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Understanding multidecadal variability is an essential goal of climate dynamics. For example, the recent
phenomenon referred to as the “global warming hiatus" may reflect a coupling to an intrinsic, preindustrial,
multidecadal variability process. Here, using a multifractal time-series method, we demonstrate that 42 data
sets of 79 proxies with global coverage exhibit pink-noise characteristics on multidecadal timescales.
To quantify the persistence of this behavior, we examine high-resolution ice core and speleothem data to
find pink noise in both pre- and postindustrial periods. We examine the spatial structure with an empirical
orthogonal function analysis of the monthly averaged surface temperature from 1901 to 2012. The first
mode clearly shows the distribution of ocean heat flux sinks located in the eastern Pacific and the Southern
Ocean and has pink-noise characteristics on a multidecadal timescale. We hypothesize that this pink-noise
multidecadal spatial mode may resonate with externally driven greenhouse gas forcing, driving large-scale
climate processes.
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A central question in contemporary climate science con-
cerns the relative roles of natural climate variability and
anthropogenic forcing. Indeed, understanding the detailed
human effect on the global temperature is highly complex due
to the nonlinear interactions of anthropogenic forcing with
natural climate variability on multiple timescales, many of
which transcend a typical human lifetime. The recent phe-
nomenon referred to as the “global warming hiatus” [1–5]
is a compelling example emphasizing the potential of such
interactions. Understanding the coupling between natural
multidecadal climate variability and anthropogenic forcing is
a fundamental aspect of climate dynamics.
Here we describe a framework for characterizing the

dynamics of natural global climate variability on multi-
decadal timescales [6–8]. There are many challenges
associated with direct investigations of the physical and
statistical characteristics of global observations on multiple
timescales. First, the strong seasonal variability in obser-
vations, such as the surface air temperature, hinders the
detection of long-term spatiotemporal correlations [9–11].
Moreover, there is a substantial land-ocean contrast in
seasonal variability, making it difficult to extract the
influence of climate variability on global scales. Second,
the maximum length of the available station-based obser-
vations is only approximately 100 yr, which may be
insufficient to statistically discern multidecadal variability.
At the same time, nonlinear interactions between natural
and anthropogenic contributions to the multidecadal vari-
ability found in these observations cannot be trivially
disentangled. To overcome these obstacles, we analyze

the data in a manner that enables us to exclude the
contributions of the strong seasonality in the station-based
observations. We detect global multidecadal timescales
corresponding to pink-noise dynamics, defined as having
a power spectrum SðfÞ ∝ f−β, with frequency f and β ≈ 1,
also generally termed 1=f noise when 0 < β < 2 (see, e.g.,
[12–17]). Furthermore, we analyze high-resolution proxy
data spanning at least several hundred years to detect the
footprint of these dynamics and to differentiate between
anthropogenic forcing and natural climate variability.
We study the statistical characteristics of the decadal

and multidecadal variability of Earth’s climate by analyzing
the Goddard Institute for Space Studies (GISS) monthly
averaged surface temperature data from 1901 to 2012
[18,19] and proxy data, such as δ18O and δ13C, from ice
cores and speleothems from 42 paleoclimate data sets (see
Table 1 of Ref. [20]). To examine the temporal dynamics
of the data, we use multifractal temporally weighted
detrended fluctuation analysis (MFTWDFA) [11,23].
This methodology captures the statistical dynamics (e.g.,
white noise, red noise, and degree of correlation) on
multiple timescales. The veracity of the approach has been
demonstrated in various fields, such as the study of Arctic
sea ice extent [11], sea ice velocity fields [24], and even the
detection of exoplanets, in all cases solely using the data
with no a priori modeling [25]. This approach produces a
statistical measure called the fluctuation function FqðsÞ,
each moment of which q is assessed on multiple timescales
s, as described in Refs. [11,20,23] in more detail. For
intuition, one can think of the expectation value of FqðsÞ
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as the weighted sum of the autocorrelation function
(see, e.g., [26]). The dominant timescales in a system
are those where FqðsÞ versus s changes slope and the
individual slopes are associated with the statistical
dynamics of a system.
First, we analyze the GISS data set by employing a new

stochastic dynamical method of time-series analysis that
was shown to capture the seasonal variability in monthly
averaged temperature data from decadal to 133 yr [27].
This method centers on a periodic nonautonomous sto-
chastic model for the observed deviation in the surface heat
flux, xðtÞ, given by _x ¼ aðtÞxþ NðtÞξðtÞ þ dðτÞ, where
aðtÞ and NðtÞ are periodic functions with annual periodic-
ity, ξðtÞ is stochastic noise, and dðτÞ represents decadal
forcing. Thus, the first two terms in the model explain the
seasonal variability, and the last term dðτÞ captures the
transseasonal variability. The approach provides analytical
expressions for aðtÞ, NðtÞ, and dðτÞ and reproduces the
observed monthly statistics (Fig. 1 of Ref. [27]).
Second, we employ MFTWDFA to analyze the annual

time series for each latitude-longitude pair from the GISS
data set. A dominant signal at all locations is the presence
of pink-noise behavior (β ≈ 1) on multidecadal timescales.
Pink noise, often referred to as “ubiquitous noise” (see,
e.g., [12–17]), is observed in a wide range of systems, such
as earthquakes, stellar luminosity, electronics, and climate
on a variety of timescales (see, e.g., [14]). We quantify the
spatial structure of this statistical behavior by showing the
timescales on a global map; Fig. 1 shows the shortest
timescale (in years) at which pink-noise behavior appears
in the data. Latitude-longitude pairs that do not exhibit such
behavior are shown in red, while points where no data were
present are left blank. Timescales greater than about 60 yr
are constrained by the finite length of the data set. Thus, the
colors in Fig. 1 have two interpretations: pink noise from
1 to 60 yr but no pink noise for longer times. Because both
dðτÞ and the annual averaging of the data represent different
forms of temporal filtering, they exhibit similar timescales
for the global appearance of pink-noise behavior, hence
we find quantitative but not qualitative differences [20].
However, the value of using dðτÞ is that it embodies the
effects of seasonal stability and noise on annual and longer
timescales. The pointwise values of dðτÞ in the GISS
data set exhibit pink-noise characteristics on decadal and
multidecadal timescales nearly everywhere on the globe.
Dominant global climate variability phenomena such as the
El Niño–Southern Oscillation (ENSO) immediately emerge
from this analysis. The ENSO has been studied extensively
and shown to influence global climate on timescales
ranging from interannual to multidecadal through atmos-
pheric and oceanic teleconnections (see, e.g., [28]). This
phenomenon has also been related to global rainfall, a
driver of global natural climate variability, which is a
response to the regional amount of precipitation and

evaporation, reflecting the variability in surface heat
flux.
To examine the spatial structure of dðτÞ, and whether it

captures the principal contributions to decadal variability,
we construct two one-point correlation maps. As seen in
Fig. 2, dðτÞ nearly mirrors two key decadal variability
indices: (a) the Pacific Decadal Oscillation (PDO) [6] and
(b) the North Atlantic Oscillation (NAO) [29]. We use
empirical orthogonal function (EOF) analysis [30] to
determine the dominant spatial pattern. Figure 2(c) shows
the first EOF mode and explains 21% of the total variance,
with the rest of the modes characterized by shorter time-
scales [20]. This first mode connects the major PDO region
in the eastern Pacific to the Southern Ocean region (also
seen in simulations [31]) and is very similar to the so-called
“hyperclimate modes” [32] and the “Interdecadal Pacific
Oscillation” (IPO) [8] in the Pacific Ocean. The time series
of the principal component (PC) shows clear multidecadal
variability. We note that the sign of the mode changes from
positive to negative at about the start of the new millen-
nium. A negative sign denotes the intensification of the
negative PDO in the North Pacific and the cooling of the
Southern Ocean circumpolar region. Simulations [1,3] have
shown that the cooling of the eastern tropics is correlated
with the global warming hiatus, and the average sea surface
temperature trends from ten climate models, which capture
the hiatus, are negative in the Eastern Pacific and Southern
Ocean [4]. The leading EOF of dðτÞ introduced here may
be related to this hiatus. Figure 2(d) shows the result of
MFTWDFA using the time series of the PC; the onset of
pink-noise behavior occurs after approximately 15 yr,
indicated by the fluctuation function mirroring the red
dashed line denoting β ¼ 1. This noise behavior and its
global presence on multidecadal timescales raises the

FIG. 1. Spatial distribution of the shortest timescale (in years)
at which pink-noise behavior appears in the GISS data set. This
transition takes place on multidecadal timescales nearly every-
where. The red color denotes locations that do not show pink-
noise characteristics on timescales up to 65 yr (half of the total
length of the data set), with the most prominent feature being in
the tropical eastern Pacific. White regions show locations where
continuous data are absent.
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natural question: Is pink-noise dynamics an internal feature
of the multidecadal variability of our climate or imprinted
on the climate system by anthropogenic forcing? We
address this question by analyzing paleoclimate proxies.
Paleoclimate studies have been broadly successful in

observing the long-term evolution and variability of Earth’s
climate (see, e.g., [33,34]). Because of their comparatively
high resolution, we focus on the proxy data from speleo-
thems and ice cores to (a) understand the observed pink
signal in the GISS data and (b) study the effect of
anthropogenic climate change on natural climate variabil-
ity. Our data sets cover a substantial swath of the globe:
Asia, Europe, North America, Central America, South
America, and Antarctica along with the Pacific Islands
[20]. These data provide a long record of Earth’s climate
system, drawing from many sources dating back more than

100 000 yr. Figures 3(a,b) show the initial and final
timescales exhibiting pink-noise dynamics for the paleo-
climate proxy data from various sources [20]. Two things
are immediately evident: Nearly all data sets show con-
sistent pink-noise behavior, and, as was observed in the
GISS data set, the transition timescale to this behavior
depends on the geographic location.
To study the impact of anthropogenic forcing on internal

climate variability and the observed pink-noise behavior,
we use MFTWDFA to analyze only data up to 1850 A.D.
Figure 3 shows that the timescales exhibiting pink-noise
dynamics with and without the postindustrial period exhibit
very little difference, indicating that the observed pink-
noise behavior is intrinsic to Earth’s climate dynamics. In
data from the past 80 000 yr, we also find a timescale of
approximately 1470 yr (Fig. 4), the signal often ascribed to
Dansgaard-Oeschger (DO) events [34]. We hypothesize
the possibility of a stochastic resonance process due to the
presence of pink noise on multidecadal timescales as
follows. Nozaki and Yamamoto [35] showed that for noise
with 1=fβ, 0 ≤ β ≤ 2, the noise intensity for which
resonance takes place is minimized when β ≈ 1 for relax-
ation oscillator dynamical systems, and DO events exhibit
relaxation oscillation behavior [36,37]. Thus, the resonance
efficiency is maximal for β ≈ 1, and in all of these proxies
DO events are preceded by pink noise on multidecadal to
centennial timescales, suggesting that a much smaller pink-
noise intensity can lead to a new climatic state relative to
other noise types, such as white noise. Importantly, whether
the DO events arise from stochastic resonance, a “ghost
resonance,” or a related process is actively debated

FIG. 2. Spatial distribution of the values of dðτÞ represented
by one-point correlation maps and an EOF analysis using the
GISS monthly averaged surface temperature from 1901 to 2012.
Centered in the eastern Pacific at 1200W, 200N, we calculate
the correlation between the dðτÞ at this position and that at any
other position (a). The spatial distribution of the correlation
is nearly identical to the dipole mode called the PDO [1].
The newly constructed index (red), the normalized value of
dðτÞj1200W;200N − dðτÞj1800E;400N, is compared with the traditional
normalized PDO index (blue), which shows an excellent match.
A similar one-point correlation map is constructed based on the
geographic position at 500W, 380N and is shown in (b). This
map is very similar to the SST pattern in the negative state of the
NAO [19], as shown by the correlation between dðτÞj500W;380N −
dðτÞj400W;500N (red) and the normalized NAO index (blue). The
EOF analysis is applied to the values of dðτÞ, with the leading
mode explaining 21% of the total variance, as shown in (c), along
with the PC. This mode connects the major PDO region in the
eastern Pacific to the Southern Ocean through a continuous same-
sign region, as distinguished from the other areas. The time series
of the principle component of the mode is analyzed using
MFTWDFA (d). At lower frequencies, the variability of dðτÞ
parallels pink noise (red dashed line, β ¼ 1), with a crossover
time of ≈15 yr.
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FIG. 3. The initial (a),(c) and final (b),(d) timescales exhibiting
pink-noise dynamics in the paleoclimate data across the globe
[20], where (a) and (b) [(c) and (d)] show the analysis for the
complete data set (after removing data from 1850 to present), to
enable us to distinguish between natural climate variability and
anthropogenic forcing. There are no discernible differences
between (a),(b) and (c),(d), implying that pink-noise dynamics
are an internal characteristic of Earth’s climate system.
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(see, e.g., [37–42]), and here we emphasize that the time-
scale emerges from a stochastic data analysis method with
no assumptions regarding periodicity. We note further that
in the dust flux data, which spans the past 800 000 yr, we
see a clear periodic 100 000-yr signal related to the
Milankovitch eccentricity cycle, providing a fidelity check
for our methodology.
Proxies such as δ18O and δ13C, from ice cores and

speleothems, are used to infer past temperature, among
other climate variables. Because the temperature reflects
the heat flux at a given location, such flux-dependent
quantities are key mirrors of the climate system. In the
low (high) latitudes, heat fluxes drive precipitation and
evaporation (freezing and melting). Thus, global moisture
fluxes are reflected with high fidelity in the ice core and
speleothem proxy data and thereby encode aspects of
climate variability. For example, the ENSO underlies major
global rainfall patterns through atmospheric and oceanic
teleconnections. Importantly, there are regional differences
in the timescales over which the various paleoclimate
proxies exhibit pink noise. Each precipitation-based proxy
depends on the net heat flux at a given location, and hence
we expect regional variability of the pink-noise timescales.
Analysis of sea surface temperature (SST) data has also

revealed pink noise in the midlatitudes [43], rationalized
by a simple vertical diffusion model with a shallow mixed
layer forced by random atmospheric motions [44].
Essential here is the accumulation of the response from
random atmospheric forcing due to the large heat capacity
of the ocean. This local variability in the midlatitude and
tropical oceans is transferred to the global scale via
atmospheric teleconnections and ocean waves [28,45].
Here, this is reflected in our first EOF mode with a time

evolution that shows pink-noise statistics on multidecadal
timescales. Moreover, the IPO, which we have shown
mirrors our first EOF mode, is strongly linked to global
precipitation [45], consistent with the relationship between
the pink-noise behavior found in the proxies that reflect
precipitation and the EOF mode.
Kendal and Jørgensen [13] have shown that both pink

noise and fluctuation scaling [wherein the variance of a
sequence of observations x is related to the mean by a
power law; VarðxÞ ∝ x̄b] imply each other and can be
explained by a central limitlike convergence theorem that
establishes which Tweedie exponential dispersion models
act as foci for this convergence [46]. The duality between
fluctuation scaling and pink noise provides not only a
universal treatment of the statistics of the global mode that
emerges from this wide range of data we have studied but a
common understanding of their non-Gaussianity.
We note that the intrinsic nature of both the first EOF

mode and the pink-noise behavior suggest the intriguing
potential of a resonance with external low-frequency
forcing, such as that associated with anthropogenic effects.
Such a resonance may underlie processes associated with
the global warming hiatus, emphasizing the importance of
understanding internal multidecadal variability.
Finally, nonautonomous stochastic differential equations

constitute a key organizing center of our approach [27], and
they are also central to the so-called supersymmetric theory
of stochastics (see, e.g., [47,48]). That approach argues that
pink noise is a manifestation of the spontaneous breakdown
of topological supersymmetry. However, to ascribe the
associated Goldstone modes to specific climate processes is
too speculative at present, although the breaking of time-
reversal symmetry by Earth’s rotation has been shown to
provide a topological origin for equatorially trapped waves
[49]. Therefore, understanding the origin of the emergence
of the decadal modes in the climate system that we have
observed here may be fruitfully pursued along these lines.
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