Let \(K \) be a finite extension of \(\mathbb{Q}_p \). Let \(\mathcal{O}_K \) be its ring of integers with maximal ideal \(p \), and let \(k = \mathcal{O}_K/p \) be the residue field. Let \(v_p \) denote the valuation on \(K \), normalized so that the valuation of a uniformizer is 1.

(1) (a) Show that the subgroup \((K^\times)^2 \subseteq K^\times \) of squares contains an open neighborhood of the identity, i.e., every element of \(1 + p^N \) is a square for \(N \) large enough. Give an upper bound on \(N \).

(b) Show that \((K^\times)^2 \subseteq K^\times \) is a subgroup of index \(4|k|^{v_p(2)} \).

(c) Show that \(x \in \mathbb{Q}_2^\times \) is a square if and only if \(v_2(x) \in 2\mathbb{Z} \subseteq \mathbb{Z} \), and \(2^{-v_2(x)} \cdot x \in \mathbb{Z}_2 \) is equal to 1 modulo \(8\mathbb{Z}_2 \).

(2) (a) For \(a, b \in K^\times \), show that \(a^{v_p(b)} \cdot b^{v_p(a)} \in \mathcal{O}_K^\times \).

(b) Define the tame symbol as the pairing:

\[
K^\times \times K^\times \rightarrow k^\times
\]

\[
(a, b) \mapsto \text{Tame}(a, b) := (\frac{-1}{a^{v_p(a)} b^{v_p(b)}}) \mod \mathfrak{p}.
\]

For \(p \neq 2 \), show that the Hilbert symbol is computed by composing the tame symbol with the unique non-trivial character \(k^\times \rightarrow \{1, -1\} \).

(c) If \(a \in \mathbb{Z}_2^\times \), define \(\varepsilon(a) \in \mathbb{Z}/2\mathbb{Z} = \{0, 1\} \) as the reduction of \(a \) mod \(4\mathbb{Z}_2 \) under the isomorphism \((\mathbb{Z}/4\mathbb{Z})^\times \cong \mathbb{Z}/2\mathbb{Z} \) (i.e., \(\varepsilon(a) = 0 \) if \(a \in 1 + 4\mathbb{Z}_2 \) and \(\varepsilon(a) = 1 \) if \(a \in 3 + 4\mathbb{Z}_2 \)).

If \(a, b \in \mathbb{Z}_2^\times \), show that their Hilbert symbol is computed as:

\[
(a, b) = (-1)^{\varepsilon(a) \varepsilon(b)}.
\]

(d) Further show that \((2, 2) = 1 \), and that for \(a \in \mathbb{Z}_2^\times \):

\[
(a, 2) = (-1)^{\theta(a)}.
\]

Here \(\theta(a) \in \mathbb{Z}/2\mathbb{Z} \) is the reduction of \(a^2 \) mod \(16\mathbb{Z}_2 \) under the isomorphism between the squares in \((\mathbb{Z}/16\mathbb{Z})^\times \) (which are 1 and 9) and \(\mathbb{Z}/2\mathbb{Z} \).

Using bimultiplicativity, deduce an explicit formula for the 2-adic Hilbert symbol (which could be deduced using similarly elementary methods and some more work).

(3) Let \(\ldots \subseteq F_2A \subseteq F_1A \subseteq F_0A = A \) and \(\ldots \subseteq F_2B \subseteq F_1B \subseteq F_0B = B \) be abelian groups with complete filtrations.

Let \(f : A \rightarrow B \) be a map that is not necessarily a homomorphism, but preserves the filtration in the sense that for every \(x \in A \), \(f \) maps \(x + F_nA \) to \(f(x) + F_nB \).
(a) For every $x \in A$, show that the symbol map:

$$F_n A / F_{n+1} A \xrightarrow{y \mapsto f(y) - f(x)} F_n B / F_{n+1} B$$

is well-defined.

(b) Suppose that for all $x \in A$, the associated symbol map is surjective. Show that f is surjective.

(c) Deduce Hensel’s lemma: for $f(t) \in O_K[t]$ a polynomial with $f(p) \subseteq p$ and $f'(p) \subseteq O_K^\times$, f has a zero. (Then look up Hensel’s lemma on Wikipedia and make sure you understand why this statement is equivalent to that one. E.g., use it to show that -1 is a square in \mathbb{Q}_5.)

Now let K be any local field of characteristic $\neq 2$\footnote{This means we do not allow $F_2^n((t))$, but e.g. \mathbb{Q}_2 is still allowed.} You may assume the bimultiplicativity of the Hilbert symbol in the next problems.

(4) For $a, b, \lambda \in K^\times$, so that $ax^2 + by^2 = \lambda$ has a solution if and only if we have the Hilbert symbol equality $(-ab, \lambda) = (a, b)$.

(5) For $a, b \in K^\times$, define the quaternion algebra $H_{a,b}$ to be the (unital, associative) K-algebra generated by elements i, j and with relations

$$i^2 = a, j^2 = b, ij = -ji.$$

(a) Show that $H_{a,b}$ is 4-dimensional as a K-vector space, with basis $\{1, i, j, ij\}$.

(b) Show that the Hilbert symbol (a, b) equals 1 if and only $H_{a,b}$ is isomorphic to $M_2(K)$, the algebra of 2×2-matrices over K.
