# 408L CLASS PROBLEMS 

APRIL 6TH, 2020

Problem 1. Does $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converge or diverge? If it converges, find an upper bound for its value.

Solution. By the integral test, the series converges because:

$$
\int_{1}^{\infty} \frac{d x}{x^{2}}=-\left.\frac{1}{x}\right|_{1} ^{\infty}=1
$$

converges.
We can bound the sum using:

$$
\begin{gathered}
1=\int_{1}^{\infty} \frac{d x}{x^{2}}>\sum_{n=2}^{\infty} \frac{1}{n^{2}} \\
\Rightarrow 2=\frac{1}{1^{2}}+1>\frac{1}{1^{2}}+\sum_{n=2}^{\infty} \frac{1}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} .
\end{gathered}
$$

(In fact, in 1735 , Euler famously showed that this sum is exactly $\frac{\pi^{2}}{6} \approx 1.645<2$.)
Problem 2. Does $\sum_{n=1}^{\infty} n e^{-n}$ converge or diverge? If it converges, find an upper bound for its value.

Solution. We can apply the integral test with $f(x)=x e^{-x}$.
Using familiar integration by parts, we find:

$$
\int x e^{-x} d x=-(x+1) e^{-x}
$$

so:

$$
\int_{1}^{\infty} x e^{-x} d x=-\left.(x+1) e^{-x}\right|_{1} ^{\infty}=\left(-\lim _{x \rightarrow \infty}(x+1) e^{-x}\right)-\left(-2 e^{-1}\right)
$$

Using L'Hôpital's rule, we find that the limit exists and is zero, so the integral converges with value $2 e^{-2}$.

As in the previous problem, we have:

$$
\sum_{n=1}^{\infty} n e^{-n}<1 * e^{-1}+\int_{1}^{\infty} x e^{-x} d x=3 e^{-1}
$$

(For a challenge beyond the scope of this class, you can try to show that this sum is exactly $\frac{e}{(e-1)^{2}}$. There is a tricky way to apply the geometric series formula to find this. As a sanity check, note that $\frac{e}{(e-1)^{2}} \approx .921<1.104 \approx 3 e^{-1}$.)

Problem 3. Does the series:

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}} \ldots
$$

converge or diverge? If it converges, find an upper bound for its value.
Solution. The integral:

$$
\int_{1}^{\infty} \frac{d x}{x^{\frac{1}{2}}}=\left.2 x^{\frac{1}{2}}\right|_{1} ^{\infty}
$$

diverges, so the sum diverges as well.
Problem 4. Does $\sum_{n=2}^{\infty} \frac{1}{n \log (n)}$ converge or diverge? If it converges, find an upper bound for its value.

Solution. Using $u$-substitution with $u=\log (x)$, we find:

$$
\int \frac{d x}{x \log (x)}=\int \frac{d u}{u}=\log (u)=\log (\log (x))
$$

We see that the integral:

$$
\int_{2}^{\infty} \frac{d x}{x \log (x)}
$$

diverges, because $\log (\log (x)) \rightarrow \infty$ as $x \rightarrow \infty$. Therefore, the sum diverges as well.
Problem 5. Does $\sum_{n=2}^{\infty} \frac{1}{n \log (n)^{2}}$ converge or diverge? If it converges, find an upper bound for its value.

Using $u$-substitution with $u=\log (x)$ as in the previous problem, we find:

$$
\int \frac{d x}{x \log (x)^{2}}=\int \frac{d u}{u^{2}}=-\frac{1}{u}=-\frac{1}{\log (x)}
$$

Therefore, we can evaluate the integral:

$$
\int_{2}^{\infty} \frac{d x}{x \log (x)^{2}}=-\left.\frac{1}{\log (x)}\right|_{2} ^{\infty}=-\frac{1}{\log (\infty)}-\left(-\frac{1}{\log (2)}\right)=\frac{1}{\log (2)}
$$

As the integral converges, the sum converges as well.
We find an upper bound as in the first problem:

$$
\sum_{n=2}^{\infty} \frac{1}{n \log (n)^{2}}=\frac{1}{2 \log (2)}+\sum_{n=3}^{\infty} \frac{1}{n \log (n)^{2}}<\frac{1}{2 \log (2)}+\int_{2}^{\infty} \frac{d x}{x \log (x)^{2}}=\frac{3}{2 \log (2)}
$$

(Here the infinite sum does not admit a pithy closed form expression, but you can show that its decimal expansion begins $2.109742801 \ldots$, so our sanity check is $\sum_{n=2}^{\infty} \frac{1}{n \log (n)^{2}}=$ $2.1097 \ldots<2.1640 \ldots=\frac{3}{2 \log (2)}$.)

