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In turbulent Rayleigh–Bénard convection one seeks the relationship between the heat transport, captured 
by the Nusselt number, and the temperature drop across the convecting layer, captured by the Rayleigh 
number. In experiments, one measures the Nusselt number for a given Rayleigh number, and the question 
of how close that value is to the maximal transport is a key prediction of variational fluid mechanics 
in the form of an upper bound. The Lorenz equations have traditionally been studied as a simplified 
model of turbulent Rayleigh–Bénard convection, and hence it is natural to investigate their upper bounds, 
which has previously been done numerically and analytically, but they are not as easily accessible in an 
experimental context. Here we describe a specially built circuit that is the experimental analogue of 
the Lorenz equations and compare its output to the recently determined upper bounds of the stochastic 
Lorenz equations [1]. The circuit is substantially more efficient than computational solutions, and hence 
we can more easily examine the system. Because of offsets that appear naturally in the circuit, we are 
motivated to study unique bifurcation phenomena that arise as a result. Namely, for a given Rayleigh 
number, we find a reentrant behavior of the transport on noise amplitude and this varies with Rayleigh 
number passing from the homoclinic to the Hopf bifurcation.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The Lorenz equations are an archetype for key aspects of non-
linear dynamics, chaos and a range of other phenomena that mani-
fest themselves across all fields of science, particularly in fluid flow 
[see e.g., 2,3]. Lorenz [4] derived his model to describe a simpli-
fied version of Saltzman’s treatment of finite amplitude convection 
in the atmosphere [5]. The three coupled Lorenz equations, which 
initiated the modern field we now call chaos theory, are

ẋ = σ(y − x),

ẏ = ρx − xz − y and

ż = xy − βz,

(1)

where x describes the intensity of convective motion, y the tem-
perature difference between ascending and descending fluid and 
z the deviation from linearity of the vertical temperature pro-
file. The parameters are the Prandtl number σ , the normalized 
Rayleigh number, ρ = Ra

Rac
, where Rac = 27π4

4 , and a geometric 
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factor β . Here we take σ = 10 and β = 8
3 , the original values used 

by Lorenz.
The sensitivity of solutions to small perturbations in initial con-

ditions and/or parameter values characterize chaotic dynamics and 
have a wide array of implications. Chaotic behavior does not lend 
itself well to standard analysis, but modern computational meth-
ods provide us with vastly more powerful tools than those avail-
able to Lorenz. However, one powerful mathematical method used 
for example in the study of fluid flows is variational, and assesses 
the optimal value of a transport quantity, or a bound [6–8], which 
we briefly discuss next.

1.1. Bounds on fluid flows

Bounding quantities in fluid flows has important physical con-
sequences and substantial theoretical significance. Whereas varia-
tional principles are central when an action is well-defined and 
phase space volume is conserved, they pose significant challenges 
for dissipative nonlinear systems in which the phase space volume 
is not conserved and thus not Hamiltonian [e.g., 9]. However, initi-
ated by the work of Howard [10], who used a variational approach 
to determine the upper bounds on heat transport in statistically 
stationary Rayleigh–Bénard convection, with incompressibility as 
one of the constraints, the concept of mathematically bounding 
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the behavior of a host of flow configurations has developed sub-
stantially [8], as well as in other dissipative systems such as solid-
ification [11].

Transport in the Lorenz system is defined as the quantity 〈xy〉
where 〈·〉 denotes the infinite time average. We also note that this 
quantity is proportional to 〈z〉 and 〈x2〉. Bounds on transport were 
first produced by Malkus [12] and Knobloch [13] in the 1970s. 
Knobloch used the theory of stochastic differential equations to an-
alyze statistical behavior in the Lorenz system, with particular fo-
cus on the computation of long time averages, including the trans-
port. His method can be seen as an early incarnation of the back-
ground method of Constantin and Doering [7]. Following the devel-
opment of new analytical tools, interest in bounds on the Lorenz 
system and their interpretation has grown over the past two 
decades. Using the background method, Souza and Doering [14]
produced sharp upper bounds on the transport 〈xy〉 ≤ β(ρ − 1), 
which are saturated by the non-trivial equilibrium solutions 
(x, y, z) ≡ (x0, y0, z0) = (±√

β(ρ − 1),±√
β(ρ − 1),ρ − 1). Agar-

wal and Wettlaufer [1] extended their result to the stochastic 
Lorenz system, recovering the sharp bounds in the zero noise am-
plitude limit.

Recent numerical work, especially in the form of semi-definite 
programming, has provided novel methods for bounding and lo-
cating optimal trajectories, that is, trajectories that maximize some 
function of a system’s state variables [15].

Tobasco et al. [16] describe such an approach to this problem 
through the use of auxiliary functions similar to Lyapunov func-
tions used in stability analyses. Goluskin [17] utilizes this method 
to compute example bounds on polynomials in the Lorenz system. 
For transport in particular (the polynomial xy), his results agree 
with the existing analytical theory. In the chaotic regime, however, 
we know the optimal solutions are unstable and are only attained 
for a very specific set of initial conditions, and in the stochastic 
system such solutions may never be realized. Hence, it is natural 
to ask about bounds on non-specious trajectories. Fantuzzi et al.
[18] present a semi-definite programming approach to this prob-
lem similar to that of Tobasco et al. [16], though work still needs 
to be done to apply their methods to systems containing unstable 
limit cycles and saddle point equilibria, which includes the Lorenz 
system.

We offer an alternative method for analyzing time-averaged be-
havior through the use of an analog circuit. Circuits can model a 
wide range of linear and nonlinear dynamical systems, and by col-
lecting voltage data from the circuit we can perform calculations 
of any function of the systems state variables. In this paper, we 
use the circuit approach to study transport, 〈xy〉, in the stochastic 
Lorenz system, a choice which is motivated by its physical anal-
ogy with Rayleigh–Bénard convection. For true convective motion, 
experimental measurements of transport are challenging, and the 
circuit provides us with a quick and easy way to perform these 
calculations, in fact much faster than standard numerical methods. 
We first introduce the stochastic Lorenz system and the corre-
sponding bounds on transport. We then discuss the circuit im-
plementation and offer an analytical model for the circuit system. 
Finally, we discuss our computations of transport in relation to the 
analytical upper bound theory and compare our results to the nu-
merical solutions.

2. The circuit Lorenz experiment

2.1. Upper bounds of the stochastic Lorenz system

The Lorenz system might be best described as a motif of atmo-
spheric convection, which was the motivation for its derivation. 
However, such physically based models can often become more 
realistic by adding a stochastic element to account for random fluc-
tuations, observational error, and unresolved processes. This con-
ceptually common idea has become particularly popular in climate 
modeling and weather prediction [e.g., 19,20]. Here, we follow this 
approach in the Lorenz system by adding a stochastic term with a 
constant coefficient [1] viz.,

ẋ = σ(y − x) + Aξx,

ẏ = ρx − xz − y + Aξy and

ż = xy − βz + Aξz,

(2)

where the ξi are Gaussian white noise processes, A is the noise 
amplitude and σ , β , and ρ are as in Equations (1). The circuit de-
scribed below in §2.2 allows us to experimentally test and analyze 
stochastic bounds of the transport in the Lorenz system subject to 
forced and intrinsic noise. In the infinite time limit, the stochastic 
upper bounds of Agarwal and Wettlaufer [1] are given by

〈xy〉T ≤ β(ρ − 1) + A2

ρ − 1

(
1 + 1

2σ

)
. (3)

For A = 0 these reduce to the upper bounds of Souza and Doering 
[14]. However, unlike the deterministic case, the fixed point solu-
tions do not exist so that the optimum is never truly attained. We 
note that these bounds tend to infinity as ρ → 1, though Fantuzzi 
[21] improved this bound in the low Rayleigh number regime.

2.2. The Lorenz electrical circuit

Following the implementation described by Horowitz [22], the 
Lorenz system is modeled in an analog circuit through a series 
of op-amp integrators and voltage multipliers (Fig. 1). Mathemati-
cally, this implementation essentially solves Equations (1) by con-
tinuously integrating both sides and returning the output x, y, z
back into the circuit. Adding a noise element to the integrators al-
lows us to adapt this circuit to the stochastic Lorenz systems. To 
generate noise we use Teensy 3.5 microprocessors. These boards 
possess hardware random number generators that provide a higher 
quality of randomness compared to those more commonly found 
on microprocessors and computers. They have 12-bit resolution 
digital to analog converters (DAC) allowing us to output a voltage 
between 0 V and 3.3 V at 212 = 4096 discrete values. This gives 
us better spectral characteristics compared to pulse-width modu-
lation which outputs either 0 V or 3.3 V with a duty cycle that 
corresponds to the analog level. To achieve Gaussian random noise 
we sum 8 random integers, chosen in a limited range correspond-
ing to the noise amplitude. The number is then centered about the 
middle voltage corresponding to the integer 2048 and outputed 
through the DAC channel. Following this process the signal is AC 
coupled to ensure the voltage is symmetric about 0 V, and further 
amplification is achieved through an op-amp. This method allows 
us to easily control the noise processes and amplitudes directly 
from the computer, and thus to automate many components of the 
experiment.

To collect voltage data from the circuit, we use an Arduino 
Due microprocessor with 12-bit analog read resolution along with 
several voltage dividers and amplifiers to put the voltages in the 
Arduino’s operating range of 0–3.3 V. As in the case of the noise 
generation, when processed the voltages appear as an integer be-
tween 0 and 4095, corresponding to a voltage between 0–3.3 V. 
From this data we can convert back to the original voltage using 
measurements of the amplifiers and voltage dividers and scaling 
by 10, the normalization factor of the circuit.

The rate of integration is determined by the three capacitors, 
ideally equal in value. This allows us to adjust the sampling rate 
depending on the application. For measuring transport, we can 
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Fig. 1. Schematic of the stochastic Lorenz circuit.
run the circuit at a very high speed and sample as fast as pos-
sible, approximately every 100 μs with the Arduino Due. Fig. 2
shows samples of the circuit-generated attractor for noise ampli-
tudes A = 0 and A = 4. To achieve the initial condition we ground 
the y integrator while the circuit is powered up and then close 
this connection to start solving the system. We note that the noise 
amplitudes are chosen in reference to a baseline voltage and do 
not correspond exactly to the same amplitude in Equations (2).

A key feature of the circuit is the ability to sample xy directly 
from the evolution equation for z. Not only does this provide much 
faster convergence of 〈xy〉T , but keeping a running average avoids 
the need to store large arrays of data or perform extra arithmetic 
operations.

3. The offset Lorenz system

Any analog circuit is subject to non-idealities due to input and 
output offsets in op-amps and multipliers and inaccurate measure-
ments of circuit elements, resulting in non-ideal gain factors. There 
are also contributions to the noise from all of these components. 
Since the Lorenz system is symmetric under the transformation 
(x, y, z) 	→ (−x, −y, z), these non-idealities introduce asymmetry 
into the solutions of Equations (1), which poses an issue for our 
model. To account for this asymmetry we propose a slightly mod-
ified set of equations for the circuit model and analyze their prop-
erties.

It is easily demonstrated that the largest contribution is from 
output offsets in the multipliers, and we therefore simplify the 
analysis by neglecting all other sources of error or noise. We for-
mally define the offset Lorenz system by

ẋ = σ(y − x),

ẏ = ρx − xz − y + εy and

ż = xy − βz + εz,

(4)

where εy and εz are small constant offsets resulting from the 
product terms.
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Fig. 2. Circuit generated stochastic Lorenz attractor in the x − z plane for (a) A = 0 and, (b) A = 4.
3.1. Fixed points & stability

It is straightforward to see that the equilibria are given by

x∗ = y∗ = ±√
βz∗ − εz, (5)

where z∗ is a solution to the cubic equation

0 = βz3 − [2β(ρ − 1) + εz]z2 + [2(ρ − 1) + β(ρ − 1)2]z
− [(ρ − 1)2εz + ε2

y].
(6)

There is always one real solution to Equation (6) corresponding 
to the trivial equilibrium, and for ρ 
 |ε| a pair of roots exists 
corresponding to the non-trivial equilibria. We solve Equation (6)
numerically in order to determine the stability of the equilibrium 
solutions.

3.1.1. Stability of the equilibrium solutions
The Jacobian for our offset system is the same as the Jacobian 

of Equation (1):

J (x, y, z) =
⎛
⎝

−σ σ 0
ρ − z −1 −x

y x −β

⎞
⎠ . (7)

To simplify the analysis we assume |εy | = |εz| = ε. We find 
there is an imperfect pitchfork bifurcation with respect to ρ , the 
critical value of which varies with εy and εz . The imperfection is a 
natural result of symmetry breaking due to the offset terms.

At the non-trivial equilibria (assuming ρ 
 |ε| so that these 
solutions exist) we find that, as in the standard Lorenz system, 
there is a Hopf bifurcation with respect to ρ that now depends on 
ε and the relationship between the signs of εy and εz . Fig. 3 shows 
the bifurcation value ρH of x∗+ and x∗− for εy = εz and εy = −εz . 
Unlike the standard Lorenz system, the bifurcation value of each 
equilibrium point is different, and the maximum bifurcation value 
of the pair of equilibria for the given relationships between εy and 
εz is greater than 24.74, the critical value in the Lorenz system. 
Because the Hopf bifurcation denotes the appearance of chaos, this 
implies that any offset can delay the onset of chaos in our modified 
system.

3.1.2. Numerical solutions of the offset Lorenz system
We confirm the existence of a Hopf bifurcation for the off-

set system using numerical solutions. For example, with ε = 5
and εy = εz , our solutions predict that the bifurcation occurs at 
ρH = 29.83 for x∗+ and ρH = 22.76 for x∗− . Figs. 4 and 5 show nu-
merical simulations of the offset Lorenz system slightly below and 
Fig. 3. Bifurcation value of the two non-trivial equilibria as a function of ε for εy =
εz (solid, x∗+ , and dotted, x∗− , curves) and εy = −εz (dashed, x∗+ , and dash-dotted, 
x∗−). The x-axis is rescaled to ε/1000 in correspondence with the equivalent voltage 
values. The y intercept occurs at (ε, ρH ) = (0, 24.74) as expected.

Fig. 4. Plot in (x, y, z) phase space of numerical simulation of the offset Lorenz 
system at (εy/1000, εz/1000, ρ) = (0.005, 0.005, 28).

above the larger bifurcation value, respectively. We see the trajec-
tory indeed becomes chaotic and that there is a strong preference 
for the positive side of the attractor, reflecting the asymmetric bi-
furcation values.



S. Weady et al. / Physics Letters A 382 (2018) 1731–1737 1735
Fig. 5. Plot in (x, y, z) phase space of numerical simulation of the offset Lorenz 
system at (εy/1000, εz/1000, ρ) = (0.005, 0.005, 30).

It is important to emphasize that our discussion of the offset 
Lorenz system has implications for the circuit model. Most no-
tably, it implies the transition to chaos can occur at a larger value 
of ρ than in the standard Lorenz equations. The circuit does in 
fact demonstrate this, and the value at which the transition oc-
curs varies with the circuit elements chosen. A detailed analysis 
of the circuit, taking into account the gain factors in the multi-
plier and op amps, shows that the offset values calculated in the 
stability analysis must be divided by 1000 to correspond to the 
appropriate voltage offsets in the circuit. Hence, in Fig. 3, the bi-
furcation values are plotted in terms of the actual voltage offsets 
of the multipliers. The specifications for the multiplier output off-
sets are ±25 mV, and the bifurcation values typically observed for 
the circuit are consistent with these specifications.

4. Results & discussion

4.1. Stochastic upper bounds

The upper bounds in [1] are no longer valid in the offset sys-
tem, but using a similar argument we can produce new bounds 
which, in the deterministic case, are given by

〈xy〉 ≤ β
δ∗(ρ − εz

β
− 1)2

δ∗(ρ − εz
β

) − 1
+ δ∗ε2

y

4(δ∗(ρ − εz
β

) − 1)(1 − δ∗)
, (8)

where δ∗ is the minimizer of the function on the right hand side, 
which approaches 1 as εy and εz go to zero, yielding the sharp 
non-offset upper bound. The full derivation can be found in Ap-
pendix A.

Using the circuit, we reproduce the results of Agarwal and Wet-
tlaufer [1] for the stochastic upper bounds. Fig. 7 shows the scaled 
average transport 〈xy〉/(ρ − 1) for 18 values of ρ and 5 noise am-
plitudes, including A = 0. The results remain close to the analytical 
upper bounds until the transition to chaos at ρ ≈ 34, which is 
consistent with the analytical work to which we compare our ap-
proach.

At subcritical Rayleigh numbers for small noise amplitude the 
transport achieves a minimum value, then increases monotonically 
with noise amplitude as found by Agarwal and Wettlaufer [1]. The 
amplitude at which this minimum occurs increases until ρ reaches 
the homoclinic bifurcation after which it decreases to zero as ρ
approaches the Hopf bifurcation. This behavior is shown in detail 
in Fig. 6, which we discuss further in the following section. Be-
yond the transition to chaos however, the increase or decrease of 
transport with noise amplitude at a given Rayleigh number de-
pends largely on the sampling frequency, number of realizations, 
Fig. 6. Transport 〈xy〉 as a function of noise amplitude for ρ = 6 (circles), ρ = 14
(asterisks), and ρ = 20 (dots). In each case transport achieves a minimum value be-
fore increasing roughly linearly with noise amplitude. The location of this minimum 
increases until ρ reaches the homoclinic bifurcation after which it decreases to zero 
as ρ approaches the Hopf bifurcation. The solid vertical line denotes the minimum 
of the ρ = 14 curve and the dashed vertical line denotes the minima of the ρ = 6
and ρ = 20 curves.

and even further by sampling resolution. Unlike numerical solu-
tions, the circuit solves the Lorenz equations in real time, so when 
we sample xy from the circuit we are in fact sampling from the 
full attractor, not just at set discrete time steps. In conjunction 
with the high sampling rate we might hope to see ergodic char-
acteristics in our computations, however our sampling only shows 
consistent values of 〈xy〉 at very low noise amplitudes, and this is 
most likely a result of the resolution rather than the circuit’s ac-
tual reflection of the chaotic set. Hence, we find that the behavior 
of the circuit in the chaotic regime is no different from the numer-
ics, both of which show that noise is indistinguishable from chaos.

4.2. Noise, unstable periodic orbits, and dissipation

As we increase noise amplitude the relationship between ρ and 
the transport becomes increasingly smooth, eliminating the kink 
at the transition to chaos. This behavior suggests the existence 
of a critical noise amplitude, namely, the minimum amplitude for 
which this transition is smooth. Taking advantage of the circuit’s 
computational speed we can quantify this in more detail. Fig. 6
shows circuit transport as a function of noise amplitude for ρ = 6, 
ρ = 14, and ρ = 20. As mentioned above, we find that, on average, 
as the noise amplitude increases, the transport achieves a mini-
mum value before increasing linearly with amplitude. This critical 
noise amplitude may be interpreted as the point where noise is 
effectively simulating chaos, forcing the system to oscillate aperi-
odically about the two non-trivial fixed points of the deterministic 
system. The corresponding critical amplitude varies with ρ , in-
creasing until the homoclinic bifurcation is reached at ρ ≈ 13.96, 
after which it decreases to zero as ρ approaches the Hopf bifur-
cation. It is for this noise amplitude that the smooth transition to 
chaos noted above occurs. Mathematically, a homoclinic bifurcation 
implies the generation of a dense set of unstable periodic orbits 
embedded in the attracting set, and the decrease in the critical 
noise amplitude corresponds to the coupling of noise with these 
orbits.

5. Conclusion

Circuits modeling dynamical systems have largely been used 
for pedagogical purposes. Much less work, however, has utilized 
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Fig. 7. The scaled transport 〈xy〉/(ρ − 1) versus ρ for circuit solutions and scaled upper bounds. The transition to chaos occurs at ρ ≈ 34. The maximum offset upper bound 
under the specifications of the circuit elements occurs for εy = 2.5 and εz = −2.5, which is shown as the dashed line. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
these circuits for actual computation and analysis. Our study of 
the Lorenz circuit demonstrates the value of using analog circuits 
for both qualitative and statistical analyses of dynamical systems. 
Whereas in numerical simulations one is forced to run computa-
tions for many, often very small, time steps in order to capture the 
useful statistics, the circuit allows one to sample directly from the 
attractor’s “distribution,” meaning we need only collect data until 
the solution no longer fluctuates beyond a given error threshold. 
For the Lorenz system in the chaotic regime, we found transport 
converged in the circuit in approximately 4 seconds. The same cal-
culation can take up to 5 minutes numerically to ensure accurate 
statistics, making the circuit approximately 100x faster. Reliably re-
producing a plot such as Fig. 6 would thus require many hours of 
computation numerically and about 10 minutes with the circuit. It 
is also worth noting that the circuit is unaffected by increasing the 
degrees of freedom whereas the computational cost of numerical 
simulation scales approximately with the order of the method.

In this paper we only discussed the influence of Gaussian white 
noise, though we have developed code that generates correlated 
noise signals, particularly pink and brown noise. Generating these 
signals in numerical solutions significantly increases the run time, 
whereas the circuit’s speed is unaffected. However we found that 
transport behavior is more or less equivalent under the influence 
of colored noise, though the visible dynamics may vary.

Ultimately an analog circuit forms a dynamical system that can 
be modeled by a set of differential equations. Solving the inverse 
problem – constructing a circuit to fit a given set of equations – 
reveals the possibility of using circuits to analyze a variety of dy-
namical systems of both mathematical and physical interest. Basic 
models have been constructed for well-studied low-dimensional 
systems such as the van der Pol oscillator and the Rössler system, 
but with the assistance of machine printed circuits we may be able 
to model much more complex dynamics extending from neuronal 
networks to geophysical flows.
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Appendix A. Offset upper bounds

We closely follow the argument given in reference [14]. It is 
first convenient to make the change of variables

x = x′,
y = ρ ′ y′ and

z = ρ ′z′ + εz

β
,

(A1)

where ρ ′ = ρ − εz
β

. Equation (1) then becomes

ẋ′ = −σ x′ + σρ ′ y′, (A2)

ẏ′ = x′ − x′z′ − y′ + εy

ρ ′ , (A3)

ż′ = x′ y′ − βz′. (A4)

Averaging time derivatives of 1
2 x′ 2, 1

2 (y′ 2 + z′ 2), and −z′ (see 
[14] for details) we get the balances

0 = −〈x′ 2〉T + ρ ′〈x′ y′〉T + O (T −1), (A5)

0 = 〈x′ y′〉T − 〈y′ 2〉T − β〈z′ 2〉T + εy

ρ ′ 〈y′〉T + O (T −1), (A6)

0 = −〈x′ y′〉T + β〈z′〉T + O (T −1). (A7)

We now write z′ = z0 + ζ(t) where z0 = ρ ′−1
ρ ′ is the so-called 

background component. Substituting into Equations (A6) and (A7)
we get

0 = 〈x′ y′〉T − 〈y′ 2〉T − βz2
0 − 2βz0〈ζ 〉T − β〈ζ 2〉T (A8)

+ εy

ρ ′ 〈y′〉T + O (T −1), (A9)

0 = −〈x′ y′〉T + βz0 + β〈ζ 〉T + O (T −1). (A10)

Taking (A9) + 2z0×(A10) we find

0 = (1 − 2z0)〈x′ y′〉T − 〈y′ 2〉T − β〈ζ 2〉T + βz2
0

+ εy
′ 〈y′〉T + O (T −1).

(A11)
ρ
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Thus far our derivation is identical to that in [14], but we now 
have the extra term εy〈y′〉T which prevents us from completing 
the square as did the authors. Instead we eliminate the extra term 
by completing the square with respect to x′ and y′ , and y′ and εy . 
First rewrite 〈y′ 2〉T = δ〈y′ 2〉T + (1 − δ)〈y′ 2〉T where δ ∈ (0, 1) so 
that

0 = 2 − ρ ′

ρ ′ 〈x′ y′〉T − δ〈y′ 2〉T − (1 − δ)〈y′ 2〉T − β〈ζ 2〉T

+ β
(ρ ′ − 1)2

ρ ′ 2
+ εy

ρ ′ 〈y′〉T + O (T −1),

(A12)

or multiplying through by ρ ′ and rearranging,

ρ ′〈x′ y′〉T = 2〈x′ y′〉T − ρ ′δ〈y′ 2〉T − ρ ′(1 − δ)〈y′ 2〉T

− ρ ′β〈ζ 2〉T + β
(ρ ′ − 1)2

ρ
+ εy〈y′〉T + O (T −1).

(A13)

Adding zeros in the form 1
ρδ

(A5) = − 1
ρδ

〈x′ 2〉 + 1
δ
〈x′ y′〉, and 

ε2
y

4ρ ′(1−δ)
− ε2

y
4ρ ′(1−δ)

we find

(ρ ′ − 1

δ
)〈x′ y′〉T ≤ −

〈
(
√

ρ ′δy′ − 1√
ρ ′δ

x′)2
〉

−
〈
(
√

ρ ′(1 − δ)y′ − εy

2
√

ρ ′(1 − δ)
)2

〉

+ β
(ρ ′ − 1)2

ρ ′ + ε2
y

4ρ ′(1 − δ)
+ O (T −1))

≤ β
(ρ ′ − 1)2

ρ ′ + ε2
y

4ρ ′(1 − δ)
+ O (T −1),

(A14)

which in the infinite time limit and the original variables gives the 
bound

〈xy〉 ≤ β
(ρ ′ − 1)2

(ρ ′ − 1
δ
)

+ ε2
y

4(ρ ′ − 1
δ
)(1 − δ)

= β
δ(ρ ′ − 1)2

δρ ′ − 1
+ δε2

y

4(δρ ′ − 1)(1 − δ)

:= U (δ),

(A15)

where we recall ρ ′ = ρ − εz
β

. To make this optimal we minimize U . 
The derivative is given by

U ′(δ) = β(ρ ′ − 1)2 (δρ ′ − 1) − δρ ′

(δρ ′ − 1)2

+ ε2
y

4

(δρ ′ − 1)(1 − δ) − δ(ρ ′ + 1 − 2ρ ′δ)
(δρ ′ − 1)2(1 − δ)2

.

(A16)
Setting this equal to zero and simplifying we find

β(ρ ′ − 1)2 = ε2
y

4

δ2ρ ′ − 1

(1 − δ)2 , (A17)

yielding the following quadratic in δ:

0 = [β(ρ ′ − 1)2 − ρ ′ ε
2
y

4
]δ2 − 2β(ρ − 1)2δ + β(ρ ′ − 1)2 + ε2

y

4
,

(A18)

which has solutions

δ± = β(ρ ′ − 1)2 ± εy
2

√
ρ ′ ε2

y
4 + β(ρ ′ − 1)3

β(ρ ′ − 1)2 − ρ ′ ε2
y

4

. (A19)

We choose the negative square root so that δ ∈ (0, 1) (one can 
easily check this is also the minimizer). In the limit εy, εz → 0 we 
find δ → 1 which recovers the bound 〈xy〉 ≤ β(ρ − 1).
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