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Problem 1. Find §~ 9.

Solution. We have § 125 = tan™"(z). We have lim,_,, tan™"(z) =  and lim,_,_, tan~"(z) =
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Problem 2. Find SSO %.

Solution. We set u? = z, so 2udu = dx. We obtain:
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Therefore:

00]
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Problem 3. Find So% cos@) 1.

sin(z)

Solution. We set u = sin(z) so du = cos(x)dx. We obtain:

cos() _[du _ uzl sin(z
sin(x)dm_ Vu 2u = 5+/sin().

We obtain:
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Problem 4. Determine whether the following integrals converge or diverge.
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Solution. For (1), Si—g = —33, SO Si i—g — —37 + 3. We see that the limit as ¢ — o0 exists:

the value is % So the integral converges.

For (2), we have Si—? = —%, which goes to —oo as x — 0. Therefore, the integral diverges.

Because x—lz is only defined for = # 0, we must interpret the integral in (3) as So_l % + Sé i—g.

By the previous problem, the integral diverges. (Even though S% = —% is defined at z =1
and x = —1!)

For (4), we have § \/% = sin~!(x), which is defined at —1 and 1, so the integral converges.
For (5), we have log(z) < x for all z > 0. Therefore, § < . So L4 = og(t) < 10?(69@)'

As the first term goes to oo as t — oo, the integral S:O 102% diverges.

Finally, for (6), we evaluate the integral by setting u = log(z), so du = %. Then:

Jd_f’fdx _ fldu = log(u) = log(log(z)).

xlog(x) u
We have lim,_, log(log(z)) = oo, so the integral diverges.



