
A GENERALIZATION OF THE 𝑏-FUNCTION LEMMA

SAM RASKIN

Abstract. We establish some cohomological bounds in 𝐷-module theory that are known in the
holonomic case and folklore in general. The method rests on a generalization of the 𝑏-function
lemma for non-holonomic 𝐷-modules.
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1. Introduction

1.1. This note studies how 𝐷-module operations interact with singular support. The main techni-
cal result, Theorem 2.5.1, shows that 𝐷-module operations preserve a certain numerical obstruction
to holonomicity. This result generalizes the usual preservation of holonomic 𝐷-modules under such
operations, which is essentially equivalent to the 𝑏-function lemma: see [Kas] or [Ber1].

1.2. Affine morphisms. As an application, we show in Theorem 3.3.1 that 𝑓! is left 𝑡-exact for
an affine morphism 𝑓 : 𝑋 Ñ 𝑌 .

This is certainly an old folklore result. Of course it is standard for holonomic 𝐷-modules, where
it is a consequence of the usual 𝑏-function lemma. It is also easy to show for 𝑌 “ Specp𝑘q, or for
a map of curves (e.g., an open embedding). Otherwise, it does not seem to follow from existing
foundational results in the literature, which is quite surprising for something so basic.

We remark that the formulation of this result does not quite make sense, since 𝑓!pFq does not
typically make sense as a 𝐷-module (although it always does if F is holonomic). One can rectify
this in one of two ways: one can ask to show that if F is in cohomological degrees ě 0 and 𝑓!pFq is
defined, 𝑓!pFq is in degrees ě 0; or one can work with pro-complexes. We use the latter technique,
since it is somewhat more general. For technical reasons, we only work with coherent 𝐷-modules
F.

Applying this result for non-holonomic 𝐷-modules is actually useful in geometric representation
theory. The point is that in many settings typical of the subject, 𝑓! is defined on some non-holonomic
𝐷-modules of interest even when 𝑓 is affine. For example, this occurs for the Fourier-Deligne
transform, and the results here can be used to show its 𝑡-exactness in a conceptual way.1 For an
application of such results to infinite-dimensional Lie theory, see [Ras] or Appendix ?? below.

October 17, 2016. Updated: September 5, 2018.
1C.f. [Gai2] S1.8. Note that loc. cit. implicitly assumes the left 𝑡-exactness of 𝑓! for affine 𝑓 .
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1.3. Notation. We let 𝑘 denote a field of characteristic zero. We use the phrase “category” to
mean 8-category wherever appropriate. (This language is used only very mildly.)

By a variety, we mean a reduced, separated, finite type 𝑘-scheme.
For 𝑋 a variety over 𝑘, we let 𝐷p𝑋q denote the DG category of 𝐷-modules on 𝑋. We let 𝐷p𝑋qě𝑖

and 𝐷p𝑋qď𝑖 respectively denote the subcategories of complexes F P 𝐷p𝑋q with 𝐻𝑗pFq “ 0 for 𝑗 ă 𝑖
and 𝑗 ą 𝑖 respectively. We let 𝐷p𝑋q♡ “ 𝐷p𝑋qě0 X 𝐷p𝑋qď0 denote the heart of the 𝑡-structure,
i.e., the abelian category of 𝐷-modules. We let 𝜏ě𝑖 and 𝜏ď𝑖 denote the corresponding truncation
functors.

For 𝑓 : 𝑋 Ñ 𝑌 , we let 𝑓 ! : 𝐷p𝑌 q Ñ 𝐷p𝑋q and 𝑓˚,𝑑𝑅 : 𝐷p𝑋q Ñ 𝐷p𝑌 q denote the 𝐷-module pull-

back and pushforward operations. We let 𝑓! and 𝑓˚,𝑑𝑅 denote their left adjoints where appropriate.
We let 𝐷p𝑋q𝑐 Ď 𝐷p𝑋q denote the DG subcategory of coherent complexes, i.e., bounded com-

plexes with coherent (i.e., locally finitely generated) cohomology groups. Recall that 𝐷p𝑋q is com-

pactly generated, i.e., 𝐷p𝑋q “ Indp𝐷p𝑋q𝑐q. We let D : 𝐷p𝑋q𝑐
»
ÝÑ 𝐷p𝑋q𝑐,𝑜𝑝 denote the Verdier

duality functor.

1.4. Acknowledgements. We are grateful to Dennis Gaitsgory, Victor Ginzburg, and Masaki
Kashiwara for useful correspondence on the subject of this note. The methods owe a great deal to
[Ber1], [Gin], and [Kas].

2. Holonomic defect

2.1. In this section, we introduce a generalization of the holonomic condition on a 𝐷-module and
show that it is preserved under 𝐷-module operations.

The method is standard. The main point is Lemma 2.7.1, which is a generalization of the fact that
pushforward along an open embedding preserves holonomic objects, which is essentially equivalent
to the usual 𝑏-function lemma. The main difference is that we cannot use finite length methods.
See also Remark 2.7.2 for indications on a different approach.

The presentation is based on [Kas] and [Gin].

2.2. Gabber-Kashiwara-Sato (GKS) filtration. We begin by reviewing some material from
[Gin] S1.

Let 𝑋 be a variety and let F P 𝐷p𝑋q♡ be a given 𝐷-module.

Definition 2.2.1. For an integer 𝑖, we let:

𝐹𝐺𝐾𝑆𝑖 F :“ Imagep𝐻0pD𝜏ě´𝑖DFq Ñ Fq.

Remark 2.2.2. By definition, D𝜏ě´𝑖DF P 𝐷p𝑋q means the obvious thing if F is coherent, and in
general, we understand this expression to commute with filtered colimits. (It is equivalent interpret
this more literally and consider D as an equivalence between 𝐷p𝑋q and the DG category of pro-
coherent 𝐷-modules, equipped with the 𝑡-structure of S3.2.)

Note that 𝐹𝐺𝐾𝑆‚ is an increasing filtration on F. Because DF is in cohomological degrees r´dim𝑋, 0s,
we have 𝐹𝐺𝐾𝑆𝑖 F “ 0 for 𝑖 ă 0, and 𝐹𝐺𝐾𝑆𝑖 F “ F for 𝑖 ě dim𝑋. Formation of the GKS filtration is
functorial for 𝐷-module morphisms, i.e., a map F1 Ñ F2 P 𝐷p𝑋q

♡ sends 𝐹𝐺𝐾𝑆𝑖 F1 to 𝐹𝐺𝐾𝑆𝑖 F2.
Note that if F “ colim𝑗 F𝑗 is a filtered colimit in 𝐷p𝑋q♡, then 𝐹𝐺𝐾𝑆𝑖 F “ colim𝑗 𝐹

𝐺𝐾𝑆
𝑖 F𝑗 .

Lemma 2.2.3. Formation of 𝐹𝐺𝐾𝑆‚ commutes with open restriction and pushforwards along closed
embeddings.

Proof. Each of these functors is 𝑡-exact and commutes with Verdier duality.
�
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Therefore, many results about this filtration reduce to the case of smooth 𝑋 by taking Zariski
local closed embeddings into affine space. The key property in the smooth case is:

Theorem 2.2.4. If 𝑋 is smooth, then a local section 𝑠 of F lies in 𝐹𝐺𝐾𝑆𝑖 F if and only if the
𝐷-module generated by it has singular support with dimension ď dim𝑋 ` 𝑖.2

See [Gin] Proposition V.14. Note that it is equivalent to say that 𝐹𝐺𝐾𝑆𝑖 F is the maximal sub-
module of F with singular support of dimension ď dim𝑋 ` 𝑖.

2.3. Holonomic defect. For 𝛿 P Zě0, we say F P 𝐷p𝑋q♡ has holonomic defect 𝛿 if 𝐹𝐺𝐾𝑆𝛿 F “ F.

Remark 2.3.1. If F has holonomic defect 𝛿, then it also has holonomic defect 1` 𝛿.

Example 2.3.2. A coherent 𝐷-module F has holonomic defect 0 if and only if F is holonomic. Indeed,
this follows by reduction to the smooth case and Theorem 2.2.4.

Example 2.3.3. Every F has holonomic defect dim𝑋.

Example 2.3.4. If 𝑋 is smooth and F is coherent, then by Theorem 2.2.4, F has holonomic defect
𝛿 if and only if F has singular support with dimension ď dim𝑋 ` 𝛿.

Lemma 2.3.5. The subcategory of 𝐷p𝑋q♡ consisting of objects with holonomic defect 𝛿 is closed
under submodules, quotient modules, and extensions.

Proof. The argument reduces to the case of 𝑋 smooth, and then follows from Theorem 2.2.4 and
standard facts about singular support.

�

Lemma 2.3.6. Holonomic defect is preserved under filtered colimits, and F P 𝐷p𝑋q♡ has holonomic
defect 𝛿 if and only if F “ colimF𝑖 with F𝑖 coherent of holonomic defect 𝛿.

Proof. The first part is clear since formation of 𝐹𝐺𝐾𝑆‚ commutes with filtered colimits. For the
second part, write F “ colim𝑖 F

1
𝑖 with F1𝑖 coherent, and then set F𝑖 “ 𝐹𝐺𝐾𝑆𝛿 F1𝑖.

�

2.4. More generally, for F P 𝐷p𝑋q a complex of 𝐷-modules, we say that F has holonomic defect
𝛿 if all of its cohomology groups do. By Lemmas 2.3.5 and 2.3.6, this defines a DG subcategory of
𝐷p𝑋q closed under colimits.

2.5. The following is the main result of this section.

Theorem 2.5.1. Holonomic defect is preserved under 𝐷-module operations. That is, if 𝑓 : 𝑋 Ñ 𝑌
is a morphism and F P 𝐷p𝑋q (resp. G P 𝐷p𝑌 q) has holonomic defect 𝛿, then 𝑓˚,𝑑𝑅pFq (resp. 𝑓

!pGq)
does as well. Moreover, for F coherent as above, DF has holonomic defect 𝛿 as well.

This theorem generalizes the preservation of holonomic objects under 𝐷-module operations, so
the proof must follow similar lines. It is given below.

2.6. Verdier duality. The compatibility with Verdier duality in Theorem 2.5.1 is well-known.
Indeed, the result immediately reduces to 𝑋 being smooth, and then we have:

Proposition 2.6.1. For F P 𝐷p𝑋q♡ with singular support of dimension ď dim𝑋 ` 𝑖, we have
𝐻´𝑗DF “ 0 unless 0 ď 𝑗 ď 𝑖. Moreover, 𝐻´𝑗DF has holonomic defect 𝑗.

See e.g. [Kas] Theorem 2.3.

2We regard dim𝑋 as a locally constant function on 𝑋 if 𝑋 is not equidimensional.
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2.7. Affine open embeddings. The main case of Theorem 2.5.1 is pushforward along an open
embedding.

Lemma 2.7.1. Let 𝑋 be a connected, smooth variety and let 𝑓 : 𝑋 Ñ A1 be a function. Let
𝑈 “ t𝑓 ‰ 0u be the corresponding basic open and let 𝑗 : 𝑈 ãÑ 𝑋 denote the corresponding affine
open embedding.

Then 𝑗˚,𝑑𝑅 preserves holonomic defect.

Remark 2.7.2. The argument that follows is a version of the standard proof in the holonomic
setting via 𝑏-functions. Victor Ginzburg communicated to us that the proof of the holonomic version
of Lemma 2.7.1 via the Bernstein filtration and Hilbert polynomials has a more straightforward
generalization. This argument, which follows early work [Ber2] in the subject, is easily extracted
from [HTT] S3.2.2.

Proof of Lemma 2.7.1.

Step 1. We may obviously assume 𝑋 is connected and affine and that 𝑓 is non-constant.
We abuse notation slightly in letting 𝐷𝑋 and 𝐷𝑈 denote the respective rings of differential

operators (as opposed to the sheaves of differential operators).
Let F be a 𝐷𝑈 -module. Because we are working with modules rather than sheaves, considering

F as a 𝐷𝑋 -module by restriction is the same as considering the sheaf 𝑗˚,𝑑𝑅pFq P 𝐷p𝑋q
♡.

For 𝑠 P F, we write SS𝑈 p𝑠q Ď 𝑇 ˚𝑈 for the singular support of 𝐷𝑈 ¨ 𝑠 and SS𝑋p𝑠q Ď 𝑇 ˚𝑋 for
the singular support of 𝐷𝑋 ¨ 𝑠. Note that SS𝑋p𝑠q|𝑇˚𝑈 “ SS𝑈 p𝑠q. We always understand singular
support as a reduced subscheme.

We want to show that if every section 𝑠 P F has dim SS𝑈 p𝑠q ď dim𝑈 ` 𝛿 “ dim𝑋 ` 𝛿, then the
same is true of dim𝑆𝑆𝑋p𝑠q.

Step 2. First, we observe that there is a 𝐷𝑋 -submodule G Ď F such that every section of G has

singular support with dimension ď dim𝑋 ` 𝛿, and which is a lattice, i.e., GbO𝑋
O𝑈

»
ÝÑ F.

Indeed, we can take G “ 𝐹𝐺𝐾𝑆𝛿 F, where the GKS filtration is with F considered as a 𝐷𝑋 -module.
Because the GKS filtration commutes with open restriction, we must have F0|𝑈 “ F.

(Note that by Theorem 2.2.4, we are trying to show that G “ F.)

Step 3. Let 𝜆 be an indeterminate. We write A1
𝜆 for Specp𝑘r𝜆sq. We let 𝑘1 denote the fraction field

𝑘p𝜆q of 𝑘r𝜆s. We use similar notation for a base-change to 𝑘1; e.g., 𝑋 1, or F1, etc. We always consider
𝑋 1 and 𝑈 1 as schemes over 𝑘1, so e.g. their cotangent bundles are understood relative to 𝑘1, and
𝐷1𝑋 “ 𝐷𝑋 1 .

Recall that 𝑈 :“ t𝑓 ‰ 0u. Then we have the 𝐷1𝑈 -module “𝑓𝜆” ¨ F1, the tensor product of the

usual 𝐷-module “𝑓𝜆” with F1.

Step 4. We first show that the result is true for “𝑓𝜆” ¨ F1, i.e., that every section has 𝑆𝑆𝑋 1 with
dimension ď dim𝑋 ` 𝛿.

First, note that the singular support in 𝑈 1 of any section has dimension ď dim𝑋`𝛿: this follows
because “𝑓𝜆” is lisse on 𝑈 1.

We have a canonical element of the Galois group 𝛾 P Galp𝑘1{𝑘q sending 𝜆 ÞÑ 𝜆 ` 1. Of course,
anything obtained by extension of scalars from 𝑘 to 𝑘1 also carries such an automorphism 𝛾, in
particular, 𝐷1𝑋 does (it sends a differential operator 𝑃 p𝜆q to 𝑃 p𝜆` 1q).

Similarly, F1 has such an automorphism: note that this is not an automorphism as a 𝐷1𝑋 -module,
but rather intertwines the standard action with the one obtained by twisting by the automorphism
𝛾 of 𝐷1𝑋 . That is, 𝛾p𝑃 ¨ 𝑠q “ 𝛾p𝑃 q ¨ 𝛾p𝑠q for 𝑃 P 𝐷1𝑋 and 𝑠 P F1.

Define 𝛾 on the 𝐷1𝑋 -module “𝑓𝜆” by setting:



A GENERALIZATION OF THE 𝑏-FUNCTION LEMMA 5

𝛾p“𝑓𝜆” ¨ 𝑔q “ “𝑓𝜆`1” ¨ 𝛾p𝑔q :“ “𝑓𝜆” ¨ 𝑓 ¨ 𝛾p𝑔q

for 𝑔 a function on 𝑋 1. Again, this morphism intertwines the actions of 𝐷1𝑋 up to the automorphism
𝛾 of 𝐷1𝑋 .

Tensoring, we obtain an automorphism 𝛾 of “𝑓𝜆” ¨ F1 with similar semi-linearity.
By the semi-linearity, we have:

SS𝑋 1p“𝑓
𝜆” ¨ 𝑠q “ 𝛾 ¨ SS𝑋 1p𝛾p“𝑓

𝜆” ¨ 𝑠qq

where we are using 𝛾 to indicate the induced automorphism of 𝑇 ˚𝑋 1. In particular, we find that
dim SS𝑋 1p“𝑓

𝜆” ¨ 𝑠q “ dim SS𝑋 1p𝛾p“𝑓
𝜆” ¨ 𝑠qq.

Now let G “ 𝐹𝐺𝐾𝑆𝛿 p“𝑓𝜆” ¨ F1q,3 where the GKS filtration is taken with “𝑓𝜆” ¨ F1 considered as a

𝐷1𝑋 -module. By the above and Theorem 2.2.4, “𝑓𝜆” ¨ 𝑠 P G if and only if 𝛾p“𝑓𝜆” ¨ 𝑠q P G.

For any 𝑠 P F (as opposed to F1), we clearly have 𝛾p“𝑓𝜆” ¨ 𝑠q “ 𝑓𝜆`1 ¨ 𝑠. Since G is a lattice (by
Step 2), 𝛾𝑁 p𝑠q “ 𝑓𝜆`𝑁𝑠 P G for 𝑁 " 0. But by the above, this means that 𝑠 P G. Since “𝑓𝜆” ¨ F1 is
𝑘1-spanned by such vectors, this means that G “ “𝑓𝜆” ¨ F1, as desired.

Step 5. We now show that the result is true for our original F. Let 𝑠 P F; we want to show
dim SS𝑋p𝑠q ď dim𝑋 ` 𝛿.

We now write “𝑓𝜆” ¨ F for the corresponding 𝐷𝑋r𝜆s-module (as opposed to the fiber over the
generic point in A1

𝜆, which is what we called by this name previously). Note that “𝑓𝜆 ¨F” “ Fb𝑘𝑘r𝜆s
as a O𝑋r𝜆s-module.

Let F0 be the 𝐷𝑋r𝜆s submodule generated by “𝑓𝜆” ¨ 𝑠. Give F0 the filtration 𝐹𝑖F0 “ 𝐷ď𝑖𝑋 r𝜆s ¨

“𝑓𝜆” ¨ 𝑠, where 𝐷ď𝑖𝑋 are differential operators of order ď 𝑖.
Then gr‚pF0q is the structure sheaf of some closed subscheme 𝑍 Ď 𝑇 ˚𝑋ˆA1

𝜆. We have seen that
the base-change of 𝑍 to the generic point of A1

𝜆 has dimension ď dim𝑋 ` 𝛿, so the same is true for
its fibers at closed points with only finitely many possible exceptions.

Choose a negative integer ´𝑁 not among this finite number of exceptions. Then the coherent 𝐷𝑋 -
module F0{p𝜆`𝑁q has singular support contained in 𝑍 ˆA1

𝜆
t´𝑁u, so has dimension ď dim𝑋 ` 𝛿.

We have the obvious morphism of 𝐷𝑈 -modules (in particular, of 𝐷𝑋 -modules):

`

“𝑓𝜆” ¨ F
˘

{p𝜆`𝑁q Ñ F

𝑟
ÿ

𝑖“0

“𝑓𝜆” ¨ 𝜎𝑖𝜆
𝑖 ÞÑ

𝑟
ÿ

𝑖“0

𝑓´𝑁 ¨ 𝜎𝑖 ¨ p´𝑁q
𝑖

induces a map F0{p𝜆`𝑁q to F sending the generator to 𝑓´𝑁𝑠. By functoriality of the GKS filtration
(or standard singular support analysis), this means that 𝑓´𝑁𝑠 P 𝐹𝐺𝐾𝑆𝛿 F, and since 𝐹𝐺𝐾𝑆𝛿 F is a

𝐷𝑋 -module, this means that 𝑠 P 𝐹𝐺𝐾𝑆𝛿 F as well.
�

2.8. Preservation of holonomic defect. We now proceed to prove Theorem 2.5.1. The argument
is straightforward at this point, and we proceed in cases.

2.9. First, we treat pushforwards along an open embedding 𝑗 : 𝑈 Ñ 𝑋.
For 𝑋 smooth, a Cech argument reduces us to the case of a basic open, which is treated in

Lemma 2.7.1. (Recall from S2.4 that 𝐷-modules with holonomic defect 𝛿 are closed under cones.)

3So this is a different G from Step 2, i.e., we are applying the same construction to a different 𝐷-module.
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For possibly non-smooth 𝑋, note that the problem is Zariski local, so we may assume 𝑋 is affine.
Take a closed embedding 𝑋 Ď A𝑁 . If 𝑈 “ 𝑋z𝑍, then we have 𝑈 ãÑ A𝑁z𝑍 ãÑ A𝑁 with the first map
being closed and the second being open. Therefore, this pushforward preserves holonomic defect.
Clearly this implies the result for the pushforward along 𝑈 ãÑ 𝑋.

2.10. Next, we treat restrictions to closed subschemes.
Let 𝑖 : 𝑍 ãÑ 𝑋 be closed and let 𝑗 : 𝑈 “ 𝑋z𝑍 ãÑ 𝑋. Then we have an exact triangle:

𝑖˚,𝑑𝑅𝑖
!pFq Ñ F Ñ 𝑗˚,𝑑𝑅𝑗

!pFq
`1
ÝÝÑ .

If F has holonomic defect 𝛿, we have shown the same for 𝑗˚,𝑑𝑅𝑗
!pFq, so 𝑖˚,𝑑𝑅𝑖

!pFq has holonomic

defect 𝛿, which is equivalent to 𝑖!pFq having holonomic defect 𝛿.

2.11. We can now show the result for restrictions in general.
If 𝑓 : 𝑋 Ñ 𝑌 is smooth of relative dimension 𝑑, then 𝑓˚,𝑑𝑅r𝑑s “ 𝑓 !r´𝑑s commutes with Verdier

duality and is 𝑡-exact. Therefore, it commutes with formation of the GKS filtration, and therefore
preserves holonomic defect.

The case of general 𝑓 : 𝑋 Ñ 𝑌 is immediately reduced to the case of affine varieties (since
holonomic defect is Zariski local). We can find a commutative diagram:

𝑋 //

𝑓
��

A𝑁1

𝑔
��

𝑌 // A𝑁2

(2.11.1)

with the horizontal arrows being closed embeddings. This reduces to the case where 𝑋 and 𝑌 are
smooth.

Then we can factor 𝑓 through the graph as 𝑋 Ñ 𝑋 ˆ 𝑌
𝑝1
ÝÑ 𝑌 . The former map is a closed

embedding, and the latter is smooth because 𝑋 is. We have treated each of these cases, so we obtain
the result.

2.12. Next, we treat pushforwards along a proper morphism 𝑓 : 𝑋 Ñ 𝑌 between smooth varieties.
This case does not need the work we have done so far. Let F P 𝐷p𝑋q♡ with holonomic defect 𝛿

be given. By Lemma 2.3.6, we may assume F is coherent, so the hypothesis is that F has singular
support SS𝑋pFq with dimension dim𝑋 ` 𝛿.

Recall that SS𝑌 p𝐻
𝑖p𝑓˚,𝑑𝑅pFqqq is bounded in terms of SS𝑋pFq. More precisely, if we take the

diagram:

𝑇 ˚𝑌 ˆ
𝑌
𝑋

𝛼 //

𝛽

��

𝑇 ˚𝑋

𝑇 ˚𝑌

then the singular support of these cohomologies are contained in 𝛼p𝛽´1 SS𝑋pFqq (see e.g. [Kas]
Theorem 4.2).

Because SSpFq is coisotropic by [Gab], we have:

dim𝛼p𝛽´1 SS𝑋pFqq ď dimpSS𝑋pFqq ` dim𝑌 ´ dim𝑋

by usual symplectic geometry. This immediately gives the claim.
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2.13. Now observe that preservation of holonomic defect under pushforward along a general mor-
phism 𝑓 : 𝑋 Ñ 𝑌 of smooth varieties follows: by Nagata and resolution of singularities,4 we may
find smooth 𝑋 and a factorization:

𝑋
𝑗
ÝÑ 𝑋

𝑓
ÝÑ 𝑌

of 𝑓 with 𝑓 proper and 𝑗 an open embedding, so we are reduced to our previous work.

2.14. We can now treat a general pushforward along 𝑓 : 𝑋 Ñ 𝑌 a morphism between possibly
singular varieties.

Because we know pushforward along open embeddings preserves holonomic defect, Cech reduces
us to the case where 𝑋 and 𝑌 are affine. Then we can find a commutative diagram (2.11.1) as
before. This reduces to the case with 𝑋 and 𝑌 smooth, which we have already treated.

3. Cohomological bounds

3.1. The main result of this section says that 𝑓! is left 𝑡-exact for an affine morphism 𝑓 . We also
show that for 𝑖 : 𝑋 Ñ 𝑌 a closed embedding, 𝑖˚,𝑑𝑅 has cohomological amplitude ě ´ dimp𝑌 q `
dimp𝑋q, i.e., 𝑖˚,𝑑𝑅r´dimp𝑌 q ` dimp𝑋qs is left 𝑡-exact. Since 𝑓! and 𝑖˚,𝑑𝑅 are not defined on every
𝐷-module (e.g., on non-holonomic ones), we use the language of pro-categories to formulate this
result.

3.2. Pro-categories. For C a5 category, we have PropCq the corresponding pro-category. If C is a
DG category, PropCq is as well. If C admits small colimits, then so does PropCq. For 𝐹 : C Ñ D,
there is an induced functor PropCq Ñ PropDq, which we denote again by 𝐹 where there is no risk
for confusion.

For any functor 𝐺 : D Ñ C commuting with finite colimits (e.g., a DG functor), the induced
functor PropDq Ñ PropCq admits a left adjoint 𝐹 . We say that 𝐹 is defined on an object F P C if
𝐹 pFq P D Ď PropDq. (This coincides with the usual notion of a left adjoint being defined on some
object.)

If C is a DG category equipped with a 𝑡-structure, the PropCq inherits one as well. It is char-
acterized by the equality PropCqď0 “ PropCď0q. Truncation functors are the pro-extensions of the
truncation functors on C. In particular, we find that C is closed under truncations and inherits
its given 𝑡-structure. We also find that PropCqě0 “ PropCě0q: if F “ lim𝑖 F𝑖 P PropCqě0, then
F “ 𝜏ě0F “ lim𝑖 𝜏

ě0F𝑖.

3.3. Affine morphisms. For 𝑓 : 𝑋 Ñ 𝑌 , we have the functor 𝑓! : Prop𝐷p𝑋qq Ñ Prop𝐷p𝑌 qq left
adjoint to 𝑓 !.

Theorem 3.3.1. For 𝑓 affine, the induced functor 𝑓! : 𝐷p𝑋q𝑐 Ñ Prop𝐷p𝑌 qq is left 𝑡-exact.

Proof. The problem is6 Zariski local on 𝑌 , so we may assume 𝑋 and 𝑌 are affine.

4Of course, one may easily use the more elementary de Jong alterations instead.
5Really C should be accessible. Recall that this is a robust set-theoretic condition satisfied by any small category

and by any compactly generated category. One should be aware that PropCq is almost never accessible itself.
6Indeed, if 𝑌 “ 𝑈1 Y 𝑈2 with embeddings 𝑗𝑖 : 𝑈𝑖 ãÑ 𝑌 and 𝑗12 : 𝑈1 X 𝑈2 ãÑ 𝑌 , then for G P Prop𝐷p𝑌 qq with

𝑗!𝑖pGq P Prop𝐷p𝑈𝑖qq
ě0, we want to see that G P Prop𝐷p𝑌 qqě0.

Note that:

G “ Ker
`

𝑗1,˚,𝑑𝑅𝑗
!
1pGq ‘ 𝑗2,˚,𝑑𝑅𝑗

!
2pGq Ñ 𝑗12,˚,𝑑𝑅𝑗

!
12pGq

˘

.

Indeed, this follows by pro-extension from the corresponding fact for usual 𝐷-modules. Since 𝑡-exact functors induce
𝑡-exact functors on pro-categories as well, we obviously obtain the claim.
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Note that𝐷-module pushforward along closed embeddings remains fully-faithful on pro-categories:
the identity 𝑖!𝑖˚,𝑑𝑅 “ id induces the same for the pro-functors. Therefore, the same argument as in
S2.11 allows us to assume 𝑋 and 𝑌 are smooth.

Recall that we have a Verdier duality equivalence D : 𝐷p𝑋q
»
ÝÑ Prop𝐷p𝑋q𝑐q induced by the usual

Verdier duality equivalence D : 𝐷p𝑋q𝑐
»
ÝÑ 𝐷p𝑋q𝑐,𝑜𝑝, and similarly for 𝑌 .

We then claim that:

𝑓!pFq “ D𝑓˚,𝑑𝑅DpFq.
This follows formally from the fact that 𝑓˚,𝑑𝑅 and 𝑓 ! are dual functors in the sense of [Gai1], but
here is a direct proof anyway. Note that in this formula, 𝑓˚,𝑑𝑅DpFq P 𝐷p𝑌 q, and we are then using
D to convert it to a pro-coherent object. Since this object is pro-coherent, it suffices to observe that
for G P 𝐷p𝑌 q𝑐, we have:

HomProp𝐷p𝑌 q𝑐qpD𝑓˚,𝑑𝑅DpFq,Gq “ Hom𝐷p𝑌 qpDG, 𝑓˚,𝑑𝑅DpFqq “ Γ𝑑𝑅p𝑌, 𝑓˚,𝑑𝑅DpFq
!
b Gq “

Γ𝑑𝑅p𝑋,DpFq
!
b 𝑓 !pGqq “ Hom𝐷p𝑋qpF, 𝑓

!pGqq.

Here Γ𝑑𝑅 is the complex of de Rham cochains of a 𝐷-module, and we are repeatedly using the
formula that if F1 is coherent, then:

Hom𝐷p𝑋qpF1,F2q “ Γ𝑑𝑅p𝑋,DpF1q
!
b F2q.

Note that DF carries the canonical filtration with subquotients 𝐻´𝑗DFr´𝑗s.
By Proposition 2.6.1, 𝐻´𝑗DF has holonomic defect 𝑗. By Theorem 2.5.1, 𝑓˚,𝑑𝑅𝐻

´𝑗DF has holo-
nomic defect 𝑗 as well. Moreover, by affineness of 𝑓 , this latter complex is in cohomological degrees
ď 0.

Note that by Proposition 2.6.1, if G P 𝐷p𝑌 q♡ has holonomic defect 𝛿, then DG P Prop𝐷p𝑌 q𝑐q is
in cohomological degrees r´𝛿, 0s: indeed, this immediately reduces to the coherent case.

Therefore, D𝐻´𝑘𝑓˚,𝑑𝑅𝐻´𝑗DF is in cohomological degrees r´𝑗, 0s for every 𝑘, which means

D
`

𝐻´𝑘p𝑓˚,𝑑𝑅𝐻
´𝑗DFqr𝑘s

˘

is in cohomological degrees r´𝑗`𝑘, 𝑘s. This complex vanishes unless 𝑘 ě

0, so D𝑓˚,𝑑𝑅𝐻´𝑗DF is in cohomological degrees ě ´𝑗. Finally, this means that D
`

p𝑓˚,𝑑𝑅𝐻
´𝑗DFqr𝑗s

˘

is in cohomological degrees ě 0, so the same follows for D𝑓˚,𝑑𝑅DpFq “ 𝑓!pFq.
�

Remark 3.3.2. More generally, this argument shows that if 𝑓˚ : QCohp𝑋q Ñ QCohp𝑌 q has amplitude
ď 𝑛, then 𝑓! : 𝐷p𝑋q𝑐 Ñ Prop𝐷p𝑌 qq has amplitude ě ´𝑛.

3.4. Closed embeddings. Similarly, we have:

Theorem 3.4.1. For 𝑖 : 𝑋 Ñ 𝑌 a closed embedding, 𝑖˚,𝑑𝑅 : 𝐷p𝑌 q𝑐 Ñ Prop𝐷p𝑋qq has cohomological
amplitude ě ´dimp𝑌 q ` dimp𝑋q.

Proof. The argument is the same as the above: one writes 𝑖˚,𝑑𝑅 “ D𝑖!D and applies Theorem 2.5.1
and Proposition 2.6.1, plus the fact that 𝑖! has amplitude ď dimp𝑌 q ´ dimp𝑋q.

�

Appendix A. Exactness properties of Kostant’s functor

A.1. In this appendix, we briefly give an application of Theorem 3.3.1 to representation theory.
The result below is a toy model of the applications in [Ras].
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A.2. Let g be a semi-simple Lie algebra, let b, b´ Ď g be opposed Borels with radicals n and n´.
Let 𝜓 : n´ Ñ 𝑘 be a non-degenerate character, i.e., 𝜓 is non-zero on weight spaces corresponding
to negative simple roots.

Let g–mod denote the DG category of g-modules. Let Ψ𝑓𝑖𝑛 : g–mod Ñ Vect be the functor
computing Lie algebra homology of n´ twisted by 𝜓. That is, 𝑀 P g–mod maps to 𝐶‚pn

´,𝑀 b𝜓q,
where 𝑀 b 𝜓 indicates the n´-module with the same underlying vector space as 𝑀 but action

twisted as 𝑥
𝑛𝑒𝑤
¨ 𝑣 :“ 𝑥

𝑜𝑙𝑑
¨ 𝑣 ` 𝜓p𝑥q for 𝑥 P n´ and 𝑣 P𝑀 .

Let g–mod𝑁 Ď g–mod be the full subcategory consisting of complexes such that n acts locally
nilpotently on cohomology.

Theorem A.2.1. The functor Ψ𝑓𝑖𝑛 is exact when restricted to g–mod𝑁 .

Remark A.2.2. This theorem is well-known (c.f. [Kos]) when we replace g–mod𝑁 by the BGG
category O. Indeed, because the latter category is Artinian, it suffices to verify that Ψ𝑓𝑖𝑛p𝐿𝜆q P

Vect♡ for any 𝜆, where 𝐿𝜆 is the simple of highest weight 𝜆. But this is easy to see: if either
𝐿𝜆 is a Verma module and therefore free over 𝑈pn´q, or 𝐿𝜆 is partially integrable, in which case
Ψ𝑓𝑖𝑛p𝐿𝜆q “ 0.

However, this method does not work in the above setting, since g–mod𝑁 is not Artinian (the
Cartan subalgebra may not act locally finitely). I do not know another reference for it in this
generality.

Proof. Beilinson-Bernstein localization gives a commutative diagram:

g–mod𝑁

��

// 𝐷p𝐺{𝑁q “ 𝐷p𝐺q𝑁

��

g–mod𝑁,𝜓 // 𝐷p𝐺q𝑁
´,𝜓.

Here the horizontal arrows are localization, and the vertical arrows are ˚-averaging functors in the
sense of the theory of group actions on categories. We claim the left vertical arrow is 𝑡-exact up
to shift by the dimension, i.e., it maps objects in g–mod𝑁,♡ to objects in cohomological degree
dimp𝑁q.

The localization functors are tautologically 𝑡-exact. Moreover, the ˚-averaging functor on the
right coincides with the !-averaging functor up to cohomological shift 2 dim𝑁 by [BBM] Theorem
1.5 (1). The ˚-averaging functor has cohomological amplitude ď dim𝑁 because 𝑁´ is affine, and
the !-averaging functor has amplitude ě ´dim𝑁 by Theorem 3.3.1. (Note that the 𝐷-modules
arising by localization here are not necessarily holonomic!) Identifying the shifts then gives the
result.

Finally, we recall that by Skryabin’s theorem, the functor of Lie algebra cohomology twisted by
´𝜓 is 𝑡-exact on g–mod𝑁,𝜓. Noting that Lie algebra homology and cohomology coincide up to shift
by dim𝑁 , and (switching the role of 𝜓 and ´𝜓) we obtain the desired result.

�
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