
18.786 PROBLEM SET 6

Due March 31st, 2016

(1) Let 𝐿{𝐾 be a finite Galois extension of nonarchimedean local fields, with Galois
group 𝐺. We say this extension admits an integral normal basis if O𝐿 » O𝐾r𝐺s as
an O𝐾r𝐺s-module.
(a) Show that 𝐿{𝐾 admits an integral normal basis if and only if O𝐿{O𝐿 ¨ p𝐾 is

isomorphic to 𝑘r𝐺s as a 𝑘r𝐺s-module, where 𝑘 :“ O𝐾{p𝐾 .
(b) Deduce that any tamely ramified extension admits an integral normal basis.
(c) Let 𝑘𝐿 denote the residue field of 𝐿, so 𝑘𝐿 “ O𝐿{p𝐿 is a finite extension of 𝑘.

Show that p𝐻0p𝐺, 𝑘𝐿q “ 0 if and only if 𝐿{𝐾 is tamely ramified.
(d) Deduce that there is an integral normal basis if and only if 𝐿{𝐾 is tamely

ramified (this result is due to Noether).
(2) (a) For 𝐴 an associative ring and 𝑀 and 𝑁 two 𝐴-modules, show that Ext1𝐴p𝑀,𝑁q

is canonically isomorphic to the set of isomorphism classes of extensions:

0 Ñ 𝑁 Ñ 𝐸 Ñ𝑀 Ñ 0.

Here an isomorphism of such extensions is a commutative diagram:

0 // 𝑁 // 𝐸1

»

��

// 𝑀 // 0

0 // 𝑁 // 𝐸2
// 𝑀 // 0.

(b) For 𝐴 “ Zr𝐺s, show that a group 1-cocycle 𝜙 : 𝐺Ñ𝑀 is the same thing as an
extension:

0 Ñ𝑀 Ñ 𝐸 Ñ ZÑ 0

of 𝐺-modules (with 𝐺 acting trivially on Z) plus a lift of 1 P Z to an element of
𝐸. Show that different lifts define cocycles differing by coboundaries.

(c) For 𝐴 a ring, 𝑓 a non-zero divisor and 𝑀 an 𝐴-module, show that:1

Hom𝑑𝑒𝑟
𝐴 p𝐴{𝑓,𝑀q » hKerp𝑀

𝑓
ÝÑ𝑀q.

Deduce that Ext𝑖𝐴p𝐴{𝑓,𝑀q “ 0 for 𝑖 ą 1, and Ext1𝐴p𝐴{𝑓,𝑀q “𝑀{𝑓 .
Optional: use this to sketch a proof of the classification theorem for finitely

generated modules over a PID.

Updated: April 26, 2016.
1Remember the definition of Hom𝑑𝑒𝑟

𝐴 p𝑁,𝑀q (which is only well-defined up to quasi- isomorphism): it is
Hom𝐴p𝑃,𝑀q where 𝑃 Ñ 𝑁 is some quasi-isomorphism with 𝑃 projective.
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(3) Suppose that 𝐻 is a normal subgroup of 𝐺. For 𝑋 a complex of 𝐺-modules, show
that 𝑋ℎ𝐻 has a canonical2 structure of complex of 𝐺{𝐻-modules (as opposed to just
being a complex of abelian groups), and show that p𝑋ℎ𝐻qℎp𝐺{𝐻q » 𝑋ℎ𝐺.

(4) We will use the following definition.

Definition 1. A (unital) DG3 algebra is a complex with a multiplication map:

𝑚 : 𝐴b 𝐴Ñ 𝐴

(so this is a map of complexes) and an element 1 P 𝐴0 such that 𝑑p1q “ 0, and such
that 𝑚 satisfies associativity and unitality with respect to the element 1.

Below, we suppose that 𝐴 is a DG algebra.
(a) For 𝑎 P 𝐴𝑖 and 𝑏 P 𝐴𝑗, let 𝑎𝑏 “ 𝑚p𝑎b 𝑏q P 𝐴𝑖`𝑗. Show that:4

𝑑p𝑎𝑏q “ 𝑑𝑎 ¨ 𝑏` p´1q𝑖𝑎 ¨ 𝑑𝑏.

(b) Show that ‘𝑖PZ𝐻
𝑖p𝐴q inherits a canonical structure of associative algebra.

(c) Suppose that 𝑋 is any complex. Show that Homp𝑋,𝑋q has a canonical DG
algebra structure.

For 𝑋 “ 𝐴, show that the canonical map 𝐴 Ñ Homp𝐴,𝐴q (corresponding to
the multiplication 𝐴b 𝐴Ñ 𝐴) a morphism of DG algebras.

(d) Suppose that there exists 𝜀 P 𝐴´1 such that 𝑑p𝜀q “ 1. Show that 𝐴 is homotopy
equivalent to the zero complex.

(5) Suppose that 𝐵 is an 𝐴-algebra, i.e., 𝐴 is commutative and we have a map from 𝐴 to
the center of 𝐵.5 Recall that the bar complex Bar𝐴p𝐵q is the complex that in degree
´𝑛 (𝑛 ě 0) is 𝐵b𝐴𝑛`1, and with the differentials 𝑑 : 𝐵b𝐴𝑛`2 Ñ 𝐵b𝐴𝑛`1 given by:

𝑏0 b . . .b 𝑏𝑛`1 ÞÑ

𝑏0𝑏1 b 𝑏2 b . . .b 𝑏𝑛`1 ´ 𝑏0 b 𝑏1𝑏2 b . . .b 𝑏𝑛`1 ` . . .` p´1q𝑛𝑏0 b 𝑏1 b . . .b 𝑏𝑛𝑏𝑛`1.

(a) Show that the multiplication rule:

p𝑏0 b . . .b 𝑏𝑛`1q ¨ p𝛽0 b . . .b 𝛽𝑚`1q :“ 𝑏0 b . . .b 𝑏𝑛 b 𝑏𝑛`1𝛽0 b 𝛽1 b . . .b 𝛽𝑚`1

makes Bar𝐴p𝐵q into a DG algebra.
(b) Show that 1 “ 0 in 𝐻0pBar𝐴p𝐵qq, and deduce that the bar complex is homotopy

equivalent to zero.

2This word is being used loosely here, since we’re implicitly making choices that are only unique up to
homotopy. Really, you should construct some complex of 𝐺{𝐻-modules functorial with everything in sight
and which computes 𝑋ℎ𝐻 , and which is not too stupid (say, in the sense that the second part of this problem
is true).

3DG stands for differential graded. This phrase usually means ”having something to do with chain
complexes,” since a chain complex is a Z-graded abelian group equipped with a differential.

4Here concatenation and ¨ indicate the same thing everywhere: multiplication.
5Here 𝐴 and 𝐵 are usual, i.e., non-DG algebras. (This is fundamentally inessential, but makes notation

a little neater.)
2



(c) Show that the bar complex as a DG algebra satisfies a universal property: giving
a map Bar𝐴p𝐵q Ñ 𝑅 (for 𝑅 a DG algebra over6 𝐴) is equivalent to giving a map
𝐵 Ñ 𝑅 of DG algebras over 𝐴 (with 𝐵 concentrated in degree 0) plus an element
𝜂 P 𝑅´1 with 𝑑𝜂 “ 1.

(6) (a) Suppose that we have a diagram:

. . .Ñ 𝑋2
𝑓2
ÝÑ 𝑋1

𝑓1
ÝÑ 𝑋0

of abelian groups.
Show that the inverse limit of this diagram is the kernel of the map:

8
ź

𝑖“0

𝑋𝑖 Ñ

8
ź

𝑖“0

𝑋𝑖

p𝑥0, 𝑥1, 𝑥2, . . .q ÞÑ p𝑥0 ´ 𝑓1p𝑥1q, 𝑥1 ´ 𝑓2p𝑥2q, . . .q.

(b) Now suppose our diagram is of complexes 𝑋𝑖 “ 𝑋‚
𝑖 . Define the homotopy (in-

verse) limit of this diagram as:

holim
𝑖

𝑋𝑖 :“ hKerp
8
ź

𝑖“0

𝑋𝑖 Ñ

8
ź

𝑖“0

𝑋𝑖q

where the map is as before.
Show that there is a canonical map:

𝐻𝑛
pholim

𝑖
𝑋𝑖q Ñ lim

𝑖
𝐻𝑛
p𝑋𝑖q

for all 𝑛 P Z. If all the maps 𝑋𝑖`1 Ñ 𝑋𝑖 are termwise surjective (i.e., every map
𝑋𝑗

𝑖`1 Ñ 𝑋𝑗
𝑖 is surjective) and all the maps 𝐻𝑗p𝑋𝑖`1q Ñ 𝐻𝑗p𝑋𝑖q are surjective,

show that the map you constructed is an isomorphism for every 𝑛.
(c) Show that this implies the statement from class a few weeks ago: given a diagram

of short exact sequences of abelian groups:

...

��

...

��

...

��
0 // 𝑀1

��

// 𝐸1

��

// 𝑁1

��

// 0

0 // 𝑀0
// 𝐸0

// 𝑁0
// 0

with all maps 𝑀𝑖`1 Ñ 𝑀𝑖 surjective, the induced map lim𝑖 𝐸𝑖 Ñ lim𝑖 𝑁𝑖 is
surjective as well.

6This means that 𝑅 is a complex of 𝐴-modules, and its multiplication rule 𝑚 descends to a map 𝑚 :
𝑅b𝐴 𝑅Ñ 𝑅. I.e., the multiplication is 𝐴-linear.
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(d) For a complex 𝑌 , show that:

Homp𝑌, holim
𝑖

𝑋𝑖q “ holim
𝑖

Homp𝑌,𝑋𝑖q.

(e) Suppose now that the complexes and morphisms are of 𝐺-modules for 𝐺 some
group. Show that there is a canonical quasi-isomorphism:

holim
𝑖
p𝑋ℎ𝐺

𝑖 q Ñ pholim
𝑖

𝑋𝑖q
ℎ𝐺.

(f) Suppose 𝐴 is a ring, and 𝑃 is a complex of 𝐴-modules.
For a diagram as above of complexes of 𝐴-modules, show that there is a

canonical map:

𝑃 b
𝐴

holim
𝑖

𝑋𝑖 Ñ holim
𝑖

`

𝑃 b
𝐴
𝑋𝑖

˘

Show that this map is an isomorphism if 𝑃 is a bounded above complex of
finitely generated projective modules and if the complexes 𝑋𝑖 are uniformly
bounded from above, i.e., if there is an integer 𝑁 such that 𝑋𝑗

𝑖 “ 0 for all 𝑗 ě 𝑁
and all 𝑖. Carefully point out where you use the boundedness hypotheses.

(g) Deduce that homotopy coinvariants with respect to a finite group 𝐺 commute
with homotopy limits bounded uniformly from above. Deduce the same for
Tate complexes. Reprove the claim from a few weeks ago: given a diagram
. . . Ñ 𝑀2 Ñ 𝑀1 Ñ 𝑀0 of 𝐺-modules with all maps 𝑀𝑖`1 Ñ 𝑀𝑖 surjective and
p𝐻𝑛p𝐺,𝑀𝑖q “ 0 for all 𝑛 and 𝑖, then:

p𝐻𝑛
p𝐺, lim

𝑖
𝑀𝑖q “ 0

for all 𝑛.
(h) Explain why we do not need to worry about the distinction between directed

limits and homotopy directed limits (aka (directed) homotopy colimits). Indicate
why group cohomology commutes with direct limits bounded uniformly from
below for a finite group 𝐺, and similarly for Tate cohomology.

(7) For 𝐺 “ Z{𝑛Z and 𝑋 a complex of 𝐺-modules, use our “nicer” resolutions to compute
the Tate complex 𝑋 𝑡𝐺. More precisely, write down an explicit formula for a 2-periodic
complex quasi-isomorphic to 𝑋 𝑡𝐺. What is the relationship between your formula and
Problems (6g) and (6h)?

(8) Let 𝐴 “ Z{4Z and consider the complex 𝑃 “ 𝑃 ‚ with 𝑃 𝑖 “ 𝐴 for all 𝑖 P Z and
differential given by multiplication by 2. Show that 𝑃 is not homotopy equivalent to
the zero complex. Deduce that a complex of projective modules is not necessarily a
projective complex.
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