# 408L CLASS PROBLEMS 

APRIL 10TH, 2020

## Problem 1. Does $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ converge or diverge?

Solution. As $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$ and $\frac{1}{\sqrt{n}}$ is decreasing, the alternating series test applies and we see that the series converges.

## Problem 2. Does $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\log (n)}$ converge or diverge?

Solution. Again, As $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$ and $\frac{1}{\log n}$ is decreasing, so the alternating series test applies and we see that the series converges.

Problem 3. Does $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt{4 n^{2}-1}}$ converge or diverge?
Solution. We have:

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{4 n^{2}-1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{4-\frac{1}{n^{2}}}}=\frac{1}{2} \neq 0
$$

so the series diverges.

## Problem 4. Does $\sum_{n=0}^{\infty}(-1)^{n} \cos (n \pi)$ converge or diverge?

Solution. We have $\cos (0 \cdot \pi)=1, \cos (1 \cdot \pi)=-1, \cos (2 \cdot \pi)=1$, etc., so $\cos (n \pi)=(-1)^{n}$. Therefore, we can write the series as:

$$
\begin{gathered}
\sum_{n=0}^{\infty}(-1)^{n} \cos (n \pi)=\sum_{n=0}^{\infty}(-1)^{n}(-1)^{n}=\sum_{n=0}^{\infty}(-1)^{2 n}= \\
\sum_{n=0}^{\infty}\left((-1)^{2}\right)^{n}=\sum_{n=0}^{\infty} 1
\end{gathered}
$$

Obviously this series diverges.
Problem 5. Does $\sum_{n=1}^{\infty}(-1)^{n} \cdot n \cdot \sin \left(\frac{1}{n}\right)$ converge or diverge?

Solution. Recall that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$. Therefore, $\lim _{x \rightarrow \infty} x \cdot \sin \left(\frac{1}{x}\right)=1$ as well. We therefore see that the series diverges.

## Problem 6. Does $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{\pi}{2}-\tan ^{-1}(n)\right)$ converge or diverge?

Solution. We have $\lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}$, so the terms in the series do limit to 0 . Moreover, we have:

$$
\frac{d}{d x}\left(\frac{\pi}{2}-\tan ^{-1}(x)\right)=\frac{-1}{x^{2}+1}<0
$$

Therefore, the function $\frac{\pi}{2}-\tan ^{-1}(x)$ is decreasing.
Finally, we note that $\tan ^{-1}(x)<\frac{\pi}{2}$ for all $x$, so the function $\frac{\pi}{2}-\tan ^{-1}(x)$ is positive. Therefore, the alternating series test applies and we deduce that the series converges.

