408L CLASS PROBLEMS

FEBRUARY 10TH, 2020

Problem 1. Find the volume of the solid by rotating the area under the graph of $\sqrt{x} \cdot e^{x^{2}}$ for $0 \leqslant x \leqslant 1$ around the x-axis.

Solution. The volume is:

$$
\pi \int_{0}^{1}\left(\sqrt{x} \cdot e^{x^{2}}\right)^{2} d x=\pi \int_{0}^{1} x \cdot e^{2 x^{2}} d x .
$$

We evaluate the integral using u-substitution with $u=2 x^{2}, d u=4 x d x$:

$$
\int_{0}^{1} x \cdot e^{2 x^{2}} d x=\frac{1}{4} \int_{0}^{2} e^{u} d u=\left.\frac{1}{4} e^{u}\right|_{0} ^{2}=\frac{1}{4}\left(e^{2}-1\right) .
$$

Reincorporating the factor of π, we have a final answer:

$$
\frac{\pi\left(e^{2}-1\right)}{4} \text {. }
$$

Problem 2. Find the volume of the solid obtained by rotating the area between the x-axis and the graph of $\cos (x)$ for $-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}$ about the line $y=1$.

Solution. The cross-section for fixed x of this solid is a washer with outer radius 1 and inner radius $1-\cos (x)$.

The area of this washer is:

$$
\pi 1^{2}-\pi(1-\cos (x))^{2}=\pi\left(2 \cos (x)-\cos ^{2}(x)\right)
$$

Therefore, the volume of our solid is:

$$
\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(2 \cos (x)-\cos ^{2}(x)\right) d x=2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x-\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(x) d x
$$

The first integral above is easy to calculate:

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x=\left.\sin (x)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=\sin \left(\frac{\pi}{2}\right)-\sin \left(-\frac{\pi}{2}\right)=1-(-1)=2 .
$$

To calculate the second integral, we use the identity:

$$
\cos ^{2}(x)=\frac{\cos ^{2}(x)-\sin ^{2}(x)+\cos ^{2}(x)+\sin ^{2}(x)}{2}=\frac{\cos (2 x)+1}{2} .
$$

We obtain:

$$
\int \cos ^{2}(x) d x=\int \frac{\cos (2 x)+1}{2}=\frac{\sin (2 x)}{4}+\frac{x}{2} .
$$

For our definite integral, we see:

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(x) d x=\left.\left(\frac{\sin (2 x)}{4}+\frac{x}{2}\right)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=\frac{\pi}{2}
$$

Finally, we obtain:

$$
2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x-\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(x) d x=2 \pi \cdot 2-\pi \cdot \frac{\pi}{2}=4 \pi-\frac{\pi^{2}}{2}
$$

Problem 3. In this question, we find the area of a circle of radius 1. (Of course you know the answer, but the point of the problem is to calculate it yourself.)
(1) Using the cross-section method, show that the area of a circle with radius 1 is:

$$
2 \int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

(2) Evaluate this integral. (Hint: use u-substitution with $u=\sin ^{-1}(x)$.)

Solution. The interior of a circle with radius 1 is all (x, y) with $x^{2}+y^{2} \leqslant 1$. For a fixed value of x between -1 and 1 , this is all y with $|y| \leqslant \sqrt{1-x^{2}}$. Clearly that is a line of length $2 \sqrt{1-x^{2}}$.

To evaluate the integral, we instead use the perspective $\sin (u)=x$. Then $\cos (x) d x=d u$, so we obtain:

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin ^{2}(u)} \cos (u) d u=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(u) d u .
$$

We evaluated this integral in the previous problem and found it was $\frac{\pi}{2}$.
Reincorporating the factor of 2 , we find that the area of a circle is π, as expected.

Alternative solution. The above u-substitution was a little tricky, so here is a different perspective.

We have $u=\sin ^{-1}(x)$, so $d u=\frac{1}{\sqrt{1-x^{2}}} d x$.

As $\sin ^{-1}(x)$ does not appear in the integrand, the problem is a little non-standard. But the idea is the same as always: we want to convert every x appearing in the problem by a u. Since we have an inverse function here, there is a great way to do that: just write $x=\sin (u)$ at every stage.

We then have:

$$
\begin{gathered}
\int \sqrt{1-x^{2}} d x=\int \sqrt{1-\sin ^{2}(u)} d x=\int \sqrt{1-\sin ^{2}(u)} \sqrt{1-x^{2}} d u= \\
\int \sqrt{1-\sin ^{2}(u)} \sqrt{1-\sin ^{2}(u)} d u=\int\left(1-\sin ^{2}(u)\right) d u
\end{gathered}
$$

Here in the second equality, we used $d u=\frac{1}{\sqrt{1-x^{2}}} d x \Rightarrow \sqrt{1-x^{2}} d u=d x$.
From the perspective of either solution, the key thing that made this argument work is that we we had an inverse to the function $u=u(x)=\sin ^{-1}(x)$.

Problem 4. Find the area lying above the line $y=\frac{1}{\sqrt{2}}$ and within a circle of radius 1 about the origin.

Solution. We prefer to rotate by 90° to ask about the area bound by the circle and the line $x=\frac{1}{\sqrt{2}}$.

Then the previous solution allows us to calculate this integral as:

$$
\begin{aligned}
& \int_{\frac{1}{\sqrt{2}}}^{1} \sqrt{1-x^{2}} d x=\int_{\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)}^{\sin ^{-1}(1)} \cos ^{2}(u) d u=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2}(u) d u= \\
& \begin{aligned}
\left(\frac{\cos (2 u)}{4}\right. & \left.+\frac{u}{2}\right)\left.\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}=\frac{\cos (\pi)}{4}+\frac{\pi}{4}-\frac{\cos \left(\frac{\pi}{2}\right)}{4}-\frac{\pi}{8}= \\
& -\frac{1}{4}+\frac{\pi}{4}-0-\frac{\pi}{8}=\frac{\pi}{8}-\frac{1}{4} .
\end{aligned}
\end{aligned}
$$

