# 408L CLASS PROBLEMS 

JANUARY 31, 2020

## Problem 1. Find $\int \frac{d x}{x \sqrt{\log (x)}}$.

Solution. Take $u=\log (x)$, so $d u=\frac{d x}{x}$. We obtain:

$$
\int \frac{d x}{x \sqrt{\log (x)}}=\int \frac{d u}{\sqrt{u}}=\int u^{-\frac{1}{2}} d u=\frac{1}{2} u^{\frac{1}{2}}+C=\frac{1}{2} \sqrt{\log (x)}+C
$$

Problem 2. Find $\int_{1}^{2} \frac{e^{\frac{1}{x}} d x}{x^{2}}$.
Solution. First, we find an anti-derivative to the function (so we can omit the constant $C)$.

Taking $u=\frac{1}{x}$, we have $d u=-\frac{d x}{x^{2}}$, so $-d u=\frac{d x}{x^{2}}$. We then find:

$$
\int \frac{e^{\frac{1}{x}} d x}{x^{2}}=-\int e^{u} d u=-e^{u}=-e^{\frac{1}{x}}
$$

To calculate the definite integral, we then evaluate:

$$
-\left.e^{\frac{1}{x}}\right|_{1} ^{2}=-e^{\frac{1}{2}}-\left(-e^{\frac{1}{1}}\right)=e-\sqrt{e} .
$$

Alternative solution. We use $u$-substitution as above, but calculate the definite integral directly:

$$
\int_{1}^{2} \frac{e^{\frac{1}{x}} d x}{x^{2}}=-\int_{u(1)}^{u(2)} e^{u} d u=-\int_{\frac{1}{1}}^{\frac{1}{2}} e^{u} d u=-\left.e^{u}\right|_{1} ^{\frac{1}{2}}=e-\sqrt{e} .
$$

Problem 3. Find $\int_{-5}^{-1} \frac{d x}{x}$.
Solution. The formula $\frac{d}{d x} \log (x)=\frac{1}{x}$ is valid only for $x>0$, as $\log$ is only defined on positive numbers.

For $x<0$, we can use the formula $\frac{d}{d x} \log (-x)=\frac{1}{x}$; here $-x$ is positive because $x$ is negative, so $\log (-x)$ is defined.

We can summarize by saying $\frac{d}{d x} \log (|x|)=\frac{1}{x}$ for all $x \neq 0$. Often in calculus, we use the formula:

$$
\int \frac{d x}{x}=\log (|x|)+C
$$

Note that this is valid when $x$ is positive or negative, but issues may arise when $x$ is allowed to be zero; for example, $\int_{-1}^{1} \frac{d x}{x}$ is not defined.

For our problem, we now have:

$$
\int_{-5}^{-1} \frac{d x}{x}=\left.\log (|x|)\right|_{-5} ^{-1}=\log (1)-\log (5)=-\log (5)
$$

(For practice, justify this another way by drawing a picture to show:

$$
\int_{-5}^{-1} \frac{d x}{x}=-\int_{1}^{5} \frac{d x}{x}
$$

Justify this identity another way using $u$-substitution with $u=-x$.)
Problem 4. Find $\int \frac{x^{2}+x+1}{x^{2}+1} d x$.
Solution. We break up the integrand as:

$$
\frac{x^{2}+x+1}{x^{2}+1}=1+\frac{x}{x^{2}+1} .
$$

We therefore have:

$$
\int \frac{x^{2}+x+1}{x^{2}+1} d x=\int d x+\int \frac{x}{x^{2}+1} d x=x+\int \frac{x}{x^{2}+1} d x
$$

We can solve the latter integral by substitution: take $u=x^{2}+1$, so $d u=2 x d x$, i.e., $\frac{1}{2} d u=x d x$. We then have:

$$
\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \log (u)+C=\frac{1}{2} \log \left(x^{2}+1\right)+C
$$

(Because $u=x^{2}+1>0$ for all $x$, we are justified in saying $\int \frac{1}{u}=\log (u)$, not $\log (|u|)$.)
Combined with the above, we obtain the final answer:

$$
x+\frac{1}{2} \log \left(x^{2}+1\right)+C \text {. }
$$

Problem 5. Find $\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{1+\tan x} d x$.
Solution. We use $u$-substitution with $u=1+\tan x$, so $d u=\sec ^{2} x d x$. We then have:

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{1+\tan x} d x=\int_{1+\tan (0)}^{1+\tan \left(\frac{\pi}{4}\right)} \frac{d u}{u}=\int_{1}^{2} \frac{d u}{u}=\left.\log (u)\right|_{1} ^{2}=\log (2)-\log (1)=\log (2)
$$

Here we note that $u=1+\tan x>0$ for $0 \leqslant x \leqslant \frac{\pi}{4}$, justifying our use of $\log (u)$ : it equals $\log (|u|)$ for such $x$.

