18.786 PROBLEM SET 2

Due February 18th, 2016

(1) Recall that for F a number field (i.e., a finite extension of \mathbb{Q}), we have \mathbb{A}_{F} the topological ring of adèles, and its units \mathbb{A}_{F}^{\times}form the topological group of idèles.
(a) Show that the canonical map $\widehat{\mathbb{Z}}^{\times} \times \mathbb{Q}^{\times} \times \mathbb{R}^{>0} \rightarrow \mathbb{A}_{\mathbb{Q}}^{\times}$is an isomorphism.
(b) For F a number field, show that:

$$
\left(\prod_{v \text { a place of } F} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} / F^{\times}
$$

is canonically isomorphic to the class group of F, where if v is an infinite place, $\mathcal{O}_{F_{v}}:=F_{v}$. Here "canonically" means that you should show that such an isomorphism is uniquely characterized by the property that that for each prime ideal \mathfrak{p}, the composite map:

$$
\mathbb{Z}=\mathcal{O}_{F_{\mathfrak{p}}}^{\times} \backslash F_{\mathfrak{p}}^{\times} \hookrightarrow\left(\prod_{v} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} \rightarrow\left(\prod_{v} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} / F^{\times} \simeq \mathrm{Cl}(F)
$$

maps 1 to the ideal class of \mathfrak{p}.
(c) Similarly, show that the profinite completion of:

$$
\left(\prod_{v \text { a finite place of } F} \mathcal{O}_{F_{v}}^{\times}\right) \backslash \mathbb{A}_{F}^{\times} / F^{\times}
$$

is isomorphic to the narrou ${ }^{11}$ class group of F.
(d) For every number field F, show that the canonical map $(\widehat{\mathbb{Z}} \times \mathbb{R}) \underset{\mathbb{Z}}{\otimes} F \rightarrow \mathbb{A}_{F}$ is an isomorphism.
(2) Recall that $\mathbb{Q}_{2}^{\times} /\left(\mathbb{Q}_{2}^{\times}\right)^{2}$ has order 8 , so \mathbb{Q}_{2} has 7 (isomorphism classes of) quadratic extensions, corresponding to $\mathbb{Q}_{2}[\sqrt{d}]$ for d running over a class of coset representatives for the non-squares in \mathbb{Q}_{2}^{\times}.
(a) Using the fact that an element of \mathbb{Z}_{2}^{\times}is a square if and only if it is congruent to 1 modulo $8 \mathbb{Z}_{2}$, show that these coset representatives can be taken to be $d=2,3,5,6,7,10,14$.
(b) By the general structure theory of nonarchimedean local fields, \mathbb{Q}_{2} admits a single unramified quadratic extension. Which value of d above does it correspond to? How does this relate to the explicit formula you found last week for the Hilbert symbol for \mathbb{Q}_{2} ?

[^0](c) For each d as above, find a uniformizer in the field $\mathbb{Q}_{2}[\sqrt{d}]$, and compute its norm in \mathbb{Q}_{2}.
(3) Recall the definition of the quaternion algebra $H_{a, b}$ associated to $a, b \in K$: it is the K-algebra with generators i and j with relations $i^{2}=a, j^{2}=b$ and $i j=-j i$.
(a) Let $K=\mathbb{Q}_{2}$. Show that every $d \in \mathbb{Q}_{2}$ admits a square root in $H_{-1,-1}$, i.e., for every d there exists $x \in H$ with $x^{2}=d$.
(b) Let K be a nonarchimedean local field of odd residue characteristic, and let $a, b \in K^{\times}$with Hilbert symbol $(a, b)=-1$. Show that every element of K admits a square root in $H_{a, b}$.
(4) Show that a local field $K \neq \mathbb{C}$ contains only finitely many roots of unity.

[^0]: Date: February 16, 2016.
 ${ }^{1}$ This is the group of fractional ideals of F modulo principal ideals defined by totally positive elements of F^{\times}, i.e., elements x of F^{\times}such that for every embedding $F \hookrightarrow \mathbb{R}, i(x)>0$.

