408L FIRST MIDTERM REVIEW

FEBRUARY 21, 2020

Subjects we have covered so far:

- Integration by parts
- Tips: if you see $\int t^{2} e^{t} d t$, good idea to take $u=t^{2}$. I.e., $u=t^{n}$ is often a good idea.
- Make sure you know how to integrate $d v$. Often, if you see a factor you know how to integrate, good idea to choose $d v=$ that factor. For example, $\int t^{2} e^{t^{2}} d t$, recognize that you know how to integrate $t e^{t^{2}} d t$, so you take $d v=t e^{t^{2}} d t$.
- If $\int f(x) d x$ and $f(x)$ is complicated but has a simpler derivative, good idea $d v=d x$ and $u=f(x)$. E.g., works for $\int \ln (x) d x$ and $\int \arctan (x) d x$. Really, always a good idea to take $u=\ln (x)$ or $u=\arctan (x)$ if they appear in the problem.
- Try Googling "lixet integration by parts" (or lipet?) for additional tips.
- Practice.
- u-substitution
- Fundamental theorem of calculus
$-\int_{a}^{b} f(x) d x=F(b)-F(a)$ for $F(x)$ an anti-derivative of $f(x)$, i.e. a function with $F^{\prime}=f$.
- One problem type: $F(x)=\int_{a}^{x} f(x) d x$, find the derivative of $F(x)$. (It's $f(x)$.)
- Maybe more complicated: $G(x)=\int_{\sqrt{x}}^{x^{2}} f(x) d x$. Find the derivative of $G(x)$.

To do this: $F(x)$ is an anti-derivative of $f(x)$, so $G(x)=F\left(x^{2}\right)-F(\sqrt{x})$. Know: $F^{\prime}(x)=f(x)$. Apply the chain rule.

- Recognizing even/odd functions.
- Key sign: $\int_{-10}^{10} f(x) d x$, or something like that.
- Area between curves.
- Volumes, especially of rotation.
- Key idea: volume $=\int($ Area of a cross section $) d x$.
- Washer method for solids of rotation.
- Trigonometric substitution.
- Trigonometric integrals.
- Indefinite/definite integrals.

Trigonometry:

- Double angle identities: $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x), \sin (2 x)=2 \sin (x) \cos (x)$.
- Half angle identities: $\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}, \sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$.
- Used for integrating $\cos ^{2}(x)$ and $\sin ^{2}(x)$.
- $\cos ^{2}(x)+\sin ^{2}(x)=1$.
- $1+\tan ^{2}(x)=\sec ^{2}(x)$.
- Integrals and derivatives of all basic trig functions. (Hardest ones: $\int \sec (x) d x$ and $\int \csc (x) d x$.)
- Inverse trig functions and their derivatives.
$-\int \frac{1}{1+x^{2}} d x=\arctan (x)$.
$-\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin (x)$.
- Everything can be expressed in terms of \sin and $\cos : \tan (x)=\frac{\sin (x)}{\cos (x)}, \sec (x)=\frac{1}{\cos (x)}$, $\csc (x)=\frac{1}{\sin (x)}, \cot (x)=\frac{1}{\tan (x)}=\frac{\cos (x)}{\sin (x)}$. (Helpful if you don't see a right answer on the multiple choice list.)

Fundamental integrals to know:

- $\int x^{n} d x=\frac{x^{n+1}}{n+1}$.
- $\int \sin (x) d x=-\cos (x), \int \cos (x) d x=\sin (x)$.
- $\int \frac{d x}{x}=\ln (x)$.
- $\int e^{x} d x=e^{x}$.
- Integrals/derivatives of all trig functions.

