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We examine the long-term correlations and multi-fractal properties of daily satellite
retrievals of Arctic sea ice albedo and extent, for periods of approximately 23 years
and 32 years, respectively. The approach harnesses a recent development called multi-
fractal temporally weighted detrended fluctuation analysis, which exploits the intuition
that points closer in time are more likely to be related than distant points. In both
datasets, we extract multiple crossover times, as characterized by generalized Hurst
exponents, ranging from synoptic to decadal. The method goes beyond treatments that
assume a single decay scale process, such as a first-order autoregression, which cannot
be justifiably fitted to these observations. Importantly, the strength of the seasonal
cycle ‘masks’ long-term correlations on time scales beyond seasonal. When removing
the seasonal cycle from the original record, the ice extent data exhibit white noise
behaviour from seasonal to bi-seasonal time scales, whereas the clear fingerprints of the
short (weather) and long (approx. 7 and 9 year) time scales remain, the latter associated
with the recent decay in the ice cover. Therefore, long-term persistence is re-entrant
beyond the seasonal scale and it is not possible to distinguish whether a given ice extent
minimum/maximum will be followed by a minimum/maximum that is larger or smaller
in magnitude.
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1. Introduction

Earth’s polar oceans are viewed as a bellwether of climate change because their
surfaces are covered by a thin (several metres) mosaic of high albedo sea ice floes
that modulate the atmosphere/ocean heat flux. Hence, as opposed to the massive
meteoric ice sheets that are several kilometres thick, sea ice is considered to be
a more sensitive component of the cryosphere to perturbations and feedbacks,
particularly the ice-albedo feedback that has driven large-scale climate events
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Figure 1. Equivalent ice extent (EIE) during the satellite era, with the seasonal cycle removed, and
the trend from a linear regression shown as the red line. EIE, which differs from traditional ice
area, is defined as the total surface area, including land, north of the zonal-mean ice edge latitude,
and thus is proportional to the sine of the ice edge latitude. EIE was defined by Eisenman (2010)
to deal with the geometric muting of ice area associated with the seasonal bias of the influence
of the Arctic basin land mass boundaries. Here, we use EIE and hence refer to it either via this
acronym or simply as ice extent.

over Earth history (Saltzman 2002). Indeed, the retreat of Arctic sea ice coverage
during recent decades (figure 1) has captured substantial interest (Kwok &
Untersteiner 2011; Serreze 2011). An essential question concerns the nature of
the decay in ice coverage; is it a trend associated with the influence of greenhouse
forcing, or is it a fluctuation in a quantitative record that is short (approx. 30
years) relative to the dynamics of the cryosphere on climatic epochs (� 106 years)?
Our goal is to extract the longest intrinsic time scale from the data to provide a
framework for geophysical modelling.

Both past climate data and basic physical arguments indicate that a sufficiently
large increase in greenhouse gas concentration will drive the decay of the
ice cover, whereas the state-of-the-art global climate models under-project the
observed recent decay (Kwok & Untersteiner 2011). The stabilizing response to
deleterious perturbations of the ice cover was examined by Tietsche et al. (2011),
who numerically prescribed ice-free summer states at various times during the
projection of twenty-first century climates and found that ice extent typically
recovered within several years. Such rapid response times can be captured
within the framework of relatively simple theory (Moon & Wettlaufer 2011),
but, independent of model complexity, both internal and external forcings and
their intrinsic time scales manifest themselves in large-scale observations of the
geophysical state of the system. Owing to the fact that we cannot a priori exclude
the observed decline in the ice cover as being an intrinsic decadal oscillation
or non-stationary influence in the climate system, we use the finest temporal
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resolution in the observed record (days) to examine the action of multiple scales,
from that of the weather and beyond. The fingerprints of the noisy dynamics
of the system on time scales longer than the seasonal record may reside in that
record itself, and our goal here is to extract these to provide a framework for
geophysical modelling of the underlying processes that created them. It is hoped
that the approach will provide theoretical constraints as well as guidelines for
comparative data analysis studies.

Most observational studies of the satellite records of ice coverage extrapolate
in time the annual or monthly means (Serreze 2011, fig. 1). While the observed
declines over this troika of decades (particularly the last decade) are striking,
our goal here is to begin a systematic effort to examine the many processes that
influence the ice cover, namely the intrinsic time scales reflected in geophysical
data. The general methodological framework we employ allows one to examine
time-series data in a manner that can distinguish between long-term correlations
and trends. We examine whether there exists a multiplicity of persistent scales
in the data that can provide a basis for examining cause and effect in the
geophysical scale observables of the system. Therefore, we view several types
of large-scale sea ice data as a multi-fractal system in which a spectrum of
scaling—the singularity spectrum—characterizes the behaviour of nearby points
(Feder 1988; Stanley & Meakin 1988). The basic approach of relevance is the
multi-fractal generalization of detrended fluctuation analysis (DFA) advanced
and widely applied by Kantelhardt and co-workers (Kantelhardt et al. 2002,
2006), aptly called multi-fractal detrended fluctuation analysis (MF-DFA). In
the last decade, this approach has been developed in many directions, from
studying extreme events with nonlinear long-term memory (Bogachev & Bunde
2011) to examining the influence of additive noise on long-term correlations
(Ludescher et al. 2011). Here, we use a new extension of this methodology
called multi-fractal temporally weighted detrended fluctuation analysis (MF-
TWDFA), which exploits the intuition that, in any time series, points closer
in time are more likely to be related than distant points and can provide
a rather more clear signature of long time scales in the fluctuation function
and its moments (Zhou & Leung 2010). In §2, we will summarize MF-
TWDFA and describe its connection to the conventional approaches of analysing
autocorrelation functions and power spectra. The geophysical data are described
in §3, after which we present the principal results from MF-TWDFA in §4
before concluding.

2. Multi-fractal temporally weighted detrended fluctuation analysis

Here, we harness a new variant of MF-DFA to study the long-range correlations
and fractal scaling properties of time-series data of basin-wide Arctic sea ice
extent and satellite albedo retrievals. The new variant, called MF-TWDFA, was
recently developed by Zhou & Leung (2010) and uses weighted regression to
express the intuition that points closer in time are more likely to be similar
than those that are more distant. To ensure that this paper is reasonably self-
contained, we motivate the approach by first discussing the general rationale
for multi-fractals versus the treatment of time series using autocorrelations and
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spectral analysis. We then describe MF-DFA followed by a development of the
aspects that distinguish MF-TWDFA from MF-DFA.

(a) Rationale for a multi-fractal approach

Consider a time series of length i = 1, . . . , N describing a quantity Xi . The
linear two-point autocorrelation function C (s) for realizations of Xi separated by
an increment s is given by

C (s) = 1
s2

X (N − s)

N−s∑
i=1

(Xi − X̄ i)(Xi+s − X̄ i), (2.1)

in which s2
X is the variance and X̄ i is the mean. Long-term persistence in

a time series occurs when on average the linear correlations become arbitrarily
long (Feder 1988). Therefore, C (s) ∝ s−g and the mean correlation time Ts ≡∫N

0 C (s) ds diverges as N → ∞ for 0 < g < 1, whereas, when g ≥ 1, we have finite
Ts and hence we say that the Xi are short-term correlated. Finally, when C (s) = 0
for s > 0 then the Xi are uncorrelated. Therefore, there may be a time s� that
delimits correlated from uncorrelated Xi , namely C (s < s�) > 0 and C (s > s�) = 0.

Despite the simplicity of characterizing a system using a single scaling exponent
g, it has long been understood that a wide range of natural and laboratory
systems have correlations that cannot be captured by such an approach (Feder
1988; Stanley & Meakin 1988). It is particularly important to extract the scaling
behaviour for the long-term correlations, wherein the variability on long time
scales may be poorly represented by a single-scaling exponent and long-term
trends or periodicity may obscure the calculation of the autocorrelation function.
Moreover, the distinction between trends and long-term correlations in stationary
time series can become blurred. These constitute some of the reasons for the
introduction of a multi-fractal description of the correlations which replaces a
single value with a continuous spectrum of scaling exponents.

(b) Multi-fractal detrended fluctuation analysis

There are four stages in the implementation of MF-DFA (Kantelhardt et al.
2002). First, one constructs a non-stationary profile Y (i) of the original time
series Xi , which is the cumulative sum

Y (i) ≡
i∑

k=1

(Xk − X̄ k), where i = 1, . . . , N . (2.2)

Second, the profile is divided into Ns = int(N /s) segments of equal length s that do
not overlap. Excepting rare circumstances, the original time series is not an exact
multiple of s leaving excess segments of Y (i). These are dealt with by repeating
the procedure from the end of the profile and returning to the beginning and

Proc. R. Soc. A (2012)



2420 S. Agarwal et al.

hence creating 2Ns segments. Thirdly, within each of the n = 1, . . . , 2Ns segments
the variance Var (n, s) of the profile relative to a local least squares polynomial
fit yn(i) of nth order is

Var (n, s) ≡ 1
s

s∑
i=1

[Y ([n − 1]s + i) − yn(i)]2. (2.3)

Finally, the generalized fluctuation function is formed as

Fq(s) ≡
[

1
2Ns

2Ns∑
n=1

{Var (n, s)}q/2

]1/q

, (2.4)

and the principal tool of MF-DFAn is to examine how Fq(s) depends on the
choice of time segment s for a given degree of polynomial fit n and the order
q of the moment taken. The scaling of the generalized fluctuation function is
characterized by a generalized Hurst exponent h(q), namely

Fq(s) ∝ sh(q). (2.5)

When the time series is monofractal then h(q) is independent of q and is thus
equivalent to the classical Hurst exponent H . For the case of q = 2, MF-DFA and
DFA are equivalent (Kantelhardt et al. 2002). Therefore, a time series with long-
term persistence has h(2) = 1 − g/2 for 0 < g < 1. However, short-term correlated
data, decaying faster than 1/s, have g > 1 and finite Ts leading to a change at
s = s�, and asymptotic behaviour defined by h(2) = 1/2. Moreover, the connection
between h(2) and the decay of the power spectrum S(f ) ∝ f −b, with frequency
f , is h(2) = (1 + b)/2 (Rangarajan & Ding 2000). Therefore, one sees that, for
classical white noise, b = 0 and hence h(2) = 1/2, whereas for Brownian or red
noise b = 2 and h(2) = 3/2.

In general multi-fractal time series exhibit a scaling dependence on the
moment q. One can relate the generalized Hurst exponents that we focus
on here to other multi-fractal exponents (Hentschel & Procaccia 1983;
Halsey et al. 1986; Feder 1988) and this is the subject of a separate
publication. Such complementary exponents are useful because (i) different
exponents are more easily extracted from different datasets and (ii) multi-
fractality can originate both in a broad probability density as well as in
large and small fluctuations having a different long-term persistence. The
MF-DFA procedure can distinguish between these (Kantelhardt et al. 2002)
and thus different exponents can provide tests of distinct multi-fractal origins.
Here, in §4c, we focus on the generalized Hurst exponents, which make the most
transparent contact with the observations that are the topic of our study.

(c) Moving windows and MF-TWDFA

The generalization of MF-DFA by Zhou & Leung (2010) applies a variant of the
weighted least-squares approach to fit the polynomial yn(i) to the profile Y (i) on
each interval n. Here, rather than using nth order yn(i)’s to estimate Y (i) within
a fixed window, without reference to points in the profile outside that window, a
moving window which is smaller than s but determined by the distance between
points is used to construct a point-by-point approximation ŷn(i) to the profile.

Proc. R. Soc. A (2012)



Long-term persistence in Arctic sea ice 2421

Thus, instead of equation (2.3), we compute the variance up (n = 1, . . . , Ns) and
down (n = Ns + 1, . . . , 2Ns) the profile as

Var (n, s) ≡ 1
s

s∑
i=1

{Y ([n − 1]s + i) − ŷ([n − 1]s + i)}2

for n = 1, . . . , Ns

and Var (n, s) ≡ 1
s

s∑
i=1

{Y (N − [n − Ns]s + i) − ŷ(N − [n − Ns]s + i)}2

for n = Ns + 1, . . . , 2Ns.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Therefore, we replace the global linear regression of fitting the polynomial yn(i)
to the data as appears in equation (2.3), with a weighted local estimate ŷn(i)
determined by the proximity of points j to the point i in the time series such that
|i − j | ≤ s. A larger (or smaller) weight wij is given to ŷn(i) according to whether
|i − j | is small (large).

In the ordinary least-squares method, one minimizes the sum of the squared
differences between the predicted and the original function, whereas, in weighted
least squares, a weight factor is applied to the squared differences before
performing the minimization. There are many varieties of weighted least squares
originating in time-series analysis for evenly spaced observations (Macauley 1931)
and ‘robust’ locally weighted regression for unevenly spaced data (Cleveland
1979). The standard weighted linear regression scheme fits observed variables
Y (i) and Xk(i) assuming a linear relationship as

Y (i) = a0(i) +
m∑

k=1

ak(i)Xk(i) + e(i), (2.7)

where e(i) is the error, which may (but need not) be homoscedastic. Here, ak(i)
is the kth fitting parameter at time i, the vector a of which is determined from

a = (XTwX )−1XTwY, (2.8)

where w is a diagonal matrix having weight elements wij with magnitudes
that depend on the proximity to i, thereby estimating an ak(i) according to
a prescribed criterion of proximity. Hence, ŷn(i) is determined by a weighted
least-squares approach using

ŷn(i) = a0(i) + a1(i)i + e(i), i = 1, . . . , N . (2.9)

Here again, the fitting parameters a(i) = [a0(i), a1(i)]T depend on the place i in
the series and are determined from equation (2.8) in which the wij , with j =
1, . . . , n, are the diagonals of an n × n diagonal matrix, and X is an n × 2 matrix
with the first column being unity and the second running from 1 to n. We use
the same bisquare function for the weights

wij =

⎧⎪⎨
⎪⎩

(
1 −

[
i − j

s

]2
)2

, if |i − j | ≤ s

0, otherwise,

(2.10)

Proc. R. Soc. A (2012)



2422 S. Agarwal et al.

as did Zhou & Leung (2010), although one can envisage a range of possibilities
for dealing with the temporal weighting.

We conclude this section by emphasizing that a principal advantage of MF-
TWDFA over conventional MF-DFA is the robustness of extracting the scaling of
the fluctuation function, and hence the crossover points between scalings, which
indicate the underlying processes reflected in the data. Of particular importance is
the fidelity of extracting the long-term scaling behaviour in geophysical datasets,
which can often be obscured in MF-DFA and, as we shall see below, compromises
MF-TWDFA when a strong seasonal cycle remains in the original time series.
Moreover, in MF-DFA, the profile of the time series is fitted using discontinuous
polynomials, which can introduce errors in the determination of crossover times
for new scalings, and can be particularly questionable at long time scales. Finally,
for time series of length N , while MF-DFA is typically informative only up to N /4,
MF-TWDFA can be carried out to N /2.

3. Sea ice geophysical data

We use MF-TWDFA to examine the multi-scale structure of two satellite-based
geophysical datasets for Arctic sea ice; the equivalent ice extent (EIE) and albedo
retrievals from the Advanced very high-resolution radiometer (AVHRR) Polar
Pathfinder (APP) archive. The EIE data derive from retrievals of satellite passive
microwave radiances over the Arctic converted to daily sea ice concentration
using the NASA Team sea ice algorithm in the same manner as described by
Eisenman (2010), who focused on the origin of the difference between ice extent
and EIE. We refer the reader to Eisenman’s paper for a detailed description of
the determination of EIE. The mean EIE seasonal cycle from 1978 to present
is shown in figure 2. Daily satellite retrievals of the directional–hemispheric
apparent albedo are determined from the APP archive as described in a separate
publication dedicated to a different form of analysis from that presented here
(Agarwal et al. 2011). The apparent albedo is what would be measured by
upward and downward looking radiometers and thus varies with the state of
the atmosphere and the solar zenith angle.

The APP dataset has been refined for use in a wide range of polar studies and
is described in detail in Agarwal et al. (2011) and references therein. In brief, the
AVHRR channels range from the visible to the thermal infrared (0.58–12.5 mm)
and measure top of the atmosphere reflectances and brightness temperatures.
With 5 × 5 km resolution, we analyse albedo retrievals from 1 January 1982 to
31 December 2004, taken daily at 1400 h. Sea ice is distinguished from land and
open water using microwave brightness temperatures and filtering the surface type
mask data with the NASA Team sea ice algorithm that distinguishes between
first-year (FYI) and multi-year ice (MYI) concentrations. The approach ascribes
a MYI concentration flag to a region containing at least 50 per cent of this ice
type, with uncertainties depending on the season (e.g. melt pond fraction) and
region (near the ice edge), along with the surface type categories. On physical
grounds, the albedo data are filtered to remove any values greater than 1 or less
than 0.2. Each pixel is assessed every day for the presence of ice and then the
albedo is averaged for that pixel (Agarwal et al. 2011). Examples of histograms
for mid-March and mid-September are shown in figure 3.
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Figure 2. The mean seasonal cycle of the EIE during the satellite era (figure 1) shown as the solid
line, with the dashed lines denoting one standard deviation.
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Figure 3. Albedo histograms shown for days in mid-March (black) and mid-September (white). If
there is ice in a pixel for the 23 year record then we compute the albedo for that pixel. We compute
a histogram for each day of the year from the number of pixels for each average albedo bin for that
day (Agarwal et al. 2011).
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4. Results and discussion

Here, we focus most of our discussion on the nature of the fluctuation functions
Fq(s) that emerge from MF-TWDFA and return later to the generalized Hurst
exponents. First, we note that we have eliminated the possibility of spurious
multi-fractality (Schumann & Kantelhardt 2011) by checking the usual measures
Dh20 ≡ h(−20) − h(20) and Da. Second, while we show the fluctuation functions
for a range of q, for clarity, we also show plots solely for q = 2 and remind
the reader that, for h(2) = 1/2, the system exhibits a completely uncorrelated
white noise dynamics, and, for h(2) = 3/2, there are red (or Brownian) noise
correlations. However, for 0 < h(2) < 1/2, the dynamics are anticorrelated.
Moreover, as noted above, for analysis by power spectra b = 2h(2) − 1. It is
evident from equation (2.4) that small temporal fluctuations are characterized
by h(q)’s for q < 0, whereas large temporal fluctuations are characterized by
h(q)’s for q > 0. As we discuss below, the fluctuation functions Fq(s) do indeed
distinguish the scaling of small and large fluctuations.

On all segments of the Fq(s) plots, the slopes are computed and the ‘crossovers’
refer to the times s where the curve changes slope. As a test of the fidelity of the
many crossovers in slope (associated with particular intrinsic time scales) detected
with MF-TWDFA, we applied both MF-DFA and MF-TWDFA. We found that
the crossovers for time scales of 2 years or longer would not have been captured by
MF-DFA because of large-amplitude fluctuations in this range. Note that, for the
EIE data with a seasonal cycle, this result was confirmed for polynomial fitting
in the detrending step of MF-DFA of up to order 9, and for the other data up to
order 3. Moreover, and that which we focus on here, the MF-TWDFA analysis
used on the time series after removing the seasonal cycle leads to the extraction
of crossovers associated with long-term persistence that are ‘masked’ when the
seasonal cycle is not removed. Next, we discuss this finding in more detail.

(a) Masking long-term correlations by strong seasonal cycle

A prominent feature of our analysis is the role played by the seasonal cycle.
We lay bare the distinction between profiles with and without the seasonal cycle
in figure 4, which is the origin of the striking distinction between the upper
and lower panels of figures 5 and 6 for the EIE and albedo, respectively. It is
seen that the strength of the seasonal cycle is such that it ‘masks’ the dynamics
on time scales longer than seasonal, thereby suppressing the fingerprints of long-
term persistence. This is clearly displayed in the fluctuation functions. First, in
figures 5a,b and 6a,b, which have a seasonal cycle, we see that the curves for
all q’s converge at the 1 year time scale. This convergence is removed when the
seasonal cycle is removed as seen in figures 5c,d and 6c,d. Second, when the
original time series still possesses the seasonal cycle, the slope abruptly drops
below h(2) = 1/2 at the 1 year time scale to transition to an anticorrelated
structure. This behaviour is distinct from the clear transitions and positive slopes
at longer time scales that are seen when the seasonal cycle is removed from the
original time series. While there is a finite union of underlying processes that
influence the ice extent and the ice albedo, that union is clearly not one to
one (see discussion in Agarwal et al. (2011)). Thus, although we find similar
qualitative structure in the analysis of the EIE and albedo data with and without
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Figure 4. (a) The profile for the EIE and (b) albedo using equation (2.2) with a seasonal cycle in
the original time series. (c) The profile for the EIE and (d) albedo using equation (2.2) removing
the seasonal cycle from the original time series.

a seasonal cycle, there are important quantitative distinctions. For example, the
high-frequency weather time scales of the order of weeks are clearly seen in all of
the data. However, figures 5a,b and 6a,b clearly show masking beginning at 1 year,
the transition to anticorrelated behaviour and then a steeper—white noise—slope
of h(2) = 1/2 returning at 5.25 and 2.2 years in the EIE and albedo, respectively.
Therefore, all long-term persistence is destroyed by the strength of the seasonal
cycle, which is associated with the strong periodicity remaining in the profiles of
figure 4a,b. We see that the general steep/flat/steep behaviour of the slopes of the
fluctuation function with increasing time is seen in all panels of figures 5 and 6.
However, the essential distinction is that, when the seasonal cycle is removed,
long-term persistence is re-entrant. Indeed, time scales of approximately 7 and 9
years are revealed in both the EIE and albedo data.

(b) White noise on seasonal time scales

The region between 1 and 2 years in the EIE data without a seasonal cycle
shows h(2) ≈ 1/2. In other words, although the strength of the seasonal cycle
is such that it dominates the power spectrum (not shown), when removing
the seasonal scale from the original EIE data, the system exhibits a white
noise behaviour from the seasonal to the bi-seasonal time scales. However, the
clear fingerprints of the short (weather) and long (approx. 7 and 9 year) time
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Figure 5. (a) The fluctuation function from equation (2.5) for the EIE with a seasonal cycle. The
q’s are shown in the panel and s is measured in days throughout. (b) The fluctuation function
from equation (2.5) for EIE with a seasonal cycle for q = 2. The stars denote the crossover times
associated with a slope change at approximately 13 days, 1 year and 5.25 years. The blue line and
the red segment of the black curve both denote white noise with h(2) = 1/2. (c,d) Correspond to
(a,b) but without a seasonal cycle. Here, the stars denote crossover times of approximately 8 days,
1 year, 2 years, 6.9 years and 8.9 years. Again, the blue line and the red segment of the black curve
both denote white noise with h(2) = 1/2.

scales remain. The implications of this finding are, unfortunately for the goal
of forecasting, rather clear; a given ice minimum (maximum) can be followed
by a minimum (maximum) with a larger or smaller magnitude. The same logic
follows for minima/maxima separated by 2 years and the EIE states on time
scales between. Most of the discussion in the literature focuses on the extremes
in the observations (maxima and minima), which we find here to exhibit a nearly
white time distribution. If we interpret the results in the limit h(2) = 1/2, then
the autocorrelation will have strong peaks at the seasonal maxima, minima and
bi-seasonal maxima and minima with rapid decays for times from 1 to 2 years.
As discussed below, this is consistent with aspects of other studies in which rapid
decorrelations are found.

It is important to be clear regarding what these results do not tell us. We
are not saying that the minima or maxima (or states between) are uncorrelated
in time, but solely that the magnitudes of those states cannot be predicted to
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Figure 6. (a) The fluctuation function from equation (2.5) for the ice albedo with a seasonal cycle.
The q’s are shown in the panel. (b) The fluctuation function from equation (2.5) for ice albedo with
a seasonal cycle for q = 2. The stars denote the crossover times associated with a slope change at
approximately 7 days, 16 days, 1 year and 2.2 years. The blue line and the red segment of the black
curve both denote white noise with h(2) = 1/2. (c,d) Correspond to (a,b) but without a seasonal
cycle. The stars denote crossover times of approximately 8 days, 17 days, 487 days, 7.5 years and
9 years. Here again, the blue line and the red segment of the black curve both denote white noise
with h(2) = 1/2.

be larger or smaller from these data alone. Moreover, the lack of an extended
autocorrelation does not a priori constrain the probability distribution(s)
associated with the process(es) from which the value of the observable originates,
but rather solely refers to the temporal distribution of the observable. In other
words, while a particular probability distribution may underlie the nature of
how a given magnitude of the EIE or albedo is reached, we find that the
temporal distribution of the sequence of observed magnitudes is white on seasonal
to bi-seasonal time scales. Thus, on such time scales, these data are short-
term correlated, and are associated with a finite Ts and an autocorrelation that
decays faster than ∼ s−1. Therefore, on these short time scales, the processes
controlling the EIE or albedo states in the Arctic are the familiar regular strong
seasonal scale radiative and advective forcings. Indeed, this is explained by the
robustness of the response times associated with the seasonal control of the
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ice state through the competition between the ice-albedo feedback in summer
and the long-wave forcing in winter (e.g. Moon & Wettlaufer 2011; Tietsche
et al. 2011). However, on longer time scales, we can associate the retreat of
the ice cover with the observation of the upswing in h(2) towards a more
‘Brownian’ dynamics; h(2) ∼ 3/2. Such trends, when accumulating future data
over decadal time scales, could well be compromised by a higher degree of
noise in the state of the system, but to speculate more moves beyond the level
of firm evidence.

We test the idea that the rapid decline in the ice coverage during the most
recent decade is dominating the longest crossovers found in our analysis as follows.
The EIE record is approximately a decade longer than that for the albedo and
covers the decade of the most rapid decline. Thus, we ask what crossovers are
seen when we reanalyse this record between 1982 and 2004, the time range
corresponding to the albedo dataset? It is found that the two long-term crossovers
decrease from 7 to 6.2 and from 9 to 8.4 years. Moreover, the seasonal to bi-
seasonality of the white noise persists. Therefore, the increase in the crossover
times as we include the recent data appears to be the most plausible reflection of
the recent declines. However, we leave for future study what would probably be
a less quantitative endeavour of correlating these longer time scales with climate
indices that have time scales ranging from 2–7 years (for the El Niño Oscillation)
to a decade or many decades (such as for the Pacific Decadal, North Atlantic or
Arctic Oscillations).

(c) Generalized Hurst exponents

Figure 7 shows the trends in the generalized Hurst exponents, h(q), associated
with the strong seasonal cycle. We calculate these exponents, which describe
the slope of the fluctuation curve, for each q as the linear approximation of the
entire curve. It is principally used here to demonstrate the strong influence of the
seasonal cycle in suppressing h(q) for all q. There are several important effects
immediately evident. First, the general reduction in the magnitudes of the h(q)
associated with the seasonal cycle is synonymous with the suppression of long-
term persistence, restricting the crossovers to short-term dynamics and masking
behaviour on time scales longer than seasonal, as was seen in the fluctuation
functions themselves in figures 5 and 6. Second, this suppression of long-term
persistence by definition suppresses multiple crossovers as well as trends on long
time scales. Third, the combination of the reduced magnitude and the general
flatness of the curves with the seasonal cycle present indicates a suppression of
the ‘dynamic range’ of multi-fractality. The analysis and interpretation of related
multi-fractal exponents are the subject of a separate publication. The main point
of figure 7 is to display the behaviour and interpretation of figures 5 and 6 in a
more compact manner.

(d) Discussion

In his EIE observational analysis, Eisenman (2010) noted that the overall
retreat of the ice cover is governed by a noisy signal and particularly so
at the September minimum. Observations using approximately 30 years of
monthly ice extent and area data show rapid decorrelations of a few months
(Blanchard-Wrigglesworth et al. 2011) using a lag-correlation method and
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Figure 7. The generalized Hurst exponents as functions of q for EIE: (a) with a seasonal cycle
and (b) without a seasonal cycle; and the ice albedo: (c) with a seasonal cycle and (d) without a
seasonal cycle.

assuming that the underlying process is a first-order autoregressive process. A
similar approach was applied to fit hindcasting simulation output, which showed
a persistence time scale for the September ice area of 1.2 years (Armour et al.
2011a). In a study of the forecast skill of a linear empirical model, Lindsay
et al. (2008) found no skill in predicting detrended data for time scales of three
or more months. Finally, the rapid decay in ice area anomalies is also found
in climate models (see Armour et al. 2011b and references therein) and this is
argued to underlie the lack of hysteresis associated with the loss of summer sea
ice in both global models and theoretical treatments such as in Eisenman &
Wettlaufer (2009).

The corpus of these studies led to the general conclusion of rapidly decaying
correlations and hence compromised predictability. Thus, in this respect they
are heuristically consistent with our interpretation here. However, there remain
important distinctions. First, even a single moment of the fluctuation function
demonstrates the existence of multiple time scales in the data which, as noted in
§2a, cannot be treated in a quantitatively consistent manner with a single decay
autocorrelation. Moreover, we showed in §4a that if the seasonal cycle is not
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removed one will always observe a single crossover time (longer than the synoptic
time scale) of 1 year; a time scale at which all moments converge. Thus, the upper
bound on the persistence time in any study that assumes an autoregressive process
will inevitably be approximately 1 year, as is indeed found for ice area (Armour
et al. 2011a; Blanchard-Wrigglesworth et al. 2011). Apart from the single moment
evidence of multiple scales in the system, the approach here highlights the dangers
of not carefully detrending the seasonality and dealing with stationarity. Second,
both datasets as used for this analysis and many of the studies mentioned above
do not explicitly distinguish between ice types. Thus, this analysis applies to the
aggregate of the ice cover, whereas, subject to a wide range of caveats, many
models can diagnose features such as thickness or type. The present work focuses
on extending this analysis into various ice types.

5. Concluding remarks

We have examined the long-term correlations and multi-fractal properties of daily
satellite retrievals of Arctic sea ice albedo and EIE, for periods of approximately
23 years and 32 years, respectively, with and without the seasonal cycle removed.
A recent development (MF-TWDFA), which exploits the intuition that in any
time series points closer in time are more likely to be related than distant
points, was adapted for use with these data. Points in the records nearer
each other are weighted more than those farther away in order to determine
a polynomial used to fit the time-series profile, which is a cumulative sum of
the time series. As a methodology, the approach offers several advantages over
the more generally applied MF-DFA. The profile in MF-DFA is fitted using
discontinuous polynomials, which can introduce errors in the determination of
crossover times for new scalings, and can be particularly questionable for long
time scales. Whereas MF-DFA is typically informative only up to N /4 for time
series of length N , MF-TWDFA can be carried out to N /2. Additionally, the
generalized fluctuation functions Fq(s) for all moments q as a function of time
scale s are substantially smoother for all s and this is particularly so for
large values. This facilitates clear extraction of crossover times from one scale
to another.

The generalized Hurst exponents and multiple crossover timescales were found
to range from the synoptic or weather time scale to decadal, with several in
between. Such multiple time scales were exhibited in both datasets and hence the
approach provides a framework to examine ice dynamical and thermodynamical
responses to climate forcing that goes beyond treatments that assume a process
involving a single autocorrelation decay, such as a first-order autoregressive
process. Indeed, the method shows that single decay autocorrelations cannot be
meaningfully fitted to these geophysical observations. One of our most important
findings is that the strength of the seasonal cycle is such that it dominates
the power spectrum and ‘masks’ long-term correlations on time scales beyond
seasonal. When detrending the seasonality from the original record, the EIE data
exhibit a white noise behaviour from seasonal to bi-seasonal time scales, but the
clear fingerprints of the short (weather) and long (approx. 7 and 9 year) time
scales remain, demonstrating a re-entrant long-term persistence. Therefore, it is
not possible to distinguish whether a given EIE minimum (maximum) will be
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followed by a minimum (maximum) that is larger or smaller. This means that
while it is tempting to use an anomalous excursion associated with a low ice year
to predict the following year’s minimum, or that of 2 years henceforth, the present
data do not justify such a prediction. It is unfortunate, but it is so.

We tested the idea that the rapid decline in the ice coverage during the most
recent decade is associated with the longest crossovers found in our analysis of
the EIE. This was done by reanalysing this record between 1982 and 2004, the
time range corresponding to the albedo dataset. In so doing, we found that the
exclusion of the most recent decade led to the two long-term crossovers decreasing
from 7 to 6.2 and from 9 to 8.4 years. Moreover, the white noise structure on
seasonal to bi-seasonal times is the same in both records. Hence, the increase
in the crossover times associated with including the last decade of data appears
to be the most plausible reflection of the recent declines. However, we have not
attempted to correlate these longer time scales with other climate indices.

Finally, other methods of analysing such data find solely a rapid decorrelation,
whereas we find multi-year and decadal transitions as well as the origin of the
dominance of the seasonal cycle in long-term persistence. Hence, we believe that
combining such multi-fractal studies of model output and other observations will
substantially improve the acuity with which one can disentangle the strength of
the seasonal cycle in this highly forced system from the longer term trends.

W.M. thanks NASA for a graduate fellowship. J.S.W. thanks the Wenner-Gren and John Simon
Guggenheim Foundations, the Swedish Research Council and Yale University for support. The
authors thank N. Untersteiner, A. J. Wells and the referees for their comments and suggestions.
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