408L CLASS PROBLEMS

FEBRUARY 7TH, 2020

Problem 1. Find the volume of the solid by rotating the area under the graph of $\sin (x)$ on $0 \leqslant x \leqslant \pi$ around the x-axis.

Solution. We need to calculate:

$$
\int_{0}^{\pi} \pi \sin ^{2}(x) d x .
$$

We can find the anti-derivative of $\sin ^{2}(x)$ using the identity:

$$
\begin{gathered}
\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=1-2 \sin ^{2}(x) \Rightarrow \\
\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}
\end{gathered}
$$

We obtain:

$$
\int \sin ^{2}(x) d x=\int \frac{1-\cos (2 x)}{2} d x=\frac{x}{2}-\frac{\sin (2 x)}{4}+C .
$$

We can now calculate our definite integral as:

$$
\int_{0}^{\pi} \pi \sin ^{2}(x) d x=\left.\left(\frac{\pi x}{2}-\frac{\pi \sin (2 x)}{4}\right)\right|_{0} ^{\pi}=\frac{\pi^{2}}{2}
$$

Problem 2. Find the volume of the solid obtained by rotating around the x-axis the area under the graph of $f(x)=\frac{x+2}{\sqrt{x^{2}+1}}$ for $0 \leqslant x \leqslant t$.

Solution. We need to find:

$$
\int_{0}^{t} \pi\left(\frac{x+2}{\sqrt{x^{2}+1}}\right)^{2} d x=\pi \int_{0}^{t} \frac{x^{2}+4 x+4}{x^{2}+1} d x
$$

To find this integral, we break up the integrand as:

$$
\frac{x^{2}+4 x+4}{x^{2}+1}=1+\frac{4 x}{x^{2}+1}+\frac{3}{x^{2}+1} .
$$

We then have standard anti-derivatives:

$$
\begin{gathered}
\int 1 \cdot d x=x \\
\int \frac{3 d x}{x^{2}+1}=3 \tan ^{-1}(x)
\end{gathered}
$$

We can find $\int \frac{4 x d x}{x^{2}+1}$ with u-substitution; for $u=x^{2}+1, d u=2 x d x$, so:

$$
\int \frac{4 x d x}{x^{2}+1}=\int \frac{2 d u}{u}=2 \log (|u|)=2 \log \left(x^{2}+1\right)
$$

(The last term can also be written as $\log \left(\left(x^{2}+1\right)^{2}\right)$.)
We therefore have an anti-derivative:

$$
\int \frac{x^{2}+4 x+4}{x^{2}+1} d x=x+2 \log \left(x^{2}+1\right)+3 \tan ^{-1}(x)
$$

so that:

$$
\begin{gathered}
\pi \int_{0}^{t} \frac{x^{2}+4 x+4}{x^{2}+1} d x=\left.\pi \cdot\left(x+2 \log \left(x^{2}+1\right)+3 \tan ^{-1}(x)\right)\right|_{0} ^{t}= \\
\pi \cdot\left(t+2 \log \left(t^{2}+1\right)+3 \tan ^{-1}(t)-0-2 \log \left(0^{2}+1\right)-3 \tan ^{-1}(0)\right)= \\
\pi t+2 \pi \log \left(t^{2}+1\right)+3 \pi \tan ^{-1}(t)
\end{gathered}
$$

Problem 3. Find the volume of a sphere of radius 1. (Hint: regard a sphere as a surface of revolution.)

Solution. A sphere of radius 1 is obtained as a surface of revolution obtained by rotating the semi-circle where $x^{2}+y^{2}=1$ and $y \geqslant 0$ around the x-axis. That semi-circle is the graph of the function $f(x)=\sqrt{1-x^{2}}$ for $-1 \leqslant x \leqslant 1$.

Therefore, our volume is:

$$
\int_{-1}^{1} \pi\left(\sqrt{1-x^{2}}\right)^{2} d x=\pi \int_{-1}^{1}\left(1-x^{2}\right) d x=\left.\pi \cdot\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}=\pi \cdot\left(1-\frac{1}{3}-\left(-1-\frac{-1}{3}\right)\right)=\pi \cdot \frac{4}{3} .
$$

Problem 4. Find the volume obtained by rotating about the y-axis the area in the first quadrant lying between the graph of $f(x)=x+1$, the graph of $g(x)=\sqrt{x}$, and the line $y=5$.

Solution. Drawing the picture, we see we need to integrate:

$$
\int_{0}^{1} \pi g^{-1}(y)^{2} d y+\int_{1}^{5} \pi\left(g^{-1}(y)^{2}-f^{-1}(y)^{2}\right) d y=\pi \int_{0}^{5} g^{-1}(y)^{2} d y-\pi \int_{1}^{5} f^{-1}(y)^{2} d y
$$

We have $g^{-1}(y)=y^{2}$ and $f^{-1}(y)=y-1$.
We therefore compute the first integral above as:

$$
\int_{0}^{5} g^{-1}(y)^{2} d y=\int_{0}^{5} y^{4} d y=\frac{1}{5} 5^{5}=5^{4}=625
$$

We compute the second integral as:

$$
\int_{1}^{5}(y-1)^{2} d y=\left.\frac{1}{2}(y-1)^{2}\right|_{1} ^{5}=\frac{1}{3}\left(4^{2}-0^{2}\right)=\frac{16}{3}
$$

Therefore, our final answer is:

$$
\left(625-\frac{64}{3}\right) \pi=\frac{1811 \pi}{3} .
$$

