial at
any real point of X1.

Lemma 4.4. Let k = Q. Assume the polynomials A, . . . , F from (4.1), when regarded
as quadratic forms, satisfy:

(1) A,D, and F are negative definite,
(2) B,C, and E are positive definite.

If ∞ denotes the real place, then inv∞ α1(x) = 1/2 for all x ∈ X1(R).

The following lemma improves [6, Lemma 4.7], giving conditions such that α1 is
trivial at every 2-adic point of X1.
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Lemma 4.5. Let k = Q. Write the polynomials A, . . . , F ∈ Q[x0, x1, x2] from (4.1) as

A = A1x
2
0 + A2x0x1 + A3x0x2 + A4x

2
1 + A5x1x2 + A6x

2
2,

B = B1x
2
0 +B2x0x1 +B3x0x2 +B4x

2
1 +B5x1x2 +B6x

2
2,

C = C1x
2
0 + C2x0x1 + C3x0x2 + C4x

2
1 + C5x1x2 + C6x

2
2,

D = D1x
2
0 +D2x0x1 +D3x0x2 +D4x

2
1 +D5x1x2 +D6x

2
2,

E = E1x
2
0 + E2x0x1 + E3x0x2 + E4x

2
1 + E5x1x2 + E6x

2
2,

F = F1x
2
0 + F2x0x1 + F3x0x2 + F4x

2
1 + F5x1x2 + F6x

2
2.

Suppose the coefficients of A, . . . , F satisfy:

(1) The 2-adic valuation of A1, B1, C6, D4, E4, and F6 is 0.
(2) The 2-adic valuation of all other coefficients is > 0.

Then inv2 α1(x) = 0 for all x ∈ X1(Q2).

Proof. Let x = [x0, x1, x2, w] be a point of X1(Q2) ⊂ P(1, 1, 1, 3)(Q2). By scaling the
coordinates, we may assume x0, x1, x2 ∈ Z2 and at least one of the xi is a unit. By
Lemma 4.1, the Hilbert symbols

(B2 − 4AD,A), (E2 − 4DF,D), (C2 − 4AF, F )

all represent the image of α1 in Br(k(X)). According to whether x0, x1, or x2 is a 2-adic
unit, the first, second, or third of these representatives can be used to see inv2 α1(x) = 0.

For instance, suppose x0 is a 2-adic unit. Then by our assumptions on coefficients,

A(x) and B(x)2 − 4A(x)D(x)

are also 2-adic units. In particular, they are nonzero, so

(B(x)2 − 4A(x)D(x), A(x))2

represents α1(x) ∈ Br(Q2). Recall (see for example [11, p. 20, Theorem 1]) that if
s, t ∈ Z×2 , then

(s, t)2 = (−1)
s−1
2

t−1
2 .

But by our assumptions

B(x)2 − 4A(x)D(x) ≡ 1 (mod 4),

so the formula gives

(B(x)2 − 4A(x)D(x), A(x))2 = 1.

Thus α1(x) = 0 ∈ Br(Q2).
The same argument works when x1 or x2 is a 2-adic unit, using the other represen-

tatives for α1 from above. �
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5. Proof of Theorem 1.2

Consider the following quadrics in Z[x0, x1, x2]:

A = −5x20 + 4x0x2 − 4x21 + 2x1x2 − 4x22,

B = 5x20 + 2x0x1 − 2x0x2 + 2x21 + 2x1x2 + 4x22,

C = 4x20 + 2x0x1 − 4x0x2 + 2x21 − 2x1x2 + 5x22,

D = −4x20 − 2x0x1 − x21 − 2x1x2 − 4x22,

E = 4x20 + 3x21 + 4x22,

F = −4x20 + 4x0x1 + 2x0x2 − 2x21 − 4x1x2 − 5x22.

Inserting these polynomials in (4.1) gives the equation of a (2,2) divisor

Z ⊂ P(V1)×P(V2),

which we regard as a variety over Q. As in Section 2.2, Z gives rise to a branched
double cover π : Y → P(V1)×P(V2), which is a quadric fibration via projection to each
factor. Lemma 4.1 gives explicit equations for the discriminant curves Di ⊂ P(Vi), and
the Jacobian criterion can be used to check the Di are smooth. Hence, by Section 2.2,
we get associated twisted K3 surfaces (Xi, αi), which we will use to prove Theorem 1.2.

Remark 5.1. The quadrics A, . . . , F above were found using the algorithm described
in [6, Section 6], modified in two ways. First, we omitted the steps related to checking
the geometric Picard number of X1 is 1, since it was not our goal to produce an example
with this property. Second, instead of using [6, Lemma 4.7] to constrain the quadrics, we
used our Lemma 4.5, which results in much smaller coefficients. Indeed, the equations
for X1 and X2 are:

w2 =− 4x60 − 308x50x1 − 190x40x
2
1 − 278x30x

3
1 − 203x20x

4
1 − 40x0x

5
1 − 28x61

+ 18x50x2 + 460x40x1x2 + 276x30x
2
1x2 + 474x20x

3
1x2 + 40x0x

4
1x2

+ 98x51x2 − 25x40x
2
2 − 820x30x1x

2
2 − 247x20x

2
1x

2
2 − 374x0x

3
1x

2
2

− 2x41x
2
2 + 20x30x

3
2 + 652x20x1x

3
2 + 14x0x

2
1x

3
2 + 270x31x

3
2

− 20x20x
4
2 − 562x0x1x

4
2 − 105x21x

4
2 − 8x0x

5
2 + 166x1x

5
2 − 4x62,

w2 = 236y60 − 740y50y + 1268y40y
2
1 − 1092y30y

3
1 + 624y20y

4
1 − 164y0y

5
1

+ 32y61 − 616y50y2 + 416y40y1y2 − 96y30y
2
1y2 − 976y20y

3
1y2 + 548y0y

4
1y2

− 288y51y2 + 1236y40y
2
2 − 456y30y1y

2
2 + 1484y20y

2
1y

2
2 − 356y0y

3
1y

2
2

+ 676y41y
2
2 − 1332y30y

3
2 − 804y20y1y

3
2 − 372y0y

2
1y

3
2 − 1024y31y

3
2 + 1036y20y

4
2

+ 768y0y1y
4
2 + 812y21y

4
2 − 472y0y

5
2 − 388y1y

5
2 + 40y62.

In contrast, most of the coefficients appearing in the corresponding equations in [6] have
5 or 6 digits. Smaller coefficients are crucial in making a computer search for points of
X2 feasible.
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The following proposition is reduced to a series of computations by the results in
Section 4.2. We postpone its proof to the end of the section.

Proposition 5.2. (1) X1(Qv) 6= ∅ for all places v, or equivalently X1(AQ) 6= ∅.
(2) The local invariants of the class α1 ∈ Br(X1) satisfy

invv α1(xv) =

{
0 if v is finite,
1
2

if v is real,

for all xv ∈ X1(Qv). In particular, α1 obstructs the existence of Q-points on X1, and
hence gives a Brauer–Manin obstruction to the Hasse principle.

Using the proposition, we construct the examples which prove Theorem 1.2. The
necessary computations that appear below were carried out using Magma1.

5.1. Example over Q. Using the equation for X2 given by Lemma 4.1, it can be
checked that x = [1, 1, 1, 0] ∈ P(1, 1, 1, 3) is a Q-point of X2. Let β = α2(x) ∈ Br(Q),
let βi be the constant class given by the image of β under Br(Q) → Br(Xi), and set
α′i = β−1i αi.

Then there is a Q-linear equivalence Db(X1, α
′
1) ' Db(X2, α

′
2) induced by the equiva-

lence Db(X1, α1) ' Db(X2, α2) of Theorem 3.9. By Proposition 5.2, X1 has no Q-point,
so a fortiori the pair (X1, α

′
1) has no Q-point. On the other hand, by construction x is

a Q-point of (X2, α
′
2).

5.2. Example over Q2. Replace the pairs (Xi, αi) defined above over Q by their base
changes to Q2. It can be checked that x = [−3,−1, 1,

√
357008] ∈ P(1, 1, 1, 3) is a Q2-

point of X2 (note that Hensel’s lemma can be used to see 357008 is a 2-adic square).
One then checks that β = α2(x) = (B(x)2 − 4A(x)D(x), A(x))2 is nontrivial. Let βi be
the constant class given by the image of β under Br(Q)→ Br(Xi), and set α′i = β−1i αi.

Then there is a Q2-linear equivalence Db(X1, α
′
1) ' Db(X2, α

′
2) induced by the equiva-

lence of Theorem 3.9. By Proposition 5.2, α1(y) is trivial for any y ∈ X1(Q2), and hence
α′1(y) = α−12 (x)α1(y) is nontrivial (since α2(x) is). Thus (X1, α

′
1) has no Q2-points. On

the other hand, by design x is a point of (X2, α
′
2).

5.3. Example over R. Replace the pairs (Xi, αi) by their base changes to R. Then
Theorem 3.9 still gives an R-linear equivalence Db(X1, α1) ' Db(X2, α2). Moreover,
Proposition 5.2 shows α1(x) is nontrivial for any x ∈ X1(R), so (X1, α1) has no R-
points. On the other hand, using Lemma 4.1, it can be checked that the point

x = [4, 3, 3,
√

5204] ∈ P(1, 1, 1, 3)

lies on X2 and that α2(x) = (B(x)2 − 4A(x)D(x), A(x))∞ is trivial. Hence x is an
R-point of (X2, α2).

5.4. Proof of Proposition 5.2.

1Code available at http://www.math.brown.edu/~kenascher/magma/magma.html.

http://www.math.brown.edu/~kenascher/magma/magma.html
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5.4.1. Local points. We first check that X1(Qv) 6= ∅ for all v. This is obvious when
v = ∞. Let v = p be a finite prime of good reduction with p > 22. Then if (X1)p is
a smooth reduction of X1 at p, there is an Fp-point of (X1)p by the Weil conjectures.
This lifts to a Qp-point of X1 by Hensel’s lemma.

It therefore suffices to check that X1(Qp) 6= ∅ for primes p of bad reduction for X1

and for all primes p < 22. A Gröbner basis calculation as in [6, Section 5.1] can be used
to show the primes of bad reduction for X1 are:

2, 5, 7, 307, 4591, 27077, 371857, 6902849, 104388233,
541264119547919951, 6097863609641310921149279,

2616678388926286398002864469014842817095009312844790479

In the table below, we list for each prime p of bad reduction and each p < 22 the
(x0, x1, x2) coordinates of a Qp-point of X1. (By Lemma 4.1, (x0, x1, x2) gives a Qp-
point if −1

2
det(M)(x0, x1, x2) is a square in Qp, which can be checked using Hensel’s

lemma).

p (x0, x1, x2)
2 (-1,0,-1)
3 (-1,-1,1)
5 (-1,-1,0)
7 (-1,-1,1)
11 (-1,-1,0)
13 (-1,-1,1)
17 (-1,-1,-1)
19 (-1,-1,-1)
307 (-1,-1,-1)
4591 (-1,-1,0)
27077 (-1,-1,-1)
371857 (-1,-1,-1)
6902849 (-1,0,0)
104388233 (-1,-1,-1)
541264119547919951 (-1,-1,1)
6097863609641310921149279 (-1,1,-1)
2616678388926286398002864469014842817095009312844790479 (-1,-1,0)

5.4.2. Local invariants. One computes that for each prime p 6= 2 of bad reduction, X1,Qp

satisfies the assumptions of Proposition 4.2. Moreover, using the representatives for α1

given in Lemma 4.1, it can be computed that α1 is trivial when evaluated at the Qp-
points specified in the table above. We conclude by Proposition 4.2 that invv α1(xv) = 0
at the non-2-adic finite places v of bad reduction. On the other hand, at the non-2-adic
finite places of good reduction, we also have invv α1(xv) = 0 by Lemma 4.3.
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Finally, it is straightforward to check the quadrics A, . . . , F satisfy the hypotheses of
Lemmas 4.4 and 4.5. The conclusions of these lemmas give Proposition 5.2(2) at the
real and 2-adic places. �
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nality problems, Progr. Math., vol. 282, Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 219–243.

11. J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973.
12. Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144,

Cambridge University Press, Cambridge, 2001.

E-mail address: kenascher@math.brown.edu

Mathematics Department, Brown University

E-mail address: kdasarat@math.stanford.edu

Department of Mathematics, Stanford University

E-mail address: aperry@math.harvard.edu

Department of Mathematics, Harvard University

E-mail address: rzhou@math.harvard.edu

Department of Mathematics, Harvard University


	1. Introduction
	Acknowledgements

	2. Construction of the twisted K3 surfaces
	2.1. Quadric fibrations
	2.2. Twisted K3 surfaces

	3. Derived equivalence of the twisted K3 surfaces
	3.1. Conventions
	3.2. Semiorthogonal decompositions
	3.3. Derived categories of quadric fibrations
	3.4. Derived equivalence

	4. Equations for the twisted K3 surfaces and local invariants
	4.1. Equations for the twisted K3 surfaces
	4.2. Conditions controlling the local invariants

	5. Proof of Theorem 1.2
	5.1. Example over Q
	5.2. Example over Q2
	5.3. Example over R
	5.4. Proof of Proposition 5.2

	References

