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We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background 
method. In analogy with Rayleigh–Bénard convection the upper bounds are for heat transport versus 
Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic 
counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting 
behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise 
amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations 
in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise 
amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, 
the degree of which depends on the degree to which the ensemble represents the ergodic set. This is 
confirmed by examining the close returns plots of the full solutions to the stochastic equations and the 
numerical convergence of the noise correlations. The numerical convergence of both the ensemble and 
time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization 
of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the 
effect of noise is equivalent to the effect of chaos.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Noise is an integral part of any physical system. It can be as-
cribed to fluctuations arising from intermittent forcing, observa-
tional uncertainties, interference from external sources or unre-
solved physics. In circumstances where noise acts to destroy a sig-
nal of interest, it is viewed as a nuisance. However, it can also 
be the case that fluctuations act to stabilize a system, examples of 
which include noise-induced optical multi-stability [2], asymmetric 
double well potentials [3], plant ecosystems [4], population dy-
namics [5], and in electron–electron interactions in quantum sys-
tems [6]. Curiously, it has recently been shown that noise can have 
positive effects on cognitive functions such as learning and mem-
ory [7]. Finally, a key issue arising when examining observational 
data is whether fluctuations are intrinsic or due to external forcing, 
which can be confounded by temporal multifractality (e.g. [8]).
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Given the breadth of settings in which the effects of noise 
manifest themselves on dynamical systems, it appears prudent to 
examine such matters in a well studied and yet broadly relevant 
system. Thus, we study the influence of noise in the Lorenz sys-
tem [9], which is an archetype of deterministic nonlinear dynam-
ics. Moreover, Souza and Doering [1] have recently determined the 
maximal (upper bounds) transport in the Lorenz equations, thereby 
providing us with a rigorous test bed for stochastic extensions. In 
Section 2 we describe the stochastic Lorenz model, followed by 
the derivation of the stochastic upper bounds in Section 3. We in-
terpret the core results and their implications in Section 4 before 
concluding.

2. Stochastic Lorenz model

The Lorenz model is a Galerkin-modal truncation of the equa-
tions for Rayleigh–Bénard convection with stress-free boundary 
conditions on the upper and lower boundaries. It acts as a rich 
toy model of low-dimensional chaos and since its origin extensive 
studies have been made spanning a wide range of areas (e.g. [10]). 
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Of particular relevance here, is using the system as a model for 
heat transport in high Rayleigh number turbulent convection [1].

The stochastic form of the Lorenz system is described by the 
following coupled nonlinear ordinary differential equations,

d

dt
X = σ(Y − X) + A1ξ1,

d

dt
Y = X(ρ − Z) − Y + A2ξ2,

d

dt
Z = XY − β Z + A3ξ3 (1)

where X describes the intensity of convective motion, Y is the
temperature difference between ascending and descending flow 
and Z is the deviation from linearity of the vertical temperature 
profile. The control parameters are σ the Prandtl Number, ρ the 
Rayleigh Number and β a domain geometric factor. The Ai are the 
noise amplitudes and ξi are the noise processes. Clearly, the deter-
ministic system has Ai = 0.

This type of additive noise may appear, for example, in observa-
tional errors, when the errors do not depend on the system state 
or as a model of sub-grid scale processes approximated by noise 
associated with unexplained physics [11]. In multiplicative noise 
the system has an explicitly state dependent noise process.

Although real noise will always have a finite time correlation, 
taking the limit that the noise correlation goes to zero as �t → 0, 
serves as a good approximation for the noise forcing. This is the 
white noise limit of colored noise forcing. White noise forcing ξ(t)
is defined by an autocorrelation function written as

〈ξ(t)ξ(s)〉 = 2Dδ(t − s), (2)

where, t − s is the time lag, D is the amplitude of the noise, 〈•〉
represents the time average and δ(r) is the Dirac delta-function.

3. Stochastic maximal transport

Initiated by the work of Louis Howard [12], maximizing the 
transport of a quantity such as heat or mass is a core organizing 
principle in modern studies of dissipative systems. In this spirit 
Souza and Doering [1] studied the transport in the deterministic 
Lorenz equations and determined the upper bound, which depends 
on the exact steady solutions Xs , Ys , as limT →∞ 〈XY 〉T = XsYs =
β(ρ − 1), where Xs = Ys = ±√

β(ρ − 1) for ρ ≥ 1. Moreover, they 
showed that any time-dependent forcing would decrease the trans-
port in the system, and hence the steady state maximizes the 
transport in the system. We study the effect of noise on the max-
imal transport in this system as the Rayleigh number ρ is varied, 
with σ = 10 and β = 8/3 fixed.

Let X = x, Y = ρ y, Z = ρz and A1 = A2 = A3 = A in the system 
of equations (1), which transform to

d

dt
x = σ(ρ y − x) + Aξ1,

d

dt
y = x(1 − z) − y + A

ρ
ξ2,

d

dt
z = xy − βz + A

ρ
ξ3. (3)

In the next two sub-sections, we calculate the stochastic upper 
bound of equations (3) using both Itô and Stratonovich calculi.

3.1. Itô calculus framework

Now, knowing that the state variables (x, y, z) in the Lorenz 
system are bounded [1,13], and following the approach of Souza 
and Doering [1] for this stochastic system, the long time averages 
of 1

2 x2, 1
2 (y2 + z2) and −z can be written as

0 = −〈x2〉T + ρ〈xy〉T + A2

2σ
+ A

σ
〈xξ1〉T + O (T−1), (4)

0 = −〈y2〉T + 〈xy〉T − β〈z2〉T + A2

ρ2
+ A

ρ
〈yξ2〉T

+ A

ρ
〈zξ3〉T + O (T−1), (5)

0 = −〈xy〉T + β〈z〉T + O (T−1), (6)

where the terms A2

2σ in Eq. (4) and A2

ρ2 in Eq. (5) are a consequence 
of Itô’s lemma.

Now, let z = z0 + λ(t), where z0 = r−1
r is time-independent [1], 

and equations (5) and (6) now become,

0 = −〈y2〉T + 〈xy〉T − βz2
0 − 2βz0〈λ〉t − β〈λ2〉T

+ A2

ρ2
+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1), and (7)

0 = −〈xy〉T + βz0 + β〈λ〉T + O (T−1). (8)

Therefore, equation (7) + 2z0 × (8) becomes,

0 = −〈y2〉T + (1 − 2z0)〈xy〉T + βz2
0 − β〈λ2〉T

+ A2

ρ2
+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1). (9)

Now adding 1
ρ × (4) to ρ × (9) gives

0 = −ρ〈y2〉T + ρ(1 − 2z0)〈xy〉T + ρβz2
0 − ρβ〈λ2〉T

− 1

ρ
〈x2〉T + 〈xy〉T + A

ρσ
〈xξ1〉T + A2

ρ

+ A2

2ρσ
+ A〈yξ2〉T + A〈λξ3〉T + O (T−1), (10)

and adding (ρ − 1)〈xy〉T to both sides gives,

(ρ − 1) 〈xy〉T = ρβz2
o + A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]

−
〈(

x√
ρ

− √
ρ y

)2

+ ρβλ2

〉
T

+ A2
[

1

ρ
+ 1

2ρσ

]
+ O (T −1). (11)

We thus arrive at

(ρ − 1) 〈xy〉T ≤ ρβz2
o + A2

[
1

ρ
+ 1

2ρσ

]

+ A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]

+ O (T −1). (12)

Comparing equation (12) above with equation 19 from Souza and 
Doering [1], we see two additional terms;

lim
T →∞〈XY 〉T = lim

T →∞ρ 〈xy〉T

≤ β(ρ − 1) + A2 [
1 + 1

]

ρ − 1 2σ
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+ ρ A

ρ − 1

[
1

ρ
〈Y ξ2〉T + 〈λξ3〉T + 1

σρ
〈Xξ1〉T

]
,

(13)

which shows that the stochastic upper bound transcends the de-
terministic upper bound.

3.2. Stratonovich calculus framework

In this framework, the equations analogous to (4), (5) and (6)
are

0 = −〈x2〉T + ρ〈xy〉T + A

σ
〈xξ1〉T + O (T−1), (14)

0 = −〈y2〉T + 〈xy〉T − β〈z2〉T + A

ρ
〈yξ2〉T

+ A

ρ
〈zξ3〉T + O (T−1), (15)

0 = −〈xy〉T + β〈z〉T + O (T−1). (16)

Again letting z = z0 +λ(t), where z0 = r−1
r , equations (15) and (16)

now become,

0 = −〈y2〉T + 〈xy〉T − βz2
0 − 2βz0〈λ〉t − β〈λ2〉T

+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1), (17)

0 = −〈xy〉T + βz0 + β〈λ〉T + O (T−1), (18)

and hence (17) + 2z0 × (18) becomes,

0 = −〈y2〉T + (1 − 2z0)〈xy〉T + βz2
0 − β〈λ2〉T

+ A

ρ
〈yξ2〉T + A

ρ
〈λξ3〉T + O (T−1). (19)

Now adding 1
ρ × (14) to ρ × (19) we find

0 = −ρ〈y2〉T + ρ(1 − 2z0)〈xy〉T + ρβz2
0 − ρβ〈λ2〉T − 1

ρ
〈x2〉T

+ 〈xy〉T + A

ρσ
〈xξ1〉T + A〈yξ2〉T + A〈λξ3〉T + O (T−1). (20)

Finally, adding (ρ − 1)〈xy〉T to both sides gives

(ρ − 1) 〈xy〉T = ρβz2
o + A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]

−
〈(

x√
ρ

− √
ρ y

)2

+ ρβλ2

〉
T

+ O (T −1). (21)

We thus arrive at

(ρ − 1) 〈xy〉T ≤ ρβz2
o

+ A

[
〈yξ2〉T + 〈λξ3〉T + 1

σρ
〈xξ1〉T

]
+ O (T −1)

(22)

Now, comparing Eq. (22) above with Eq. 19 from Souza and Do-
ering [1], we see an additional term due to the stochastic forcing, 
which as expected from the previous section, increases the upper 
bound;

lim
T →∞〈XY 〉T = lim

T →∞ρ 〈xy〉T

≤ β(ρ − 1)

+ ρ A
[

1 〈Y ξ2〉T + 〈λξ3〉T + 1 〈Xξ1〉T

]
. (23)
ρ − 1 ρ σρ
Fig. 1. limT →∞ 〈XY 〉T , the transport from a single realization of the stochastic 
Lorenz attractor (equation (1)), as a function of ρ and noise amplitude A, with the 
solid black line showing the deterministic upper bound [1]. The inset shows the in-
creased transport for ρ near the transition to chaos; ρc = 24.74, beyond which the 
solutions cross below the deterministic upper bound.

Due to the fact that the noise is additive, the upper-bounds from 
Itô and Stratonovich calculi should be equivalent. This is indeed the 
case because for the Itô result, 〈Xξ1〉 = 〈Y ξ2〉 = 〈λξ3〉 = 0, whereas 
for the Stratonovich result 〈Xξ1〉 = 〈Y ξ2〉 = A

2 and 〈λξ3〉 = A
2ρ . 

Therefore, when we take the ensemble average of equations (13)
and (23) we obtain

〈 lim
T →∞〈XY 〉T 〉 ≤ β(ρ − 1) + A2

ρ − 1

[
1 + 1

2σ

]
. (24)

We plot equation (24) in Fig. 2, wherein the lines show the analytic 
solution and the solid circles denote the numerical solution, taking 
the ensemble average of equation (23), all as a function of noise 
amplitude A.

4. Results & interpretation

It is often the case that for the nonlinear dynamical systems 
found in nature we only have a single time series. Thus, it is 
a natural question to ask about the properties of the stochastic 
upper bound both for the ensemble average and for a small num-
ber of realizations. Whereas deterministic chaos acts to decrease 
the transport in the system [1], here we find that it can also be 
indistinguishable from noise. In Fig. 1 we show individual real-
izations (one for each of 10 amplitudes A) of the transport as 
a function of ρ . These exhibit two important features. (1) For ρ
below the deterministic transition to chaos (ρc = 24.74), the so-
lutions transcend the deterministic upper bound (DUB), whereas 
for ρ above ρc they cross below it. (2) Independent of ρ , there 
is no systematic dependence of the solutions on the noise am-
plitude. Taken together these features show that the impact of 
noise differs substantially depending on whether the determinis-
tic dynamics is chaotic or non-chaotic. Clearly, the role of noise 
is indistinguishable from the role of chaotic dynamics and in in-
dividual realizations a given noise amplitude couples with various 
unstable periodic orbits, which we discuss in more detail below.

Again we note that the analytical solution from equation (24)
and the numerical solution (taking the ensemble average in equa-
tion (23)) of the stochastic upper bound (SUB) are shown in Fig. 2. 
Firstly, we see the increase in the SUB as the noise amplitude A
increases. Secondly, for fixed amplitude and values of ρ < ρc , the 
origin of the increase in the SUB are the two terms proportional 
to 1/ρ . As ρ increases and A decreases the SUB converges to the 
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Fig. 2. 〈limT →∞ 〈XY 〉T 〉 as a function of ρ and noise amplitude A, with black line 
showing the upper bound in the deterministic case [1], colored lines showing the 
analytical solution from equation (24) and solid circles showing the numerical solu-
tion as the ensemble average in equation (23). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

Fig. 3. XY -space of the stochastic Lorenz attractor (equation (1)), for three different 
noise amplitudes. The diameter of the attractor increases with noise amplitude.

DUB from above. The increase with A at low ρ is a reflection of 
the dependence of the “diameter” of the system in the X–Y plane, 
other parameters being held constant. Because the diameter de-
creases as ρ decreases, the relative influence of A on the SUB is 
larger. We show this for ρ = 2 in Fig. 3. However, we note that, 
using a different method Fantuzzi and Goluskin (pers. comm.) find 
a SUB that does not exhibit the low ρ divergence, asymptotes to 
our bound for ρ in the region of typical interest, and also recovers 
the DUB in the appropriate limit.

A more detailed view of the SUB from Eq. (23) is shown in 
Fig. 4. The lower right inset shows that for ρ < ρc the SUB is 
a monotonic function of the noise amplitude, as one would in-
tuitively expect from Fig. 3. However, as the system enters the 
chaotic regime, this monotonicity is lost to reveal an oscillation 
with amplitude, as shown in the upper inset of Fig. 4 for noise 
amplitudes A = 9 and A = 10. This oscillatory behavior is due to 
the coupling of noise with chaotic orbits that, depending on the 
amplitude, can result in different residence times of a trajectory 
in different orbits. Indeed, although for ρ < ρc , the realization to 
Fig. 4. The stochastic upper-bound (circles) from Eq. (23) as a function of ρ and 
noise amplitude A. The solid black line is the DUB [1]. The bottom inset shows that 
the SUB is a monotonic function of A in the non-chaotic regime (ρ < ρc ). The top 
inset shows the oscillations of the SUB between noise amplitudes A = 9, 10 in the 
chaotic regime (ρ > ρc ).

Fig. 5. Scaled close returns plots (a, c) and the corresponding histograms of the 
2-norm of these (b, d) for the stochastic Lorenz attractor (equation (1)) with ρ = 97, 
where the horizontal segments represent the UPOs in the system when they close 
up when embedded in the phase space of the attractor. The scaled index in the 
time series is i, and α is the scaled period of the UPO. (a, b) A = 9. (c, d) A = 10.

realization stochastic upper bounds are consistent, this is not the 
case in the chaotic regime due to the coupling between the noise 
and the chaotic orbits. In consequence, each realization results in 
a slightly different SUB and hence the bound is not strict; it has 
a diffuseness that depends on the noise amplitude. This combined 
effect of noise and the exponential divergence property of chaos 
allows the noise to perturb the stochastic system into a different 
orbit in each realization.

The close returns plot of Mindlin and Gilmore [14] can be used 
to extract unstable periodic orbits (UPOs) from a chaotic time se-
ries. Thus, to demonstrate the coupling between noise and chaos 
discussed above in a different manner, we show the close returns 
plot for the stochastic Lorenz attractor (equation (1)) for A = 9, 10
and ρ = 97 in Fig. 5 (a, c). These plots help us distinguish between 
noise and chaos. Whereas in a noisy system the points are more 
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diffuse, in a chaotic system they are more structured, with contin-
uous straight lines defining the UPOs.

To further quantify this structure, in Fig. 5 (b, d) we plot the 
histogram of the 2-norm of the points from the close returns plot. 
The peaks in the histogram show the UPOs in the system, cor-
responding to the lines in the close returns plot. Whereas the 
histogram in Fig. 5(b) has a broad-band structure, that in Fig. 5(d) 
reveals prominent peaks at different norms.

5. Summary

We calculated the stochastic upper bounds of the heat trans-
port for the Lorenz equations using an extension of the background 
method of Souza and Doering [1] used in the deterministic system. 
Whilst one might have expected that the stochastic upper bounds 
transcend their deterministic counterpart of [1], their variation 
with noise amplitude exhibits rich behavior. In the non-chaotic 
regime the upper bounds increase monotonically with noise am-
plitude. However, in the chaotic regime this monotonicity depends 
on the number of realizations in the ensemble; at a particular 
Rayleigh number the bound may increase or decrease with noise 
amplitude. The origin of this behavior is the coupling between the 
noise and unstable periodic orbits, the degree of which depends 
on the degree to which the ensemble represents the ergodic set. 
This is confirmed by examining the close returns plots of the full 
solutions to the stochastic equations. These solutions also demon-
strate that the effect of noise is equivalent to the effect of chaos 
for a wide range of noise amplitude. Finally, we note that although 
in Itô-calculus the analytic bound (equation (24)) relies on van-
ishing noise correlations (〈Xξ1〉 = 〈Y ξ2〉 = 〈λξ3〉 = 0), numerically 
such correlations never completely vanish, e.g. [15],1 as the size 
and diffuseness of stochastic attractor continually increases, the ex-
tent to which ensemble average reaches the ergodic set remains a 
concept rather than a practical reality.
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