408L THIRD MIDTERM REVIEW

MAY 4TH, 2020

Subjects we have covered so far:

- Sequences
 - Pattern recognition
 - Convergence
 - * Q: Does the sequence $a_n = \sin(\frac{1}{n})$ converge? To what?
 - * A: $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sin(\frac{1}{n}) = \sin(0) = 0.$
 - * L'Hôpital's rule often useful.
- Series (everything else we did since the last midterm)
 - $-\Sigma$ -notation.
 - Partial sums.
- Telescoping series.
 - Works for series like $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
 - Find the partial fractions decomposition $\frac{1}{n(n+1)} = \frac{1}{n} + \frac{-1}{n+1}$.
 - Series telescopes: when you find partial sums, you find cancellations occurring.
- Geometric series
 - $-1 + r + r^2 + \ldots = \sum_{n=0}^{\infty} r^n = \frac{1}{1-r}.$
 - Converges for $|r| < 1 \Leftrightarrow -1 < r < 1$.
 - Useful whenever we're summing *n*th powers.
 - Useful for finding Taylor series.
 - * Gives the Taylor series of $f(x) = \frac{1}{1-x}$.
 - * Use substitution to find Taylor series of $f(x) = \frac{1}{1+x}$ or $\frac{1}{1-x^2}$, etc.
 - * Take the derivative to find the Taylor series of $f(x) = \frac{1}{(1-x)^2}$.
 - * Integrate to find the Taylor series of $f(x) = \log(1-x)$.
- Convergence, and tests for it. Q: When does $\sum_{n=0}^{\infty} a_n$ converge?
 - Divergence test: if $\lim_{n\to\infty} a_n \neq 0$, then sum diverges.
 - * Converse does not hold. Just because $\lim_{n\to\infty} a_n = 0$, this is not enough to conclude series converges. (E.g., the harmonic series diverges even though $\lim \frac{1}{n} = 0$.)
 - Integral test: if f(x) is positive and decreasing and $a_n = f(n)$, then sum converges $\Leftrightarrow \int_1^\infty f(x) dx$ converges.
 - * Know the picture for why the integral test works.
 - * Use integral test to estimate sums.
 - *p*-series test: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\Leftrightarrow p > 1$. Important special case: p = 1, get that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

- Root test: $\lim |a_n|^{\frac{1}{n}} < 1$, then series converges absolutely. (Indeterminate when $\lim |a_n|^{\frac{1}{n}} = 1.$
 - Often used when you have $a_n = b_n^n$. Something like $a_n = (1 + \frac{1}{n})^n$.
- Ratio test: $\lim \frac{|a_{n+1}|}{|a_n|} < 1$, then series converges absolutely. (Indeterminate when $\lim \frac{|a_{n+1}|}{|a_n|} = 1.$

Often used when you see n! or 2^n .

- Alternating series test. If a_n is alternating (positive negative positive negative) and $\lim_{n\to\infty} a_n = 0$, then the series converges (maybe not absolutely).
- Limit comparison test.
- Estimating values of functions is often useful for applying the comparison test and the divergence test.
 - General principle: n^3 is much larger than n^2 for n very large. So $a_n = \frac{1}{n^3 + n^2}$, compare to $b_n = \frac{1}{n^3}$ (and deduce convergence by *p*-series test).
 - If you have a function $a_n = f(\frac{1}{n})$, use Taylor series of f around 0 for comparison test purposes.
- Power series
 - Radius and interval of convergence.
 - * If you have a power series $\sum a_n(x-1)^n$ around 1, then the series converges on an interval that "looks like" (0,2), [0,2], [0,2], [0,2] if the radius of convergence is 1.
 - * Always: for radius of convergence R, a power series $\sum a_n(x-a)^n$ about a converges for sure on (a - R, a + R), check endpoints a - R and a + Rseparately.
 - * To find radius of convergence R, usually use the root test.
 - Taylor series: write f(x) as $\sum_{n=0}^{\infty} a_n (x-a)^n$ for Taylor series based at a.
 - * $a_0 = f(a), a_1 = f'(a), \text{ and } a_n = \frac{1}{n!} f^{(n)}(a).$

 - * Taylor series to know by heart: Geometric series: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. (See above for how to derive other Taylor series from this one.) $e^x = \sum_{n=1}^{\infty} \frac{x^n}{x^n} = 1 + x + \frac{x^2}{x^2} + \frac{x^3}{x^3} + \frac{$

$$\sum_{n=0}^{\infty} \frac{n!}{n!} = 1 + \frac{x}{2!} + \frac{2}{3!} + \frac{x}{3!} + \frac{x}{5!} + \frac{$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots$$

- Taylor polynomials.

- * These are just the sums of the first few terms in the Taylor series.
- * Often use $a_n = \frac{1}{n!} f^{(n)}(a)$ formula to find the coefficients.
- * Use these for estimating values of our functions, or integrals, etc. To do that, just replace a function by its degree n Taylor polynomial.