408L CLASS PROBLEMS

FEBRUARY 5TH, 2020

Problem 1. Find the area of the region bounded by the line x = 3 and the graphs of the functions $f(x) = x^2$, $g(x) = \sqrt{x}$.

Solution. The graphs of f and g intersect at x = 1. Moreover, for $1 \leq x$, we have $f(x) \geq g(x)$. Therefore, the area is:

$$\int_{1}^{3} (f(x) - g(x))dx = \int_{1}^{3} (x^{2} - \sqrt{x})dx = \frac{1}{3}x^{3} - \frac{2}{3}x^{\frac{3}{2}}\Big|_{1}^{3} = \frac{1}{3}3^{3} - \frac{2}{3}3^{\frac{3}{2}} - \frac{1}{3}1^{3} + \frac{2}{3}1^{\frac{3}{2}} = \boxed{\frac{28}{3} - 2\sqrt{3}}.$$

Problem 2. Find the area of the region between the graphs of the functions $f(x) = x^3$, g(x) = 4x.

Solution. The graphs of f and g intersect when f(x) = g(x), i.e., when $x^3 = 4x$. We can solve this by factoring:

$$x^{3} - 4x = x(x^{2} - 4) = x(x - 2)(x + 2)$$

Therefore, the graphs intersect at -2, 0, and 2.

To find the area between the graphs, we calculate:

$$\int_{-2}^{2} |f(x) - g(x)| dx = \int_{-2}^{0} (f(x) - g(x)) dx + \int_{0}^{2} (g(x) - f(x)) dx = \int_{-2}^{0} (x^{3} - 4x) dx + \int_{0}^{2} (4x - x^{3}) dx.$$

We can evaluate the second term as:

$$\int_{0}^{2} (4x - x^{3}) dx = x^{2} - \frac{x^{3}}{3} \Big|_{0}^{2} = 2^{2} - \frac{2^{3}}{3} = \frac{4}{3}.$$

A similar calculation shows that the first term also evaluates to $\frac{4}{3}$. (In fact, the two integrals must be equal because f and g are both odd functions.)

Therefore, the area between the two graphs is:

$$\frac{4}{3} + \frac{4}{3} = \frac{8}{3}.$$

Problem 3. Find the area bound by the line $x = \frac{\pi}{4}$ and the graphs of the functions $f(x) = \sin(x)$ and $g(x) = \tan(x)$.

Solution. For $0 < x < \frac{\pi}{2}$, we have:

$$\tan(x) = \frac{\sin(x)}{\cos(x)} > \sin(x)$$

because $0 < \cos(x) < 1$ in this range.

Therefore, the area in question is:

$$\int_0^{\frac{\pi}{4}} (\tan(x) - \sin(x)) dx.$$

To evaluate this integral, we first find the anti-derivative of $\tan(x)$. As $\tan(x) = \frac{\sin(x)}{\cos(x)}$, we can integrate using *u*-substitution with $u = \cos(x)$, $du = -\sin(x)dx$:

$$\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx = -\int \frac{du}{u} = -\log(|\cos(x)|) = -\log(\cos(x))$$

where the last equality is valid for $0 < x < \frac{\pi}{2}$.

We now have:

$$\int_{0}^{\frac{\pi}{4}} (\tan(x) - \sin(x)) dx = -\log(\cos(x)) + \cos(x) \Big|_{0}^{\frac{\pi}{4}} = -\log(\cos(\frac{\pi}{4})) + \cos(\frac{\pi}{4}) + \log(\cos(0)) - \cos(0) = -\log(\frac{1}{\sqrt{2}}) + \frac{1}{\sqrt{2}} + \log(1) - 1 = \boxed{\frac{1}{2}\log(2) + \frac{1 - \sqrt{2}}{\sqrt{2}}}.$$