408L CLASS PROBLEMS

FEBRUARY 26TH, 2020

Problem 1. Find $\int \frac{d x}{x^{2}-6 x+5}$.

Solution. First, we factor the denominator $x^{2}-6 x+5=(x-5)(x-1)$.
We then find the partial fractions decomposition by setting up an equation:

$$
\begin{aligned}
\frac{1}{(x-5)(x-1)}= & \frac{A}{x-5}+\frac{B}{x-1}=\frac{A(x-1)+B(x-5)}{(x-5)(x-1)}= \\
& \frac{(A+B) x+(-A-5 B)}{(x-5)(x-1)}
\end{aligned}
$$

Therefore, we have:

$$
\begin{gathered}
A+B=0 \\
-A-5 B=1 .
\end{gathered}
$$

Solving this system of equations gives $A=\frac{1}{4}, B=-\frac{1}{4}$. Summarizing, we obtain:

$$
\frac{1}{x^{2}-5 x+6}=\frac{1}{4(x-5)}+\frac{-1}{4(x-1)} .
$$

We now have:

$$
\int \frac{d x}{x^{2}-6 x+5}=\frac{1}{4} \int \frac{d x}{x-5}-\frac{1}{4} \frac{d x}{x-1}=\frac{1}{4} \log |x-5|-\frac{1}{4} \log |x-1|+C .
$$

Problem 2. Find $\int \frac{4 x+1}{x^{2}-x-2} d x$.
Solution. The method is the same as the previous problem. We have $x^{2}-x-2=$ $(x-2)(x+1)$. To find the partial fraction decomposition, we setup the equation:

$$
\frac{4 x+1}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}=\frac{(A+B) x+(A-2 B)}{(x-2)(x+1)} .
$$

We now have the system of equations:

$$
\begin{gathered}
A+B=4 \\
A-2 B=1 .
\end{gathered}
$$

We find the solutions are $A=3, B=1$.
Therefore, we obtain:

$$
\int \frac{4 x+1}{x^{2}-x-2} d x=\int \frac{3 d x}{x-2}+\int \frac{d x}{x+1}=3 \log |x-2|+\log |x+1|+C .
$$

Problem 3. Find $\int \frac{x d x}{x^{2}-4 x+4}$.

Solution. Note that $x^{2}-4 x+4=(x-2)^{2}$. Therefore, we find the partial fraction decomposition in the form:

$$
\frac{x}{(x-2)^{2}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}=\frac{A x+(-2 A+B)}{(x-2)^{2}}
$$

We obtain the system of equations:

$$
\begin{gathered}
A=1 \\
-2 A+B=0 .
\end{gathered}
$$

Clearly $A=1$ and $B=2$.
Therefore, we have:

$$
\int \frac{x d x}{x^{2}-4 x+4}=\int \frac{d x}{x-2}+\int \frac{2 d x}{(x-2)^{2}}=\log |x-2|-\frac{2}{x-2}+C
$$

Problem 4. Find $\int \frac{x^{3}+3 x+1}{x^{2}-3 x+2} d x$.
Solution. We begin with long division. Observe that:

$$
\begin{gathered}
x^{3}+3 x+1=\underbrace{\left(x\left(x^{2}-3 x+2\right)+\left(3 x^{2}-2 x\right)\right)}_{x^{3}}+3 x+1= \\
x\left(x^{2}-3 x+2\right)+3 x^{2}+x+1=x\left(x^{2}-3 x+2\right)+3\left(x^{2}-3 x+2\right)+10 x-5= \\
(x+3)\left(x^{2}-3 x+2\right)+10 x-5 .
\end{gathered}
$$

Therefore, we have:

$$
\frac{x^{3}+3 x+1}{x^{2}-3 x+2}=x+3+\frac{10 x-5}{x^{2}-3 x+2} .
$$

We know how to integrate the first two terms. To integrate the third, we use partial fractions. We notice $x^{2}-3 x+2=(x-2)(x-1)$, so we setup the equation:

$$
\frac{10 x-5}{(x-2)(x-1)}=\frac{A}{x-2}+\frac{B}{x-1}=\frac{(A+B) x-A-2 B}{(x-2)(x-1)} .
$$

We have the system of equations:

$$
\begin{gathered}
A+B=10 \\
-A-2 B=-5 \\
2
\end{gathered}
$$

with solutions $A=15, B=-5$.
Finally, we find:

$$
\begin{aligned}
& \int \frac{x^{3}+3 x+1}{x^{2}-3 x+2} d x=\int\left(x+3+\frac{15}{x-2}-\frac{5}{x-1}\right) d x= \\
& \frac{1}{2} x^{2}+3 x+15 \log |x-2|-5 \log |x-1|+C
\end{aligned}
$$

