408L FIRST MIDTERM REVIEW

FEBRUARY 21, 2020

Subjects we have covered so far:

- Integration by parts
 - Tips: if you see $\int t^2 e^t dt$, good idea to take $u = t^2$. I.e., $u = t^n$ is often a good idea.
 - Make sure you know how to integrate dv. Often, if you see a factor you know how to integrate, good idea to choose dv = that factor. For example, $\int t^2 e^{t^2} dt$, recognize that you know how to integrate $te^{t^2}dt$, so you take $dv = te^{t^2}dt$.
 - If $\int f(x) dx$ and f(x) is complicated but has a simpler derivative, good idea dv = dx and u = f(x). E.g., works for $\int \ln(x) dx$ and $\int \arctan(x) dx$. Really, always a good idea to take $u = \ln(x)$ or $u = \arctan(x)$ if they appear in the problem.
 - Try Googling "lixet integration by parts" (or lipet?) for additional tips.
 - Practice.
- *u*-substitution
- Fundamental theorem of calculus
 - $-\int_{a}^{b} f(x)dx = F(b) F(a)$ for F(x) an anti-derivative of f(x), i.e. a function with F' = f.
 - One problem type: $F(x) = \int_a^x f(x) dx$, find the derivative of F(x). (It's f(x).)
 - Maybe more complicated: $G(x) = \int_{\sqrt{x}}^{x^2} f(x) dx$. Find the derivative of G(x).

To do this: F(x) is an anti-derivative of f(x), so $G(x) = F(x^2) - F(\sqrt{x})$. Know: F'(x) = f(x). Apply the chain rule.

- Recognizing even/odd functions. Key sign: $\int_{-10}^{10} f(x) dx$, or something like that.
- Area between curves.
- Volumes, especially of rotation.
 - Key idea: volume = $\int (\text{Area of a cross section}) dx$.
 - Washer method for solids of rotation.
- Trigonometric substitution.
- Trigonometric integrals.
- Indefinite/definite integrals.

Trigonometry:

- Double angle identities: $\cos(2x) = \cos^2(x) \sin^2(x)$, $\sin(2x) = 2\sin(x)\cos(x)$.
- Half angle identities: $\cos^2(x) = \frac{1 + \cos(2x)}{2}$, $\sin^2(x) = \frac{1 \cos(2x)}{2}$.

- Used for integrating $\cos^2(x)$ and $\sin^2(x)$.

- $\cos^2(x) + \sin^2(x) = 1.$
- $1 + \tan^2(x) = \sec^2(x)$.
- Integrals and derivatives of all basic trig functions. (Hardest ones: $\int \sec(x) dx$ and $\int \csc(x) dx$.)
- Inverse trig functions and their derivatives.

$$-\int \frac{1}{1+x^2} dx = \arctan(x).$$
$$-\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x).$$

• Everything can be expressed in terms of sin and cos: $\tan(x) = \frac{\sin(x)}{\cos(x)}$, $\sec(x) = \frac{1}{\cos(x)}$, $\csc(x) = \frac{1}{\sin(x)}$, $\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$. (Helpful if you don't see a right answer on the multiple choice list.)

Fundamental integrals to know:

•
$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

• $\int x^n dx = \frac{1}{n+1}.$ • $\int \sin(x) dx = -\cos(x), \ \int \cos(x) dx = \sin(x).$

•
$$\int \frac{dx}{x} = \ln(x).$$

•
$$\int e^x dx = e^x$$
.

• Integrals/derivatives of all trig functions.