Discussion of 18.786 (Spring 2016) homework set #2

Darij Grinberg

March 24, 2016

The problems can be found at http://math.mit.edu/~sraskin/cft/pset2.pdf .

1. Solution to problem 3

(b) We have
$$(-ab, b) = \underbrace{(a, b)}_{=-1} \underbrace{(-b, b)}_{\text{(well-known)}} = -1$$
. Thus, neither $-ab$ nor b is a

square in *K*.

We want to prove that every $d \in K$ admits a square root in $H_{a,b}$. So fix $d \in K$. If d is a square in K, then we are done; hence, assume that it isn't. Thus, $d \in K^{\times}$ and $d \notin (K^{\times})^2$.

We notice that

$$(xi + yj + zk)^2 = ax^2 + by^2 - abz^2$$
 for any $(x, y, z) \in K^3$.

In particular, $(zk)^2 = -abz^2$ for any $z \in K$. Thus, if -abd is a square – say, $-abd = \mu^2$ for some $\mu \in K$ –, then we have $d = -ab\left(\frac{\mu}{ab}\right)^2 = \left(\frac{\mu}{ab}k\right)^2$, which shows that d admits a square root in $H_{a,b}$. So we WLOG assume that -abd is not a square.

Now, the projections of $-ab \in K^{\times}$ and $-abd \in K^{\times}$ onto the quotient group $K^{\times}/(K^{\times})^2$ are distinct (since d is not a square) and both unequal to the identity element (since neither -ab nor -abd is a square). Since the quotient group $K^{\times}/(K^{\times})^2$ is an \mathbb{F}_2 -vector space (if we reframe its multiplication as addition), we thus conclude that the projections of $-ab \in K^{\times}$ and $-abd \in K^{\times}$ onto this \mathbb{F}_2 -vector space $K^{\times}/(K^{\times})^2$ are distinct and both nonzero, and thus \mathbb{F}_2 -linearly independent (since any two distinct nonzero vectors in an \mathbb{F}_2 -vector spaces are always \mathbb{F}_2 -linearly independent). Since the Hilbert symbol is nondegenerate as

an \mathbb{F}_2 -bilinear form on K^\times / $(K^\times)^2$, we thus conclude the following: For any $\alpha \in \{1, -1\}$ and $\beta \in \{1, -1\}$, there exists some $\lambda \in K^\times$ such that $(-ab, \lambda) = \alpha$ and $(-abd, \lambda) = \beta$. Applying this to $\alpha = (a, b)$ and $\beta = (ab, d)$, we obtain the following: There exists some $\lambda \in K^\times$ such that $(-ab, \lambda) = (a, b)$ and $(-abd, \lambda) = (ab, d)$. Consider this λ .

Notice that (-ab, ab) = 1 (by the same well-known fact that gave us (-b, b) = 1).

Problem 4 on pset #1 now shows that $ax^2 + by^2 = \lambda$ has a solution (since $(-ab, \lambda) = (a, b)$). Consider these x and y.

Problem 4 on pset #1 (applied to ab, d, z and w instead of a, b, x and y) shows that $abz^2 + dw^2 = \lambda$ has a solution (since $(-abd, \lambda) = (ab, d)$). Consider these z and w.

If we had w=0, then $abz^2+dw^2=\lambda$ would simplify to $abz^2=\lambda$, which would entail that $\left(-ab,\underbrace{\lambda}_{=abz^2}\right)=\left(-ab,abz^2\right)=(-ab,ab)=1$, which would contradict $(-ab,\lambda)=(a,b)=-1$. Hence, we cannot have w=0. Thus, $w\neq 0$. Now, $ax^2+by^2=\lambda=abz^2+dw^2$. Solving this for d, we obtain

$$d = \frac{ax^2 + by^2 - abz^2}{w^2} \qquad \text{(since } w \neq 0\text{)}$$

$$= a\left(\frac{x}{w}\right)^2 + b\left(\frac{y}{w}\right)^2 - ab\left(\frac{z}{w}\right)^2 = \left(\frac{x}{w}i + \frac{y}{w}j + \frac{z}{w}k\right)^2,$$

which shows that d has a square root in $H_{a,b}$. Part **(b)** is solved.