408L CLASS PROBLEMS

APRIL 3RD, 2020

Problem 1.

(1) Find $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
(2) Draw a segment of length $\frac{1}{2}$, then one of length $\frac{1}{2}+\frac{1}{4}$, then one of length $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$. How do these pictures relate to your answer to (1)?

Solution. Using the geometric series formula, we have:

$$
\begin{gathered}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots= \\
\frac{1}{2} \cdot\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)= \\
\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=\frac{1}{2} \cdot 2=1 .
\end{gathered}
$$

The picture for the second part is as follows.

Problem 2. Find $6 / 5+18 / 25+54 / 125+162 / 625+\ldots$.
Solution. If we write the terms of the series as a_{0}, a_{1}, \ldots, we recognize the pattern as $a_{n}=2 \cdot\left(\frac{3}{5}\right)^{n+1}=\frac{6}{5} \cdot\left(\frac{3}{5}\right)^{n}$. Therefore, using the geometric series formula, we have:

$$
6 / 5+18 / 25+54 / 125+162 / 625+\ldots=\frac{6}{5} \cdot \sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}=\frac{6}{5} \cdot \frac{1}{1-\frac{3}{5}}=\frac{6}{5} \cdot \frac{5}{2}=3 .
$$

Problem 3. Find $99999 \ldots=\sum_{n=1}^{\infty} 9 \cdot\left(\frac{1}{10}\right)^{n}$ by evaluating the geometric series.
Solution. We use the geometric series formula:

$$
\begin{aligned}
\sum_{n=1}^{\infty} 9 \cdot\left(\frac{1}{10}\right)^{n} & =\frac{9}{10} \cdot \sum_{n=0}^{\infty}\left(\frac{1}{10}\right)^{n}= \\
\frac{9}{10} \cdot \frac{1}{1-\frac{1}{10}} & =\frac{9}{10} \cdot \frac{10}{9}=1 .
\end{aligned}
$$

If it seems odd to you that $.99999 \ldots=1$, convince yourself that $1-.99999 \ldots$ is less than .1 , and less than .01 , and less than .001 , etc., and therefore must be zero.

Problem 4. Find ${ }^{1} \sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$.
Solution. This is a telescoping series problem.
We begin by finding the partial fractions decomposition:

$$
\frac{1}{n^{2}-1}=\frac{1}{(n-1)(n+1)}=\frac{A}{n-1}+\frac{B}{n+1}=\frac{(A+B) n+(A-B)}{(n-1)(n+1)}
$$

giving $A=\frac{1}{2}, B=-\frac{1}{2}$ and:

$$
\frac{1}{n^{2}-1}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right) .
$$

Therefore, our sum is:

$$
\begin{gathered}
\frac{1}{2} \cdot\left(\left(\frac{1}{2-1}-\frac{1}{2+1}\right)+\left(\frac{1}{3-1}-\frac{1}{3+1}\right)+\left(\frac{1}{4-1}-\frac{1}{4+1}\right)+\left(\frac{1}{5-1}-\frac{1}{5+1}\right)\right)+\ldots= \\
\frac{1}{2} \cdot\left(\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\ldots\right)= \\
\frac{1}{2} \cdot\left(\frac{1}{1}+\frac{1}{2}\right)
\end{gathered}
$$

as all of the other terms cancel. (For example, the $-\frac{1}{3}$ in the first term on the second line cancels with the $\frac{1}{3}$ in the third term, etc.)

Evaluating this, we obtain a final answer $\frac{3}{4}$.

[^0]
[^0]: ${ }^{1}$ The sum begins at 2 not to be tricky, but to avoid dividing by zero.

