408L CLASS PROBLEMS

FEBRUARY 12TH, 2020

Problem 1. Find $\int x^{2} \cos (2 x) d x$.

Solution. We use integration by parts with $u=x^{2}, v=\frac{1}{2} \sin (2 x)$. We then have $d u=2 x d x$ and $d v=\cos (2 x)$, so:

$$
\begin{gathered}
\int x^{2} \cos (2 x) d x=\int u d v=u v-\int v d u= \\
\frac{1}{2} x^{2} \sin (2 x)-\int x \sin (2 x) d x
\end{gathered}
$$

We evaluate the integral in the last expression using integration by parts again: we take $u=x, v=-\frac{1}{2} \cos (2 x)$, so $d u=d x$ and $d v=\sin (2 x)$. We then obtain:

$$
\int x \sin (2 x) d x=-\frac{1}{2} x \cos (2 x)+\frac{1}{2} \int \cos (2 x) d x=-\frac{1}{2} x \cos (2 x)+\frac{1}{4} \sin (2 x)+C .
$$

Substituting into our earlier expression, we obtain:

$$
\frac{1}{2} x^{2} \sin (2 x)+\frac{1}{2} x \cos (2 x)-\frac{1}{4} \sin (2 x)+C \text {. }
$$

(Formally, we obtain $-C$ when we substitute. Why are we justified in changing the sign?)
Problem 2. Find $\int \frac{e^{\frac{1}{x}}}{x^{3}} d x$.
Solution. First, we use substitution. I will reserve the letter u for later in the problem, when we do integration by parts. Instead, I will use t for my new variable.

Set $t=\frac{1}{x}$, so $d t=-\frac{1}{x^{2}} d x$. We then obtain:

$$
\int \frac{e^{\frac{1}{x}}}{x^{3}} d x=-\int t e^{t} d t
$$

We can evaluation this integral using integration by parts. We set $u=t$ and $v=e^{t}$ to obtain:

$$
\int t e^{t} d t=t e^{t}-\int e^{t} d t=(t-1) e^{t}+C
$$

Substituting back in, we obtain:

$$
\int \frac{e^{\frac{1}{x}}}{x^{3}} d x=-\int t e^{t} d t=(1-t) e^{t}=\left(1-\frac{1}{x}\right) e^{\frac{1}{x}}=\frac{x-1}{x} \cdot e^{\frac{1}{x}}+C
$$

Alternative solution. First, we do integration by parts. We set $u=\frac{1}{x}$ and $v=-e^{\frac{1}{x}}$, so $d u=-\frac{1}{x^{2}}$ and $d v=\frac{1}{x^{2}} e^{\frac{1}{x}}$. We obtain:

$$
\begin{aligned}
\int \frac{e^{\frac{1}{x}}}{x^{3}} d x & =\int u d v=u v-\int v d u= \\
& -\frac{1}{x} e^{\frac{1}{x}}-\int \frac{e^{\frac{1}{x}}}{x^{2}} d x
\end{aligned}
$$

The latter integral may be solved by substitution, taking $t=\frac{1}{x}$ as before.
Problem 3. Find $\int \log (x) d x$.
Solution. Suppose $f(x)$ is a function where we know how to integrate $x \cdot f^{\prime}(x)$. Then a good way to find $\int f(x) d x$ is with integration by parts, taking $u=f(x)$ and $v=x$.

This is the case for $f(x)=\log (x)$, since $x \cdot f^{\prime}(x)=1$ in this case.
Therefore, we take $u=\log (x)$ and $v=x$ and apply integration by parts:

$$
\int \log (x) d x=x \log (x)-\int x \cdot \frac{1}{x} d x=x \log (x)-\int d x=x \log (x)-x+C
$$

Problem 4. Find $\int e^{x} \sin (x) d x$.

Solution. Here is the idea: if we do integration by parts, we can relate this integral to $\int e^{x} \cos (x) d x$. We can then do integration by parts again, to obtain a further relation to $\int e^{x} \sin (x) d x$. We will then do some algebra to rearrange the resulting equation and be able to solve for $\int e^{x} \sin (x) d x$.

To implement this strategy, we take $u=e^{x}$ and $v=\sin (x)$. We apply integration by parts to obtain:

$$
\int e^{x} \cos (x) d x=e^{x} \sin (x)-\int e^{x} \sin (x) d x
$$

We then apply integration by parts again with $u=e^{x}$ and $v=-\cos (x)$. This yields:

$$
\int e^{x} \sin (x) d x=-e^{x} \cos (x)+\int e^{x} \cos (x) d x
$$

Substituting back into our earlier equation, we obtain:

$$
\int e^{x} \cos (x) d x=e^{x} \sin (x)-\int e^{x} \sin (x) d x=e^{x} \sin (x)+e^{x} \cos (x)-\int e^{x} \cos (x) d x
$$

We deduce:

$$
\begin{gathered}
2 \cdot \int e^{x} \cos (x) d x=e^{x} \cdot(\sin (x)+\cos (x)) \Rightarrow \\
\int e^{x} \cos (x) d x=\frac{1}{2} \cdot e^{x} \cdot(\sin (x)+\cos (x))+C
\end{gathered}
$$

