408L CLASS PROBLEMS

FEBRUARY 3RD, 2020

Problem 1. Work with a partner on this problem.
(1) Find $\int \tan (x) \sec ^{2}(x) d x$ via u-substitution.

Partner A should solve the problem with $u=\tan (x)$; Partner B should use $u=\sec (x)$.
(2) Reconcile.

Solution. Taking $u=\tan (x)$, we have $d u=\sec ^{2}(x) d x$, so our integral is:

$$
\int \tan (x) \sec ^{2}(x) d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \tan ^{2}(x)+C .
$$

Taking $u=\sec (x)$, we have $d u=\tan (x) \sec (x) d x$, so our integral is:

$$
\int \tan (x) \sec ^{2}(x) d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \sec ^{2}(x)+C .
$$

To reconcile these seemingly different answers, note that:

$$
\frac{1}{2} \tan ^{2}(x)=\frac{1}{2} \cdot \frac{\sin ^{2}(x)}{\cos ^{2}(x)}=\frac{1}{2} \cdot \frac{1-\cos ^{2}(x)}{\cos ^{2}(x)}=\frac{1}{2} \cdot \sec ^{2}(x)-\frac{1}{2}
$$

Therefore, $\frac{1}{2} \tan ^{2}(x)$ and $\frac{1}{2} \sec ^{2}(x)$ differ by a constant. Our answers reflect that each of these functions is an anti-derivative of $\tan (x) \sec ^{2}(x)$, and there is no contradiction because anti-derivatives are only determined up to constants.

Problem 2. Find $\int_{-3}^{3} \sin (x) \cdot x^{4} d x$.
Solution. Because $f(x)=\sin (x) \cdot x^{4}$ is odd, that is, $f(-x)=-f(x)$, we have:

$$
\int_{-a}^{a} f(x) d x=0
$$

for all a. (Draw a picture to convince yourself of this!)
Problem 3. Suppose f is a function with $\frac{d f}{d x}=\frac{\cos x}{2+\sin x}$. Suppose $f(0)=1$. Find $f(10)$.

Solution. Here is the strategy. We know that f must be some anti-derivative of $\frac{d f}{d x}=\frac{\cos x}{2+\sin x}$, which should determine f up to constants. We then use the initial value property $f(0)=1$ to determine exactly which function f is (not only up to constants).

Setting $u=2+\sin x$, so $d u=\cos x d x$, and observing that $u>0$ for all x, we have:

$$
\int \cos x \cdot \log (2+\sin x) d x=\int \frac{d u}{u}=\log (u)+C=\log (2+\sin x)+C
$$

As $f(x)$ is an anti-derivative of $\frac{d f}{d x}$, we have:

$$
f(x)=\log (2+\sin x)+C
$$

for some value of the constant C. We then have:

$$
1=f(0)=\log (2)+C
$$

so $C=1-\log (2)$.
Finally, we obtain:

$$
f(10)=\log (2+\sin (10))+1-\log (2) .
$$

Problem 4. Find an anti-derivative of the function $\log \left(\cos (x)^{\tan (x)}\right)$ defined on the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

Solution. Note that for $-\frac{\pi}{2}<x<\frac{\pi}{2}, \cos (x)>0$ and $\tan (x)$ is defined, so the function $\log \left(\cos (x)^{\tan (x)}\right)$ is defined and continuous.

We have:

$$
\log \left(\cos (x)^{\tan (x)}\right)=\tan (x) \cdot \log (\cos (x))=\frac{\sin (x) \log (\cos (x))}{\cos (x)}
$$

We use $u=\cos (x), d u=-\sin (x) d x$ to solve the integral:

$$
\int \log \left(\cos (x)^{\tan (x)}\right) d x=\int \frac{\sin (x) \log (\cos (x))}{\cos (x)} d x=-\int \frac{\log (u) d u}{u} .
$$

We can solve latter integral using another substitution: take $v=\log (u)$, so $d v=\frac{d u}{u}$. We then have:

$$
-\int \frac{\log (u) d u}{u}=-\int v d v=-\frac{1}{2} v^{2} .
$$

(We ignore the constant because we are only looking for some anti-derivative.)
We then have:

$$
-\frac{1}{2} v^{2}=-\frac{1}{2} \log (u)^{2}=-\frac{1}{2} \log (\cos (x))^{2} .
$$

Alternative solution. Use u-substitution with $u=\log (\cos (x))$ instead to solve the problem using only one substitution.

