408L CLASS PROBLEMS

APRIL 17TH, 2020

Problem 1. Determine whether $\sum_{n=0}^{\infty} \frac{n}{n^2+1}$ converges or diverges.

Solution. We can apply the comparison test with the harmonic series $\sum \frac{1}{n}$ to find this series diverges.

Problem 2. Determine whether $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ converges or diverges.

Solution. The exponent suggests the <u>roottest</u>. For $a_n = (\frac{n}{n+1})^{n^2}$, we have:

$$a_n^{\frac{1}{n}} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(1+\frac{1}{n}\right)^n}.$$

We have $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$, so $\lim_{n\to\infty} a_n^{\frac{1}{n}} = \frac{1}{e}$. As $\frac{1}{e} < 1$, the root test implies that the series converges.

Problem 3. Determine whether $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot 2n-1}{1 \cdot 4 \cdot 7 \cdot \dots \cdot 3n-2}$ converges or diverges.

Solution. Let $a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot 2n-1}{1 \cdot 4 \cdot 7 \cdot \dots \cdot 3n-2}$. We then have the *(recursive)* equation:

$$a_{n+1} = \frac{2n+1}{3n+1} \cdot a_n$$

This suggests using the ratio test

By the above, we have:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2n+1}{3n+1} = \frac{2}{3}.$$

As this limit is less than 1, the series converges.

Problem 4. Determine whether $\sum_{n=1}^{\infty} \tan(\frac{1}{n})$ converges or diverges.

Solution. We use the comparison test with the harmonic series. Let $a_n = \tan(\frac{1}{n})$ and $b_n = \frac{1}{n}$. We then have:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin(\frac{1}{n})}{\frac{1}{n}} \cdot \frac{1}{\cos(\frac{1}{n})} = 1 \cdot 1 = 1.$$

Therefore, the comparison test applies, and we deduce that the series diverges as the harmonic series does.

Problem 5. Determine whether $\sum_{n=1}^{\infty} (-1)^n n^{-\frac{1}{100}} \log(n)$ converges or diverges.

Solution. The series converges by the alternating series test

Problem 6. Determine whether $\sum_{n=1}^{\infty} (\sin(\frac{1}{n}) - \frac{1}{n})^n$ converges or diverges.

Solution. The exponent suggests using the root test. For $a_n = (\sin(\frac{1}{n}) - \frac{1}{n})^n$, we have:

$$\lim_{n \to \infty} a_n^{\frac{1}{n}} = \lim_{n \to \infty} \sin\left(\frac{1}{n}\right) - \frac{1}{n} = \lim_{n \to \infty} \frac{n \sin\left(\frac{1}{n}\right) - 1}{n}$$

The numerator has limit 0 while the denominator has limit ∞ , so this limit is 0. Therefore, the root test implies the series converges.

Problem 7. Determine whether $\sum_{n=1}^{\infty} 2^{-\log(n)}$ converges or diverges. Determine whether $\sum_{n=1}^{\infty} 3^{-\log(n)}$ converges or diverges.

Solution. We have:

$$2^{-\log(n)} = e^{-\log(2) \cdot \log(n)} = n^{-\log(2)} = \frac{1}{n^{\log(2)}}.$$

Therefore, the series diverges by the <u>p</u>-series test as $\log(2) < 1$. However, the second series converges by the same reasoning, as $\log(3) > 1$.

(Of course, log indicates natural log throughout this problem.)