18.786 PROBLEM SET 3

Due February 25th, 2016

- (1) Construct (with proofs) an abelian extension E/F of number fields such that E does not embed into any cyclotomic extension of F, i.e., there does not exist an integer n such that E embeds into $F(\zeta_n)$.
- (2) Let $K \neq \mathbb{C}$ be a local field of characteristic $\neq 2$. For $a, b \in K^{\times}$, $H_{a,b}$ denotes the corresponding Hamiltonian algebra over K. You can assume all good properties of Hilbert symbols in this problem (since we have not proved them yet for residue characteristic 2 and $K \neq \mathbb{Q}_2$).
 - (a) Show that $H_{a,b} \simeq H_{a,c}$ if and only if $b = c \in K^{\times}/N(K[\sqrt{a}]^{\times})$.
 - (b) Show that the isomorphism class of $H_{a,b}$ depends only on the Hilbert symbol (a, b).
 - (c) Give another proof of (a slight extension of) that exercise from last week: every $x \in K$ admits a square root in $H_{a,b}$ for all pairs $a, b \in K^{\times}$.
 - (d) Show that any noncommutative 4-dimensional division algebra H over K is a Hamiltonian algebra. Deduce that there is a unique 4-dimensional division algebra over K.
- (3) In this problem, we will examine how far the tame symbol (defined in the first problem set) can take us in local class field theory.
 - (a) Let n > 1 be an integer and let K be a field of characteristic prime to n. Let $\mu_n \subseteq K^{\times}$ denote the subgroup of nth roots of unity. Suppose that $|\mu_n| = n$, i.e., K admits a primitive nth root of unity.¹.

Construct a canonical isomorphism:

$$\operatorname{Hom}(\operatorname{Gal}(K), \mu_n) \simeq K^{\times} / (K^{\times})^n$$

where Hom indicates the abelian group of continuous morphisms.²

(b) Now suppose that K is a nonarchimedean local field. Let q denote the order of the residue field $k = \mathcal{O}_K/\mathfrak{p}$ of K. Suppose that n divides q - 1 (e.g., n = 2 and q is odd) for the remainder of this problem.

Show that every element of μ_n lies in the ring of integers of K. Show that the mod \mathfrak{p} reduction map:

Updated: February 25, 2016.

¹I.e., suppose that there exists an isomorphism $\mu_n \simeq \mathbb{Z}/n\mathbb{Z}$, but we do not fix such an isomorphism at the onset. In what follows, *canonical* means that you should not choose an isomorphism $\mu_n \simeq \mathbb{Z}/n\mathbb{Z}$ in making your constructions (though you are welcome to use it in the course of proving claims about your constructions)

²A small hint: first identify the left hand side with the set of Galois extensions L/K equipped with an embedding $\operatorname{Gal}(L/K) \hookrightarrow \mu_n$ (up to isomorphism).

$$\mu_n \to \{ x \in k^{\times} \mid x^n = 1 \}$$

is an isomorphism. Deduce that $|\mu_n| = n$.

- (c) Construct a canonical isomorphism between $k^{\times}/(k^{\times})^n$ and μ_n .
- (d) Show that the composition:

$$K^{\times} \times K^{\times} \xrightarrow{\text{tame symbol}} k^{\times} \to k^{\times}/(k^{\times})^n \simeq \mu_n$$

induces a bimultiplicative pairing:

$$K^{\times}/(K^{\times})^n \times K^{\times}/(K^{\times})^n \to \mu_n$$

that is non-degenerate in the sense that the induced map:

$$K^{\times}/(K^{\times})^n \to \operatorname{Hom}(K^{\times},\mu_n)$$

is an isomorphism.

- (4) (a) Let L/K be an unramified extension of local fields of degree n. Show that $K^{\times}/N(L^{\times})$ is cyclic of order n.
 - (b) Let L/K be a totally ramified extension of degree n. Assume n divides q 1, with q the order of the residue field of K (which is also the residue field of L). Show that the canonical map:

$$\mathcal{O}_K^{\times}/N(\mathcal{O}_L^{\times}) \to K^{\times}/N(L^{\times})$$

is an isomorphism. Show that the reduction map:

$$\mathcal{O}_K^{\times}/N(\mathcal{O}_L^{\times}) \to k^{\times}/(k^{\times})^n$$

is well-defined and an isomorphism. Deduce that $K^{\times}/N(L^{\times})$ canonically isomorphic to μ_n .

- (c) Briefly, what is the relationship between this problem and the previous one?
- (5) In the next exercise (which is long but locally easy), assume any standard results you like from Galois theory. The point is to get a bit more comfortable with the profinite Galois group.

Let G be a finite group and K a field. A G-torsor over³ K is a commutative K-algebra L with an action of G by K-automorphisms, such that the canonical map:

$$L \bigotimes_{K} L \to \prod_{g \in G} L$$
$$a \otimes b \mapsto ((g \cdot a) \cdot b)_{g \in G}$$

is an isomorphism of K-algebras. Here in the formula on the right, we are giving the coordinates of the result of applying our function, and $g \cdot a$ means we act on $a \in L$ by $g \in G$, while the second \cdot is multiplication in the algebra L.

(a) Show that any G-torsor L is étale as a K-algebra.

³In algebraic geometry, we would rather say *over* Spec(K).

- (b) Show that $L = \prod_{g \in G} K$ is a *G*-torsor over *K*, where the *G*-action permutes the coordinates. This *G*-torsor is called the *trivial G*-torsor.
- (c) If L is Galois extension of K (in particular, L is a field) with Galois group G, show that L is a G-torsor over K.
- (d) We now fix a separable closure K^{sep} of K. Let us say a *rigidification* of a G-torsor L as above is the datum of a map $i: L \to K^{sep}$ of K-algebras. Show that every G-torsor L admits a rigidification.
- (e) Note that G acts on the set of rigidifications of L through its action on L. Show that this action is simple and transitive.
- (f) Given a rigidified G-torsor $i: L \to K^{sep}$, show that the only automorphism φ of L as a K-algebra that commutes with both the G-action and with i (i.e., $i(\varphi(a)) = i(a)$ for all $a \in L$) is the identity.
- (g) Let $\operatorname{Gal}(K) := \operatorname{Aut}_{K-\mathsf{alg}}(K^{sep})$ be the absolute Galois group of K, considered as a profinite group.

Show that the set of continuous homomorphisms χ : Gal $(K) \rightarrow G$ are in canonical bijection with the set of isomorphism classes of rigidified *G*-torsors over *K*.

As a hint, here is one direction in the construction: given χ , we take L to be the subalgebra of $\prod_{g \in G} K^{sep}$ consisting of elements of the form $(a_g)_{g \in G}$ such that for every $\gamma \in \text{Gal}(K)$, $\gamma \cdot a_g = a_{\chi(\gamma) \cdot g}$ (here $\gamma \cdot a_g$ indicates the action of Gal(K) on K^{sep}), and the rigidification to be projection onto the coordinate corresponding to $1 \in G$.

- (h) For a continuous homomorphism $\chi : \operatorname{Gal}(K) \to G$, show that the resulting Kalgebra L is a field if and only if χ is surjective, and in this case, is the Galois subfield of K^{sep} with Galois group G corresponding (under infinite Galois theory) to this quotient G of $\operatorname{Gal}(K)$.
- (i) Show that the trivial homomorphism $\chi : \operatorname{Gal}(K) \to G$ corresponds to the *G*-torsor $\prod_{g \in G} K$ with rigidification induced by the projection onto the coordinate for $1 \in G$.
- (j) (Not for credit.) If you know the fundamental group $\pi_1(X, x)$ of a (sufficiently nice) topological space X, then formulate a notion of G-torsor over X and show that if X is connected, a G-torsor with a lift of the basepoint is the same as a homomorphism $\pi_1(X, x) \to G$.
- (k) (Not for credit.) Invent the étale fundamental group for schemes. Formulate all the main results of Grothendieck's SGA I. Bonus non-credit for proving all those results.