18.786 PROBLEM SET 1

Due February 11, 2016

Let K be a finite extension of \mathbb{Q}_{p}. Let \mathcal{O}_{K} be its ring of integers with maximal ideal \mathfrak{p}, and let $k=\mathcal{O}_{K} / \mathfrak{p}$ be the residue field. Let $v_{\mathfrak{p}}$ denote the valuation on K, normalized so that the valuation of a uniformizer is 1 .
(1) (a) Show that the subgroup $\left(K^{\times}\right)^{2} \subseteq K^{\times}$of squares contains an open neighborhood of the identity, i.e., every element of $1+\mathfrak{p}^{N}$ is a square for N large enough. Give an upper bound on N.
(b) Show that $\left(K^{\times}\right)^{2} \subseteq K^{\times}$is a subgroup of index $4|k|^{v_{\mathfrak{p}}(2)}$.
(c) Show that $x \in \mathbb{Q}_{2}^{\times}$is a square if and only if $v_{2}(x) \in 2 \mathbb{Z} \subseteq \mathbb{Z}$, and $2^{-v_{2}(x)} \cdot x \in \mathbb{Z}_{2}$ is equal to 1 modulo $8 \mathbb{Z}_{2}$.
(2) (a) For $a, b \in K^{\times}$, show that $\frac{a^{v_{p}}(b)}{b^{v \mathbf{p}}(a)} \in \mathcal{O}_{K}^{\times}$.
(b) Define the tame symbol as the pairing:

$$
\begin{gathered}
K^{\times} \times K^{\times} \rightarrow k^{\times} \\
(a, b) \mapsto \operatorname{Tame}(a, b):=(-1)^{v_{\mathfrak{p}}(a) \cdot v_{\mathfrak{p}}(b)} \frac{a^{v_{\mathfrak{p}}(b)}}{b^{v_{\mathfrak{p}}(a)}} \bmod \mathfrak{p} .
\end{gathered}
$$

For $p \neq 2$, show that the Hilbert symbol is computed by composing the tame symbol with the unique non-trivial character $k^{\times} \rightarrow\{1,-1\}$.
(c) If $a \in \mathbb{Z}_{2}^{\times}$, define $\varepsilon(a) \in \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ as the reduction of $a \bmod 4 \mathbb{Z}_{2}$ under the isomorphism $(\mathbb{Z} / 4 \mathbb{Z})^{\times}=\mathbb{Z} / 2 \mathbb{Z}$ (i.e., $\varepsilon(a)=0$ if $a \in 1+4 \mathbb{Z}_{2}$ and $\varepsilon(a)=1$ if $\left.a \in 3+4 \mathbb{Z}_{2}\right)$.

If $a, b \in \mathbb{Z}_{2}^{\times}$, show that their Hilbert symbol is computed as:

$$
(a, b)=(-1)^{\varepsilon(a) \varepsilon(b)}
$$

(d) Further show that $(2,2)=1$, and that for $a \in \mathbb{Z}_{2}^{\times}$:

$$
(a, 2)=(-1)^{\theta(a)}
$$

Here $\theta(a) \in \mathbb{Z} / 2 \mathbb{Z}$ is the reduction of $a^{2} \bmod 16 \mathbb{Z}_{2}$ under the isomorphism between the squares in $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$(which are 1 and 9$)$ and $\mathbb{Z} / 2 \mathbb{Z}$.

Using bimultiplicativity, deduce an explicit formula for the 2-adic Hilbert symbol (which could be deduced using similarly elementary methods and some more work).
(3) Let $\ldots \subseteq F_{2} A \subseteq F_{1} A \subseteq F_{0} A=A$ and $\ldots \subseteq F_{2} B \subseteq F_{1} B \subseteq F_{0} B=B$ be abelian groups with complete filtrations.

Let $f: A \rightarrow B$ be a map that is not necessarily a homomorphism, but preserves the filtration in the sense that for every $x \in A$, f maps $x+F_{n} A$ to $f(x)+F_{n} B$.
(a) For every $x \in A$, show that the symbol map:

$$
F_{n} A / F_{n+1} A \xrightarrow{y \rightarrow f(x+y)-f(x)} F_{n} B / F_{n+1} B
$$

is well-defined.
(b) Suppose that for all $x \in A$, the associated symbol map is surjective. Show that f is surjective.
(c) Deduce Hensel's lemma: for $f(t) \in \mathcal{O}_{K}[t]$ a polynomial with $f(\mathfrak{p}) \subseteq \mathfrak{p}$ and $f^{\prime}(\mathfrak{p}) \subseteq \mathcal{O}_{K}^{\times}, f$ has a zero. (Then look up Hensel's lemma on Wikipedia and make sure you understand why this statement is equivalent to that one. E.g., use it to show that -1 is a square in \mathbb{Q}_{5}.)
Now let K be any local field of characteristic $\neq 2 .{ }^{1}$ You may assume the bimultiplicativity of the Hilbert symbol in the next problems.
(4) For $a, b, \lambda \in K^{\times}$, so that $a x^{2}+b y^{2}=\lambda$ has a solution if and only if we have the Hilbert symbol equality $(-a b, \lambda)=(a, b)$.
(5) For $a, b \in K^{\times}$, define the quaternion algebra $H_{a, b}$ to be the (unital, associative) K-algebra generated by elements i, j and with relations

$$
i^{2}=a, j^{2}=b, i j=-j i
$$

(a) Show that $H_{a, b}$ is 4 -dimensional as a K-vector space, with basis $\{1, i, j, i j\}$.
(b) Show that the Hilbert symbol (a, b) equals 1 if and only $H_{a, b}$ is isomorphic to $M_{2}(K)$, the algebra of 2×2-matrices over K.

[^0]
[^0]: ${ }^{1}$ This means we do not allow $\mathbb{F}_{2^{n}}((t))$, but e.g. \mathbb{Q}_{2} is still allowed.

