
18.786 PROBLEM SET 3

Due February 25th, 2016

(1) Construct (with proofs) an abelian extension 𝐸{𝐹 of number fields such that 𝐸 does
not embed into any cyclotomic extension of 𝐹 , i.e., there does not exist an integer 𝑛
such that 𝐸 embeds into 𝐹 p𝜁𝑛q.

(2) Let 𝐾 ‰ C be a local field of characteristic ‰ 2. For 𝑎, 𝑏 P 𝐾ˆ, 𝐻𝑎,𝑏 denotes the
corresponding Hamiltonian algebra over 𝐾. You can assume all good properties
of Hilbert symbols in this problem (since we have not proved them yet for residue
characteristic 2 and 𝐾 ‰ Q2).
(a) Show that 𝐻𝑎,𝑏 » 𝐻𝑎,𝑐 if and only if 𝑏 “ 𝑐 P 𝐾ˆ{𝑁p𝐾r

?
𝑎sˆq.

(b) Show that the isomorphism class of 𝐻𝑎,𝑏 depends only on the Hilbert symbol
p𝑎, 𝑏q.

(c) Give another proof of (a slight extension of) that exercise from last week: every
𝑥 P 𝐾 admits a square root in 𝐻𝑎,𝑏 for all pairs 𝑎, 𝑏 P 𝐾ˆ.

(d) Show that any noncommutative 4-dimensional division algebra 𝐻 over 𝐾 is
a Hamiltonian algebra. Deduce that there is a unique 4-dimensional division
algebra over 𝐾.

(3) In this problem, we will examine how far the tame symbol (defined in the first problem
set) can take us in local class field theory.
(a) Let 𝑛 ą 1 be an integer and let 𝐾 be a field of characteristic prime to 𝑛. Let

𝜇𝑛 Ď 𝐾ˆ denote the subgroup of 𝑛th roots of unity. Suppose that |𝜇𝑛| “ 𝑛, i.e.,
𝐾 admits a primitive 𝑛th root of unity.1.

Construct a canonical isomorphism:

HompGalp𝐾q, 𝜇𝑛q » 𝐾ˆ
{p𝐾ˆ

q
𝑛

where Hom indicates the abelian group of continuous morphisms.2

(b) Now suppose that 𝐾 is a nonarchimedean local field. Let 𝑞 denote the order of
the residue field 𝑘 “ O𝐾{p of 𝐾. Suppose that 𝑛 divides 𝑞 ´ 1 (e.g., 𝑛 “ 2 and
𝑞 is odd) for the remainder of this problem.

Show that every element of 𝜇𝑛 lies in the ring of integers of 𝐾. Show that the
mod p reduction map:

Updated: February 25, 2016.
1I.e., suppose that there exists an isomorphism 𝜇𝑛 » Z{𝑛Z, but we do not fix such an isomorphism at

the onset. In what follows, canonical means that you should not choose an isomorphism 𝜇𝑛 » Z{𝑛Z in
making your constructions (though you are welcome to use it in the course of proving claims about your
constructions)

2A small hint: first identify the left hand side with the set of Galois extensions 𝐿{𝐾 equipped with an
embedding Galp𝐿{𝐾q ãÑ 𝜇𝑛 (up to isomorphism).
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𝜇𝑛 Ñ t𝑥 P 𝑘ˆ | 𝑥𝑛
“ 1u

is an isomorphism. Deduce that |𝜇𝑛| “ 𝑛.
(c) Construct a canonical isomorphism between 𝑘ˆ{p𝑘ˆq𝑛 and 𝜇𝑛.
(d) Show that the composition:

𝐾ˆ
ˆ𝐾ˆ tame symbol

ÝÝÝÝÝÝÝÑ 𝑘ˆ Ñ 𝑘ˆ{p𝑘ˆq𝑛 » 𝜇𝑛

induces a bimultiplicative pairing:

𝐾ˆ
{p𝐾ˆ

q
𝑛
ˆ𝐾ˆ

{p𝐾ˆ
q
𝑛
Ñ 𝜇𝑛

that is non-degenerate in the sense that the induced map:

𝐾ˆ
{p𝐾ˆ

q
𝑛
Ñ Homp𝐾ˆ, 𝜇𝑛q

is an isomorphism.
(4) (a) Let 𝐿{𝐾 be an unramified extension of local fields of degree 𝑛. Show that

𝐾ˆ{𝑁p𝐿ˆq is cyclic of order 𝑛.
(b) Let 𝐿{𝐾 be a totally ramified extension of degree 𝑛. Assume 𝑛 divides 𝑞 ´ 1,

with 𝑞 the order of the residue field of 𝐾 (which is also the residue field of 𝐿).
Show that the canonical map:

Oˆ𝐾{𝑁pO
ˆ
𝐿q Ñ 𝐾ˆ

{𝑁p𝐿ˆq

is an isomorphism. Show that the reduction map:

Oˆ𝐾{𝑁pO
ˆ
𝐿q Ñ 𝑘ˆ{p𝑘ˆq𝑛

is well-defined and an isomorphism. Deduce that 𝐾ˆ{𝑁p𝐿ˆq canonically iso-
morphic to 𝜇𝑛.

(c) Briefly, what is the relationship between this problem and the previous one?
(5) In the next exercise (which is long but locally easy), assume any standard results you

like from Galois theory. The point is to get a bit more comfortable with the profinite
Galois group.

Let 𝐺 be a finite group and 𝐾 a field. A 𝐺-torsor over3 𝐾 is a commutative
𝐾-algebra 𝐿 with an action of 𝐺 by 𝐾-automorphisms, such that the canonical map:

𝐿b
𝐾
𝐿Ñ

ź

𝑔P𝐺

𝐿

𝑎b 𝑏 ÞÑ pp𝑔 ¨ 𝑎q ¨ 𝑏q𝑔P𝐺

is an isomorphism of 𝐾-algebras. Here in the formula on the right, we are giving the
coordinates of the result of applying our function, and 𝑔 ¨ 𝑎 means we act on 𝑎 P 𝐿
by 𝑔 P 𝐺, while the second ¨ is multiplication in the algebra 𝐿.
(a) Show that any 𝐺-torsor 𝐿 is étale as a 𝐾-algebra.

3In algebraic geometry, we would rather say over Specp𝐾q.
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(b) Show that 𝐿 “
ś

𝑔P𝐺 𝐾 is a 𝐺-torsor over 𝐾, where the 𝐺-action permutes the
coordinates. This 𝐺-torsor is called the trivial 𝐺-torsor.

(c) If 𝐿 is Galois extension of 𝐾 (in particular, 𝐿 is a field) with Galois group 𝐺,
show that 𝐿 is a 𝐺-torsor over 𝐾.

(d) We now fix a separable closure 𝐾𝑠𝑒𝑝 of 𝐾. Let us say a rigidification of a 𝐺-
torsor 𝐿 as above is the datum of a map 𝑖 : 𝐿Ñ 𝐾𝑠𝑒𝑝 of 𝐾-algebras. Show that
every 𝐺-torsor 𝐿 admits a rigidification.

(e) Note that 𝐺 acts on the set of rigidifications of 𝐿 through its action on 𝐿. Show
that this action is simple and transitive.

(f) Given a rigidified 𝐺-torsor 𝑖 : 𝐿 Ñ 𝐾𝑠𝑒𝑝, show that the only automorphism 𝜙
of 𝐿 as a 𝐾-algebra that commutes with both the 𝐺-action and with 𝑖 (i.e.,
𝑖p𝜙p𝑎qq “ 𝑖p𝑎q for all 𝑎 P 𝐿) is the identity.

(g) Let Galp𝐾q :“ Aut𝐾–algp𝐾
𝑠𝑒𝑝q be the absolute Galois group of 𝐾, considered as

a profinite group.
Show that the set of continuous homomorphisms 𝜒 : Galp𝐾q Ñ 𝐺 are in

canonical bijection with the set of isomorphism classes of rigidified 𝐺-torsors
over 𝐾.

As a hint, here is one direction in the construction: given 𝜒, we take 𝐿 to be
the subalgebra of

ś

𝑔P𝐺𝐾𝑠𝑒𝑝 consisting of elements of the form p𝑎𝑔q𝑔P𝐺 such that

for every 𝛾 P Galp𝐾q, 𝛾 ¨𝑎𝑔 “ 𝑎𝜒p𝛾q¨𝑔 (here 𝛾 ¨𝑎𝑔 indicates the action of Galp𝐾q on
𝐾𝑠𝑒𝑝), and the rigidification to be projection onto the coordinate corresponding
to 1 P 𝐺.

(h) For a continuous homomorphism 𝜒 : Galp𝐾q Ñ 𝐺, show that the resulting 𝐾-
algebra 𝐿 is a field if and only if 𝜒 is surjective, and in this case, is the Galois
subfield of 𝐾𝑠𝑒𝑝 with Galois group 𝐺 corresponding (under infinite Galois theory)
to this quotient 𝐺 of Galp𝐾q.

(i) Show that the trivial homomorphism 𝜒 : Galp𝐾q Ñ 𝐺 corresponds to the 𝐺-
torsor

ś

𝑔P𝐺𝐾 with rigidification induced by the projection onto the coordinate
for 1 P 𝐺.

(j) (Not for credit.) If you know the fundamental group 𝜋1p𝑋, 𝑥q of a (sufficiently
nice) topological space 𝑋, then formulate a notion of 𝐺-torsor over 𝑋 and show
that if 𝑋 is connected, a 𝐺-torsor with a lift of the basepoint is the same as a
homomorphism 𝜋1p𝑋, 𝑥q Ñ 𝐺.

(k) (Not for credit.) Invent the étale fundamental group for schemes. Formulate all
the main results of Grothendieck’s SGA I. Bonus non-credit for proving all those
results.
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