18.786 PROBLEM SET 2

Due February 18th, 2016

- (1) Recall that for F a number field (i.e., a finite extension of \mathbb{Q}), we have \mathbb{A}_F the topological ring of *adèles*, and its units \mathbb{A}_F^{\times} form the topological group of *idèles*.
 - (a) Show that the canonical map $\widehat{\mathbb{Z}}^{\times} \times \mathbb{Q}^{\times} \times \mathbb{R}^{>0} \to \mathbb{A}_{\mathbb{Q}}^{\times}$ is an isomorphism.
 - (b) For F a number field, show that:

$$\Big(\prod_{v \text{ a place of } F} \mathcal{O}_{F_v}^{\times}\Big) \backslash \mathbb{A}_F^{\times} / F^{\times}$$

is canonically isomorphic to the class group of F, where if v is an infinite place, $\mathcal{O}_{F_v} := F_v$. Here "canonically" means that you should show that such an isomorphism is *uniquely* characterized by the property that that for each prime ideal \mathfrak{p} , the composite map:

$$\mathbb{Z} = \mathcal{O}_{F_{\mathfrak{p}}}^{\times} \backslash F_{\mathfrak{p}}^{\times} \hookrightarrow \left(\prod_{v} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} \twoheadrightarrow \left(\prod_{v} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} / F^{\times} \simeq \operatorname{Cl}(F)$$

maps 1 to the ideal class of \mathfrak{p} .

(c) Similarly, show that the profinite completion of:

$$\Big(\prod_{v \text{ a finite place of } F} \mathfrak{O}_{F_v}^{\times}\Big) \backslash \mathbb{A}_F^{\times} / F^{\times}$$

is isomorphic to the $narrow^1$ class group of F.

- (d) For every number field F, show that the canonical map $(\widehat{\mathbb{Z}} \times \mathbb{R}) \bigotimes_{\mathbb{Z}} F \to \mathbb{A}_F$ is an isomorphism.
- (2) Recall that $\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2$ has order 8, so \mathbb{Q}_2 has 7 (isomorphism classes of) quadratic extensions, corresponding to $\mathbb{Q}_2[\sqrt{d}]$ for d running over a class of coset representatives for the non-squares in \mathbb{Q}_2^{\times} .
 - (a) Using the fact that an element of \mathbb{Z}_2^{\times} is a square if and only if it is congruent to 1 modulo $8\mathbb{Z}_2$, show that these coset representatives can be taken to be d = 2, 3, 5, 6, 7, 10, 14.
 - (b) By the general structure theory of nonarchimedean local fields, Q₂ admits a single unramified quadratic extension. Which value of d above does it correspond to? How does this relate to the explicit formula you found last week for the Hilbert symbol for Q₂?

Date: February 16, 2016.

¹This is the group of fractional ideals of F modulo principal ideals defined by *totally positive* elements of F^{\times} , i.e., elements x of F^{\times} such that for every embedding $F \hookrightarrow \mathbb{R}$, i(x) > 0.

- (c) For each d as above, find a uniformizer in the field $\mathbb{Q}_2[\sqrt{d}]$, and compute its norm in \mathbb{Q}_2 .
- (3) Recall the definition of the quaternion algebra $H_{a,b}$ associated to $a, b \in K$: it is the K-algebra with generators i and j with relations $i^2 = a$, $j^2 = b$ and ij = -ji.
 - (a) Let $K = \mathbb{Q}_2$. Show that every $d \in \mathbb{Q}_2$ admits a square root in $H_{-1,-1}$, i.e., for every d there exists $x \in H$ with $x^2 = d$.
 - (b) Let K be a nonarchimedean local field of odd residue characteristic, and let $a, b \in K^{\times}$ with Hilbert symbol (a, b) = -1. Show that every element of K admits a square root in $H_{a,b}$.
- (4) Show that a local field $K \neq \mathbb{C}$ contains only finitely many roots of unity.