
408L CLASS PROBLEMS

FEBRUARY 5TH, 2020

Problem 1. Find the area of the region bounded by the line x “ 3 and the
graphs of the functions fpxq “ x2, gpxq “

?
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Solution. The graphs of f and g intersect at x “ 1. Moreover, for 1 ď x, we have
fpxq ě gpxq. Therefore, the area is:
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Problem 2. Find the area of the region between the graphs of the functions
fpxq “ x3, gpxq “ 4x.
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Solution. The graphs of f and g intersect when fpxq “ gpxq, i.e., when x3 “ 4x. We can
solve this by factoring:

x3 ´ 4x “ xpx2 ´ 4q “ xpx ´ 2qpx ` 2q.

Therefore, the graphs intersect at ´2, 0, and 2.
To find the area between the graphs, we calculate:
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p4x ´ x3qdx.

We can evaluate the second term as:
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A similar calculation shows that the first term also evaluates to 4
3
. (In fact, the two integrals

must be equal because f and g are both odd functions.)
Therefore, the area between the two graphs is:
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Problem 3. Find the area bound by the line x “ π
4 and the graphs of the

functions fpxq “ sinpxq and gpxq “ tanpxq.

Solution. For 0 ă x ă π
2
, we have:
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tanpxq “
sinpxq
cospxq

ą sinpxq

because 0 ă cospxq ă 1 in this range.
Therefore, the area in question is:
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ptanpxq ´ sinpxqqdx.

To evaluate this integral, we first find the anti-derivative of tanpxq. As tanpxq “ sinpxq
cospxq , we

can integrate using u-substitution with u “ cospxq, du “ ´ sinpxqdx:
ż
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where the last equality is valid for 0 ă x ă π
2
.

We now have:
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