Subjects we have covered so far:

- **Integration by parts**
 - Tips: if you see $\int t^2e^t \, dt$, good idea to take $u = t^2$. I.e., $u = t^n$ is often a good idea.
 - Make sure you know how to integrate dv. Often, if you see a factor you know how to integrate, good idea to choose $dv =$ that factor. For example, $\int t^2e^t \, dt$, recognize that you know how to integrate $te^t \, dt$, so you take $dv = te^t \, dt$.
 - If $\int f(x) \, dx$ and $f(x)$ is complicated but has a simpler derivative, good idea $dv = \, dx$ and $u = f(x)$. E.g., works for $\int \ln(x) \, dx$ and $\int \arctan(x) \, dx$. Really, always a good idea to take $u = \ln(x)$ or $u = \arctan(x)$ if they appear in the problem.
 - Try Googling “lixet integration by parts” (or lipet?) for additional tips.
 - Practice.

- **u-substitution**

- **Fundamental theorem of calculus**
 - $\int_0^b f(x) \, dx = F(b) - F(a)$ for $F(x)$ an anti-derivative of $f(x)$, i.e. a function with $F' = f$.
 - One problem type: $F(x) = \int_a^x f(x) \, dx$, find the derivative of $F(x)$. (It’s $f(x)$.)
 - Maybe more complicated: $G(x) = \int_{\sqrt{x}}^{x^2} f(x) \, dx$. Find the derivative of $G(x)$.
 - To do this: $F(x)$ is an anti-derivative of $f(x)$, so $G(x) = F(x^2) - F(\sqrt{x})$. Know: $F'(x) = f(x)$. Apply the chain rule.

- Recognizing even/odd functions.
 - Key sign: $\int_{-10}^{10} f(x) \, dx$, or something like that.

- Area between curves.

- Volumes, especially of rotation.
 - Key idea: volume $= \int$ (Area of a cross section)$\, dx$.
 - Washer method for solids of rotation.

- **Trigonometric substitution**.
- **Trigonometric integrals**.
- **Indefinite/definite integrals**.

Trigonometry:

- **Double angle identities**: $\cos(2x) = \cos^2(x) - \sin^2(x)$, $\sin(2x) = 2\sin(x)\cos(x)$.
- **Half angle identities**: $\cos^2(x) = \frac{1+\cos(2x)}{2}$, $\sin^2(x) = \frac{1-\cos(2x)}{2}$.
- Used for integrating $\cos^2(x)$ and $\sin^2(x)$.
- $\cos^2(x) + \sin^2(x) = 1$.
- $1 + \tan^2(x) = \sec^2(x)$.
- Integrals and derivatives of all basic trig functions. (Hardest ones: $\int \sec(x)\,dx$ and $\int \csc(x)\,dx$.)
- Inverse trig functions and their derivatives.
 - $\int \frac{1}{1+x^2}\,dx = \arctan(x)$.
 - $\int \frac{1}{\sqrt{1-x^2}}\,dx = \arcsin(x)$.
- Everything can be expressed in terms of sin and cos: $\tan(x) = \frac{\sin(x)}{\cos(x)}$, $\sec(x) = \frac{1}{\cos(x)}$, $\csc(x) = \frac{1}{\sin(x)}$, $\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$. (Helpful if you don’t see a right answer on the multiple choice list.)

Fundamental integrals to know:
- $\int x^n\,dx = \frac{x^{n+1}}{n+1}$.
- $\int \sin(x)\,dx = -\cos(x)$, $\int \cos(x)\,dx = \sin(x)$.
- $\int \frac{dx}{x} = \ln(x)$.
- $\int e^x\,dx = e^x$.
- Integrals/derivatives of all trig functions.