408L CLASS PROBLEMS

APRIL 8TH, 2020

Problem 1. Does > —— converge or diverge?

Solution. We have:
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Therefore by the limit comparison test, convergence of our series is equivalent to convergence

of Zn 1o . The latter series is a geometric series for r = = < 1, so [converges|.
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Problem 2. Does > converge or diverge?

Solution. We have:
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Therefore, we also have:
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As the series Y7, & is a geometric series with » = £ < 1, the limit comparison test

implies our series .
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Problem 3. Does Y, Tromy converge or diverge?

Solution. We have:

1+vn?2—1 .1 ) 2—-1 .1 , 1
lim—nzhm——khmni:hm——i-hm 1——2=0+1=1.
n—0o0 n n—oo N, n—o0 n n—o N, n—ao0 n

Therefore, by the limit comparison test and the divergence of >}” | 1, we find that our series

diverges |

Problem 4. Does ), = ”J;ll converge or diverge?

Solution. We have:
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Similarly, lim,,_, ”f;jl = 1. Therefore:

By the limit comparison test, convergence of our series is equivalent to that of >~ <

D et % The latter series diverges, so our series |diverges | as well.
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