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In turbulent Rayleigh-Bénard convection one seeks the relationship between the heat transport,
captured by the Nusselt number, and the temperature drop across the convecting layer, captured by
Rayleigh number. The maximal heat transport for a given Rayleigh number is the central experi-
mental quantity and the key prediction of variational fluid mechanics in the form of an upper bound.
Because the Lorenz equations act a simplified model of turbulent Rayleigh-Bénard convection, it is
natural to ask for their upper bounds, which have not been viewed as having the same experimental
counterpart. Here we describe a specially built circuit that is the experimental analogue of the
Lorenz equations and compare its output to the recently determined stochastic upper bounds of the
Lorenz equations [1]. In the chaotic regime, the upper bounds do not increase monotonically with
noise amplitude, as described previously [1]. However, because the circuit is vastly more efficient
than computational solutions, we can more easily examine this result in the context of the optimality
of stochastic fixed points. Finally, because of the control one has with the circuit, an offset in the
system allows us to find and examine bifurcation phenomena unique to the electronic analogue.

I. INTRODUCTION

The Lorenz equations are an archetype for key aspects
of nonlinear dynamics, chaos and a range of other phe-
nomena that manifest themselves across all fields of sci-
ence, particularly in fluid flow [see e.g., 2, 3]. Lorenz
[4] derived his model to describe a simplified version of
Saltzman’s treatment of finite amplitude convection in
the atmosphere [5]. The three coupled Lorenz equations,
which initiated the modern field we now call chaos theory,
are

ẋ = σ(y − x)

ẏ = ρx− xz − y and

ż = xy − βz,
(1)

where x describes the intensity of convective motion, y
the temperature difference between ascending and de-
scending fluid and z the deviation from linearity of the
vertical temperature profile. The parameters are the
Prandtl number σ, the normalized Rayleigh number,

ρ = Ra
Rac

, where Rac = 27π4

4 , and the aspect ratio β.

Here we take σ = 10 and β = 8
3 , the original values used

by Lorenz.
The sensitivity of solutions to small perturbations in

initial conditions and/or parameter values characterize
chaotic dynamics and have a wide array of implications.
Chaotic behavior does not lend itself well to standard
analysis, and modern computational methods provide us
with powerful tools to analyze systems that are vastly
more powerful than the Royal McBee LGP-30 electronic
computing machine that Lorenz used. However, one pow-
erful mathematical method used for example in the study
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of fluid flows is variational, and assesses the optimal value
of a transport quantity, or a bound [6–8], which we briefly
discuss next.

A. Bounds on Fluid Flows

Bounding quantities in fluid flows has important physi-
cal consequences and substantial theoretical significance.
Whereas variational principles are central when an action
is well-defined and phase space volume is conserved, they
pose significant challenges for dissipative nonlinear sys-
tems in which the phase space volume is not conserved
and thus not Hamiltonian [e.g., 9]. However, initiated by
the work of Howard [10], who used a variational approach
to determine the upper bounds on heat transport in sta-
tistically stationary Rayleigh-Bénard convection, with in-
compressibility as one of the constraints, the concept of
mathematically bounding the behavior of a host of flow
configurations has developed substantially [8], as well as
in other dissipative systems such as solidification [11].

Pètrelis and Pètrelis [12] used the background method
[7] to produce bounds on the energy dissipation
and transport for the Lorenz system. Souza and
Doering [13] improved their result producing sharp
upper bounds on transport 〈xy〉 ≤ β(ρ− 1), which
are saturated by the nontrivial equilibrium solutions
(x, y, z) = (±

√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1). Agarwal

and Wettlaufer [1] extended the background method to
the stochastic Lorenz system, recovering the bounds of
Souza and Doering [13] in the zero noise amplitude limit.
Here we discuss an experimental approach to this work
by building and studying an electronic circuit implemen-
tation of the stochastic Lorenz system. This circuit pro-
vides us with a simple physical model for transport in
Rayleigh-Bènard convection, where 〈xy〉 models the Nus-
selt number. Beyond its experimental interest, the circuit
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can perform computations much more efficiently than nu-
merical simulations, a finding that is especially powerful
when studying long-time average behavior.

II. THE CIRCUIT LORENZ EXPERIMENT

A. Upper Bounds of the Stochastic Lorenz System

As a model of atmospheric convection for which it was
first derived, the Lorenz system might be best described
as a motif. However, such physically based models can
often become more realistic by adding a stochastic ele-
ment to account for random fluctuations, observational
error, and unresolved processes. This conceptually old
idea has become particularly popular in climate model-
ing and weather prediction [e.g., 14, 15]. Here, we follow
this approach in the Lorenz system by adding a stochas-
tic term with a constant coefficient [1] viz.,

ẋ = σ(y − x) +Aξx

ẏ = ρx− xz − y +Aξy and

ż = xy − βz +Aξz,

(2)

where A is the noise amplitude and σ, β, and ρ are as in
Eq. (1).

The circuit described below in §II B allows us to ex-
perimentally test and analyze stochastic bounds of the
transport in the Lorenz system subject to forced and in-
trinsic noise. In the infinite time limit, the stochastic
upper bounds of Agarwal and Wettlaufer [1] are given by

〈xy〉 ≤ β(ρ− 1) +
A2

ρ− 1

(
1 +

1

2σ

)
. (3)

For A = 0 these reduce to the upper bounds of Souza and
Doering [13]. However, unlike the deterministic case, the
fixed point solutions are no longer optimal in the sense
that the equilibria are never truly attained. We note that
these bounds tend to infinity as ρ → 1, although Fan-
tuzzi [16] made a correction in this low Rayleigh number
regime.

B. The Lorenz Electrical Circuit

The Lorenz system can be modeled in an analog cir-
cuit through a series of op-amp integrators and voltage
multipliers (Fig. 1). Adding a noise element to the in-
tegrators allows us to adapt this circuit to the stochastic
model. To generate noise we use Teensy 3.5 micropro-
cessors with digital to analog converters. Equipped with
“true” analog random number generators, these micro-
processors can be modified to generate consistent and
finely tunable Gaussian white noise at a very low cost,
making them suitable for both educational and experi-
mental purposes. To ensure this noise is symmetric about

0V, we first pass the signals through an AC coupler and
then amplify the signal.
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FIG. 1. Schematic of the stochastic Lorenz circuit.

To collect voltage data from the circuit, we use an Ar-
duino Due microprocessor with 12-bit analog read resolu-
tion along with several voltage dividers and amplifiers to
put the voltages in the Arduino’s range of 0-3.3V. When
processed, the voltages appear as an integer between 0
and 4095, corresponding to a voltage between 0-3.3V.
From this data we can convert back to the original volt-
age using measurements of the amplifiers and voltage di-
viders and scaling by 10, the normalization factor of the
circuit.

The rate of integration is determined by the three
capacitors on the schematic labeled XINT, YINT, and
ZINT, which we denote here by Cx, Cy and Cz. This
allows us to adjust the sampling rate depending on the
application. For measuring transport, we can run the
circuit at a very high speed and sample as fast as pos-
sible, approximately every 100µs with the Arduino Due.
Figure 2 shows samples of the circuit-generated attrac-
tor for noise amplitudes A = 0 and A = 4. We note that
these amplitudes are chosen in reference to a baseline
voltage and do not numerically correspond to the same
amplitude in Eqs. 2.

A key feature of the circuit is the ability to sample
xy directly from the evolution equation for z equation.
Not only does this provide much faster convergence of
〈xy〉, but keeping a running average avoids the need to
store large arrays of data or perform extra arithmetic
operations.

III. THE OFFSET LORENZ SYSTEM

Any analog circuit is subject to asymmetry due to off-
sets in op-amps and multipliers and imprecise measure-
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FIG. 2. Circuit generated stochastic Lorenz attractor in the x− z plane for (a) A = 0 and, (b) A = 4.

ments of resistors and capacitors. Because the Lorenz
system is symmetric under the transformation (x, y, z) 7→
(−x,−y, z), this poses an issue for our model. To account
for this asymmetry we propose a slightly modified model
of the Lorenz system described here and analyze its prop-
erties.

For the MPY634 multipliers, the transfer function is
given by [(X1 −X2)(Y1 − Y2)/10 + (Z1 − Z2)], where
X1, X2, Y1, Y2, Z1 and Z2 are differential inputs. We as-
sume Z1 − Z2 = 0, which is a reasonable for our circuit,
as both the Z1 and Z2 ports are connected to ground,
and the terms in the multiplication are precise, namely
(X1 − X2) = x, and similarly for the other variables.
So the only error we attribute to the multipliers is the
output noise, which is 2% at room temperature as listed
on the datasheet, and hence we suggest adding normally
distributed random variables εxy and εxz with zero mean
and variance 0.2 to the products xy and xz respectively.
However, for simplification, we neglect this in the follow-
ing discussion.

For the integrators, we model the offset with a slight
amplification or dampening factor, which absorbs any
small constant voltage offsets. Formally, we say

∫
Cx

ẋdt = (1 + ηx) x

∫
Cy

ẏdt = (1 + ηy) y and

∫
Cz

żdt = (1 + ηz) z

where
∫
Ci

dt corresponds to the actual output of the circuit

integrator and ηx, ηy, and ηz are small parameters with
absolute value less than 1. Substituting these into the

deterministic Lorenz equations (1) we get

ẋ = σ
[
(1 + ηy) y − (1 + ηx) x

]
ẏ = ρ(1 + ηx) x− (1 + ηx)(1 + ηz) xz − (1 + ηy) y

and

ż = (1 + ηx)(1 + ηy) xy − β(1 + ηz) z,

(4)

which we refer to as the offset Lorenz system.

A. Equilibria & Stability

To analyze the stability of the offset Lorenz system we
take ηx = ηz = η and ηy = −η where |η| < 1. This is
motivated by the fact that the circuit propagates a volt-
age corresponding to −y rather than +y. For simplicity,
assume εxy = εxz = 0. With these assumptions the offset
Lorenz equations become

ẋ = σ
[
(1− η) y − (1 + η) x

]
ẏ = ρ(1 + η) x− (1 + η)2 xz − (1− η) y

and

ż = (1 + η)(1− η) xy − β(1 + η) z

(5)

We first determine the equilibrium solutions
(ẋ = ẏ = ż = 0), and from the evolution equation
for x we have (1 + η)x = (1− η)y, which yields

y =
(1 + η

1− η

)
x.

Substituting this into the evolution equation for y we get

ρ(1 + η)x− (1 + η)2xz − (1 + η)x = 0,

which gives

(1 + η)x
[
ρ− (1 + η)z − 1

]
= 0,
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and hence

x = 0 or z =
1

1 + η
(ρ− 1).

Clearly, if x = 0 we get y = 0 and z = 0. Now upon
substitution of z into the evolution equation for z we
find(1 + η

1− η

)
(1 + η)(1− η)x2 − β(1 + η)

1

1 + η
(ρ− 1)

= x2(1 + η)2 − β(ρ− 1) = 0,

and hence

x = ± 1

1 + η

√
β(ρ− 1), (6)

so that the nontrivial fixed points are

x∗± = ± 1

1 + η

√
β(ρ− 1)

y∗± = ± 1

1− η
√
β(ρ− 1) and

z∗± =
1

1 + η
(ρ− 1),

(7)

where |η| < 1. Note that these solutions are no longer
symmetric, but they reduce to the non-trivial fixed points
of the standard Lorenz system when η = 0.
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FIG. 3. Bifurcation value as a function of η. The y intercept
occurs at (η, ρH) = (0, 24.74) as expected.

1. Stability of the Equilibrium Solutions

The Jacobian for our offset system is given by

J(x, y, z) =

 −σ(1 + η) σ(1− η) 0
ρ(1 + η)− (1 + η)2 z −(1− η) −(1 + η)2 x

(1 + η)(1− η) y (1 + η)(1− η) x −β(1 + η).



At the trivial equilibrium (x∗0, y
∗
0 , z

∗
0) the Jacobian is

J(0, 0, 0) =

−σ(1 + η) σ(1− η) 0
ρ(1 + η) −(1− η) 0

0 0 −β(1 + η)


This matrix has three negative eigenvalues for ρ < 1
and one positive eigenvalue for ρ > 1. Hence, as in the
standard Lorenz equations, the origin becomes unstable
at ρ = 1 .

Now we compute the Jacobian at (x∗+, y
∗
+, z

∗
+), where

we take the solution with the positive square root, to get

J(x∗, y∗, z∗) =

 −σ(1 + η) σ(1− η) 0

ρ(1 + η)− (1 + η)(ρ− 1) −(1− η) −(1 + η)
√
β(ρ− 1)

(1 + η)
√
β(ρ− 1) (1− η)

√
β(ρ− 1) −β(1 + η)


The eigenvalues in their analytical form are cumber-

some, so we determine them numerically and find that
as in the standard Lorenz system, there is a Hopf bifur-
cation ρH , here with a dependence on η. We find that
there is a smooth dependence of ρH on η, as can be seen
in the numerical solutions in Fig. 3.

2. Numerical Solutions of the Offset Lorenz System

We confirm the existence of a Hopf bifurcation for our
modified system using numerical solutions. For η = 0.2,
our solutions predict that the bifurcation occurs at ρH ≈
33. Figures 4 and 5 show numerical simulations of the
offset Lorenz system slightly below and above this value
respectively. We see that the trajectory does indeed be-
come chaotic.
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FIG. 4. Plot in (x, y, z) phase space of numerical simulation
of the offset Lorenz system at (η, ρ) = (0.2, 31.5).

It is important to emphasize that our discussion of
the offset Lorenz system has implications for the circuit
model. Most notably, it implies the transition to chaos
will occur at a different value of ρ than in the standard
Lorenz equations, depending on the offset in our op-amp
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FIG. 5. Plot in (x, y, z) phase space of numerical simulation
of the offset Lorenz system at (η, ρ) = (0.2, 33).

integrators. The circuit does in fact demonstrate this,
with the transition to chaos occurring at ρ ≈ 34 for
Cint = 0.262µF, where Cint is the capacitor that controls
the speed of integration. Lower capacitance reduces the
value of ρ at which the transition to chaos occurs.

IV. RESULTS & DISCUSSION

A. Stochastic Upper Bounds

Using the circuit, we reproduce the results of Agar-
wal and Wettlaufer [1] for the stochastic upper bounds.
Figure 6 shows an average of the transport over three
trials for 19 values of ρ and 5 noise amplitudes, including
A = 0. The results are numerically asymptotic to the
analytical upper bounds, until the transition to chaos at
ρ ≈ 34, which is consistent with the analytical work to
which we compare our approach. From Equation (6) we
see that when we take the product x∗±y

∗
± we get

x∗±y
∗
± =

1

1− η2
√
β(ρ− 1),

which has O(η2) error versus O(η) for the individual co-
ordinate offsets. In light of this we see that despite the
delayed transition to chaos and the circuit’s asymme-
try, the behavior of transport versus Rayleigh number
remains approximately the same.

At subcritical Rayleigh numbers we find that, in the
circuit, transport tends to decrease with noise, in contrast
to the increasing stochastic upper bounds. Beyond the
transition to chaos however, the increase or decrease of
transport with noise amplitude at a given Rayleigh num-
ber depends largely on the sampling frequency, number
of realizations, and even further by sampling resolution.
This has some interesting implications. Unlike numerical

methods, the circuit solves the Lorenz equations in real
time. Therefore, when we sample xy from the circuit, we
are in fact sampling from the full attractor, not just at
set discrete time steps. This may provide a view into the
realism of ergodicity, especially considering the intrinsic
perturbations of the circuit. Nonetheless our sampling
only shows convergent values of 〈xy〉 at very low ampli-
tudes, and this is most likely a result of the resolution
rather than the circuit’s actual reflection of the chaotic
set. Hence, we find that the behavior of the circuit at
high Rayleigh number is no different from the numerics,
both of which show that noise is indistinguishable from
chaos.

B. Noise and Unstable Periodic Orbits

As we increase the noise amplitude, the relationship
between transport and ρ becomes increasingly linear,
smoothing out the jump at the transition to chaos. This
behavior suggests the existence of a critical noise am-
plitude, namely, the minimum amplitude at which this
occurs. Taking advantage of the circuit’s computational
speed, we can quantify this more rigorously. When we
fix ρ and plot transport as a function of amplitude, we
see a trend. For ρ < ρH , transport tends to decrease
with noise amplitude until a critical value is reached, af-
ter which it increases linearly on average. If we take a
moving average over the full curve and record the am-
plitude corresponding to the minimum, we find that this
amplitude achieves a maximum near the homoclinic or-
bit where ρ ≈ 13.96. Mathematically the existence of
a homoclinic orbit implies the existence of unstable pe-
riodic orbits embedded in phase space. The decreasing
transport behavior that we see corresponds to dissipa-
tion as the state of the system passes near these periodic
trajectories, which are coupled to the noise amplitude.

V. CONCLUSION

Circuits modeling dynamical systems have largely been
used for pedagogical purposes. However, much less work
has utilized these models for actual computation and
analysis. Our study of the Lorenz circuit demonstrates
the value of using analog circuits to study dynamical sys-
tems from a variety of perspectives, a key one being as
a model for transport in turbulent Rayleigh-Bènard con-
vection.

Ultimately, an analog circuit forms a dynamical system
that can be modeled by a set of differential equations.
Solving the inverse problem – constructing a circuit to
fit a given set of equations – reveals the possibility of
using circuits to analyze a variety of dynamical systems
of both mathematical and physical interest. Basic mod-
els have been constructed for dynamical systems such as
the van der Pol oscillator and the Rössler system. How-
ever, with the aid of machine printed circuits we may
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FIG. 6. The transport 〈xy〉 versus ρ for circuit solutions. The transition to chaos occurs at ρ ≈ 34.

be able to model much more complex systems extend-
ing from neuronal networks to geophysical flows. Indeed,
because numerical methods suffer from a wide range of
instabilities, large memory requirements, and high com-
putational costs, analog circuits eliminate these issues,
offering a new and efficient way to study quantitative
and qualitative behavior and experimentally test analyt-
ical theories and closure schemes.
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