18.786 PROBLEM SET 1

Due February 11, 2016

Let K be a finite extension of \mathbb{Q}_p . Let \mathcal{O}_K be its ring of integers with maximal ideal \mathfrak{p} , and let $k = \mathcal{O}_K/\mathfrak{p}$ be the residue field. Let $v_{\mathfrak{p}}$ denote the valuation on K, normalized so that the valuation of a uniformizer is 1.

- (1) (a) Show that the subgroup $(K^{\times})^2 \subseteq K^{\times}$ of squares contains an open neighborhood of the identity, i.e., every element of $1 + \mathfrak{p}^N$ is a square for N large enough. Give an upper bound on N.
 - (b) Show that $(K^{\times})^2 \subseteq K^{\times}$ is a subgroup of index $4|k|^{v_{\mathfrak{p}}(2)}$.
 - (c) Show that $x \in \mathbb{Q}_2^{\times}$ is a square if and only if $v_2(x) \in 2\mathbb{Z} \subseteq \mathbb{Z}$, and $2^{-v_2(x)} \cdot x \in \mathbb{Z}_2$ is equal to 1 modulo $8\mathbb{Z}_2$.
- (2) (a) For $a, b \in K^{\times}$, show that $\frac{a^{v_{\mathfrak{p}}(b)}}{b^{v_{\mathfrak{p}}(a)}} \in \mathcal{O}_{K}^{\times}$.
 - (b) Define the *tame symbol* as the pairing:

$$\begin{split} K^{\times} \times K^{\times} \to k^{\times} \\ (a,b) &\mapsto \operatorname{Tame}(a,b) \coloneqq (-1)^{v_{\mathfrak{p}}(a) \cdot v_{\mathfrak{p}}(b)} \frac{a^{v_{\mathfrak{p}}(b)}}{b^{v_{\mathfrak{p}}(a)}} \mod \mathfrak{p}. \end{split}$$

For $p \neq 2$, show that the Hilbert symbol is computed by composing the tame symbol with the unique non-trivial character $k^{\times} \rightarrow \{1, -1\}$.

(c) If $a \in \mathbb{Z}_2^{\times}$, define $\varepsilon(a) \in \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ as the reduction of $a \mod 4\mathbb{Z}_2$ under the isomorphism $(\mathbb{Z}/4\mathbb{Z})^{\times} = \mathbb{Z}/2\mathbb{Z}$ (i.e., $\varepsilon(a) = 0$ if $a \in 1 + 4\mathbb{Z}_2$ and $\varepsilon(a) = 1$ if $a \in 3 + 4\mathbb{Z}_2$).

If $a, b \in \mathbb{Z}_2^{\times}$, show that their Hilbert symbol is computed as:

$$(a,b) = (-1)^{\varepsilon(a)\varepsilon(b)}.$$

(d) Further show that (2,2) = 1, and that for $a \in \mathbb{Z}_2^{\times}$:

$$(a,2) = (-1)^{\theta(a)}.$$

Here $\theta(a) \in \mathbb{Z}/2\mathbb{Z}$ is the reduction of $a^2 \mod 16\mathbb{Z}_2$ under the isomorphism between the squares in $(\mathbb{Z}/16\mathbb{Z})^{\times}$ (which are 1 and 9) and $\mathbb{Z}/2\mathbb{Z}$.

Using bimultiplicativity, deduce an explicit formula for the 2-adic Hilbert symbol (which could be deduced using similarly elementary methods and some more work).

(3) Let $\ldots \subseteq F_2A \subseteq F_1A \subseteq F_0A = A$ and $\ldots \subseteq F_2B \subseteq F_1B \subseteq F_0B = B$ be abelian groups with complete filtrations.

Let $f : A \to B$ be a map that is not necessarily a homomorphism, but preserves the filtration in the sense that for every $x \in A$, f maps $x + F_n A$ to $f(x) + F_n B$.

Date: February 3, 2016.

(a) For every $x \in A$, show that the symbol map:

$$F_n A/F_{n+1}A \xrightarrow{y \mapsto f(x+y)-f(x)} F_n B/F_{n+1}B$$

is well-defined.

- (b) Suppose that for all $x \in A$, the associated symbol map is surjective. Show that f is surjective.
- (c) Deduce Hensel's lemma: for $f(t) \in \mathcal{O}_K[t]$ a polynomial with $f(\mathfrak{p}) \subseteq \mathfrak{p}$ and $f'(\mathfrak{p}) \subseteq \mathcal{O}_K^{\times}$, f has a zero. (Then look up Hensel's lemma on Wikipedia and make sure you understand why this statement is equivalent to that one. E.g., use it to show that -1 is a square in $\mathbb{Q}_{5.}$)

Now let K be any local field of characteristic $\neq 2$.¹ You may assume the bimultiplicativity of the Hilbert symbol in the next problems.

- (4) For $a, b, \lambda \in K^{\times}$, so that $ax^2 + by^2 = \lambda$ has a solution if and only if we have the Hilbert symbol equality $(-ab, \lambda) = (a, b)$.
- (5) For $a, b \in K^{\times}$, define the quaternion algebra $H_{a,b}$ to be the (unital, associative) *K*-algebra generated by elements i, j and with relations

$$i^2 = a, j^2 = b, ij = -ji.$$

- (a) Show that $H_{a,b}$ is 4-dimensional as a K-vector space, with basis $\{1, i, j, ij\}$.
- (b) Show that the Hilbert symbol (a, b) equals 1 if and only $H_{a,b}$ is isomorphic to $M_2(K)$, the algebra of 2×2 -matrices over K.

¹This means we do not allow $\mathbb{F}_{2^n}((t))$, but e.g. \mathbb{Q}_2 is still allowed.