408L CLASS PROBLEMS (!)

MARCH 30TH, 2020

Problem 1. Which of the following sequences converge? For sequences that do converge, find the limit.
(1) $a_{n}=\frac{1}{n!}$.
(2) $a_{n}=\frac{2^{n}+3^{n}}{3^{n}}$.
(3) $a_{n}=e^{\frac{n^{2}}{n+1}}$.
(4) $a_{n}=\frac{\log (n)}{\log (2 n)}$.

Solution. Clearly (1) converges with limit 0 .
For (2), we can rewrite the expression as $\left(\frac{2}{3}\right)^{n}+1$. As $\left(\frac{2}{3}\right)^{n}$ converges to 0 , this sequence converges to 1 .
For (3), the sequence $\frac{n^{2}}{n+1}$ diverges to ∞, so $e^{\frac{n^{2}}{n+1}}$ does as well.
Finally, in (4), we write $\log (2 n)=\log (2)+\log (n)$ to see:

$$
\frac{\log (n)}{\log (2 n)}=\frac{\log (n)}{\log (2)+\log (n)}=\frac{1}{\frac{\log (2)}{\log (n)}+1} .
$$

As $\frac{\log (2)}{\log (n)}$ converges to 0 , this sequence converges to 1 .
Problem 2. Define a sequence by taking $a_{1}=1$ and setting $a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-1}}\right)$ for $n \geqslant 2$.

Find the limit of the sequence a_{n}.
Solution. Take $L=\lim _{n \rightarrow \infty} a_{n}$. Then we have:

$$
\begin{gathered}
L=\frac{1}{2}\left(L+\frac{2}{L}\right) \Rightarrow \\
L^{2}=2 .
\end{gathered}
$$

As $a_{n}>0$ for all n, we must have $L=\sqrt{2}$ (as opposed to $-\sqrt{2}$).
Just for fun: we can view this sequence operating as follows.
Suppose $a>0$ is some "guess" for $\sqrt{2}$. For the sake of definiteness, let's suppose $a<\sqrt{2}$, otherwise, replace a with $\frac{2}{a}$. Then $\frac{2}{a}$ is bigger than $\sqrt{2}$, and the average $b=\frac{1}{2}\left(a+\frac{2}{a}\right)$ is a better guess for $\sqrt{2}$ than either a or $\frac{2}{a}$. Indeed, you should check:

$$
a<b=\frac{1}{2}\left(a+\frac{2}{a}\right)<\frac{2}{a} .
$$

So our sequence keeps iterating these better and better guesses to $\sqrt{2}$. (This kind of iterative method is called Newton's method.)

Problem 3. Let $1,1,2,3,5,8, \ldots$ be the Fibonacci sequence, and let F_{n} be the nth Fibonacci number. So $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 3$.

Define $a_{n}=\frac{F_{n+1}}{F_{n}}$. Using a calculator, determine the limit $\lim _{n \rightarrow \infty} a_{n}$ to several decimal places. Then find the exact value of the limit.

Solution. We can find the first few terms of the Fibonacci sequence:

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

We have:

$$
\begin{gathered}
a_{8}=34 / 21=1.6190 \ldots, a_{9}=55 / 34=1.6176 \ldots, \\
a_{10}=89 / 55=1.6182 \ldots, a_{11}=144 / 89=1.6180 \ldots,
\end{gathered}
$$

and using a computer can find $a_{10^{5}}=F_{10^{5}+1} / F_{10^{5}}=1.61803398874989 \ldots$.
This number looks an awful lot like the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$, which was beloved in antiquity by the ancient Greeks and is beloved today by Wikipedia.

To see that the limit is the golden ratio, take $L=\lim _{n \rightarrow \infty} a_{n}$. We then have:

$$
L=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{F_{n}+F_{n-1}}{F_{n}}=\lim _{n \rightarrow \infty} 1+\frac{F_{n-1}}{F_{n}}=1+\lim _{n \rightarrow \infty} \frac{F_{n-1}}{F_{n}}=1+\frac{1}{L} .
$$

Multiplying by L and rearranging terms, we obtain the quadratic equation:

$$
L^{2}-L-1=0 \Rightarrow L=\frac{1 \pm \sqrt{5}}{2}
$$

As $L>1$, we must have $L=\frac{1+\sqrt{5}}{2}$.
Problem 4. For any x, it is known that the sequence $a_{n}=\left(1+\frac{x}{n}\right)^{n}$ converges. Define a function $f(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$.
(1) Using a calculator, compute $f(1)$ to several decimal places.
(2) Show that $f(0)=1$.
(3) Show that $\frac{d}{d x} f(x)=f(x)$.
(4) Show that $\frac{d}{d x} \log (f(x))=1$.
(5) Deduce that $f(x)=e^{x}$.

Solution. We have $f(1) \approx\left(1+\frac{1}{10000}\right)^{10000}=2.718 \ldots$, which looks a lot like e. We will see that $f(1)=e$ later.

That $f(0)=1$ is clear.
We have:

$$
\begin{gathered}
\frac{d}{d x} f(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty} \frac{d}{d x}\left(1+\frac{x}{n}\right)^{n}= \\
\lim _{n \rightarrow \infty} \frac{1}{n} \cdot n \cdot\left(1+\frac{x}{n}\right)^{n-1}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n-1}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{x}{n}\right)^{n}}{1+\frac{x}{n}}= \\
\lim _{n \rightarrow \infty} \frac{\left(1+\frac{x}{n}\right)^{n}}{1+\frac{x}{n}}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}}{\lim _{n \rightarrow \infty} 1+\frac{x}{n}}=\frac{f(x)}{1}=f(x) .
\end{gathered}
$$

We now have $\frac{d}{d x} \log (f(x))=\frac{f^{\prime}(x)}{f(x)}=\frac{f(x)}{f(x)}=1$.
We deduce that $\log (f(x))=x+C$ for some constant C; any function with derivative 1 has this form. Then plugging in $x=0$, we see $\log (f(0))=0+C=C$; by before, $f(0)=1$, so $C=0$. This means $\log (f(x))=x$. We finally obtain:

$$
f(x)=e^{\log (f(x))}=e^{x} .
$$

