18.786 PROBLEM SET 7

Due April 7th, 2016

- (1) Let G be a finite group and let H be a subgroup.
 - (a) Consider $\mathbb{Z}[G]$ as a left $\mathbb{Z}[H]$ -module. Show that it is a finite rank free module over $\mathbb{Z}[H]$.
 - (b) For a finitely generated projective left Z[H]-module P, show that its dual P[∨] := Hom_H(P, Z[H]) is naturally a right Z[H]-module, and as such is finitely generated and projective. Then show that the dual to Z[G] is canonically isomorphic to Z[G], thought of now as a right Z[H]-module (by letting H act on G on the right).
 - (c) Show that for any complex X of H-modules, there is a canonical quasi-isomorphism:

$$(\mathbb{Z}[G] \underset{\mathbb{Z}[H]}{\otimes} X)^{hG} \simeq X^{hH}.$$

(d) Show that for any complex X of H-modules, there is a canonical quasi-isomorphism:

$$(\mathbb{Z}[G] \underset{\mathbb{Z}[H]}{\otimes} X)^{tG} \simeq X^{tH}.$$

- (e) Show that for any complex A of abelian groups, $A[G] := \mathbb{Z}[G] \otimes_{\mathbb{Z}} A$ has $(A[G])^{tG} = 0$. In particular, show that $\mathbb{Z}[G]^{tG} = 0$.
- (2) Let G and H be as above. Let X be a complex of G-modules.
 - Recall from class that we have a *restriction* map $X^{hG} \to X^{hH}$ and an *inflation* map $X^{hH} \to X^{hG}$, and that the composition $X^{hG} \to X^{hH} \to X^{hG}$ is homotopic to multiplication by the index [G:H].¹
 - (a) Show that there are canonical maps $X_{hH} \to X_{hG}$ and $X_{hG} \to X_{hH}$, such that the composed endomorphism of X_{hG} is again homotopic to multiplication by [G:H].
 - (b) Do the same for Tate cohomology.
 - (c) Show that multiplication by |G| is nullhomotopic on X^{tG} . Deduce that $\hat{H}^i(G, X) := H^i(X^{tG})$ is a $\mathbb{Z}/|G|$ -module.
- (3) Let L/K be a Galois extension of fields with Galois group G. In this problem, we will show that $H^1(G, L^{\times}) = 0$, a generalization of Hilbert's Theorem 90 due to Noether (and often just referred to as Hilbert's Theorem 90).

Suppose that $\varphi: G \to L^{\times}$ is a group 1-cocycle, i.e., we have the identity:

Date: April 6, 2016.

¹Briefly, the construction went by identifying X^{hH} with $\underline{\operatorname{Hom}}_{G}^{der}(\mathbb{Z}[G/H], X)$ and then using the canonical G-equivariant maps $\mathbb{Z}[G/H] \to \mathbb{Z}$ and $\mathbb{Z} \to \mathbb{Z}[G/H]$. You should think that restriction is about regarding a G-invariant vector as an H-invariant one, and inflation is about averaging an H-invariant vector to a G-invariant vector via $x \mapsto \sum_{g \in G/H} g \cdot x$.

$$\varphi(gh) = \varphi(g) \cdot (g \cdot \varphi(h)).$$

(Here the first \cdot is multiplication in L, and the second \cdot is the action of g on L.)

We need to show that φ is coboundary, i.e., that there exists $x_0 \in L^{\times}$ with:

$$\varphi(g) = \frac{x_0}{g \cdot x_0}$$

for all $g \in G$.

- (a) Remind me: why is this enough to deduce that $H^1(G, L^{\times}) = 0$? (b) Define $T_g: L \to L$ by $T_g(x) = \varphi(g) \cdot (g \cdot x)$. Show that $T_{gh} = T_g \circ T_h$. (c) Show that $\sum_{g \in G} T_g$ is a non-zero K-linear map $L \to L$. (d) Deduce that φ is a coboundary.