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Abstract. We prove that cuspidal automorphic D-modules have non-vanishing Whittaker co-
efficients, generalizing known results in the geometric Langlands program from GLn to general
reductive groups. The key tool is a microlocal interpretation of Whittaker coefficients.

We establish various exactness properties in the geometric Langlands context that may be of
independent interest. Specifically, we show Hecke functors are t-exact on the category of tempered
D-modules, strengthening a classical result of Gaitsgory (with different hypotheses) for GLn. We
also show that Whittaker coefficient functors are t-exact for sheaves with nilpotent singular support.
An additional consequence of our results is that the tempered, restricted geometric Langlands
conjecture must be t-exact.

We apply our results to show that for suitably irreducible local systems, Whittaker-normalized
Hecke eigensheaves are perverse sheaves that are irreducible on each connected component of BunG.
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1. Introduction

1.1. A mystery. Although this paper is concerned with automorphic sheaves and not with auto-
morphic forms, our motivation comes from phenomena more easily witnessed in the latter context.
Therefore, we begin our story on the upper half plane.

1.1.1. Background on modular forms. We start with some elementary recollections about modular
forms (say: holomorphic, of level 1, without nebentypus, of arbitrary weight).

Recall that such a modular form is a holomorphic function f on the upper half planeH, satisfying
a family of functional equations. Among these is the relation f(τ +1) = f(τ) for τ ∈ H. Moreover,
as a function on the analytic punctured disc function on:

H/{τ ∼ τ + 1}
τ 󰀁→exp(2πi·τ)

≃ {0 < |q| < 1}

there is a requirement that f(q) extend to a holomorphic function over the puncture at q = 0. It
follows that f(q) can be expanded as a power series:

f(q) =
󰁛

n≥0

anq
n.

We remind that the coefficients an in the q-expansion are the fundamental numerical invariants in
the theory of modular forms.

Remark 1.1.1.1. Recall that f is a cusp form if a0 = 0. It is manifest that for a non-zero cusp form
f , there exists an n ≥ 1 such that an ∕= 0. More generally, non-constant modular forms have some
an ∕= 0 for n ≥ 1.

1.1.2. Adèlic interpretation. It is not our purpose to review the construction of functions on adèlic
groups from modular forms. However, we briefly state the outcomes.

We let G = PGL2 and let N = Ga denote the radical of its standard Borel and T = Gm be its
standard Cartan.

• For f as above, there is an associated function 󰁨f on G(AQ).

• The function 󰁨f is invariant under the left action of G(Q) and the right action of G(Aint
Q ),

where Aint
Q := 󰁥Z ⊆ AQ is the subring of integral adèles.
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• The coefficient a0 of f is the constant term:1

a0 =

󰁝

N(Q)\N(AQ)

󰁨f(γ)dγ.

• The coefficient an of f is essentially the Whittaker coefficient :

an ∼
󰁝

N(Q)\N(AQ)

󰁨f(γαn) · ψ(−γ)dγ. (1.1.1)

Here αn ∈ T (Afin
Q ) = Afin,×

Q is n (considered as a finite idèle, living in PGL2(AQ)), and ψ is

the standard character of AQ = N(A) vanishing on Q and 󰁥Z. The symbol ∼ indicates that
we have omitted a normalizing factor of Archimedean nature; see [Del] Proposition 2.5.3.2
or [Gel] Lemma 3.6 for precise assertions.

We refer to [Del] and [Gel] for detailed derivations of the above dictionary.

1.1.3. Generalization to reductive groups. The notions from the previous section make sense for
general reductive groups G over global fields F . There are automorphic forms, and they have
constant terms indexed by proper parabolic subgroups of G. A cusp form is one with vanishing
constant terms.

Similarly, there are Whittaker coefficients. When our automorphic forms are unramified at finite
places, these coefficients are2 indexed by divisors on3 “Spec” of the ring of integers of the global
field, where these divisors take values in the set Λ̌+ of dominant coweights for G.4

Then there is a natural question, attempting to generalize the naive observation from §1.1.1:
Question. For a non-zero cusp form f on G(AF ), is some Whittaker coefficient of f non-zero?

The easy argument from §1.1.1 can readily be adapted to the adèlic setting to give a positive
answer for (P )GL2. This argument adapts more generally to GLn: this is related to the strong
multiplicity one theorem, and uses the special mirabolic subgroup of GLn.

However, the answer is no for general G. It fails already for SL2 for silly5 reasons, and it fails for
GSp4 for serious reasons (see [HPS]). There is a conjecture due to Shahidi that a tempered L-packet
of automorphic representations has a unique representative with non-zero Whittaker coefficients
(see the discussion in the introduction to [Sha]).

1More conceptually, the constant term of f should be thought of as a function on T (Q)\T (AQ)/T (Aint
Q ) ≃ R>0.

It happens to be constant in the holomorphic case; but this good fortune does not occur for non-holomorphic modular
forms, where one needs to consider the constant term as a function on R>0.

2This is not quite accurate; we can get away with it only because of the simplicity of holomorphic modular forms.
One needs to also allow the insertion of elements of the group at infinite places in general; this is serious for Maass
forms, or automorphic forms for other groups. The easiest correction is to consider Whittaker functions on G(A)
rather than mere Whittaker coefficients (which are values of the Whittaker function at particular adèlic points; the
above formula gives the values when we put the identity at the infinite place of Q).

To simplify the exposition (particularly since we will eventually be concerned with everywhere unramified auto-
morphic forms/ sheaves over function fields, we do not further emphasize this (important) point.

3The scare quotes indicate that for a global field of positive characteristic, we take the corresponding smooth
projective curve.

4For instance, for G = PGL2, Λ̌
+ = Z≥0. Note that a Z≥0-valued (i.e., effective) divisor on Spec(Z) is equivalent

data to a number n ≥ 1: D =
󰁓

kp[p] corresponds to n =
󰁔

pkp .
5Namely, the torus does not act transitively on the set of characters.
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Roughly speaking, one can think of this failure as the source of the many complications in the
theory of automorphic forms for reductive groups beyond GLn, and for much of our ignorance in
the subject.

1.1.4. A vague statement of the problem. Broadly, the problem we consider is: where do Whittaker
coefficients of automorphic forms come from for G ∕= GLn? In this paper, we completely settle the
corresponding problem in the setting of global geometric Langlands in characteristic 0.

We describe the geometric context in more detail below. But here, we state one long-standing
motto: there are no L-packets in geometric Langlands. There are various ways of arriving at this
conclusion, but one is simply that it is forced by the geometric Langlands conjectures, as reviewed
below.

So we may formulate the mystery stated above: why are there no L-packets geometrically? This
question has been the subject of speculation in the geometric Langlands community for some time
now, with many possible answers having been suggested. The purpose of this paper is to provide a
first definite answer to this question.

1.2. The geometric setting. We now survey the role of Whittaker coefficients in geometric Lang-
lands and state some of our main results.

1.2.1. Notation. We work over a field k of characteristic zero. We fix X a smooth, geometrically

connected projective curve over k.6

We let G be a split reductive group over k with Langlands dual group Ǧ. We let B be a Borel
in G with unipotent radical N . We let e.g. BunG denote the moduli stack of G-bundles on X, and
LSǦ the moduli stack of Ǧ-bundles on X with connections, i.e., de Rham Ǧ-local systems on X.

1.2.2. The geometric Langlands conjecture (after Beilinson-Drinfeld, Arinkin-Gaitsgory, and Gaits-
gory). Recall the statement of the geometric Langlands conjecture of Beilinson-Drinfeld (given in
this form by Arinkin-Gaitsgory [AG]):

LG : D(BunG) ≃ IndCohNilpspec(LSǦ) ≃ Ind(CohNilpspec(LSǦ)).

Here we refer to [AG] for discussion of the right hand side; we simply say that CohNilpspec(LSǦ) ⊆
Coh(LSǦ) is a certain subcategory of the DG (derived) category of bounded complexes of coherent
sheaves; we are denoting by Nilpspec ⊆ T ∗[−1] LSǦ the spectral global nilpotent cone considered in
[AG].

1.2.3. There are many compatibilities the above equivalence is supposed to satisfy; see [Gai6] for
an overdetermined list. Here is a key one, called the Whittaker normalization.

There is a functor:

coeff : D(BunG) → Vect

of first7 Whittaker coefficient ; we remind that in the categorical framework, vector spaces are
considered analogues of numbers in the classical setting. This functor is a precise geometric analogue

6In the body of the paper, we assume at times that X admits a k-point x ∈ X(k). This is a lazy crutch; our main
theorems are verifiable after finite degree field extensions. Therefore, in the body of the paper, we sometimes allow
ourselves to ignore the fact that this is a genuine additional hypothesis on X if k is not algebraically closed.

7We are ambivalent about the indexing here, but use this terminology in the introduction. See Remark 5.2.1.2.
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of the integral (1.1.1) for n = 1. Roughly speaking, one pulls back to BunN , tensors with an Artin-
Schreier/exponential sheaf (relative to a non-degenerate character), and then pushes forward to a
point; we refer to §5 for details (including normalizations on cohomological shifts).

Then the diagram:

D(BunG) IndCohNilpspec(LSǦ)

Vect

LG≃

coeff Γ(LSǦ,−)

is supposed to commute.

Remark 1.2.3.1. For an irreducible local system σ ∈ LSǦ(k), let δσ denote the skyscraper sheaf
at this point. Geometric Langlands predicts that there is an object Autσ ∈ D(BunG) correspond-
ing to it, which is the corresponding automorphic eigensheaf. The Whittaker normalization here
should yield an isomorphism coeff(Autσ) ≃ k ∈ Vect, pinning down all ambiguity of the choice of
eigensheaf. This may be compared to the classical setting of modular forms, where one normalizes
a cuspidal eigenform by requiring a1 = 1.

1.2.4. In the geometric setting, there are additional Whittaker coefficients, analogous to the an for
other n’s. The reader may turn to §5 for the construction of functors coeffD : D(BunG) → Vect
indexed by Λ̌+-valued divisors D on X; for a smarter (and more conceptual) construction, see
[Gai6] §5.8.

Below, we describe an alternative construction that is more easily stated.

Gaitsgory has shown [Gai2] that there is a canonical action of QCoh(LSǦ) on D(BunG) refining
the Hecke action; this is the spectral decomposition of the automorphic category D(BunG).

It follows that there is a unique QCoh(LSǦ)-linear functor functor:

coeffenh : D(BunG) → QCoh(LSǦ)

fitting into a commutative diagram:

D(BunG) QCoh(LSǦ)

Vect.

coeffenh

coeff
Γ

We provide details in §10.2. As in loc. cit., coeffenh “knows” all Whittaker coefficients of automorphic
sheaves simultaneously (while also encoding reciprocity laws between them).

We see that the geometric Langlands equivalence must fit into a commutative diagram:

D(BunG) IndCohNilpspec(LSǦ)

QCoh(LSǦ)

LG≃

coeffenh Ψ

where the functor Ψ is almost an equivalence (see [Gai4], [AG]).
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1.2.5. A strategy for proving the geometric Langlands equivalence. The functor Ψ displayed above
is fully faithful on compact objects (it induces the embedding CohNilpspec(LSǦ) ⊆ Coh(LSǦ) ⊆
QCoh(LSǦ)).

Therefore, proving the geometric Langlands equivalence amounts to showing:

• coeffenh is fully faithful on the subcategory D(BunG)
c ⊆ D(BunG) of compact objects.

• coeffenh maps compact objects of D(BunG) onto CohNilpspec(LSǦ).

In [Gai6], Gaitsgory outlines a strategy for proving these claims for GLn (cf. below), with a strat-
egy that should adapt for general reductive G assuming some knowledge of Whittaker coefficients
here. The ideas are complicated, involving degenerate Whittaker coefficients, Eisenstein series, and
Kac-Moody representations. However, the basic idea in the strategy is that stated above.

Remark 1.2.5.1. The above strategy may be compared to Soergel’s bimodule theory via the analo-
gies:

Soergel theory Geometric Langlands
The functor V The functor coeff

Endomorphismensatz The existence of coeffenh

Struktursatz Fully faithfulness of coeffenh on D(BunG)
c

We remark that the bottom right entry of this table remains conjectural (beyond GLn, see
below).

1.2.6. The GLn case. It is known8 (cf. [Gai6] “Quasi-Theorem” 8.2.10, [Ber1]) that coeffenh is fully
faithful on the category Dcusp(BunGLn) of cuspidal D-modules in the GLn case. The argument
imitates the proof of the multiplicity one theorem for GLn for automorphic forms, going through
the mirabolic subgroup.

1.2.7. The general case. However, as for automorphic forms, we have been unable to prove anything
about Whittaker coefficients for general reductive groups G.

This failure has stood as a point of some concern. For instance, number theorists often express
consternation that the geometric situation is conjectured to be so different from the arithmetic sit-
uation, where cuspidal automorphic representations commonly are non-generic. One imagines that
if geometric Langlands fails, it fails because the nice predictions regarding Whittaker coefficients
are incompatible with some pathological example for automorphic sheaves.

Our first main theorem states that this does not occur:

Theorem A. The functor:

Dcusp(BunG) ⊆ D(BunG)
coeffenh

−−−−−→ QCoh(LSǦ)

is conservative. That is, if F ∈ Dcusp(BunG) with coeffenh(F) = 0, then F = 0.

Remark 1.2.7.1. Applying the definition of cuspidal D-modules (and the existence of the left adjoint
Eisenstein functors Eis!), the above is equivalent to the assertion that D(BunG) is generated under
colimits by Eisenstein series D-modules for proper parabolic subgroups and Poincaré series D-
modules; we refer to [Gai6] for the definitions.

8In geometric Langlands, this style of argument has a long lineage that we do not survey here. We refer to [FGV2]
as one key example.
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In other words, Theorem A asserts that the geometric representation theorist’s favorite methods
for producing automorphic D-modules are in fact exhaustive.

Remark 1.2.7.2. To match our knowledge in the GLn case, we would want to know that the functor
of Theorem A is fully faithful; this paper does not settle that question.

1.2.8. Tempered D-modules. In fact, we prove a stronger result than Theorem A; it is more technical
to state, but optimal.

Fix a point x ∈ X(k). Using derived Satake, Arinkin-Gaitsgory defined a subcategory:

D(BunG)
anti–temp ⊆ D(BunG)

of anti-tempered objects; the terminology is taken from [Ber2] §2. The embedding here admits a
left adjoint. There is a certain quotient category D(BunG)

temp.

A priori, the above definitions depend on the point x ∈ X(k); in [FR], we showed the category
is actually independent of this choice in a strong sense; this justifies omitting x from the notation.

According to Arinkin-Gaitsgory, under geometric Langlands, the quotient D(BunG)
temp should

identify with the quotient QCoh(LSǦ) of IndCohNilpspec(LSǦ).

It is straightforward to see that coeffenh factors through D(BunG)
temp. Therefore, by the logic

of §1.2.5, one expects the induced functor:

D(BunG)
temp → QCoh(LSǦ)

to be an equivalence; this is the tempered geometric Langlands conjecture.

We prove:

Theorem B. The above functor

coeffenh : D(BunG)
temp → QCoh(LSǦ)

is conservative.

This result appears as Theorem 10.3.3.1 in the body of the paper.

By [Ber2], the composition:

Dcusp(BunG) ⊆ D(BunG) → D(BunG)
temp

is fully faithful (more precisely, Beraldo shows Dcusp(BunG) is left orthogonal to D(BunG)
anti–temp).

Therefore, Theorem B implies Theorem A. We focus our attention on the latter result in the
remainder of this introduction.

1.3. Informal overview. Our work contains other new, intermediate results of independent inter-
est; we detail them later in the introduction. First, we informally describe their context, and the
overall setting for our proof of Theorem B.
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1.3.1. First, the recent work [AGKRRV1] provides a new set of tools for studying D(BunG). In
effect, §20 of loc. cit. reduces the study of D(BunG) to its subcategory ShvNilp(BunG) of D-modules
with nilpotent singular support on BunG.

The methods of [AGKRRV1] allow us to reduce Theorem B to instead showing:

Theorem C. The composition:

ShvNilp(BunG)
temp ⊆ D(BunG) → QCoh(LSǦ)

is conservative.

The reader can find the details on the reduction of Theorem B to Theorem C in §10.3.
A nice feature of ShvNilp(BunG) is that its objects are (colimits of) holonomic D-modules with

regular singularities. These are the objects with which the Riemann-Hilbert correspondence is
concerned, so one may use additional sheaf-theoretic tools to study them, see e.g. [KK], [Gin], and
[KS]; broadly speaking, these additional tools are parts of microlocal geometry.

1.3.2. Irregular singular support. Let us return to the case where G = PGL2. Recall from Remark
1.1.1.1 that modular forms with vanishing Whittaker coefficients are constant. In the geometric
setting, one similarly can show that D(BunPGL2)

anti–temp consists of objects with constant coho-
mologies, equivalently (by simple-connectivity in this case), with lisse cohomologies.

One can say this differently: D(BunPGL2)
anti–temp is exactly the category of D-modules with

singular support in the zero section.

Our starting point is the idea that this should generalize: for general G, D(BunG)
anti–temp should

be the category with irregular singular support.

At the very least, we obtain a similar result in the nilpotent setting:

Theorem D. The category ShvNilp(BunG)
anti–temp coincides with ShvNilpirreg(BunG), the subcate-

gory of objects with irregular nilpotent singular support.

We will refine this result in our later discussion. But, roughly speaking, the overall strategy is to
connect both (anti-)temperedness and Whittaker coefficients to microlocal properties of sheaves,
thereby proving Theorem B.

1.4. Results for nilpotent sheaves. We obtain some striking results for Whittaker coefficients
of sheaves with nilpotent singular support, that we describe presently.

1.4.1. Some motivating geometry. Recall that there is a characteristic polynomial map χ : g/G →
g//G; here the left hand side is the stack quotient and the right hand side is the GIT quotient.
The nilpotent cone N is characterized by the formula N/G = χ−1(0). The Kostant slice defines a
section of χ. Clearly the Kostant slice intersects N/G in a single point.

The above story has a global analogue. The role of g/G is played by HiggsG = T ∗ BunG, the
space of Higgs bundles for G. The role of g//G is played by the Hitchin base, while χ is replaced
by the Hitchin fibration. The role of N/G is played by the global nilpotent cone Nilp ⊆ T ∗ BunG,
which is by definition the zero fiber of the Hitchin fibration. The Kostant slice admits a global
analogue (called g–0-opers in [BD] §3.1.14).

Therefore, the global Kostant slice intersects Nilp at a distinguished point, which we label fglob

in §2.5.6. One can show that this point lies in the smooth locus of Nilp; therefore, there is a unique
irreducible component NilpKos of Nilp containing fglob.
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We remark that when the genus of the curve is > 1, the Kostant slice and Nilp are both
Lagrangians in T ∗ BunG.

1.4.2. Finally, we make one more remark, connecting the above to Whittaker coefficients.

To state it precisely, we recall that it is not quite BunN that appears in the definition of coeff,
but a twisted form of BunN that we denote BunΩN in §5. This form of BunΩN has a canonical map ψ :
BunΩN → A1, which is the Whittaker character. This defines a Lagrangian dψ : BunΩN → T ∗ BunΩN .
We may compose this Lagrangian with the natural Lagrangian correspondence between T ∗ BunΩN
and T ∗ BunG; tracing the definitions, the resulting Lagrangian in T ∗ BunG is the global Kostant
slice.

In this sense, we may view the global Kostant slice as a microlocal shadow of the functor coeff;
physicists would say that the global Kostant slice is the brane corresponding to the functor coeff.

1.4.3. Statement of the main result. We can now formulate:

Theorem E. The cohomologically shifted functor of first Whittaker coefficient:

coeff[dimBunG] : ShvNilp(BunG) → Vect

is t-exact and commutes with Verdier duality. Moreover, for constructible F ∈ ShvNilp(BunG), the

Euler characteristic of coeff[dimBunG](F) equals the order of the characteristic cycle at NilpKos.

We hope the geometry described above adequately has motivated this result. It is obtained by
combining Theorem 6.1.2.1, Theorem 8.0.0.1, and Theorem 8.2.1.1 in the body of the text.

1.4.4. A more refined picture. The above discussion can be made more precise as follows. Suppose
Yan is a complex manifold, Λ ⊆ T ∗Yan is a closed, conical holomorphic Lagrangian; let Λsm ⊆ Λ be
the smooth locus.

Kashiwara-Schapira9 [KS] associate to a sheaf F on Yan with singular support in Λ a certain local
system µΛ(F) on Λsm, which is a form of the microlocalization of F.

The fibers of µΛ(F) at points of Λsm are called microstalks, and may be computed by suitably
transverse vanishing cycles of F. In particular, formation of microstalks is t-exact (up to shift) and
commutes with Verdier duality. In addition, the Euler characteristics of these fibers are the degrees
of the characteristic cycle of F at the given point.

Therefore, our motivation is that for sheaves with nilpotent singular supports (which, we remind,
are automatically regular singular, so have Betti cousins), coeff is the microstalk at fglob.

Remark 1.4.4.1. This idea is quite natural, and indeed, when we began discussing this work with
others, we learned that it had been considered some time ago by others: Drinfeld advertised the idea
some 20 years ago, and Nadler advertised it some 10 years ago. We are not aware of any recorded
source for it.

We understand that David Nadler and Jeremy Taylor have a proof of this precise assertion,
directly proving that coeff is computed by the microstalk at fglob, using topological methods; this
is in contrast to our methods, which use special properties of the automorphic setting.10

9This assertion is difficult to track in the stated form. A close result is [KS] Corollary 7.5.7, as well as the
subsequent remark.

10Since the first draft of this paper was circulated, the work of Nadler-Taylor appeared: see [NT]. Their work yields
an alternative proof of Theorem E that is topological in nature and does not use [Lin].
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Remark 1.4.4.2. We do not actually prove that Whittaker coefficients of nilpotent sheaves actually
are microstalks. What we prove is Theorem E as stated, which informally asserts that the coefficient
functor has all the same good properties as the microstalk functor would.

Although the geometric picture described above is quite simple and feels general, we use the
specific tools of geometric representation theory; specifically, we use a recent result of Kevin Lin
from [Lin]. See §8 for details.

1.4.5. Comparison to arithmetic ideas. We note that similar principles have appeared previously in
harmonic analysis. See for example [Rod] §IV Remarque 2 or [MW]. The assertion is that (under
favorable hypotheses), the multiplicity of the Fourier transform of a character of a representation
of a p-adic reductive group at the regular nilpotent orbit is the dimension of its Whittaker model.

It is quite enticing to make this analogy more precise.

1.5. A result for Hecke functors. We now state another intermediate result of independent
interest.

1.5.1. Background. Recall that Hecke functors are not t-exact on BunG. For instance, a Hecke
functor for a representation V acting on the constant sheaf of BunG (which is in a single degree by
smoothness of BunG) tensors this constant sheaf with a cohomologically sheared version of V .

However, Hecke functors are not too far from exact either. For instance, one classically expects
cuspidal perverse eigensheaves for irreducible local systems (and see Theorem G below). By defini-
tion, Hecke functors transform such objects by tensoring with a (classical) vector space.

1.5.2. Statement of the result. The above discussion is suggestive of what the obstruction to exact-
ness is in general:

Theorem F. (1) There is a unique t-structure on D(BunG)
temp for which the projection D(BunG) →

D(BunG)
temp is t-exact.

(2) Let V ∈ Rep(Ǧ)♥ be a representation. Then for x ∈ X, the induced Hecke functor:

D(BunG)
temp → D(BunG)

temp

is t-exact.
(3) More generally, for V as above, the parametrized Hecke functor:

HV : D(BunG)
temp → D(BunG)

temp ⊗D(X)

is t-exact (up to shift by 1 = dimX).

See Theorem 7.5.0.1 and Theorem 7.7.1.1 in the body of the paper.

The proofs of the first two statements are quite direct, but seem not to have been previously
observed. The third is a minor variant, except it relies on the independence of point in the definition
of temperedness (in other words: in (2), it is important that the implicit point x ∈ X(k) in the
definition of the tempered category be taken to be the same as where the Hecke functors are taken).
The argument from [FR] works for ShvNilp(BunG) in the ℓ-adic setting, but we are not sure how to
adapt it to the full category Shv(BunG) in this setting. If so, our methods would yield a proof of
Theorem F in the ℓ-adic case as well.

Remark 1.5.2.1. Besides the ℓ-adic issue raised above, our argument provides an alternative to
[Gai1] §2.12. We highlight that the construction in loc. cit. applies only for GLn, and is the major
technical point in that paper.
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More explicitly: the main result of [Gai1] is the formation of a certain quotient of D(BunGLn)
with certain favorable properties, including that Hecke functors act exactly on it. The construction
in loc. cit. does not make sense for general G. We have provided an alternative (genuinely different)
construction of a quotient category with the same favorable properties. Moreover, our arguments
are substantially more direct than those in [Gai1].

With that said, our argument in [FR] uses Gaitsgory’s generalized vanishing conjecture from
[Gai2]. As explained in [Gai2], this result immediately implies the vanishing conjecture considered
in [Gai1]. For this reason, we cannot say that we have found a better understanding of the (not
generalized) vanishing conjecture, only of the intermediate results used in [Gai1].

1.6. A remark on tempered Langlands. We now describe a surprising consequence of our work
for the geometric Langlands equivalence.

Roughly speaking, one is commonly taught that geometric Langlands is an equivalence of derived
categories, not abelian categories. We explain that this is in some sense wrong; most of geometric
Langlands can actually be understood as an equivalence of abelian categories.

1.6.1. It is well-known that the geometric Langlands equivalence is emphatically not exact.

First, in geometric class field theory, one finds D(BunGm) ≃ QCoh(LSGm). The functor is a
variant on Fourier-Mukai for abelian varieties; experimentally, one finds the latter is far from exact.

Second, for non-abelianG, the constant sheaf on BunG should map to an object of IndCohNilpspec(LSǦ)
concentrated in cohomological degree −∞ (i.e., in degrees ≤ −n for all n).

However, one expects some exactness properties. For instance, there are supposed to exist per-
verse eigensheaves for irreducible local systems (and see Theorem G); these correspond (up to shift)
to skyscraper sheaves at smooth, irreducible points of LSǦ.

1.6.2. We recall the setting of restricted geometric Langlands considered in [AGKRRV1].

Here we expect an equivalence:

ShvNilp(BunG) ≃ IndCohNilpspec(LS
restr
Ǧ

).

The space LSrestr
Ǧ

is defined as in loc. cit.

The tempered analogue should instead find an equivalence:

ShvNilp(BunG)
temp

Ltemp
G≃ QCoh(LSrestr

Ǧ
)

We claim that our results imply this (conjectural) equivalence must be t- exact up to shift. Perhaps
more concretely, this means that the composition:

ShvNilp(BunG) ≃ IndCohNilpspec(LS
restr
Ǧ

)
Ψ−→ QCoh(LSrestr

Ǧ
)

should be t-exact.

Indeed, let x ∈ X(k) be a point; this defines a Ǧ-torsor on LSrestr
Ǧ

. By [AGKRRV1] Theorem

1.4.5, the total space of this torsor is a union of ind-affine formal schemes by an action of Ǧ.

It follows that its functor Γ! to Vect (considered in [AGKRRV1] §7) is t-exact, and that an object
G ∈ QCoh(LSrestr

Ǧ
) lies in degree 0 if and only if Γ!(G ⊗ EV,x) ∈ Vect is in degree 0 for all V ; here

EV,x is the vector bundle on LSrestr
Ǧ

defined by the pair (V, x).
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On the other hand, for F ∈ D(BunG)
temp,♥, we expect Γ!(Ltemp

G (F) ⊗ EV,x) ≃ coeff(HV,x 󰂏 F);

the latter lies purely in degree dimBunG by Theorem E and Theorem F, so Ltemp
G (F) must lie in

degree dimBunG as well.

Remark 1.6.2.1. We similarly expect that the tempered Betti Langlands equivalence conjecture in
[BZN] is t-exact; this corresponds to fact that the Betti moduli stack of local systems is the quotient
of an affine scheme by an action of Ǧ.

1.7. Application to Hecke eigensheaves. We apply our results to show the following result,
which can be thought of as an unconditional realization of the philosophy of §1.6.
Theorem G. Let σ be an irreducible Ǧ-local system on X.

(1) Any Whittaker-normalized11 Hecke eigensheaf Fσ with eigenvalue σ is perverse. Moreover,
at least if k is algebraically closed, Whittaker-normalized Hecke eigensheaves exist.

(2) If σ is very irreducible in the sense of §11.1.2, the restriction of Fσ to each connected
component of BunG is irreducible.

The reader will find this result as Theorem 11.1.4.1; we also refer to Remark 11.1.4.3 where
it is noted that Whittaker-normalized eigensheaves are semi-simple for any (possibly not very)
irreducible local system.

We note that this answers an old question. Namely, from the point of view of the categorical geo-
metric Langlands conjectures, it is not clear why eigensheaves should be perverse or irreducible. We
show that this follows from exactness (and conservativeness) properties of the Whittaker functor.

We remark that the existence of Hecke eigensheaves stated above is proved via opers and is
disjoint from the methods of our paper; we have relegated the argument to Appendix A. Our
contributions are more to the structure of (normalized) eigensheaves, and we include the existence
argument for the sake of completeness.

1.8. Outline of the argument. We now outline our argument for Theorem B. The details are
provided in §10.

1.8.1. First, we reduce to the corresponding statement for ShvNilp(BunG) using the technology of
[AGKRRV1].

1.8.2. Let N̊ilp ⊆ Nilp denote the open of generically regular nilpotent Higgs bundles.

We prove:

Theorem H. Any object F ∈ ShvNilp(BunG) that does not lie in ShvNilp(BunG)
anti–temp has SS(F)∩

N̊ilp ∕= ∅.

This result is our Theorem 4.1.0.1. The proof reduces to a parallel statement for the flag variety of
the finite dimensional group G. We translate this to a statement about Lie algebra representations
via Beilinson-Bernstein. Finally, we apply a theorem of Loseu [Los] regarding associated varieties
of g-modules (and proved using ideas reminiscent of microlocal differential operators).

We wish to be clear: this is not the proof of the theorem written in The Book (in the sense of
Erdős); our argument is not geometric. It would be far better to have a proof that relies only on
standard properties of singular support and adapts to the ℓ-adic setting.

11See Remark 11.1.4.4 for our precise convention.
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1.8.3. Next, we have:

Theorem I. Suppose G has connected center (otherwise a mild additional twist is needed, see

the body of the paper). Suppose F ∈ ShvNilp(BunG) satisfies SS(F) ∩ N̊ilp ∕= ∅. Then for a point

x ∈ X(k), there exists a representation V λ̌ ∈ Rep(Ǧ)♥ such that NilpKos ⊆ SS(HV λ̌,x 󰂏 F).

This result appears in our work as Theorem 9.1.0.1. The proof uses basic geometry of the global
nilpotent cone and standard properties of singular support.

1.8.4. Finally, we deduce the claim as follows, assuming the center of G is connected to simplify
the discussion.

Suppose F ∈ ShvNilp(BunG) does not lie in ShvNilp(BunG)
anti–temp. We need to show that

coeffenh(F) ∕= 0.

By Theorem H, we have SS(F)∩N̊ilp ∕= ∅. By definition, it suffices to show that coeff(HV λ̌,x󰂏F) ∕=
0 for some V λ̌. Therefore, by Theorem I, we are reduced to showing that coeff(F) ∕= 0 when
NilpKos ⊆ SS(F).

But now the argument follows from Theorem E: by t-exactness, we are reduced to the case where
F is perverse (i.e., constructible and concentrated in cohomological degree 0). In that case, the Euler
characteristic of coeff(F) equals the degree of CC(F) at NilpKos, which is non-zero by assumption.

1.8.5. We remark that Theorem D follows easily, and therefore do not prove it in the body of the
paper. Here is the argument:

• ShvNilpirreg(BunG) ⊆ ShvNilp(BunG)
anti–temp by Theorem H, and ShvNilp(BunG)

anti–temp

equals Ker(coeffenh |ShvNilp(BunG)) by Theorem C.

• By the above, it suffices to show Ker(coeffenh |ShvNilp(BunG)) ⊆ ShvNilpirreg(BunG). The proof
of Corollary 10.1.1.2 shows exactly this.

1.8.6. Regarding the ℓ-adic setting. We expect analogues of each of the theorems above to hold
for the setting of ℓ-adic sheaves considered in [AGKRRV1]. In particular, we believe our overall
strategy is the right one.

However, for each12 of the above theorems, we at some point in the argument use specifics of D-
modules, particularly regular holonomic D-modules/Betti perverse sheaves. This is most egregious
for Theorem H, but is true at some point for every one of these results.

1.9. Acknowledgements. We are happy to thank Dima Arinkin, Sasha Beilinson, David Ben-Zvi,
Dario Beraldo, Gurbir Dhillon, Vladimir Drinfeld, Pavel Etingof, Tony Feng, Dennis Gaitsgory, Tom
Gannon, David Kazhdan, Kevin Lin, Ivan Loseu, Victor Ginzburg, Sergey Lysenko, Ivan Mirkovic,
David Nadler, Nick Rozenblyum, Yiannis Sakellaridis, Will Sawin, Jeremy Taylor, and Yasha Var-
shavsky for generously sharing their ideas, for related collaborations, and for their encouragement.

S.R. was supported by NSF grant DMS-2101984.

2. Notation

In this section, we set up some notation that will be used throughout the paper.

12The first two parts of Theorem F are an exception.
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2.1. Categories. We freely use the language of ∞-categories and higher algebra, cf. [Lur1], [Lur2],
[GR2], [GR3].

We understand DG categories as k-linear stable ∞-categories. We let DGCatcont denote the cate-
gory of presentable (in particular: cocomplete) DG categories with morphisms being continuous DG
functors. We freely use Lurie’s symmetric monoidal structure ⊗ on DGCatcont, and the associated
duality formalism.

2.2. Categories of sheaves. Here we set up our notation and conventions for sheaves. We refer
to [GKRV] Appendix A and [AGKRRV1] Appendices D and E for details and proofs of various
assertions.

2.2.1. D-modules. For a prestack Y locally almost of finite type, we let D(Y) denote the DG category

of D-modules on Y, defined as in [GR2]. For a map f : Y → Z, we let f ! : D(Z) → D(Y) denote the
corresponding pullback functor. If f is ind-representable, we let f∗,dR : D(Y) → D(Z) denote the
pushforward functor.

Where defined, we let f! (resp. f
∗,dR) denote the left adjoints to these functors.

2.2.2. For Y an algebraic stack and F ∈ D(Y), we say that F is locally compact if for every affine

scheme S and every smooth map f : S → Y, f !(F) ∈ D(S) is compact.

We remind that compact objects of D(Y) are locally compact, but the converse does not hold.
For example, the constant sheaf on BGm is locally compact but not compact; the same applies
for the constant sheaf on a non-quasi-compact scheme. More generally, any constructible object
(defined as below) is locally compact.

2.2.3. Ind-constructible sheaves. For S an affine scheme of finite type, we let Shv(S)c ⊆ D(S)
denote the subcategory of compact objects that are holonomic with regular singularities. We then
let Shv(S) = Ind(Shv(S)c); this is a full subcategory of D(S).

For Y an algebraic stack, we let Shv(Y) := limS→Y Shv(S) and let Shv(Y)constr := limS→Y Shv(S)
c.

In both circumstances, the limits are taken over affine schemes S mapping to Y and the implied
functors are upper-! functors. Standard arguments allow us to replace the limit by that over the
subcategory of S’s mapping smoothly to Y. It follows that Shv(Y) has a natural t-structure, and
Shv(Y)constr is closed under truncations.

We refer to objects of Shv(Y) as ind-constructible sheaves on Y and objects of Shv(Y)constr as
constructible sheaves on Y.

As in [AGKRRV1] §F.2.5, we have a well-defined Verdier duality equivalence Shv(Y)constr,op ≃
Shv(Y)constr that we denote DVerdier.

Remark 2.2.3.1. Our usage of the notation Shv here is slightly different than e.g. in [AGKRRV1],
where it is meant to express a certain ambivalence about the specific choice of sheaf theory. We
work in the context of D-modules in characteristic 0, so do not share the ambivalence of loc. cit.
With that said, the notation is similar in spirit.

2.2.4. Singular support. When Y is an algebraic stack and Λ ⊆ T ∗Y a closed, conical subscheme, we
let DΛ(Y) ⊆ D(Y) denote the full subcategory of sheaves with singular support in Λ.

Similarly, we let ShvΛ(Y) ⊆ Shv(Y) denote the corresponding full subcategory.

We again refer to [GKRV] §A.3 for definitions.
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For F ∈ D(Y), we let SS(F) ⊆ T ∗Y denote the singular support of F, which is ind-closed in T ∗Y;
cf. [AGKRRV1] §H.1.2. On occasion, for F constructible, we let CC(F) denote the characteristic
cycle of F.

2.3. Lie theory.

2.3.1. Throughout the paper, G denotes a split reductive group over k. We choose opposing Borel

subgroups B,B− ⊆ G with B ∩B− = T a fixed Cartan. We let N (resp. N−) denote the unipotent
radical of B (resp. B−).

We let Λ denote the lattice of weights of G and let Λ̌ denote the lattice of coweights.13 For λ̌ ∈ Λ̌
and µ ∈ Λ, we let (λ̌, µ) ∈ Z denote the pairing of the two. We let Λ+ ⊆ Λ denote the subset of
dominant weights, and similarly for Λ̌+.

We let IG denote the set of nodes for the Dynkin diagram of G. For i ∈ IG, we let αi denote the
corresponding simple root.

We let 2ρ ∈ Λ denote the sum of the positive roots, and similarly for 2ρ̌ ∈ Λ̌.

We let Ǧ denote the Langlands dual group of G, considered as an algebraic group over k.

2.3.2. We let girreg ⊆ g denote the reduced closed subscheme consisting of irregular elements.

We let N ⊆ g denote the nilpotent cone. We let Nirreg := N∩girreg denote the subscheme of irreg-

ular nilpotent elements. We let N̊ ⊆ N denote the open complement to Nirreg, which parametrizes
of regular nilpotent elements.

2.4. Higgs bundles.

2.4.1. We remind that a Higgs bundle (on X, for the group G) is a pair (PG,ϕ) where PG is a

G-bundle and ϕ ∈ Γ(X, gPG
⊗ Ω1

X).

Recall that Higgs bundles form an algebraic stack HiggsG, which can be written as a mapping
stack:

HiggsG := Maps(X, g/G×Gm) ×
Maps(X,BGm)

{Ω1
X}.

We remind that our choice14 of κ0 induces an isomorphism:

T ∗ BunG ≃ HiggsG,

which we take for granted in the sequel.

2.4.2. Globalization. For Λ ⊆ g closed, conical, and stable under the G-action, it is convenient to
denote:

HiggsG,Λ := Maps(X,Λ/G×Gm) ×
Maps(X,BGm)

{Ω1
X}.

Clearly HiggsG,Λ forms a closed substack of HiggsG.

In the special case Λ = N, we let:

Nilp := HiggsG,N .

13Our convention here is opposite to [AGKRRV1].
14More canonically, T ∗ BunG identifies with the variant of HiggsG with g∨ replacing g everywhere. For example,

this applies as well to possibly non-reductive affine algebraic groups.
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To reiterate:

Nilp ⊆ HiggsG = T ∗ BunG is the global nilpotent cone.

(We highlight this in part in acknowledgement that the notation does not make it easy for the
reader to remember which of N and Nilp has to do with g and which has to do with HiggsG.)

2.5. Global nilpotent cone. We now establish some notation relating to Nilp.

2.5.1. Irregular nilpotent Higgs bundles. We define:

Nilpirreg := HiggsG,Nirreg
⊆ Nilp.

This stack parametrizes irregular nilpotent Higgs bundles. Clearly Nilpirreg ⊆ Nilp is a closed
substack.

Example 2.5.1.1. For G = GL2, we have Nilpirreg = BunG, which is embedded in HiggsG as the
zero section.

2.5.2. Generically regular nilpotent Higgs bundles. We let:

N̊ilp ⊆ Nilp

denote the open complement to Nilpirreg. This is the stack of generically regular Higgs bundles.

(We use this terminology because a point ϕ ∈ Nilp lies in N̊ilp if and only if there is a dense open
U ⊆ X over which ϕ is regular nilpotent.)

Example 2.5.2.1. For G = GL2, N̊ilp parametrizes pairs (E,ϕ) where E is a rank 2 vector bundle
and ϕ : E → E⊗ Ω1

X is a non-zero Higgs field with ϕ2 = 0.

2.5.3. Mapping stack notation. Let Y be a stack and let Y̊ ⊆ Y be an open substack.

We let Mapsnondeg(X,Y ⊇ Y̊) denote the prestack with S-points given by maps:

y : XS := X × S → Y

such that there exists an open U ⊆ XS such that:

• U ⊆ XS is schematically dense.15

• U → S is a (necessarily flat) cover.

• y|U factors through Y̊.

(See e.g. [Ras3] §2.9 and [Sch] §2.2.1, where similar constructions are discussed.)

2.5.4. A Springer construction. In the above notation, we now clearly have:

N̊ilp = Mapsnondeg(X,N/G ⊇ N̊/G).

Let n̊ ⊆ n denote the open subscheme of elements of n that are regular as elements of g. For the
reader’s convenience, we remind that if we choose negative simple root vectors fi ∈ n− (for i ∈ IG)
and let f∨

i := κ0(fi,−) : n → A1 denote the corresponding projection onto the simple root space,
then n̊ = ∩i∈IG{f∨

i ∕= 0}.
We now form:

�̊�
Nilp := Mapsnondeg(X, n/B ⊇ n̊/B).

15I.e., for U ⊆ Z ⊆ XS with Z ⊆ XS closed, we necessarily have Z = XS .
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Observe that there are canonical maps:

�̊�
Nilp → N̊ilp

and:

�̊�
Nilp → BunB → BunT .

For a coweight λ̌, we let:

�̊�
Nilp

λ̌

⊆ �̊�
Nilp

denote the inverse image of16 Bunλ̌T along the top map.

It is easy to see17 that the projection:

�̊�
Nilp

λ̌

→ N̊ilp

is a locally closed embedding. We therefore abuse notation in letting N̊ilp
λ̌
denote the corresponding

locally closed subscheme of N̊ilp. Note that every field-valued point of N̊ilp lifts to
�̊�
Nilp because

n/B → N/G is proper and induces an isomorphism n̊/B
≃−→ N̊/G; therefore, the various N̊ilp

λ̌

define a stratification of N̊ilp.

16To be explicit about our conventions, Bunλ̌
T is the component of BunT parametrizing T -bundles PT where

deg(Pµ
T ) = (µ, λ̌) for each weight µ; here P

µ
T is the line bundle (aka Gm-bundle) induced by the map µ : T → Gm.

17Namely, suppose (PG,φ) is an S-point of N̊ilp.
For λ ∈ Λ+, let Pλ

G denote the induced vector bundle and let φλ : Pλ
G → Pλ

G⊗Ω1
X be the corresponding Higgs field.

Because φ is generically regular, note that φλ is nilpotent of order (2ρ̌,λ) + 1; indeed, this reduces to the corre-
sponding fact for a principal nilpotent acting on V λ, and this follows from sl2-representation theory.

We now form:
Image((φλ)(2ρ̌,λ)) ⊆ P

λ
G ⊗ (Ω1

X)⊗(2ρ̌,λ)

and:
L

λ := Image((φλ)(2ρ̌,λ))⊗ (Ω1
X)⊗−(2ρ̌,λ) ⊆ P

λ
G.

If (PG,φ) lifts to a point of N̊ilp
λ̌
, then each Lλ is a line bundle of degree (λ̌,λ) and the quotient Pλ

G/L
λ is also a

vector bundle. Indeed, one verifies that in this case, Lλ is the line subbundle coming from the B-structure on PG in
the Plücker picture.

Conversely, we claim that if Pλ
G/L

λ is S-flat, (P,φ) lifts (on each connected component of S) to some N̊ilp
λ̌
.

Indeed, this hypothesis implies that formation of Image((φλ)(2ρ̌,λ)) commutes with further base change, i.e., that
for every T → S, we have:

Image(((φλ)|T )(2ρ̌,λ)) = Image((φλ)(2ρ̌,λ))|T .
When S is the spectrum of a field, it is easy to see Lλ is a torsion free sheaf of generic rank 1, i.e., a line bundle.
Therefore, by the base-change property, every fiber of the coherent sheaf Lλ is 1-dimensional, so Lλ is a line bundle.

For dominant weights λ, µ, φλ+µ equals (the restriction of) φλ⊗id+ id⊗φµ under the natural map Pλ
G⊗P

µ
G ↩→ P

λ+µ
G .

Therefore, we see that:

(φλ+µ)(2ρ̌,λ+µ) = (φλ ⊗ id+ id⊗φµ)(2ρ̌,λ+µ) = (φλ)(2ρ̌,λ) ⊗ (φµ)(2ρ̌,µ)

It then follows that the Plücker relations hold, so the Lλ’s determine a reduction of PG to B. Clearly the Higgs field

φ is a section of nPB ⊗ Ω1
X because φλ(Lλ) = 0 for each λ. So we have lifted our point to

󰁣
λ̌ N̊ilp

λ̌
.

It follows that
󰁣

λ̌ N̊ilp
λ̌
is a flattening stratification for ⊕Pλ

G/L
λ ∈ QCoh(X × N̊ilp) relative to the (projective)

morphism X × N̊ilp → N̊ilp, or for the coherent sheaf ⊕r
i=1P

λi
G /Lλi for a spanning set of weights λ1, . . . ,λr.

If G has connected center, it follows from the theory of flattening stratifications (and Proposition 2.5.4.1 below)

that for each λ̌, the resulting map from each connected component N̊ilp
λ̌
to N̊ilp is locally closed. The general case

reduces to this one using the homomorphism G → Gad ×Gab for Gab := G/[G,G].
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The following result describes the geometry in more detail:

Proposition 2.5.4.1. Let λ̌ ∈ Λ̌ be a coweight.

(1) N̊ilp
λ̌
is smooth of dimension dimBunG.

(2) Suppose (αi, λ̌) + 2g − 2 < 0 for some i ∈ IG. Then:

N̊ilp
λ̌
= ∅.

(3) Suppose (αi, λ̌) + 2g − 2 ≥ 0 for all i ∈ IG. Then N̊ilp
λ̌
is non-empty.

(4) If G has connected center, then N̊ilp
λ̌
is connected.

In general, let Z = ZG be the center of G, let Z◦ ⊆ Z be the connected component of the
identity, and let Z0 ⊆ Z[G,G] be a (necessarily finite) subgroup surjecting onto Z/Z◦ (e.g.,
one can always take Z0 = Z[G,G]). Then π0(BunZ0) acts transitively on the set of connected

components of N̊ilp
λ̌
(where we are using the natural action of BunZ ⊇ BunZ0 on BunG

and HiggsG).

This result is proved18 in [BD] §2.10.3.
When G has connected center, it follows from the proposition that the irreducible components of

N̊ilp are exactly the closures of the strata N̊ilp
λ̌
; in general this is true up to the action of BunZ0 .

Therefore, we have a map:

c : Irr(N̊ilp) → Λ̌

where Irr(N̊ilp) is the set of irreducible components of N̊ilp; π0(BunZ0) acts transitively on its
fibers. We let Λ̌rel ⊆ Λ̌ denote the image of this map (the notation abbreviates relevant); explicitly,
λ̌ ∈ Λ̌rel if and only if (αi, λ̌) ≥ 2− 2g for all i ∈ IG.

Example 2.5.4.2. Suppose G = GL2. Then for a coweight λ̌ = (d1, d2) ∈ Z2, N̊ilp
λ̌
parametrizes

short exact sequences 0 → L1 → E → L2 → 0 plus a non-zero map ϕ : L2 → L1 ⊗ Ω1
X where

degLi = di; the corresponding Higgs field is:

E → L2 → L1 ⊗ Ω1
X ↩→ E⊗ Ω1

X .

We remark that L1 = Ker(ϕ) and L2 = Image(ϕ) ⊗ Ω1,⊗−1
X can be recovered from the generically

regular nilpotent Higgs field ϕ.

Example 2.5.4.3. To see the subtleties when the center is not necessarily connected, suppose G =

SL2. Then for a coweight λ̌ = d·α̌, N̊ilp
λ̌
parametrizes short exact sequences 0 → L → E → L∨ → 0

plus a non-zero map ϕ : L∨ → L ⊗ Ω1
X where degL = d; the corresponding Higgs field is as in

Example 2.5.4.2.

18In fact, the result in [BD] is formulated in greater generality: it allows for non-regular nilpotent elements as well.
We remark for the sake of comparison that in the notation of [BD] §2.10.3, YC = Y ∗

C for the regular nilpotent conjugacy

class. Similarly, in this regular nilpotent case, the space denoted MC maps to BunT ; its fiber over PT ∈ Bunλ̌
T is󰁔

i∈IG
Γ(X,Pαi

T ⊗ Ω1
X) \ 0; in particular, the fibers are empty or connected, and the condition of some fiber being

non-empty is exactly the numerical condition given in the proposition.

If G is adjoint, then it follows that MC is
󰁣

λ̌∈Λ̌+(
󰁔

i∈IG
Sym(λ̌,αi) X); here Symn X is the nth symmetric power

of X (the moduli of degree n effective divisors). In general, MC modulo the action of BunZ is a union of connected
components in MC,Gad . The calculation of connected components in [BD] §2.10.3 is in terms of π0(MC), and it is
easy to then see that the statement of Proposition 2.5.4.1 (4) actually does follow from the assertion of loc. cit.
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In particular, it follows that L⊗2⊗Ω1
X ≃ O(D) for some effective divisor D, i.e., this line bundle

lies in the image of the Abel-Jacobi map. Thinking of Bunµ2 as the moduli of theta characteristics
(square roots of O), we easily see that Bunµ2 acts transitively on the set of connected components

of N̊ilp
λ̌
. Moreover, in this example, we see that if d = 1− g, this action is simply transitive, while

if d is sufficiently large (so that the Abel-Jacobi map Sym2d+2g−2X → Bun2d+2g−2
Gm

is surjective),

then N̊ilp
λ̌
is connected (so the action of Bunµ2 is transitive but not simply transitive).

2.5.5. Invariants. For later reference, we attach two numerical data to a field-valued point (PG,ϕ) ∈
N̊ilp.

First, we let:

c1(PG,ϕ) ∈ πalg
1 (G) := Λ̌/Z∆

denote the first Chern class of PG (cf. [BD] §2.1.1). We explicitly say: there is no dependence on ϕ,
and this invariant behaves well in moduli (it is locally constant on BunG).

Second, we define the discrepancy divisor of (PG,ϕ), which is a Λ̌+
Gad-valued divisor disc(PG,ϕ)

on X, (for Λ̌Gad being coweights of the adjoint group Gad of G) as follows. First, as above, by
generic regularity (and the valuative criterion of properness), this point lifts uniquely to a map
X → n/(B × Gm), where the underlying map X → BGm is given by the canonical bundle. We
have a projections n/B ×Gm → A1/Gm corresponding to projections to simple coroot spaces. By
assumption, each induced map:

X → A1/Gm

sends the generic point ofX to the open point ofA1/Gm. Equivalently, we have obtained (Z-valued)
effective divisors disci(PG,ϕ) on X for each i ∈ IG. As the map:

Λ̌Gad

λ̌ 󰀁→(λ̌,αi)i∈IG−−−−−−−−−→ ⊕
i∈IG

Z

is an isomorphism, we see that there is a unique divisor disc(PG,ϕ) as above such that (disc(PG,ϕ),αi) =
disci(PG,ϕ).

Finally, we observe that for (PG,ϕ) ∈ N̊ilp
λ̌
, we can explicitly compute the above invariants.

Specifically, c1(PG,ϕ) is the image of λ̌ in πalg
1 (G). Second, we have:

deg(disc(PG,ϕ)) = λ̌+ (2g − 2)ρ̌ ∈ Λ̌+
Gad . (2.5.1)

Here λ̌ ∈ Λ̌Gad is the image of λ̌ under the natural map Λ̌ → λ̌Gad .

Remark 2.5.5.1. As Λ̌ → πalg
1 (G) × Λ̌Gad is injective,19 we can recover the invariant λ̌ of (PG,ϕ)

from c1(PG,ϕ) and deg(disc(PG,ϕ)).

Remark 2.5.5.2. The discrepancy divisor is a more natural indexing tool than λ̌ itself. For example,

for λ̌ ∈ Λ̌ to be relevant is equivalent to saying λ̌+ (2g − 2)ρ̌ is a dominant coweight for Gad.

Remark 2.5.5.3. Observe that deg(disc(PG,ϕ)) always lies in the image of Λ̌ → Λ̌Gad ; indeed, this
follows from (2.5.1) as (2g − 2)ρ̌ = (g − 1) · 2ρ̌ lifts.

Example 2.5.5.4. In the setting of Example 2.5.4.2, c1(E,ϕ) is the degree of E, while the discrepancy
divisor is the divisor of zeroes of the map ϕ.

19It is an isomorphism on tensoring with Q, and Λ̌ is of course torsion-free.



NON-VANISHING OF GEOMETRIC WHITTAKER COEFFICIENTS FOR REDUCTIVE GROUPS 21

2.5.6. Everywhere regular Higgs fields and the Kostant component. We let N̊ilp
reg

denote the map-
ping space:

Maps(X, N̊/G).

Clearly N̊ilp
reg ⊆ N̊ilp is open.

Let Zf ⊆ G denote the stabilizer subgroup of some regular nilpotent f ∈ N̊. Because G acts

transitively on N̊, we have N̊ilp
reg

= BunZf
. Clearly the center ZG of G embeds into Zf ; recall that

ZG maps isomorphically onto the reductive quotient of Zf ; therefore, N̊ilp
reg

is smooth.

The Kostant slice defines a base-point fglob ∈ N̊ilp
reg

. Explicitly, the point fglob is given by the

G-bundle Pcan
G (induced from Ω⊗ 1

2 via −2ρ̌ : Gm → T → G) with its natural regular nilpotent
Higgs bundle.

We let NilpKos ⊆ N̊ilp
reg

denote the connected component containing fglob. We have:

NilpKos ⊆ N̊ilp
(2−2g)ρ̌

with equality when G has connected center.

Remark 2.5.6.1. The distinguished component NilpKos plays an outsized role in this work.

Remark 2.5.6.2. We remark that (PG,ϕ) ∈ N̊ilp lies in N̊ilp
reg

if and only if disc(PG,ϕ) = 0.

Assuming the center of G is connected, it additionally lies in N̊ilp
Kos

if and only if c1(PG,ϕ) =
c1(−ρ̌(Ω1

X))

2.6. Tempered D-modules.

2.6.1. Local formalism. Fix x ∈ X(k) a point. Let Hsph
x denote the spherical Hecke category based

at this point.

For D be a module category for H
sph
x . We refer to [Ber2] §2 for a definition of the categories

Dx– anti–temp and Dx– temp; our notation is the same as [Ber2] §2.4.1, except that we include the
dependence on the point x in the notation. We remind that Dx– anti–temp ⊆ D is a certain full
subcategory, and the embedding admits a left adjoint. Then Dx– temp is the quotient D/Dx– anti–temp

in DGCatcont; the projection D → Dx– temp admits a fully faithful left adjoint.

2.6.2. Global setting. The above discussion applies in particular for D = D(BunG).

The main result of [FR] asserts that D(BunG)
x– anti–temp and D(BunG)

x– temp are independent of
the choice of x (in a strong sense). Therefore, we often write D(BunG)

anti–temp and D(BunG)
temp

to indicate this category.

On the other hand, we sometimes include the point x in the notation when we are performing a
particular manipulation at the point.

We refer to objects of D(BunG)
anti–temp as anti-tempered D-modules on BunG, and objects of

D(BunG)
temp as tempered D-modules on BunG.

Although we can think of D(BunG)
temp as a subcategory of D(BunG) (via the left adjoint

referenced above), we generally consider it rather as a quotient category. Roughly speaking, the
quotient functor is better behaved.

2.7. Normalizations regarding exponential sheaves and characters.
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2.7.1. We let exp ∈ D(A1) denote the exponential D-module, normalized to live in cohomological
degree −1, i.e., the same degree as the dualizing sheaf ωA1 . This object is a multiplicative sheaf
with respect to upper-! functors.

2.7.2. At various points in the text, we consider characters ψ : N → Ga, or loop group analogues

with N replaced by I̊ (the radical of Iwahori) or the loop group N(K). These are always assumed
to be non-degenerate in the appropriate sense. Precisely:

• For N , the map Lie(ψ) : n → k should send each Chevalley generator ei ∈ n (i ∈ IG) to a
non-zero number.

• For I̊, the map I̊ → Ga should be the composition of the previous non-degenerate character
N → Ga with the projection I̊ → N (so this is non-degenerate in the standard Whittaker
sense, but not the affine Kac-Moody sense).

• For N(K), the map N(K) → Ga should have conductor 0 and be non-degenerate in the
standard sense.

For Y with a G-action, we write D(Y)N,ψ ⊆ D(Y) to mean the category of D-modules that are

twisted N -equivariant against ψ!(exp); similarly for I̊ and N(K).

Part 1. Singular support and temperedness

3. Irregular singular support in finite dimensions

In this section, we study a version of irregular singular support for G-spaces. Our main result is
Theorem 3.1.2.1, which we prove by reduction to [Los].

This material is used in §4, and may safely be skipped at the first pass.

3.1. G-irregularity.

3.1.1. Let Y be an algebraic stack locally of finite type and equipped with a G-action.

We obtain a moment map µ : T ∗Y → g∨ ≃ g. We define:

DG– irreg(Y) := Dµ−1(girreg)(Y).

In other words, a D-module F lies in DG– irreg(Y) if for every point (y, ξ) ∈ SS(F), µ(y, ξ) is an
irregular element of g.

We let ShvG– irreg(Y) := Shv(Y) ∩DG– irreg(Y).

Remark 3.1.1.1. We use the notation G– irreg here rather than simply irreg to reserve the latter
for the global context considered in §4.

3.1.2. We can now state:

Theorem 3.1.2.1. Let Y be an algebraic stack locally of finite type with a G-action. Then the
Whittaker averaging functor:

ShvG– irreg(Y)
B− → D(Y)B

− Avψ!−−−→ D(Y)N,ψ

is identically zero.

3.2. A statement for g-modules. Below, we fix a G-invariant isomorphism g ≃ g∨ for conve-
nience.
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3.2.1. Singular support. Let M ∈ g–mod♥ be finitely generated. Recall that we may choose a good
filtration on M (relative to the PBW filtration on U(g)); the reduced support of its associated
graded is a well-defined closed conical subscheme SS(M) ⊆ g∨ ≃ g, which we call the singular
support of M . We remind that this construction is often instead called the associated variety of M .

3.2.2. Let Z(g) ⊆ U(g) denote the center, and let χ0 : Z(g) → k be the homomorphism defined

by the trivial representation of g.20 Let U(g)0 = U(g)/U(g) ·Ker(χ0), so U(g)0 is quotient of U(g)
whose modules of those g-modules with the same central character as the trivial representation.
We sometimes use the notation g–mod0 to denote the DG category of U(g)0-modules.

Recall that U(g)0 carries a filtration induced from the PBW filtration, and gr• U(g)0 = Γ(N,ON).

Therefore, for any M ∈ g–mod♥0 finitely generated, we have SS(M) ⊆ N ⊆ g.

3.2.3. Whittaker localization. Note that:

HomG–mod(g–mod, D(G)N,ψ) ≃ D(G)(N,ψ),(G,w) = g–modN,ψ ≃ Z(g)–mod

where in the last equality we have used Skryabin’s theorem. We let:

Locψ : g–mod → D(G)N,ψ

denote the G-equivariant functor corresponding to Z(g) ∈ Z(g)–mod under the above identification.
It is not hard to see that Locψ is t-exact up to shift, but we do not use this result below. Explicitly,
the fiber of Locψ(M) at 1 ∈ G is computed via Lie algebra homology C•(n,M ⊗ ψ), and its fiber

at g ∈ G is computed similarly but we first twist the action of g on M via Adg : g
≃−→ g.

We also use a variant of this construction; let:

Locψ0 : g–mod0 → D(G)N,ψ

denote the composition:

g–mod0 → g–mod
Locψ−−−→ D(G)N,ψ.

Equivalently, this is the G-equivariant functor corresponding to:

k ∈ Vect ≃ g–modN,ψ
0 ≃ HomG–mod(g–mod0, D(G)N,ψ).

3.2.4. We say a finitely generated module M ∈ g–mod♥0 is holonomic if the object Loc(M) ∈
D(G/B)♥ corresponding to M under Beilinson-Bernstein localization [BB1] is holonomic.

We will show:

Theorem 3.2.4.1. Suppose M ∈ g–mod♥0 is a holonomic module with SS(M) ⊆ Nirreg.
21 Then

Locψ0 (M) = 0 ∈ D(G)N,ψ.

Remark 3.2.4.2. This theorem may be true for any finitely generated moduleM , not only holonomic
modules. At least we do not know a counterexample.

20In what follows, all our results about g generalize to the case where χ0 is replaced by any central character
χλ : Z(g) → k. We use χ0 to simplify the notation, and to focus on our case of interest.

21Here we remind that SS(M) is by definition reduced; so e.g., such an inclusion can be checked on field-valued
points.
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3.2.5. Preliminary comments. Our proof of Theorem 3.2.4.1 relies on some results about primitive
ideals. We collect some results from the literature here.

First, we have the following theorem of Loseu:

Theorem 3.2.5.1 (Loseu, [Los]). Let M ∈ g–mod♥0 be a faithful U(g)0-module; i.e., suppose that
the map U(g)0 → EndVect♥(M) is injective. Moreover, assume that M is holonomic (in the sense
of §3.2.4).

Then SS(M) ∩ N̊ ∕= ∅.

Proof. This is a very special case of [Los] Theorem 1.1 (1). For completeness, we include a more
elementary argument (under our additional assumptions). Below, we let F = Loc(M) ∈ D(G/B)♥.

Namely, by the corollary in §1.9 of [BB2], SS(M) is the image of SS(F) along the Springer map

π : T ∗(G/B) = 󰁨N → N. By [Los] Lemma A.1 (ii) (which is elementary), π(SS(F))∩O is isotropic for
every nilpotent orbit O ⊆ N. In particular, this intersection has dimension ≤ 1

2 dimO ≤ 1
2 dimN,

with the latter inequality being an equality only for O = N̊.

We see that if SS(M) ∩ N̊ = ∅, then dim(SS(M)) < 1
2 dimN. However, [KL] Theorem 9.11 (due

to Gabber) and Proposition 6.6 assert that 1
2 dimSS(U(g)0/Ann(M)) ≤ dimSS(M), so we see that

Ann(M) ∕= 0 under the above hypotheses.

□

3.2.6. Next, let Mψ
0 ∈ g–mod♥0 be the object corresponding to:

k ∈ Vect ≃ g–modN,ψ
0 ⊆ g–mod0.

Explicitly, we have:

Mψ
0 = indgn(ψ) ⊗

Z(g)
k.

Here ψ ∈ n–mod♥ denotes the 1-dimensional module defined by the character ψ, and we consider
k as a Z(g)-module via χ0.

We recall the following basic fact:

Proposition 3.2.6.1 (Kostant, [Kos] Theorem D). Mψ
0 is a faithful U(g)0-module.

We deduce:

Corollary 3.2.6.2. Any non-zero object of g–mod
(N,ψ),♥
0 is a faithful U(g)0-module.

Indeed, by Skryabin’s equivalence, such an object has the form V ⊗Mψ
0 for some non-zero vector

space V , so Proposition 3.2.6.1 yields the assertion.
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3.2.7. Proof of the theorem for Lie algebras. With the preliminary results above completed, we are
now in a position to prove the theorem.

Proof of Theorem 3.2.4.1.

Step 1. Let I ⊆ U(g)0 be the two-sided ideal annihilatingM . By Loseu’s theorem (Theorem 3.2.5.1),
I ∕= 0. Set A = U(g)0/I; this is a classical associative algebra.

Step 2. Note that A receives a Lie algebra homomorphism i : g → A via g → U(g) → U(g)0 → A.
Moreover, the adjoint22 action of g on A integrates to an action of G on A; indeed, this follows
from the corresponding property of U(g).

In other words, A receives a canonical Harish-Chandra datum for G.

It follows that there is a (strong) G-action on A–mod such that the forgetful functor A–mod →
g–mod0 is G-equivariant.

Step 3. Next, we claim that A–modN,ψ = 0.

It suffices to check this at the abelian categorical level (the t-structure on A–modN,ψ is obviously
separated).

Any object of A–mod♥ maps to a non-faithful module of U(g)0 (as I ∕= 0). Therefore, any object

of A–modN,ψ,♥ maps to an object of g–modN,ψ,♥
0 that is not faithful as a U(g)0-module; by Corollary

3.2.6.2, the object must be zero.

Step 4. Finally, we note that (as in §3.2.3), we have:

HomG–mod(A–mod, D(G)N,ψ) ≃ A–modN,ψ = 0.

Therefore, the composition:

A–mod → g–mod0
Locψ0−−−→ D(G)N,ψ

is zero.

As M ∈ g–mod♥0 lifts to A–mod♥ by definition, the result follows.

□
3.3. Proof of Theorem 3.1.2.1. We now prove the theorem. We proceed by steps.

Below, we fix F ∈ ShvG– irreg(Y)
B−

.

3.3.1. Reduction to the quasi-compact case. Note that the stack Y/G is a union of its quasi-compact
open substacks. Replacing Y by the preimage of each such open, we are reduced to the case where
Y itself is quasi-compact.

3.3.2. Reduction to the perverse case. First, recall from [BBM] (see also [Ras2] Appendix A) that
the functor:

Avψ! : D(Y)B
− → D(Y)N,ψ

is t-exact up to shift. Therefore, as ShvG– irreg(Y)
B− ⊆ D(Y)B

−
is closed under truncations, we may

assume F ∈ ShvG– irreg(Y)
B−,♥.

Moreover, as ShvG– irreg(Y)
B−,♥ ⊆ Shv(Y)B

−,♥ is stable under taking subobjects, we may assume
F is finite length (or simple) by quasi-compactness of Y – i.e., F is perverse instead of ind-perverse.

22I.e., the action defined by the formula ξ 󰂏 a := [i(ξ), a] for ξ ∈ g and a ∈ A.
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3.3.3. Reduction to the case where Y = G × Y0 where G acts trivially on Y0. Consider G × Y as
acted on by G via the action on the first factor alone. Next, we have the G-equivariant map:

G× Y Y.act

As act is smooth, act![− dimG] is t-exact, conservative, preserves compact objects, and maps
ShvG– irreg(Y) to ShvG– irreg(G × Y). By G-equivariance, act! commutes with finite Whittaker av-
eraging.

Therefore, we are clearly reduced to case where Y has the stated form.

3.3.4. Reduction to the case Y = G. Recall that we have Y = G× Y0 as above.

Observe that Avψ! (F) is a compact, holonomic object (because F is). Therefore, it suffices to
check that for every field extension k′/k of finite degree and every pair (g, y) ∈ (G × Y0)(k

′), the

!-restriction of Avψ! (F) to (g, y) vanishes. Up to a finite extension of the ground field, we may
assume k′ = k; we do so in what follows to simplify the notation.

Let y ∈ Y0(k) be fixed. Let iy : Spec(k) → Y0 be the corresponding map. The map G
id×iy−−−→ G×Y0

is obviously G-equivariant (as G acts trivially on Y0), so we have:

(id×iy)
!Avψ! (F) = Avψ! (id×iy)

!(F) ∈ D(G)N,ψ.

Here we also remind that Avψ! equals Avψ∗ up to a cohomological shift, see [BBM] once again.

Now we claim:

Lemma 3.3.4.1. The object (id×iy)
!(F) ∈ Shv(G)B

−
lies in ShvG– irreg(G)B

−
.

Clearly this result follows from the general result:

Proposition 3.3.4.2 (Kashiwara-Schapira). Let Z1 and Z2 be smooth schemes, and let Λ ⊆ T ∗Z1

be closed and conical. Let f : Z3 → Z2 be a given map with Z3 smooth (but f possibly non-smooth).

Then the functor:

(id×f)! : Shv(Z1 × Z2) → Shv(Z1 × Z3)

maps ShvΛ×T ∗Z2(Z1 × Z2) to ShvΛ×T ∗Z3(Z1 × Z3).

Proof. This follows immediately from the estimates23 on singular support of pullbacks from [KS]
Corollary 6.4.4.

□
Remark 3.3.4.3. One may also appeal to [Gin] in place of [KS]. In addition, we remark that the proof
of [BG1] Proposition 2.1.2 essentially (up to a quasi-projectvity assumption) shows more generally
that ShvG– irreg is preserved under sheaf-theoretic operations for G-equivariant maps. Indeed, loc.
cit. considers a similar setting to ours, but with 0 ∈ g replacing Nirreg ⊆ g; more generally, the
argument in loc. cit. applies for any closed, conical, G-equivariant subscheme of g.

Remark 3.3.4.4. We remind that the results from [KS] and [Gin] fail for general holonomic D-
modules; regularity is crucial assumption.

23We fill in some details in the reference here, referring to [KS] for notation.
In our setting, for G ∈ ShvΛ×T∗Z2(Z1×Z2), recall that [KS] Corollary 6.4.4 (ii) bounds SS((id×f)!(G)) by something

denoted (id×f)󰂒(Λ× T ∗Z2). It is straightforward to see (id×f)󰂒(Λ× T ∗Z2) ⊆ Λ× T ∗Z2; e.g., one can reduce to the
case where f is a closed embedding and then the description from [KS] Remark 6.2.8 (i) is convenient.
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We now continue with the reduction: by Lemma 3.3.4.1, (id×iy)
!(F) ∈ ShvG– irreg(G)B

−
; there-

fore, if we know the result for Y0 = Spec(k), we obtain Avψ! (id×iy)
!(F) = 0, which yields the claim

for general Y0 by our earlier discussion.

3.3.5. Proof for Y0 = Spec(k). We will use Beilinson-Bernstein to reduce to Theorem 3.2.4.1.

We remind the setting: F ∈ D(B−\G)♥ is a finite length, regular holonomic D-module on the
flag variety with singular support in:

󰁨Nirreg := 󰁨N ×
N
Nirreg ⊆ 󰁨N ≃ T ∗(B−\G).

where 󰁨N is the Springer resolution of the nilpotent cone. We wish to show that:

Avψ! (F) ∈ D(G)N,ψ

is zero (where (N,ψ) invariants are taken for the left action).

We have a diagram:

D(B−\G)

g–mod0 D(G)N,ψ.

Γ(B−\G,−)
Avψ!

Locψ

that commutes up to a cohomological shift. Indeed, by G-equivariance of the functors involved, it
suffices to check that the images of the δ D-module at the base point of the flag variety are mapped
to the same object (up to shift), and this is straightforward.

Now for our F, letM := Γ(B−\G,F) ∈ g–mod0. By the above, it suffices to show that Locψ(M) =
0.

By Beilinson-Bernstein localization [BB1], M is holonomic. Therefore, by Theorem 3.2.4.1, it
suffices to show that SS(M) ⊆ Nirreg. As in the proof of Theorem 3.2.5.1, the corollary in §1.9 of
[BB2] says that SS(M) is the image of SS(F) along the projection map:

󰁨N → N.

4. Irregular singular support on BunG

4.1. Formulation of the main result. Let Dirreg(BunG) := DHiggsG,girreg
(BunG); see §2.4.2 for

the notation. We similarly have DNilpirreg(BunG) = ShvNilpirreg(BunG).

The purpose of this section is to prove:

Theorem 4.1.0.1. Any object of ShvNilpirreg(BunG) is anti-tempered.

We will prove this result by reduction to Theorem 3.1.2.1.

Throughout, we remind that we have fixed a point x ∈ X(k). We letK denote the field of Laurent
series based at x and O ⊆ K the subring of Taylor series. We sometimes use t for a coordinate at
x. We let e.g. G(K) and G(O) denote the loop and arc groups for G. We freely use the formalism
of (strong) loop group actions on objects of DGCatcont.

Remark 4.1.0.2. Using the full results of this paper, we were able to showDirreg(BunG) ⊆ D(BunG)
anti–temp.

We conjecture that this is an equivalence for any G. This is a folklore statement for G = PGL2;
see [Ber2] Corollary 4.2.6 for a variant of the assertion in this case.
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4.2. Anti-temperedness and Whittaker averaging. We have the following general character-
ization of anti-temperedness.

Suppose the loop group G(K) acts on C ∈ DGCatcont. Recall that we have the anti-tempered

subcategory CG(O),x– anti–temp ⊆ CG(O), cf. §1.2.8.

By [Ber2] Theorem 1.4.8, we have:

Lemma 4.2.0.1. CG(O),x– anti–temp is the kernel of the Whittaker !-averaging functor:

CG(O) Avψ!−−−→ Whit(C).

Remark 4.2.0.2. We make a brief philosophical point. Ultimately, we are interested in Whittaker
coefficients of tempered D-modules on BunG. If we think heuristically of BunG as a double quo-
tient G(k(X))\G(A)/G(O), this involves integrating on the left with respect to N(A) (twisted
by a character, of course). On the other hand, temperedness involves the derived Satake action,

which occurs on the right. Therefore, when we apply the present lemma to C = D(Bunlevel,xG ), the
Whittaker averaging in question should be thought of as occurring on the right. Moreover, the
Whittaker integral on the right occurs at a single point, while the one on the left involves all points
simultaneously.

Ultimately, the reader may think that singular support translates between left and right Whit-
taker conditions.

4.3. Baby Whittaker. Next, we record the following well-known result.

Let I ⊆ G(O) (resp. I−) denote the Iwahori subgroup corresponding to B ⊆ G (resp. B− ⊆ G).

Let I̊ denote the prounipotent radical of I. Let I̊1 := Ad−ρ̌(t)(I̊) and let I−1 := Ad−ρ̌(t)(I
−). We

abuse notation in letting ψ denote the restriction of the canonical character of N(K) to I̊1. Finally,

we let K1 denote Ad−ρ̌(t) applied to the first congruence subgroup of G(O); note that K1 = I̊1∩I−1 .

Note that I̊1/K1 = N and I−1 /K1 = B−.

Following [Ras4], for C ∈ G(K)–mod, we use the notation Whit(C) := CN(K),ψ and Whit≤1(C) :=

CI̊1,ψ. We let ι!1,∞ : Whit(C) → Whit≤1(C) denote the ∗-averaging functor.

Finally, we can state:

Lemma 4.3.0.1. Let C ∈ G(K)–mod be given. Then the functor ι!1,∞ : Whit(C) → Whit≤1(C)
admits a fully faithful left adjoint ι1,∞,!; moreover, there is a commutative diagram:

CG(O) CI CI−1 (CK1)B
−

(CK1)N,ψ Whit≤1(C)

Whit(C).

Oblv

Avψ!

Av∗ Avψ!

ι1,∞,!

Proof. The existence of the fully faithful functor ι1,∞,! is a special case of [Ras4] Theorem 2.3.1.
The existence of the commutative diagram is standard: it follows from the fact that the functor

Av∗ : C
I− → CI−1 is an equivalence (with inverse the natural !-averaging functor).

□
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Combining this result with Lemma 4.2.0.1, we find that CG(O),x– anti–temp is the kernel of the
composition:

CG(O) Av∗−−→ CI−1
Avψ!−−−→ CI̊1,ψ. (4.3.1)

4.4. Parahoric bundles. Let P ⊆ G(K) be a compact open subgroup. Let BunP– lvl
G := Bunlevel,xG /P .

For example, Bun
G(O)– lvl
G = BunG. We remark that BunP– lvl

G is always an Artin stack locally almost
of finite type.

Remark 4.4.0.1. We care about exactly four cases: when P = G(O), I−, I−1 , or K1. If ρ̌ is an

(integral) coweight for G, e.g. the subgroups I− and I−1 are conjugate, so we can identify BunI
−– lvl

G

and Bun
I−1 – lvl
G ; in general, the latter can be thought of as a twisted form of the former, with only

a mild technicality separating them.

4.4.1. Ramified Higgs bundles. Let P be a compact open subgroup as above. Let (PG, τ) ∈ BunP– lvl
G

be a point (the notation indicates that PG is a G-bundle on X \x and τ is a reduction of the G(K)-
bundle PG|D̊x

to P ).

The standard Serre duality argument shows that the cotangent space T ∗
(PG,τ) Bun

P– lvl
G consists

of Higgs bundle ϕ ∈ Γ(X \ x, gPG
⊗ Ω1

X) satisfying the condition:

(PG, τ,ϕ|D̊x
) ∈ Lie(P )⊥/P ⊆ g((t))dt/P = g((t))∨/P.

We refer to such data as a (P -)ramified Higgs bundles.

4.4.2. We say that such a ramified Higgs bundle is irregular if the Higgs bundle (PG|X\x,ϕ) on

X\x is so. Note that irregular ramified Higgs bundles form a closed conical substack of T ∗ BunP– lvl
G .

Therefore, we obtain the categories Dirreg(Bun
P– lvl
G ) and Shvirreg(Bun

P– lvl
G ) as in §4.1.

4.4.3. Compatibility with the Hecke action. Now suppose P1, P2 ⊆ G(K) are a pair of parahoric
subgroups. We can form the category D(P1\G(K)/P2) of (P1, P2)-equivariant D-modules on G(K).
There is a natural convolution action:

D(P1\G(K)/P2)⊗D(BunP2– lvl
G ) → D(BunP1– lvl

G ).

Proposition 4.4.3.1. The above convolution functor induces a functor:

D(P1\G(K)/P2)⊗Dirreg(Bun
P2– lvl
G ) → Dirreg(Bun

P1– lvl
G ).

In other words, in the parahoric setting, convolution preserves irregular singular support.

The proof of the proposition is identical to the proof of the Nadler-Yun theorem in [GKRV]
Theorem B.5.2; we particularly refer to loc. cit. §B.6.6. We remark that the argument24 in loc. cit.
uses nothing about nilpotence. To be completely explicit: the argument in [GKRV] applies for any
closed G-invariant conical subscheme Λ ⊆ g, where in loc. cit. Λ = N, and for us here, Λ = girreg.

Finally, we remark that only P2 needs to be parahoric; we need ind-properness of G(K)/P2 to
control the singular support of the convolution.

24To be clear: we mean when the point is fixed, as in §B.6.6 in loc. cit. What follows there, regarding what is
denoted ξX in loc. cit. and concerns variation in the point x, crucially uses nilpotence. But this is irrelevant for our
purpose.
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4.5. Mixing the ingredients. We now prove Theorem 4.1.0.1.

4.5.1. Step 1. By (4.3.1), our goal is to show that the composition:

ShvNilpirreg(BunG) ⊆ D(BunG) → D(Bun
I−1 – lvl
G ) = D(BunK1– lvl

G )B
− → D(BunK1– lvl

G )N,ψ

is zero.

By Proposition 4.4.3.1, the first functor maps ShvNilpirreg into Shvirreg(Bun
I−1 – lvl
G ). (The right

hand side may be replaced with ShvNilpirreg just as well, but this level of precision is not needed
below.)

4.5.2. Step 2. Consider BunK1– lvl
G as an algebraic stack acted on by G. The moment map:

µ : T ∗ BunK1– lvl
G → g∨ ≃ g

sends a ramified Higgs bundle (P, τ,ϕ) to tAdρ̌(t)(ϕ)mod t, where we note that ϕ ∈ t−1Ad−ρ̌(t) g[[t]]dt/K1.
Because irregularity is a closed condition, we see that any irregular ϕ maps into girreg.

Therefore, it follows that we have an embedding:

Shvirreg(Bun
K1– lvl
G ) ⊆ ShvG– irreg(Bun

K1– lvl
G ).

Here for clarity, we say that the left hand side is defined in §4.4.2, and the right hand side is defined
using the G-action as in §3.1.1.

4.5.3. Step 3. We now conclude the argument.

By the above, we have a composition:

ShvNilpirreg(BunG) → Shvirreg(Bun
K−

1 – lvl
G )B

− ⊆ ShvG– irreg(Bun
K−

1 – lvl
G )B

− → D(BunK1– lvl
G )N,ψ

and the latter functor is zero by Theorem 3.1.2.1. This concludes the argument.

Part 2. Microlocal properties of Whittaker coefficients

5. Background on coefficient functors

In this section, we review the classical geometric theory of Whittaker coefficients from [FGV1]
and establish notation. This section houses no new results.

5.1. Moduli spaces.

5.1.1. We fix Ω
1
2
X a square root of the canonical sheaf on X. We obtain ρ̌(Ω1

X) := (2ρ̌)(Ω
1
2
X) ∈ BunT .

We let BunΩN denote the fiber product:

BunΩN := BunB ×
BunT

Spec(k)

where Spec(k) → BunT is ρ̌(Ω1
X).

5.1.2. There is a standard character:

ψ : BunΩN → A1.

We refer to [FGV1] §4.1.3 for its definition.
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5.1.3. We also denote the canonical projection by:

p : BunΩN → BunG .

5.1.4. More generally, let D be a Λ̌-valued divisor on X.

We have a corresponding point OX(D) ∈ BunT : it is characterized by the fact that for every
weight λ : T → Gm, λ(OX(D)) = OX(λ(D)), where we note that λ(D) is a usual (Z-valued) divisor
on X.

For a T -bundle PT , we let PT (D) denote the image of (PT ,OX(D)) under the multiplication
BunT ×BunT → BunT .

We let Bun
Ω(D)
N denote the fiber product:

Bun
Ω(D)
N := BunB ×

BunT
Spec(k)

where this time we use the T -bundle ρ̌(Ω1
X)(D).

5.1.5. For D a Λ̌+-valued divisor, there is a canonical character:

ψD : Bun
Ω(−D)
N → A1.

We again refer to [FGV1] §4.1.3 for its definition.

5.1.6. In this context, we let:

pD : Bun
Ω(−D)
N → BunG

denote the canonical projection.

5.1.7. Large divisors. For later use, we record the following bounds.

Definition 5.1.7.1. We say D is sufficiently large if deg(D) ∈ Λ̌+ satisfies:

(deg(D),α) > g − 1 (5.1.1)

for every positive25 root α > 0. (Here g is the genus of X.)

By reduction to the case of Ga, it is immediate that:

Lemma 5.1.7.2. For D sufficiently large, Bun
Ω(−D)
N is an affine scheme.

5.2. Coefficient functors.

25More economically, this condition for α simple obviously implies it for α positive.
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5.2.1. The primary Whittaker coefficient. We define the primary Whittaker coefficient functor is
the functor:

coeff : D(BunG) → Vect

defined by:

F 󰀁→ CdR

󰀃
BunΩN , p!(F)

!
⊗ ψ!(exp)

󰀄
[− dimBunΩN ].

Remark 5.2.1.1. We include the above shift in the definition to make various formulae work out
more nicely.

Remark 5.2.1.2. The above functor is usually called the first Whittaker coefficient. The terminology
is borrowed from modular forms, where the above corresponds to the term a1, cf. §1.1.1. This
multiplicative normalization can be confusing in the geometric context, where zeroth Whittaker
coefficient would be the more natural convention (since we index by divisors rather than their
norms).

5.2.2. Other Whittaker coefficients. Now suppose D is a Λ̌+-valued divisor on X. Define the functor:

coeffD : D(BunG) → Vect

by the formula:

F 󰀁→ CdR

󰀃
Bun

Ω(−D)
N , p!D(F)

!
⊗ ψ!

D(exp)
󰀄
[− dimBun

Ω(−D)
N ].

5.3. The Casselman-Shalika formula. We now recall the primary classical result in the subject.

Let D be a Λ̌+-valued divisor on X as above. There is an associated object VD of Rep(Ǧ)Ran; if

D =
󰁓

λ̌i · xi for some finite set of distinct points xi, then VD = ⊕V λ̌xi ⊗ δxi .

We recall the following result from [FGV1], which is a geometric analogue26 of the Casselman-
Shalika formula from [CS].

Theorem 5.3.0.1 (Frenkel-Gaitsgory-Vilonen). There is a canonical isomorphism of functors:

coeffD ≃ coeff(VD 󰂏−) : D(BunG) → Vect.

Proof. For the sake of completeness, we include an argument deducing this result from [FGV1].

As above, suppose D =
󰁓n

i=1 λ̌i · xi. Let x denote the collection of points xi. As in [FGV1], we
have usual the ind-stack:27

BunΩ,∞·x
N .

There is a natural map p∞·x : BunΩ,∞·x
N → BunG. There is a natural Hecke action of Rep(Ǧ)⊗n on

D(BunΩ,∞·x
N ) compatible with the Hecke action on BunG (corresponding to the points x1, . . . , xn).

We also note that VD can evidently be considered as an object of Rep(Ǧ)⊗n.

There are natural locally closed embeddings:

ȷ : BunΩN → BunΩ,∞·x
N

ȷD : Bun
Ω(−D)
N → BunΩ,∞·x

N

26See [FGKV] for more discussion of the relationship between the results of [FGV1] and [CS].
27It is defined in [FGV1] §2.3, where it would be denoted x,∞Bun

ρ̌(Ω1
X )

N .
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compatible with the maps to BunG.

Let VD,∨ = V−w0(D) be the dual to VD in Rep(Ǧ)⊗n. By [FGV1] Theorem 4 and Theorem 3 (2),
we have:28

VD,∨ 󰂏 ȷ∗,dR(ψ
!(exp))[− dimBunΩN ] ≃ ȷD,∗,dR(ψ

!
D(exp))[− dimBun

Ω(−D)
N ].

Therefore, for F ∈ D(BunG), we obtain:

coeffD(F) := CdR

󰀃
Bun

Ω(−D)
N , p!D(F)

!
⊗ ψ!

D(exp)
󰀄
[− dimBun

Ω(−D)
N ] =

CdR

󰀃
BunΩ,∞·x

N , p!∞·x(F)
!
⊗ ȷD,∗,dR(ψ

!
D(exp))

󰀄
[− dimBun

Ω(−D)
N ] =

CdR

󰀓
BunΩ,∞·x

N , p!∞·x(F)
!
⊗

󰀃
VD,∨ 󰂏 ȷ∗,dR(ψ

!(exp))
󰀄󰀔

[− dimBunΩN ] =

CdR

󰀓
BunΩ,∞·x

N ,
󰀃
VD 󰂏 p!∞·x(F)

󰀄 !
⊗ ȷ∗,dR(ψ

!(exp))
󰀔
[− dimBunΩN ] =

CdR

󰀃
BunΩ,∞·x

N , p!∞·x(V
D 󰂏 F)

!
⊗ ȷ∗,dR(ψ

!(exp))
󰀄
[− dimBunΩN ] =

CdR

󰀃
BunΩN , p!(VD 󰂏 F)

󰀄 !
⊗ ȷ∗,dR(ψ

!(exp))
󰀄
[− dimBunΩN ] =: coeff(VD 󰂏 F).

□
Remark 5.3.0.2. The above assertions admit natural generalizations where the divisors are along
to vary in moduli, even over Ran space; we omit the statement here as we do not need it.

5.4. More notation. In the remainder of this section, we briefly introduce more notation.

5.4.1. The Poincaré sheaf. We let Poinc! ∈ D(BunG) be the object corepresenting coeff. Explicitly,
we have:

Poinc! = p!((−ψ)∗(exp[−2]))[dimBunΩN ]. (5.4.1)

In other words, we take the character sheaf (or its inverse) on BunΩN , cohomologically normalized
to be perverse, and !-push it forward to BunG; this makes sense by holonomicity.

Convention 5.4.1.1. We use the subscript ! to remind that a lower-! functor appears in the formation
of Poinc!. We use similar notation in related settings without further mention. We remark that coeff
would be denoted coeff∗ in this regime; we omit the ∗ for brevity, given how often the coeff functor
is used in this work.

5.4.2. The !-coefficient functor. LetDhol(BunG) ⊆ D(BunG) denote the category of (ind-)holonomic
D-modules on BunG, i.e., D-modules F ∈ D(BunG) such that for any π : S → BunG with S affine,
π!(F) ∈ D(S) is (ind-)holonomic. We remark that ShvNilp(BunG) ⊆ Dhol(BunG).

Then we have a functor:

coeff ! : Dhol(BunG) → Vect

F 󰀁→ CdR,c

󰀃
BunΩN , p∗(F)

∗
⊗ ψ∗(exp[−2])

󰀄
[dimBunΩN ].

28In fact, there is a sign choice to be made once and for all in defining the Hecke action on D(BunG); roughly
speaking, the difference is whether we think of the Hecke category as acting naturally on the left or right, where in
the latter case we use the inversion automorphism to change a right module structure to a left module structure. We
have implicitly pinned down this choice in the statement of the formula. By contrast, the reader who looks in [FGV1]
will find statements for each of the two possible choices.
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In other words, coeff ! is the Verdier conjugate to coeff. That is, we have:

Lemma 5.4.2.1. For F ∈ Dhol(BunG) be locally compact with Verdier dual29 DVerdierF ∈ Dhol(BunG),
we have:

coeff(F) = coeff !(D
VerdierF)∨.

5.4.3. Similarly, we have functors:

coeffD,! : Dhol(BunG) → Vect.

The Verdier dual to Theorem 5.3.0.1 asserts:

Corollary 5.4.3.1. There is a canonical isomorphism of functors:

coeffD,! ≃ coeff !(V
D 󰂏−) : Dhol(BunG) → Vect.

This follows from the good properties of Hecke functors: see [AGKRRV3] §1.2.3.

6. The index formula

6.1. Statement of the theorem.

6.1.1. Kostant invariant. Let F ∈ ShvNilp(BunG)
constr.

Let Irr(Nilp) denote the set of irreducible components of Nilp. Recall that F has a characteristic
cycle:

CC(F) =
󰁛

α∈Irr(Nilp)

cα,F[α]

for cα,F ∈ Z; here [α] is the class of the component α in the group of cycles.30

For α = NilpKos, we use the abbreviation:

cKos,F := cNilpKos,F ∈ Z

for the multiplicity of the characteristic cycle of F at the Kostant component (see §2.5.6).

6.1.2. Index formula. For F constructible as above, we may form coeff(F) ∈ Vect. Because F is
constructible, this object is compact, so it has a well-defined Euler characteristic χ(coeff(F)) ∈ Z.

The purpose of this section is to prove the following result.

Theorem 6.1.2.1. There is a sign 󰂃 = 󰂃G,X ∈ {1,−1} (depending only on G and the genus of the
curve X) such that for F ∈ ShvNilp(BunG)

constr, we have the equality of integers:

χ(coeff(F)) = 󰂃 · cKos,F.

Specifically, the sign 󰂃 is:

ε = (−1)dimBunG .

29Unlike e.g. [AGKRRV2], we consider Verdier duality as mapping locally compact D-modules on BunG to locally
compact D-modules; it can be computed smooth locally by usual Verdier duality on schemes. By contrast, loc.
cit. considers a smarter construction, sending compact D-modules to compact objects of D(BunG)

∨. The smarter
construction from loc. cit. recovers ours after applying the functor Idnaive : D(BunG)

∨ → D(BunG) from loc. cit.
30Technically, our group of cycles is completed here: it is the inverse limit over U of free abelian groups on cycles

in T ∗U for U ⊆ BunG a quasi-compact open. In particular, the infinite sum displayed above has a clear meaning.
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We will prove this theorem using filtered D-modules, as is natural for a problem on characteristic
cycles.

The argument we give passes through D-modules with filtrations that are not good, so is unlikely
to have an easy analogue in other sheaf-theoretic settings.

6.2. Filtered D-modules on stacks.

6.2.1. We briefly develop the theory here, for lack of a good reference. Let Y be a smooth algebraic
stack below.

6.2.2. Recall from [GR3] Example 2.4.3 that there is a canonical prestack31 YdR,󰄁 with a map

π : YdR,󰄁 → A1
󰄁/Gm so that π−1(1) ≃ YdR and π−1(0) = BY(T (Y)

∧
0 ) is the classifying stack for

the tangent space of Y formally completed along its zero section. Filtered D-modules on Y are
by definition ind-coherent sheaves on YdR,󰄁; we denote the category by FilD(Y). For a filtered
D-module F•F ∈ FilD(Y), its underlying object F is the fiber at the open point 1 ∈ A1

󰄁/Gm,
using the equivalence (or definition) IndCoh(YdR) ≃ D(Y). We may form the associated graded
gr• F ∈ QCoh(T ∗Y) by taking the fiber at 󰄁 = 0 and applying Koszul duality32 IndCoh(BY(T (Y)

∧
0 )) ≃

QCoh(T ∗Y).33 We remind that T ∗Y is a derived stack in general. For Y a smooth scheme, the
comparison results in [GR3] show that the above notion corresponds to the usual notion.

6.2.3. For a morphism f : Y → Z, we form the usual correspondence:

T ∗Z×
Z
Y

T ∗Y T ∗Z.

Df π

Then for F ∈ FilD(Y) (resp. G ∈ FilD(Z)), f∗,dR(F) (resp. f !(G)) inherits a canonical filtration,
and there are natural identifications:

gr• f∗,ren(F) ≃ π∗Df∗(gr• F).

gr• f
!(G) ≃ Df∗π

!,QCoh(gr• G).
(6.2.1)

We remark that as Y and Z are smooth, π is a quasi-smooth morphism, so π!,QCoh is defined. In the
above, f∗,ren is the renormalized de Rham pushforward from [DG1]. We remind here that renor-
malized pushforward coincides with de Rham pushforward for morphisms representable in stacks
with only unipotent stabilizers; this is the only case in which we will consider this construction.

6.2.4. Good filtrations. We say a filtration F•F on F ∈ D(Y) is a good filtration if for any p : U → Y

with p smooth and U affine, the induced filtration on p!F is a good filtration (equivalently: the
filtration is bounded from below and gr• p

!F ∈ Perf(T ∗U)). By (6.2.1), this is equivalent to the
filtration being bounded from below with gr• F ∈ Coh(T ∗Y).

Clearly if F admits a good filtration, it is locally compact (cf. §2.2.2). Conversely, we have:

Lemma 6.2.4.1. Suppose Y is QCA and F ∈ D(Y)♥ is locally compact. Then F admits a good
filtration.

31It is denotes (YdR)scaled in [GR3].
32Smoothness of Y is needed here.
33For a slower introduction to this circle of ideas, we refer to [Ras4] Appendix A.
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Proof. By [DG1] Theorem 0.4.5, there exists G ∈ Coh(Y)♥ and a map ind(G) → F ∈ D(Y) that is
an epimorphism on H0 (where ind : IndCoh(Y) → D(Y) is the D-module induction functor). We
immediately see that ind(G) admits a good filtration, which we denote by F• ind(G). By adjunction,
we then obtain a map:

α : F• ind(G) → Fcnst ∈ FilD(Y)

where the right hand side denotes F with the “constant” filtration (informally: FiF = F for all
i ∈ Z).

Now observe that FilD(Y) has a natural t-structure such that the forgetful functor to IndCoh(Y×
A1

󰄁/Gm) is t-exact.34

We can then form the image of H0(α) in FilD(Y)♥. By exactness of the functor FilD(Y) → D(Y)
(forgetting the filtration),H0(α) is a filtration on F. It is immediate to see that the induced filtration
on F is good (and in fact: gr• F lies in degree 0, i.e., it is a filtration in the abelian categorical sense,
not just the derived categorical sense).

□

6.3. Twisted Hodge-de Rham spectral sequences.

6.3.1. We now discuss Hodge filtrations adapted to exponential cohomology. As the proof shows,
the construction is by the (standard) Kazhdan-Kostant technique. Unlike usual Hodge filtrations,
there are subtleties about convergence in the twisted setting.

Lemma 6.3.1.1. Fix an integer r > 0. Below, we always consider A1 as equipped with the Gm-
action that is the rth power of the action by homotheties.

Let F•F ∈ FilD(A1)Gm,w be a filtered D-module on A1 with a compatible Z-grading.

(1) CdR(A
1,F

!
⊗ exp) ∈ Vect has a canonical filtration FKK

• such that:

grKK
• CdR(A

1,F
!
⊗ exp) ≃ Γ(A1, dt∗ gr• F)

where dt is considered as a section A1 → T ∗A1 and dt∗ indicates pullback along this mor-
phism.

(2) Observe that Γ(A1, 0∗(gr• F)) carries a natural grading coming from that of F•F. We write
the ith graded piece of this complex as:

Γ(A1, 0∗(gr•(F)))i.
We sometimes refer to this as the secondary grading, which should not be confused with the
grading gr• F = ⊕i gri F.

Suppose that:
• The filtration F•F is bounded from below, i.e., FiF = 0 for i ≪ 0.
• The secondary grading is bounded from below, i.e., there exists an integer N such that:35

Γ
󰀃
A1, 0∗(gr• F)

󰀄
i
= 0 (6.3.1)

for all i < −N .

34This t-structure may be constructed directly from the case of smooth schemes. Alternatively, one may observe
that Y×A1

󰄁/Gm → YdR,󰄁 has a connective relative tangent complex; therefore, by [GR3] §9, the corresponding monad
on IndCoh(Y×A1

󰄁/Gm) is right t-exact, and the claim follows on general grounds.
35In fact, the proof shows a weaker condition suffices: we can assume Γ

󰀃
A1, 0∗(grj F)

󰀄
i
= 0 for every j < −i−N ,

remarking that grj = 0 for j ≪ 0 by assumption on the filtration on F. But in examples, it appears this condition is
always verified in the form stated in the lemma.
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Then the the filtration FKK
• is bounded from below, i.e., we have:

FKK
i CdR(A

1,F
!
⊗ exp) = 0 (6.3.2)

for i ≪ 0.
(3) In the setting of (2), suppose instead that:

• The filtration F•F is bounded from below.
• For every integer n, the second grading on:

τ>−nΓ
󰀃
A1, 0∗(gr• F)

󰀄
(6.3.3)

is bounded from below, i.e., for i ≪ 0 (with bound depending on n), we have:

τ>−nΓ
󰀃
A1, 0∗(gr• F)

󰀄
i
= 0.

• grKK
• is bounded from below, i.e., for i ≪ 0, we have:

grKK
i CdR(A

1,F
!
⊗ exp) = 0.

Then the same conclusion holds: the filtration FKK
• is bounded from below.

Proof. The existence of the filtration in (1) is part of the general formalism of Kazhdan-Kostant
filtrations, cf. [Ras4] §A.5. For the reader’s convenience, we make this explicit in our specific setting.

Namely, we consider F as a left module over the Weyl algebra, which has generators t and ∂t. We
normalize signs so that deg(t) = r and deg(∂t) = −r. We also write t and ∂t for the corresponding
functions on T ∗A1, expecting confusion will not arise. Ignoring higher coherences (which are not
actually needed for us), that F is a weakly Gm-equivariant filtered D-module means the following.
First, F has a grading:

F = ⊕
j∈Z

Fj .

This grading is compatible with the filtration in the sense that it refines to gradings:

FiF = ⊕
j∈Z

(FiF)j .

Moreover, the actions of t and ∂t on F refine to maps:

t : (FiF)j → (FiF)j+r

∂t : (FiF)j → (Fi+1F)j−r.

Note that CdR(F
!
⊗ exp) is explicitly realized as the homotopy cokernel (i.e., cone):

Coker(F
∂t−id−−−→ F).

The Kazhdan-Kostant filtration is defined by the following formula:

FKK
i CdR(F

!
⊗ exp) := Coker

󰀃
⊕
q∈Z

(F⌊ i−q
r

⌋F)q
∂t−id−−−→ ⊕

q∈Z
(F⌊ i−q

r
⌋F)q

󰀄
.

Here we note that ∂t maps (F⌊ i−q
r

⌋F)q to (F⌊ i−q
r

⌋+1F)q−r, which is one of the summands of the

rightmost term.

We comment briefly on the definition. One can rewrite:

⊕
q∈Z

(F⌊ i−q
r

⌋F)q
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as:

colim
(p,q)∈Z2,rp+q≤i

(FpF)q (6.3.4)

to remove the floor function; here the indexing category is a poset with (p, q) ≤ (p′, q′) ⇔ p ≤
p′, q = q′. We also note that for r = 1, the above formula takes the simpler form:

FKK
i CdR(F

!
⊗ exp) := Coker

󰀃
⊕
q∈Z

(Fi−qF)q
∂t−id−−−→ ⊕

q∈Z
(Fi−qF)q

󰀄
.

We clearly have:

grKK
i CdR(F

!
⊗ exp) = Coker

󰀃
⊕

q∈i+rZ
(gr i−q

r
F)q

∂t−id−−−→ ⊕
q∈i+rZ

(gr i−q
r

F)q
󰀄
=

Coker
󰀃

⊕
p∈Z

(grp F)i−rp
∂t−id−−−→ ⊕

p∈Z
(grp F)i−rp

󰀄

so that:

grKK
• CdR(F

!
⊗ exp) = Coker

󰀃
gr• F

∂t−id−−−→ gr• F
󰀄
= Γ(A1, dt∗ gr• F)

yielding (1).

We now turn to the question of spectral sequence convergence, i.e., to (2) and (3). We focus first
on (2).

First, we note that we can shift the filtration to assume that FjF = 0 for j < 0. Similarly, we
can shift the grading to assume the integer N equals zero. We will then prove that (6.3.2) holds for
i < −r.

Observe that in the above notation, (6.3.1) explicitly says that:

∂t : (grj F)i → (grj+1 F)i−r (6.3.5)

is an isomorphism for i < −N = 0.

Now fix an index i. We define a further filtration:

󰁨FjF
KK
i CdR(F

!
⊗ exp)

by the formula:

󰁨FjF
KK
i CdR(F

!
⊗ exp) := Coker

󰀃
⊕
q∈Z

(Fmin{j,⌊ i−q
r

⌋}F)q
∂t−id−−−→ ⊕

q∈Z
(Fmin{j+1,⌊ i−q

r
⌋}F)q

󰀄
=

Coker
󰀃

colim
(p,q)∈Z2,rp+q≤i

p≤j

(FpF)q → colim
(p,q)∈Z2,rp+q≤i

p≤j+1

(FpF)q
󰀄

where the last expression is as in (6.3.4). This is clearly a filtration, i.e., the colimit over j yields

FKK
i CdR(F

!
⊗ exp). Moreover, the above term vanishes for j < −1 as the filtration on F is non-

negative. Therefore, it suffices to show that when i < −r, the structure maps:

αi,j : 󰁨Fj−1F
KK
i CdR(F

!
⊗ exp) → 󰁨FjF

KK
i CdR(F

!
⊗ exp)

are isomorphisms for all j.
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We clearly have:

󰁨grjFKK
i CdR(F

!
⊗ exp) := Coker(αi,j) =

⊕
q≤i−rj

󰀓
Coker

󰀃
(grj F)q

∂t−→ (grj+1 F)q−r

󰀄󰀔
.

(6.3.6)

By assumption, this complex is acyclic for i − rj < 0 (cf. (6.3.5)). Otherwise, rj ≤ i. As i < −r,
this means that j + 1 is negative, so grj F = grj+1 F = 0, clearly yielding that 󰁨grj = 0, and so
completing the argument.

We now turn to (3). We again normalize so that FiF = 0 for i < 0 and grKK
i CdR(F

!
⊗ exp) = 0

for i < 0.

We aim to show that:

FKK
i CdR(F

!
⊗ exp) = 0

when i < 0. By assumption, we have isomorphisms:

. . .
≃−→ FKK

−2 CdR(F
!
⊗ exp)

≃−→ FKK
−1 CdR(F

!
⊗ exp). (6.3.7)

Therefore, it suffices to show that for every integer n, there is an index i ≪ 0 such that:

FKK
i CdR(F

!
⊗ exp) ∈ Vect≤−n.

Indeed, then the stabilized complex in (6.3.7) is in ∩nVect
≤−n = 0.

By our assumption, there exists an integer M such that for i < −M , we have:

Coker
󰀃
∂t : (grj F)i → (grj+1 F)i−r

󰀄
∈ Vect≤−n. (6.3.8)

Then we will show that for i < −M − r, FKK
i is in Vect≤−n.

As in the proof of (2), there exists a filtration 󰁨F• on FKK
i with associated graded terms computed

by (6.3.6). It follows that for i− rj < −M , we have:

󰁨grjFKK
i CdR(F

!
⊗ exp) ∈ Vect≤−n.

On the other hand, if i − rj ≥ −M , then our assumption i < −M − r forces 0 > j + 1, which as
before, forces:

󰁨grjFKK
i CdR(F

!
⊗ exp) = 0.

As:

󰁨FjF
KK
i CdR(F

!
⊗ exp) = 0

for j < −1, the above analysis implies that:

FKK
i CdR(F

!
⊗ exp) ∈ Vect≤−n

which is what was to be shown.

□
Remark 6.3.1.2. The above method for verifying the convergence of a “Kazhdan-Kostant spectral
sequence” are taken from the proof of [Ras4] Theorem 4.2.1. Indeed, the hypothesis and argument
for (2) above are Step 6 from the proof of loc. cit. rendered into the present setting, and (3) is a
natural variant.
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6.4. Proof of Theorem 6.1.2.1.

6.4.1. We now turn to the proof of the theorem. We will first prove the theorem modulo a problem
of spectral sequence convergence; the remainder of the section will verify this convergence.

6.4.2. It clearly suffices to show the result when F ∈ ShvNilp(BunG)
constr,♥. In this case, take a good

filtration on F by applying Lemma 6.2.4.1.

Note that BunΩN → BunG factors through BunΩN /T . Moreover, note that the map ψ : BunΩN →
A1 is Gm-equivariant, using the action of Gm on the source via 2ρ̌ : Gm → T and the Gm-action
which is the square of the homothety action on A1 (so r = 2 in our references to Lemma 6.3.1.1).

By (6.2.1) and Lemma 6.3.1.1, we see that coeff(F)[dimBunΩN ] has a canonical filtration FKK
•

such that its associated graded is essentially computed by composing the correspondences:

T ∗ BunG ×
BunG

BunΩN BunΩN

T ∗ BunG T ∗ BunΩN Spec(k).

dψ

Here essentially means the following: we are supposed to apply upper-! along the first leftward
arrow and upper-∗ along the second leftward arrow; however, for the first arrow, upper-! and
upper-∗ differ by tensoring with a graded line bundle, so up to this discrepancy, we can compose
the correspondences well by base-change.

The composed correspondence is:

KosglobG

T ∗ BunG Spec(k)

σ

where KosglobG is the global Kostant section; indeed, this is essentially the definition of the Kostant

section. Note that Nilp ×BunG KosglobG = Spec(k) (as derived stacks), mapping to Nilp via fglob ∈
NilpKos.

Now suppose G ∈ Coh(Nilp)♥. As NilpKos is smooth (all of N̊ilp
reg

is) and connected, the

Euler characteristic of the (derived) fibers of G at points of N̊ilp
Kos

are constant. In particular, if

ι : Nilp → T ∗ BunG is the embedding, we see that the Euler characteristic of Γ(KosglobG ,σ∗ι∗G) is the

rank of G at the generic point of NilpKos. More generally, we deduce that for H ∈ Coh(T ∗ BunG)
♥

set-theoretically supported on Nilp, the Euler characteristic of Γ(KosglobG ,σ∗H) is the multiplicity

of H at the generic point of N̊ilp
Kos

.

As we have a good filtration on F, we see that gr• F is set-theoretically supported onNilp ⊇ SS(F).
Applying the definition of characteristic cycle, we now obtain:

χ(Γ(KosglobG ,σ∗ gr• F)) = cKos,F.

Reincorporating the twist by the graded line bundle discussed above, we see that:

χ(grKK
• coeff(F)) = 󰂃 · cKos,F.
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It remains to see that the same equation holds for coeff(F) itself. For this, it suffices to see that
its filtration FKK

• is bounded from below. We check this below using a convergence criterion from
Lemma 6.3.1.1.

Remark 6.4.2.1. If we knew we could choose a good filtration on F such that gr• F was a successive
extension of sheaves supported on Nilp and flat at fglob, we would obtain a similarly easy proof of
Theorem 8.0.0.1. Unfortunately, we do not know a way to do this.36

6.4.3. As just stated, we now turn to the spectral sequence convergence. We will verify that the

conditions of Lemma 6.3.1.1 (3) are verified for the filtered D-module ψ∗,dR(p
!F) on A1.

The first assumption is obvious: the original filtration on F is bounded from below (in the natural
sense), so the same is true after applying D-module operations.

The third assumption follows e.g. from our work in §6.4.2: we saw there that grKK
• (coeff(F)) is

finite dimensional, and in particular, grKK
i coeff(F) is zero for all but finitely many i.

It remains to verify the second condition. We do so below.

6.4.4. We now analyze the second condition from Lemma 6.3.1.1 (3), that is, we check the suitable
boundedness of the secondary grading on:

Γ
󰀃
A1, 0∗(gr• ψ∗,dR(p

!F))
󰀄
. (6.4.1)

Analysis exactly as in §6.4.2 shows that we can understand (6.4.1) via the following geometry.

We let KosdegG = b/N be the degenerate Kostant slice and let Kosdeg,globG denote its global avatar:

Kosdeg,globG = Maps(X, (b/N)/Gm) ×
Maps(X,BGm)

{Ω1
X}.

where Gm acts by homotheties (i.e., this is the Ω1
X -twisted version of Maps(X, b/N)). Then (6.4.1)

is computed (up to similarly tensoring by line bundles) by pulling back gr•(F) to Kosdeg,globG and
taking global sections.

In these terms, the secondary grading corresponds to the action of Gm on KosdegG (and hence

Kosdeg,globG ) via 2ρ̌ : Gm → T , as was considered above, noting that the pullback of gr•(F) to

Kosdeg,globG is Gm-equivariant for this action.

The idea is that the boundedness follows because this action is contracting. We fill in the details
in what follows.

6.4.5. To treat the notion of positively graded quasi-coherent sheaves on stacks, we digress to give
some general axiomatics.

Consider A1 as a monoid under multiplication, so QCoh(A1) inherits a convolution monoidal
structure. Let C ∈ DGCatcont be a QCoh(A1)-module category in what follows. For example, one
can imagine C = A–mod for a Z≥0-graded algebra A.

We have a full monoidal subcategory QCoh(Gm) ⊆ QCoh(A1), so QCoh(Gm) acts on C as well,
and we may form CGm,w. By functoriality, QCoh(A1/Gm) = QCoh(A1)Gm,w acts on CGm,w.

An object F ∈ QCoh(A1/Gm) amounts to a collection of objects Fn ∈ Vect for n ∈ Z with
connecting maps ι : Fn → Fn+1 defined for all n (i.e., to a filtered vector space – this is the Rees

36We tried to use the filtration of Kashiwara-Kawai from [KK] for this purpose, but we were not successful.
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construction). The monoidal structure on this category sends (F•, ιF), (G•, ιG) to the object that in
degree n is Fn ⊗ Gn with obvious connecting maps ιF ⊗ ιG.

Consider the object OA1/Gm
(n) which is 0 in degrees < −n, k in degrees ≥ −n, and connect-

ing maps are identities except where forced to be zero. There are evident maps OA1/Gm
(n) →

OA1/Gm
(n + 1) and colimOA1/Gm

(n) = OGm/Gm
is the unit for the monoidal structure. More-

over, each OA1/Gm
(n) is idempotent in the monoidal structure, and the map to the unit defines on

OA1/Gm
(n) the structure of idempotent coalgebra in QCoh(A1/Gm).

We let σ≥−n : CGm,w → CGm,w be the functor of acting by OA1/Gm
(n). By the above, there is a

natural transformation σ≥−n → id, and the essential image of σ≥−n is the subcategory of objects
F ∈ CGm,w for which the map

σ≥−nF → F

is an isomorphism. We let CGm,w,deg≥−n denote this essential image; the functor σ≥−n provides
a continuous right adjoint to the embedding CGm,w,deg≥−n → CGm,w. We consider objects of
CGm,w,deg≥−n as having graded degrees ≥ −n.

In the example C = A–mod, note thatA–modGm,w consists of gradedA-modules,A–modGm,w,≥−n

consists of modules in degrees ≥ −n, and σ≥−n takes a graded A-module M = ⊕i∈ZMi and forms
σ≥−nM = ⊕i≥−nMi with its natural graded A-module structure.

We note explicitly that for each F ∈ CGm,w, we have:

F = colim
n

σ≥−nF. (6.4.2)

It follows that if F is compact, then it necessarily has bounded below degrees, i.e., F ∈ CGm,w,≥−n

for some n.

We also note that any functor F : C → D of QCoh(A1)-module categories induces FGm,w :
CGm,w → DGm,w, which obviously commutes with functors σ≥−n and therefore preserves objects
of graded degrees ≥ −n.

6.4.6. We will prove the following general result.

Lemma 6.4.6.1. Suppose the monoid A1 acts on Y, which is a quasi-compact algebraic stack locally
almost of finite type with affine diagonal (over our field k of characteristic 0).

Let G ∈ QCoh(Y)Gm,w be a Gm-equivariant complex such that τ≥−nG ∈ Coh(Y) is coherent for
every n.

Then Γ(Y,G) ∈ Rep(Gm) has the property that τ≥−nΓ(Y,G) has bounded below degrees. I.e., if
the grading is denoted Γ(Y,G) = ⊕iΓ(Y,G)i, then τ≥−nΓ(Y,G)i = 0 for i ≪ 0 (with bound depending
on n).

Proof. Because Γ(Y,−) has bounded amplitude (because of our assumptions on Y and k), there
exists an integer M ≫ 0 such that:

τ≥−nΓ(Y,G) = τ≥−nΓ(Y, τ≥−n−MG).

Therefore, it suffices to show that:

Γ(Y, τ≥−n−MG) ∈ Rep(Gm)

has bounded below degrees for every n. Replacing G by τ≥−n−MG, we see that we can assume G is
coherent to start.
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Now note that QCoh(A1) acts on QCoh(Y) and IndCoh(Y), and the functor Ψ : IndCoh(Y) →
QCoh(Y) is a morphism of QCoh(A1)-module categories. Therefore, we may apply the discussion
from §6.4.5 freely.

As G is a compact object in IndCoh(Y)Gm,w, we see that it lies in IndCoh(Y)Gm,w,deg≥−N for
N ≫ 0. Therefore, the same is true of Γ(Y,G) ∈ Rep(Gm), proving our claim.

□

Now take G0 = gr• F ∈ Coh(T ∗ BunG) (i.e., we forget the grading). Take Y = Kosdeg,globG and

let G be the pullback of G0, which carries a Gm-equivariance structure (Kosdeg,globG → T ∗ BunG is
Gm-equivariant for the trivial action on T ∗ BunG). As the pullback of a coherent sheaf, we have

τ≥−nG ∈ Coh(Kosdeg,globG ). Therefore, the requisite boundedness of degrees follows from Lemma

6.4.6.1 and the fact that the 2ρ̌-action of Gm on KosdegG extends to an action of A1.37

Remark 6.4.6.2. Lemma 6.4.6.1 can be proved more directly when Y has the property that Γ(Y,−)
is conservative, as in our example. Indeed, then τ≥−nG = τ≥−nP for some perfect complex P, and
all perfect complexes are Karoubi-generated from objects OY(m), and these obviously satisfy the
conclusion. This is to say: one can avoid the discussion from §6.4.5 in this case.

7. Exactness of tempered Hecke functors

In this section, we establish exactness for Hecke functors acting on the tempered automorphic
category. This material is a sort of digression: Theorem 7.1.0.1 does not mention Whittaker coeffi-
cients (although they are used in the proof). The results of this section are independent of the rest
of the paper up to this point.

7.1. Statement of the main result. Fix a point x ∈ X. Recall from [FR] that we have the

category D(BunG)
x– temp. There is a natural quotient functor:

p : D(BunG) → D(BunG)
x– temp

with a fully faithful left adjoint pL. The main theorem of [FR] asserts that this data is actually
independent of the point x ∈ X, although we will not need this until the discussion in §7.7.

We consider the action of Rep(Ǧ) on D(BunG) via Hecke functors at x ∈ X. For V ∈ Rep(Ǧ),
we let SV,x 󰂏− denote the corresponding endofunctor of D(BunG).

The goal for this section is to prove:

Theorem 7.1.0.1. (1) There is a unique t-structure on D(BunG)
x– temp such that p is t-exact.

(2) The action of Rep(Ǧ)♥ ⊆ Rep(Ǧ) on D(BunG)
x– temp is by t-exact functors.

The results in this section adapt to etale sheaves in positive characteristic (conditional on derived
geometric Satake in that context).

As we discuss in §7.7, the above result strengthens the main results of [Gai1]. In fact, our proof
is dramatically simpler and has clear conceptual meaning;38 it turns out the assertion is something

37Let us clarify one sign issue for the careful reader. We normalize our conventions so that if A1 acts on an affine
scheme Spec(A), then A is considered to have Gm-degrees ≥ 0, not ≤ 0 (although the latter might in some sense be
the more natural, if less aesthetic, convention). This convention was implicit in Lemma 6.3.1.1, where t had degree n
rather than −n, so we have used this convention consistently.

38By contrast, the construction of 󰁨D(BunGLn) from [Gai1] is ad hoc, and by its nature cannot generalize to
other reductive groups. Our construction produces a different category with the same nice features, and which does
generalize.
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purely local, and a simple application of known results about derived Satake and the spherical
Whittaker category.

7.1.1. The argument is purely local. Therefore, we largely take C to be a G(K)-category throughout

this section (for loops being based at x); the application will be when C = D!(Bunlvl,xG ), where

Bunlvl,xG is the moduli scheme of G-bundles with complete level structure at x.

We remind that in this setting, one can speak of a t-structure on C being strongly compatible
with the G(K)-action; see [Ras1] §10.

7.2. Averaging from the spherical category. Suppose C is a category with a G(K)-action. We
use the notation of §4.3.

Suppose that C is equipped with a t-structure strongly compatible with the G(K)-action. Recall
that for each group subscheme K ⊆ G(K), CK admits a canonical t-structure; it is characterized by
the fact that Oblv : CK → C is t-exact. The same applies in the presence of an additive character
ψ : K → Ga and twisted invariants CK,ψ.

Lemma 7.2.0.1. If C ∈ G(K)–mod is equipped with a t-structure strongly compatible with the

G(K)-action, then the !-averaging functor Avψ! [(2ρ̌, ρ)] : C
G(O) → Whit≤1(C) is t-exact.

Proof. The proof is standard: we review it here.

The functor Av
I−1 →I
∗ : CI−1 → CI is an equivalence, and in particular, admits a left adjoint,

which we denote Av
I→I−1
! . On general grounds (cf. [Ras4] Appendix B), there is a canonical natural

transformation:

Av
I→I−1
! [−2 dim(I−1 · I/I)] → Av

I→I−1∗ .

We remark that the displayed dimension is 2(ρ̌, ρ) + |∆+|, where ∆+ is the set of positive roots for
G.

As in [FG2] Lemma 15.1.2, for F ∈ CG(O), the cokernel of the natural map:

Av
I→I−1
! (F)[−2 dim(I−1 · I/I)] → Av

I→I−1∗ (F)

is partially integrable (in the sense of loc. cit.); in particular, the above map induces an isomorphism

on applying AvI̊1,ψ∗ (cf. [FG2] Proposition 14.2.1).

Now recall from [BBM] (see also [Ras2] Appendix A) that we have AvI̊1,ψ! = AvI̊1,ψ∗ [2 dimN ].

By Lemma 4.3.0.1, the functor in question is a composition:

CG(O) Oblv−−−→ CI Av
I→I−1
∗−−−−−→ CI−1

Av
I̊1,ψ
!−−−−→ Whit≤1(C).

Applying [BBM] as above, this may instead be written as:

CG(O) Oblv−−−→ CI Av
I→I−1
∗−−−−−→ CI−1

Av
I̊1,ψ
∗ [2 dimN ]−−−−−−−−−−→ Whit≤1(C).

By [Ras4] Lemmas B.2.2-3 and the above, this functor has amplitude≤ dim(I−1 ·I/I)+dim(I̊1I
−
1 /I−1 )−

2 dimN = 2(ρ̌, ρ).
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On the other hand, by the above, we can also rewrite this functor as the composition:

CG(O) Oblv−−−→ CI Av
I→I−1
! [−2 dim(I−1 ·I/I)]

−−−−−−−−−−−−−−−−→ CI−1
Av

I̊1,ψ
!−−−−→ Whit≤1(C).

Because Av
I→I−1
! is inverse, hence right adjoint, to Av

I−1 →I
∗ , which has amplitude ≤ dim(II−1 /I−1 ) =

2(ρ̌, ρ) + dimN (by [Ras4] Lemma B.2.2), this Av! functor has amplitude ≥ −2(ρ̌, ρ) − dimN .39

Applying [Ras4] Lemma B.2.3 to AvI̊1,ψ! , we see that the above functor has amplitude ≥ 2(ρ̌, ρ) +
dimN − dimN = 2(ρ̌, ρ).

Combined with the above, we find that Avψ! : CG(O) → Whit≤1(C) has amplitude exactly 2(ρ̌, ρ).

□

Remark 7.2.0.2. As in [Ras4] Appendix B, a G(K)-category with strongly compatible t-structure
has an induced t-structure onWhit(C). It is likely the case that ι1,∞,![2(ρ̌, ρ)] : Whit≤1(C) ↩→ Whit(C)
is t-exact; this was shown in loc. cit. for C = 󰁥gκ–mod, as was observed there also for C being D-
modules on a reasonable indscheme (equipped with a dimension theory, to obtain a t-structure). In

this case, the above result would simply say that Avψ! : CG(O) → Whit(C) is t-exact.

In other words, the use of baby Whittaker rather than full Whittaker in the above (and what
follows) simply reflects our ignorance regarding this point.

7.3. Construction of the t-structure. Suppose again that C is a G(K)-category with a strongly
compatible t-structure.

In this case, we may form CG(O) and its tempered quotient CG(O),x– temp. We let p : CG(O) →
CG(O),x– temp denote the canonical projection. We remind that p admits a fully faithful left adjoint
pL.

Proposition 7.3.0.1. In the above setting, there is a unique t-structure on CG(O),x– temp such that
the projection p : CG(O) → CG(O),x– temp is t-exact.

Proof. By [Ras5] Lemma 10.2.1,40 it suffices to show that Ker(p) = CG(O),x– anti–temp is closed under

truncations, and that the resulting abelian category CG(O),x– anti–temp,♥ is closed under subobjects
(cf. [Ras5] Remark 10.2.2).

By Lemma 4.2.0.1, we have:

CG(O),x– anti–temp = Ker
󰀃
Avψ! : CG(O) → Whit≤1(C)

󰀄
.

By Lemma 7.2.0.1, Avψ! is t-exact up to shift; it follows immediately that its kernel is closed under
truncations, and the heart of the kernel is closed under taking subobjects.

□

39This would be obvious from [Ras4] Lemma B.2.3, but that result requires the two subgroups in question to
mutually lie in a compact open subgroup, where [Ras4] Lemma B.2.2 does not.

40The cited lemma uses an adjunction in which the quotient admits a right adjoint, not a left adjoint. However,
the proof in loc. cit. works for arbitrary DG categories, not necessarily cocomplete ones (although it is written in that
context). Therefore, we may safely pass to opposite categories to deduce the claim (or observe that the argument in
loc. cit. immediately applies in the present context).
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7.4. More on Whittaker functors. We continue to assume C is acted on by G(K).

Fix a dominant coweight λ̌. In this case, we can perform two constructions.

• Let ψλ̌ : Ad−(ρ̌+λ̌)(t) I̊ → Ga be the composition:

Ad−(ρ̌+λ̌)(t) I̊
Adλ̌(t)−−−−→ I̊1

ψ−→ Ga.

(I.e., take a character of conductor λ̌ for N(K) and apply the corresponding baby Whittaker
construction.)

• Take a representation V λ̌ ∈ Rep(Ǧ)♥.

We consider CG(O) as acted on by Rep(Ǧ) via Satake.

Proposition 7.4.0.1. In the above setting, there is a canonical commutative diagram:

CG(O) CG(O) CI̊1,ψ = Whit≤1(C)

CG(O) C
Ad−(ρ̌+λ̌)(t) I̊,ψ

λ̌

CI̊1,ψ = Whit≤1(C)

V λ̌󰂏− Av
I̊1,ψ
!

Avψ
λ̌

∗ [(λ̌,2ρ)]
λ̌(t)·−
≃

(7.4.1)

Proof. This result is an easy application of the Casselman-Shalika formula. Specifically, we will see
both sides are given by convolving with the same sheaf.

For a coweight µ̌, let ȷµ̌ : I̊1 · (−µ̌)(t)G(O)/G(O) → GrG be the locally closed embedding of the

I̊1-orbit through (−µ̌)(t) ∈ GrG. For µ dominant, let ψµ̌,!

I̊1
(exp) denote the character sheaf on this

orbit, normalized to lie in the same cohomological degree as the dualizing sheaf.

The top line in (7.4.1) is then given by convolution with

ȷ0! (ψ
0,!

I̊1
(exp)) 󰂏 SV λ̌ ∈ Whit≤1(D(GrG)).

for SV λ̌ the spherical sheaf corresponding to V λ̌.

The bottom line in (7.4.1) is given by convolution with:

ȷλ̌∗(ψ
λ̌,!

I̊1
(exp))[−2 dim

󰀃
(Ad(−λ̌−ρ̌)(t) I̊) ·G(O)/G(O)

󰀄
+ (λ̌, 2ρ)].

Here the first summand in the shift appears because we should use constant sheaves (rather than
dualizing sheaves) for ∗-averaging, and the second summand appears simply because it is in (7.4.1).
We observe that:

dim
󰀃
(Ad(−λ̌−ρ̌)(t) I̊) ·G(O)/G(O)

󰀄
= (λ̌+ ρ̌, 2ρ)

so the above may be rewritten as:

ȷλ̌∗(ψ
λ̌,!

I̊1
(exp))[−(λ̌+ 2ρ̌, 2ρ)].

Finally, by the form of the geometric Casselman-Shalika formula given in [ABBGM] Theorem
2.2.2 and Corollary 2.2.3, we have:

ȷ0! (ψ
0,!

I̊1
(exp)) 󰂏 SV λ̌ [−(ρ̌, 2ρ)] ≃ ȷλ̌∗(ψ

λ̌,!

I̊1
(exp))[−(λ̌+ ρ̌, 2ρ)].

This yields the claim.

□
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7.5. A generalization. We remind that by construction, the quotient CG(O),x– temp = CG(O)/CG(O),x– anti–temp

inherits a (unique) Rep(Ǧ)-action for which the projection p : CG(O) → CG(O),x– temp is Rep(Ǧ)-
linear.

We now prove:

Theorem 7.5.0.1. Suppose G(K) acts on C ∈ DGCatcont, and that C is equipped with a t-structure
that is strongly compatible with this action.

Then for every V ∈ Rep(Ǧ)♥, the functor:

V 󰂏− : CG(O),x– temp → CG(O),x– temp

is t-exact with respect to the t-structure from Proposition 7.3.0.1.

Proof. We treat right and left exactness separately.

Step 1. First, we show that V 󰂏− : CG(O),x– temp → CG(O),x– temp is right t-exact.

It suffices to prove this result for irreducible representations. Therefore, we take V = V λ̌.

Suppose F ∈ CG(O),≤0 is connective. It suffices to show that p(V λ̌ 󰂏 F) ∈ CG(O),x– temp,≤0.

By Lemma 7.2.0.1 and Lemma 4.2.0.1, we have a (necessarily unique) commutative diagram:

CG(O)

CG(O),x– temp Whit≤1(C)

p
Avψ! [(2ρ̌,ρ)]

in which (crucially!) the bottom arrow is t-exact and conservative.

Therefore, it suffices to show that:

Avψ! (V
λ̌ 󰂏 F)[(2ρ̌, ρ)] ∈ Whit≤1(C)≤0.

By Proposition 7.4.0.1, we can rewrite this term as:

Avψ
λ̌

∗ (F)[(λ̌+ ρ̌, 2ρ)].

By in this form, the desired estimate follows the usual estimates for the amplitude of Av∗ functors:
see [Ras4] Lemma B.2.2.

Step 2. We now prove left t-exactness. It suffices to prove this for finite dimensional V . Then the
functor V 󰂏− : CG(O),x– temp → CG(O),x– temp is right adjoint to V ∨󰂏− : CG(O),x– temp → CG(O),x– temp.
The latter is right t-exact by the above, so the former must be left t-exact as desired.

□

Finally, Theorem 7.1.0.1 follows by taking C = D!(Bunlvl,xG ) in Theorem 7.5.0.1.
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7.6. Variant for nilpotent sheaves. Note that the spherical Hecke action H
sph
x = D(GrG)

G(O) ↷
D(BunG) preserves ShvNilp(BunG). Therefore, we may form:

ShvNilp(BunG)
x– temp := ShvNilp(BunG) ⊗

IndCoh(Ω0ǧ/Ǧ)
QCoh(Ω0ǧ/Ǧ).

as for D(BunG)
x– temp. The same applies for ShvNilp(BunG)

anti–temp.

By functoriality, we then have a commutative diagram:

ShvNilp(BunG)
anti–temp D(BunG)

anti–temp

ShvNilp(BunG) D(BunG)

ShvNilp(BunG)
temp D(BunG)

temp.

p p

The horizontal functors are fully faithful e.g. because ShvNilp(BunG) → D(BunG) admits a H
sph
x -

linear right adjoint.

We see from Theorem 7.1.0.1 that ShvNilp(BunG)
anti–temp is closed under truncations and subob-

jects (since this is true forD(BunG)
anti–temp and ShvNilp(BunG) separately). Therefore, ShvNilp(BunG)

temp

inherits a t-structure for which the projection p : ShvNilp(BunG) → ShvNilp(BunG)
x– temp is t-exact.

Then the bottom horizontal arrow above is t-exact (and conservative, being fully faithful) for this
t-structure.

From the diagram above and Theorem 7.1.0.1, we see that Hecke functors are t-exact on ShvNilp(BunG)
temp

with respect to the above t-structure.

7.7. Relation to Gaitsgory’s work for GLn. In this section, we briefly indicate how the above
results can be used to better understand the main results of [Gai1].

7.7.1. A variant with moving points. Recall from [FR] that D(BunG)
x– temp is canonically indepen-

dent of the point x ∈ X. We therefore use the notation D(BunG)
temp instead.

Let V ∈ Rep(Ǧ)♥ be given. Recall that there is a Hecke functor:

HV,X : D(BunG) → D(X × BunG) = D(X)⊗D(BunG)

whose !-fibers at points x ∈ X give the usual Hecke functors at points.

It is easy to see that the functor HV,X induces a functor:

Htemp
V,X : D(BunG)

temp → D(X)⊗D(BunG)
temp.

We have the following generalization of Theorem 7.1.0.1:

Theorem 7.7.1.1. The functor

Htemp
V,X [−1] : D(BunG)

temp → D(X)⊗D(BunG)
temp

is t-exact.

This follows by performing the proof of Theorem 7.1.0.1 over X, and applying [FR].
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7.7.2. We now observe that Theorem 7.7.1.1 yields a quotient of D(BunG) with the properties
described in [Gai1] §2.12. Namely, Hecke functors are t-exact, and Dcusp(BunG) ⊆ D(BunG) is
right orthogonal to D(BunG)

anti–temp by [Ber2].

The construction of such a quotient is the main technical input in [Gai1]; see the discussion of
loc. cit. §2.13.

Our argument is valid for general reductive groups G. Moreover, the degree restrictions in loc.
cit. are not necessary here. Finally, we observe that the quotient we consider here has evident
conceptual meaning in geometric Langlands, which was not the case for the quotient considered in
[Gai1].

Finally, we remark that even for GLn, our methods are much simpler than those in [Gai1].

However, to obtain a result for ℓ-adic sheaves, one needs some additional input. First, one needs
derived Satake for ℓ-adic sheaves (which has been announced by Arinkin-Berzukavnikov). More
seriously, one would need the independence of41 Shv(BunG)

x– temp of the point x ∈ X; [FR] shows
this only for ShvNilp(BunG) in the ℓ-adic context.

We also refer back to Remark 1.5.2.1 for more context on our result.

8. Whittaker coefficients of nilpotent sheaves

In this section, we establish favorable properties of Whittaker coefficients for sheaves with nilpo-
tent singular support.

For our later applications, the main result of this section is:

Theorem 8.0.0.1. The functor coeff[dimBunG] : ShvNilp(BunG) → Vect is t-exact.

Using [AGKRRV2], we deduce this result from a theorem of Kevin Lin.

8.1. Around Lin’s theorem. We begin this section by describing Lin’s result and deducing some
immediate consequences of it.

8.1.1. Formulation. Below, we let42 eBunG
∈ D(BunG) denote the constant sheaf, i.e., eBunG

=
ωBunG [−2 dimBunG].

We let ∆ = ∆BunG denote the diagonal map BunG → BunG×BunG, and we let πBunΩN
: BunΩN →

Spec(k) denote the projection.

Theorem 8.1.1.1 ([Lin]). There is a canonical isomorphism:

(coeff ⊗ id)(∆!eBunG
) := (πBunΩN

× id)∗,dR

󰀓
(p× id)!(∆!eBunG

)
!
⊗ p!1ψ

!(exp)
󰀔
[− dimBunΩN ] ≃

Poinc![−2 dimBunG] ∈ D(BunG).

41Here, unlike in the rest of the paper, Shv denotes ℓ-adic sheaves, not regular holonomic D-modules.
42The notation is a bit funny; we follow [AGKRRV1] in letting e be opaque notation for the field k, thought of as

the field of coefficients for our sheaf theory.
We find this notation e− a bit more geometrically communicative for constant sheaves than k−... although it gets

tricky for a point.
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Remark 8.1.1.2. We highlight that this theorem is a particular isomorphism between two explicit
sheaves on BunG. It is in the spirit of many43 results on quasi-maps spaces in geometric Langlands.
The proof uses geometry of the Vinberg degeneration (via [Che]) and Zastava spaces. Specifically,
the argument (i) constructs a map, (ii) shows that the map is an isomorphism at the cuspidal level
(using that the pseudo-identity and identity coincide there, cf. [Gai7]), and (iii) checks that the
map is an isomorphism after applying constant term functors, using Zastava geometry (and other
tools) to study the results.

8.1.2. Derivation from geometric Langlands conjectures. We now (heuristically) show how Theorem
8.1.1.1 is predicted by standard compatibilities from geometric Langlands. We first work up to
shifts,44

Specifically, we recall from [Gai7] §Conjecture 0.2.3 that:

∆!eBunG
∈ D(BunG)⊗D(BunG)

up to shifts is supposed to correspond to:

(ΨNilp ⊗ΨNilp)∆
IndCoh
∗ (ωLSǦ

)

under geometric Langlands. Here we abuse notation in letting Nilp ⊆ T ∗[−1](LSǦ) denote the
spectral global nilpotent cone, as in [AG]. We also let ΨNilp : IndCoh(LSǦ) → IndCohNilp(LSǦ)
denote the natural projection.

On the other hand, recall that the functor:

coeff : D(BunG) → Vect

is supposed to correspond to:

ΓIndCoh(LSǦ,−) : IndCohNilp(LSǦ) → Vect.

Combining these two assertions, we see that:

(coeff ⊗ id)(∆!eBunG
) ∈ D(BunG) (8.1.1)

should correspond (up to shifts) to:

(ΓIndCoh(LSǦ,−)⊗ id)((ΨNilp ⊗ΨNilp)∆
IndCoh
∗ (ωLSǦ

)) = ωLSǦ
∈ IndCohNilp(LSǦ).

We now observe that using the symplectic structure on LSǦ, we have:

ωLSǦ
≃ OLSǦ

[v. dim(LSǦ)]

where v. dim(LSǦ) is the Euler characteristic of the cotangent complex of LSǦ, which is 2 dimBunG.

Now observe that coeff is corepresented by Poinc! while ΓIndCoh(LSǦ,−) is corepresented by
OLSǦ

, so these two objects must correspond to each other under geometric Langlands.

Combining these observations, we find that (8.1.1) and Poinc! both correspond to ωLSǦ
(up to

shifts) under geometric Langlands, so we expect the two to be isomorphic (up to shifts): this is the
assertion of Lin’s theorem.

43Cf. [BG2], [BFGM], [Che], [Sch], [SW], among others.
44Unfortunately, the compatibility between both Eisenstein series and strange duality with Langlands duality are

often only stated up to shifts (and tensoring with line bundles). It is not our purpose here to correct that issue in the
literature here, which unfortunately leaves the ambiguity in shifts at the end.

Our understanding is that the forthcoming work of Ben-Zvi–Sakellaridis–Venkatesh will systematically clarify such
issues, including the precise compatibility between both Eisenstein series and miraculous duality with geometric
Langlands.
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Remark 8.1.2.1. There are various ways to recover the precise shift. First, it is built into the proof
of Lin’s theorem, specifically, the construction of the comparison map in Theorem 8.1.1.1; we prefer
not to describe the comparison map here and leave it to Lin’s forthcoming work.

However, assuming Theorem 8.1.1.1 up to shifts, the precise value is also forced by known results.
Specifically, let Eis!∗ ∈ D(BunG) be the ∗-pushforward of the IC sheaf on Drinfeld’s compactification
BunB. According to [BHKT] Appendix B (11.18), coeff !(Eis!∗) = k[dimBunG].

45 As Eis!∗ is Verdier
self-dual, we see that coeff(Eis!∗) = k[− dimBunG]. Finally, it is standard to see that Eis!∗ has
nilpotent singular support.

On the other hand, a version of Lin’s theorem with an additional shift (beyond the stated one) by
N ∈ Z would ultimately yield a version of our Theorem 8.2.1.1 with the same shift by N appearing.
The only one consistent with the above calculation with compactified Eisenstein series is N = 0.

8.1.3. Relation to miraculous duality. Recall the Drinfeld-Gaitsgorymiraculous duality functor from

[Gai7]:46

Mir : D(BunG)
∨ → D(BunG).

We remind that [Gai7] Theorem 0.1.6 asserts that this functor is an equivalence.

Corollary 8.1.3.1. Mir(coeff) = Poinc![−2 dimBunG].

This result is a formal consequence of 8.1.1.1. We review the relevant ideas here.

First, we record the following obvious result.

Lemma 8.1.3.2. Let C ∈ DGCatcont be given, and let λ : C → Vect be a functor. Then:

(λ⊗ id) : C⊗ C∨ → Vect⊗ C∨ = C∨

maps the unit47 uC to λ.

Proof of Corollary 8.1.3.1. The defining property of miraculous duality is that the functor:

D(BunG)⊗D(BunG)
∨ id⊗Mir−−−−−→ D(BunG)⊗D(BunG) → D(BunG×BunG)

sends uD(BunG) to ∆!eBunG
. (We remark that each arrow above is an equivalence.)

We now have the commutative diagram:

D(BunG)⊗D(BunG)
∨ D(BunG)⊗D(BunG) D(BunG×BunG)

D(BunG)
∨ D(BunG)

id⊗Mir

coeff ⊗ id coeff ⊗ id

Mir

We calculate the image of uD(BunG) in two ways. By the above, if we traverse the upper leg of
the diagram, we obtain ∆!eBunG

, so Theorem 8.1.1.1 implies we obtain Poinc![−2 dimBunG] after

45The reader who glances at [BHKT] Appendix B (11.18) will find additional shifts. The shift by − dimBunΩ
N in

loc. cit. does not appear for us simply because we defined coeff ! with a shift by dimBunΩ
N built in.

There is also a shift by − dimBunT in loc. cit. We observe that in the notation of loc. cit., we should take
F = ICBunT ∈ Shv(BunT )

♥ to recover our specific example. Moreover, in loc. cit. (11.18), the λ = 0 term involves a
∗-fiber of F at ρ̌(ΩX) ∈ BunT ; as ICBunT = eBunT [dimBunT ], this yields an additional shift by dimBunT cancelling
the one appearing in the equation, and ultimately leading the precise value stated here.

46In [Gai7], this functor is denoted Ps-idBunG,!. Our notation is taken instead from [AGKRRV2].
47I.e., the object corresponding to idC under C⊗ C∨ ≃ EndDGCatcont(C).
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applying the right arrow. On the other hand, if we apply the left arrow, Lemma 8.1.3.2 implies we
obtain coeff ∈ D(BunG)

∨, which maps to Mir(coeff) on applying the bottom arrow.

□

8.2. Whittaker coefficients of nilpotent sheaves.

8.2.1. Comparison of coefficient functors. We now prove the following assertion:

Theorem 8.2.1.1. There is a canonical isomorphism of functors:

coeff ≃ coeff ![−2 dimBunG] : ShvNilp(BunG) → Vect.

Before proving this theorem, we record the following result:

Lemma 8.2.1.2 ([AGKRRV2], Corollary 4.3.7). Let λ ∈ Shv(BunG)
∨ be given.48 Then we have a

canonical isomorphism:

λ|ShvNilp(BunG) ≃ Cc,dR(BunG,Mir(λ)
∗
⊗−)

of functors:

ShvNilp(BunG) → Vect.

Proof of Theorem 8.2.1.1. For F ∈ ShvNilp(BunG), Lemma 8.2.1.2 yields:

coeff(F) = Cc(BunG,F
∗
⊗Mir(coeff)).

Applying Corollary 8.1.3.1, the right hand side is:

Cc(BunG,F
∗
⊗ Poinc![−2 dimBunG]).

Applying the formula (5.4.1) and base-change, the right hand side is coeff !(F)[−2 dimBunG], yield-
ing the claim.

□

8.2.2. We deduce:

Corollary 8.2.2.1. For F ∈ ShvNilp(BunG) locally compact, we have:

coeff(DVerdierF) = coeff(F)∨[−2 dimBunG].

That is, coeff[dimBunG] commutes with Verdier duality on ShvNilp(BunG).

Indeed, this follows from Lemma 5.4.2.1 and Theorem 8.2.1.1.

48We can work with D-modules just as well as sheaves here; but in the non-holonomic case, one would need to

remark that Mir(λ)
∗
⊗− may take values in the pro-category (although Cc,dR(BunG,−) will then map the result into

Vect ⊆ ProVect).
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8.2.3. Variant with conductor. Now fix D a Λ̌+-valued divisor on X.

We have the following generalization of Theorem 8.2.1.1.

Corollary 8.2.3.1. There is a canonical isomorphism of functors:

coeffD ≃ coeffD,![−2 dimBunG] : ShvNilp(BunG) → Vect.

Proof. This is immediate from Theorem 8.2.1.1, Theorem 5.3.0.1, and Corollary 5.4.3.1.

□

As with Corollary 8.2.2.1, we have:

Corollary 8.2.3.2. For D as above, coeffD[dimBunG] commutes with Verdier duality on ShvNilp(BunG).

8.3. Exactness. We now prove Theorem 8.0.0.1. In fact, we prove the following generalization.

Theorem 8.3.0.1. For every D a Λ̌+-valued divisor on X, the functor:

coeffD[dimBunG] : ShvNilp(BunG) → Vect

is t-exact.

Proof.

Step 1. First, we prove this result in the sufficiently large case, cf. §5.1.7.
We begin by naively estimating the amplitude of coeffD on D(BunG). Decomposing into steps,

we observe:

• The functor p!D has amplitude ≤ dimBunG− dimBun
Ω(−D)
N .

• Tensoring with the character is designed to be t-exact.

• By Lemma 5.1.7.2, for D sufficiently large, CdR(Bun
Ω(−D)
N ,−) is right t-exact.

• We recall that there is a shift by dimBun
Ω(−D)
N in the definition of coeffD.

Combining these observations, we see that coeffD has cohomological amplitude ≤ dimBunG.

On the other hand, the same reasoning shows that49 coeffD,! : Shv(BunG) → Vect has amplitude
≥ − dimBunG.

Now the exactness follows from Corollary 8.2.3.1.

Step 2. We now prove the result for D = 0.

First, we note that Poinc! ∈ D(BunG) lies in the left orthogonal to D(BunG)
anti–temp; indeed,

this follows immediately from derived Satake and the definition of temperedness. It follows that
the functor coeff = Hom(Poinc!,−) factors through the projection to D(BunG)

temp, i.e., we have:

D(BunG)

D(BunG)
temp Vect.

coeffp

󰁨coeff

The same applies in the presence of a divisor.

49One can work just as well with Dhol(BunG) here.
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Let x ∈ X be a point and let λ̌ be a coweight with λ̌ · x sufficiently large (e.g., λ̌ = 2nρ̌ for
n ≫ 0). The Hecke action of Rep(Ǧ) on D(BunG) below is considered at the point x ∈ X.

Clearly the trivial representation is a summand of V λ̌ ⊗ V −w0(λ̌). Therefore, coeff is a summand

of coeff((V λ̌ ⊗ V −w0(λ̌)) 󰂏 −). Therefore, it suffices to show that the latter functor is t-exact. For
F ∈ ShvNilp(BunG)

≤0, we have:

coeff
󰀃
(V λ̌ ⊗ V −w0(λ̌)) 󰂏 F

󰀄
= coeff(V λ̌ 󰂏 (V −w0(λ̌) 󰂏 F))

Thm. 5.3.0.1
=

coeff λ̌·x(V
−w0(λ̌) 󰂏 F) = 󰁨coeff λ̌·x(p(V

−w0(λ̌) 󰂏 F)) = 󰁨coeff λ̌·x(V
−w0(λ̌) 󰂏 p(F)).

Now by Theorem 7.1.0.1 (and §7.6), p(F) ∈ Shv(BunG)
temp,≤0, so V −w0(λ̌)󰂏p(F) ∈ ShvNilp(BunG)

temp,≤0

by Theorem 7.1.0.1. It follows from Step 1 that 󰁨coeff λ̌·x(V
−w0(λ̌) 󰂏 p(F)) is in degrees ≤ dimBunG,

giving right exactness of 󰁨coeff λ̌·x(V
−w0(λ̌·x) 󰂏−)[dimBunG], so (by the above), right t-exactness of

coeff[dimBunG] as well.

The same logic applies for left t-exactness, giving the claim.

Step 3. We now deduce the claim for general D. In fact, this is obvious from the D = 0 case, given
Theorem 7.1.0.1 (in the form of §7.6, and using [FR] to allow divisors with support at multiple
points) and Theorem 5.3.0.1.

□

Part 3. Conservativeness of the Whittaker functor

9. Regular nilpotent singular support and Hecke functors

9.1. Statement of the result. This section is dedicated to the proof of the following result.

Theorem 9.1.0.1. Suppose F ∈ ShvNilp(BunG) has the property that SS(F) ∩ N̊ilp ∕= ∅, i.e.,
SS(F) ∕⊆ Nilpirreg.

Let Z0 ⊆ ZG be as in Proposition 2.5.4.1.

Then there exists D a Λ̌+-valued divisor on X and PZ0 in BunZ0 such that:

NilpKos ⊆ SS(VD 󰂏 (transPZ0
(F)).

Here transPZ0
is pushforward along the automorphism BunG

≃−→ BunG defined by tensoring with
PZ0.

We remind that the additional twist by PZ0 can be ignored when G has connected center.

Combined with Theorem 4.1.0.1, we obtain:

Corollary 9.1.0.2. Suppose F ∈ ShvNilp(BunG). Then either:

(1) F ∈ ShvNilp(BunG)
anti–temp, or:

(2) There exists D a Λ̌+-valued divisor on X and PZ0 ∈ BunZ0 such that

NilpKos ⊆ SS(VD 󰂏 transPZ0
F).

9.2. A local result. We begin with a purely local result concerning Hecke modifications and affine
Springer fibers.
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9.2.1. We work around an implicit point x ∈ X(k) with coordinate t. Below, it is convenient for
indexing purposes to consider GrG as the quotient G(O)\G(K), i.e., we quotient on the left. There

is a residual G(K)-action on the right. We let Grµ̌G denote the G(O)-orbit through µ̌(t) ∈ GrG, and

we let Grµ̌G denote its closure.

Let ξ ∈ g((t)) be given. We define the affine Springer fiber Sprξ as:

Sprξ := G(O)\{g ∈ G(K) | Adg(ξ) ∈ g[[t]]} ⊆ GrG .

9.2.2. Below, we fix a k-point ϕ ∈ N(O), i.e., a nilpotent element ϕ ∈ g[[t]]. We suppose that ϕ is
generically regular, i.e., the induced element of g((t)) is regular.

As in §2.5.5, there is a canonical discrepancy disc(ϕ) ∈ Λ̌+
Gad attached to this element. Specifically,

the perspective of loc. cit. attaches a Λ̌+
Gad-valued divisor on the formal disc to ϕ, but we can think

of this simply as an element of Λ̌+
Gad via its degree.

Specifically, if µ̌ ∈ Λ̌+
Gad is a coweight, saying ϕ has discrepancy µ̌ means that it can be G(O)-

conjugated into:

AdT (O)µ̌(t)(e) + [n, n][[t]] ⊆ g[[t]] (9.2.1)

for e ∈ ⊕i∈IGnαi ⊆ n a regular nilpotent element.

Remark 9.2.2.1. For µ̌ ∈ Λ̌+
Gad , the construction of §2.5.4 yields a locally closed scheme N(O)µ̌ ⊆

N(O) parametrizing generically regular ϕ ∈ N(O) with discrepancy µ̌. Specifically, we take:

N(O)µ̌ := 󰁨N(O) ×󰁔
i∈IG

(A1/Gm)(O)
Spec(k)

where Spec(k) →
󰁔

i∈IG(A
1/Gm)(O) corresponds to µ̌ (i.e., it is the point (t(µ̌,αi))i∈IG).

9.2.3. For ξ ∈ g((t)) regular nilpotent and µ̌ ∈ Λ̌+
Gad , let Sprξµ̌ ⊆ Sprξ denote the locally closed

subscheme:

Sprξµ̌ := G(O)\{g ∈ G(K) | Adg(ξ) ∈ g[[t]], disc(Adg(ξ)) = µ̌} ⊆ GrG .

In other words, we take:

N(O)µ̌/G(O) ×
g((t))/G(K)

{ξ}.

9.2.4. Main local result. We now have:

Proposition 9.2.4.1. Let ϕ ∈ N̊(O) be an ( everywhere) regular nilpotent element of g[[t]].

Suppose λ̌ ∈ Λ̌+ is a dominant coweight, and let λ̌ ∈ Λ̌+
Gad denote the induced coweight for Gad.

Then:

(Grλ̌G ∩ Sprϕ
λ̌
)red = Spec(k) ∈ GrG .

That is, the displayed intersection is the point λ̌(t), at least at the reduced level.

Proof. Below, we let π : G(K) → G(O)\G(K) = GrG denote the projection.

The assertion clearly depends only on the G(O)-orbit of ϕ. Therefore, we can assume ϕ = e ∈
⊕i∈IGnαi ⊆ n ⊆ n[[t]] (with each projection ei ∈ nαi of e necessarily non-zero, of course).
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Suppose g ∈ G(K) is a k-point with π(g) ∈ Grλ̌G with Adg(e) ∈ g[[t]] having discrepancy λ̌. We

will show g ∈ G(O)λ̌(t). Clearly this would suffice.

By (9.2.1), we can find γ ∈ G(O) and h ∈ N(K)T (O)λ̌(t) such that:

Adγ Adg(e) = Adh(e).

The assertion about g depends only depends on its left G(O)-coset; therefore, we may replace g
by γg to instead write:

Adg(e) = Adh(e).

By assumption, we can write h = nτ λ̌(t) for n ∈ N(K) and τ ∈ T (O).

Observe that gh−1 centralizes e; by standard facts about regular nilpotent elements, this implies
gh−1 ∈ N(K)ZG(K) (we remind that ZG ⊆ G is the center of G). This implies:

g = gh−1 · h ∈ N(K)T (O)ZG(K)λ̌(t) = λ̌(t)N(K)T (O)ZG(K).

Therefore:

π(g) ∈
󰁤

ζ̌∈Λ̌Z(G)◦

(λ̌+ ζ̌)(t)N(K) ⊆ GrG .

(By standard convention, we have omitted a π before (λ̌+ ζ̌)(t).)

It is well-known (cf. [MV]) that for η̌ ∈ Λ̌+, we have:

Grλ̌G ∩ η̌(t)N(K) ∕= ∅ ⇔ 0 ≤ η̌ ≤ λ̌.

It follows that:

π(g) ∈ Grλ̌G ∩ λ̌(t)N(K).

In addition, it is well-known (cf. [MV]) that this intersection is the single point λ̌(t).

Therefore, we see that π(g) = λ̌(t), as desired.

□

9.3. Proof of Theorem 9.1.0.1.

9.3.1. Bounding singular support from below. Let f : H → Y be a map of algebraic stacks with Y

smooth and let Λ ⊆ T ∗H be a closed conical substack. An isolated pair for Λ is a point (x, ξ) ∈
H ×Y T

∗Y with x ∈ H (a field-valued point) and ξ ∈ T ∗
f(x)Y such that:

• df(ξ) ∈ Λ|x.
• The intersection H ×Y T

∗Y ∩ df−1(Λ) is zero-dimensional at (x, ξ).

We have:

Theorem 9.3.1.1 ([AGKRRV1] Theorem 20.1.3). Suppose F ∈ Shv(H) with (x, ξ) an isolated pair
for SS(F). Then (f(x), ξ) ∈ SS(f∗,dR(F)).

Remark 9.3.1.2. In the étale setting, one needs additional hypotheses; cf. [Sai] and [AGKRRV1]
Remark 20.1.5.
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9.3.2. Proof. Choose a coweight λ̌ ∈ Λ̌ such that:50

N̊ilp
−w0(λ̌)+(2−2g)ρ̌ ∩ SS(F) ∕= ∅.

We may do this as we assumed SS(F) ⊆ Nilp and N̊ilp ∩ SS(F) ∕= ∅.
The relevance (cf. §2.5.4) of −w0(λ̌) + (2 − 2g)ρ̌ exactly means that λ̌ ∈ Λ̌+ (equivalently:

−w0(λ̌) ∈ Λ̌+).

Let x ∈ X be a k-point and let λ̌ be a dominant coweight. Let S̊λ̌ ∈ D(GrG,x) denote the

∗-extension of the dualizing sheaf on the λ̌-orbit. By geometric Satake, this object has a finite
filtration in the derived category with associated graded objects being usual spherical sheaves (up
to shifts). Therefore, by the standard interaction of singular support in exact triangles, it suffices

to show that SS(̊Sλ̌ 󰂏 F) ∩NilpKos ∕= ∅.

Indeed, let BunG
p1← Hλ̌

x
p2−→ BunG be the corresponding Hecke correspondence associated to x

and the coweight λ̌, normalized so the p2 has fibers that are twisted forms of Grλ̌G. We obtain a
correspondence:

T ∗ BunG ×
BunG

Hλ̌
x T ∗ BunG ×

BunG
Hλ̌

x

T ∗ BunG T ∗Hλ̌
x T ∗ BunG

where the first correspondence relates to p1 and the second relates to p2. As in [AGKRRV1] §20,
the composition of these two correspondences is:

{((PG,1,ϕ1), (PG,2,ϕ2), τ)}

T ∗ BunG T ∗ BunG

α β

where the top line indicates that (PG,i,ϕi) ∈ HiggsG (i = 1, 2) and τ is an isomorphism of these
Higgs bundles away from x so that the underlying isomorphism PG,1|X\x ≃ PG,2|X\x has relative

position λ̌.

The singular support of p!1(F) is computed by the usual naive estimate because p1 is a smooth.
Applying Theorem 9.3.1.1, we find that (up to translation by a point of BunZ0) it suffices to find
points (PG,1,ϕ1) ∈ SS(F) ⊆ T ∗ BunG and a point (PG,2,ϕ2) ∈ T ∗ BunG such that:

((PG,1,ϕ1), (PG,2,ϕ2), τ) ∈ (α× β)−1
󰀃
SS(F)× (PG,2,ϕ2)

󰀄

and the right hand side should be zero-dimensional at this point. Indeed, in this case, we necessarily
have (PG,2,ϕ2) ∈ SS(f∗,dRF) (by Theorem 9.3.1.1). As NilpKos ⊆ Nilp is open, SS(G)∩NilpKos ∕= ∅
implies that NilpKos ⊆ SS(G) for any G ∈ ShvNilp(BunG); i.e., the existence of a single point of

NilpKos in SS(G) ⊆ Nilp implies that all of NilpKos is contained there.

Let PG,1 be the G-bundle induced from the T -bundle ρ̌(Ω1
X)(−λ̌ · x).51 There is a canonical

nilpotent Higgs field fglob
D on PG,1, generalizing the D = 0 case from §2.5.6.

50The funny indexing is chosen this way for later convenience.
51For the reader’s convenience in verifying some formulae below, we note that if we twist by w0, we see that this

G-bundle is also induced from the T -bundle (−ρ̌)(Ω1
X)(−w0(λ̌) · x).
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Note that the point (PG,1, f
glob
D ) lies in N̊ilp

−w0(λ̌)+(2−2g)ρ̌
. By Proposition 2.5.4.1 (4), there exists

PZ0 ∈ BunZ0 so (PG,1, f
glob
D ) lies in SS(transPZ0

F).

We take (PG,2,ϕ2) to be the base-point of N̊ilp
Kos

; i.e., we apply the above construction with D
replaced by 0. We have an evident choice of Hecke modification τ .

By Proposition 9.2.4.1, we have:

(α× β)−1
󰀃
N̊ilp

−w0(λ̌)+(2−2g)ρ̌ × (PG,2,ϕ2)
󰀄

(9.3.1)

is the single point constructed above.

In more detail: Hecke modifications of (PG,2,ϕ2) are determined by their restrictions to the formal

neighborhood of x. Moreover, any point (󰁨PG,1, 󰁨ϕ1, τ) of (9.3.1) must have that the discrepancy
divisor of 󰁨ϕ1 is supported only at x, since (PG,2,ϕ2) has vanishing discrepancy divisor and the two

are isomorphism away from x. As we know the degree of 󰁨PG,1 (as it is a λ̌-modification of PG,2)

and have assumed (󰁨PG,1, 󰁨ϕ1) ∈ N̊ilp
−w0(λ̌)+(2−2g)ρ̌

, the discussion of Remark 2.5.5.1 determines the

degree of the discrepancy divisor, whose here is found to be −w0(λ̌), i.e., the image of −w0(λ̌) in
Λ̌Gad . We track signs: PG,2 is a modification of PG,1 of type λ̌, so PG,1 is a modification of PG,2 of

type −w0(λ̌). Choosing arbitrarily a trivialization of PG,2 on the formal disc of x, the proposition
now applies and yields our claim.

10. Conservativeness of Whittaker coefficients

At this point, the proof of the main theorem is essentially just a matter of combining our previous
results. Specifically, this is true in the nilpotent setting; we deduce the assertion for general D-
modules using a straightforward application of the method of [AGKRRV1] §21.

10.1. Conservativeness for nilpotent sheaves.

10.1.1. Let Nilp ∕=Kos ⊆ Nilp be the union of all components of Nilp besides NilpKos; this is a closed

conical subset of Nilp because NilpKos is open in Nilp.

We have:

Lemma 10.1.1.1. ShvNilp ∕=Kos(BunG) is exactly the kernel of the functor coeff : ShvNilp(BunG) →
Vect.

Proof.

Step 1. First, we show ShvNilp ∕=Kos(BunG) ⊆ Ker(coeff).

Note that ShvNilp ∕=Kos(BunG) ⊆ ShvNilp(BunG) is closed under truncations and subobjects by
definition of singular support. Moreover, again by definition, this category is left complete for its
t-structure; in particular, an object is zero if and only if all its cohomology groups are zero.

Therefore, by t-exactness (up to shift) of coeff (Theorem 8.0.0.1), it suffices to show coeff(F) = 0
for F ∈ ShvNilp ∕=Kos(BunG)

♥. Any such object is the union of its constructible subobjects, so we
may assume F is constructible (by exactness again).

In this case, coeff(F) ∈ Vectc and lies in a single cohomological degree. Therefore, it suffices to
show that its Euler characteristic is zero. This follows from the assumption on F and from the index
theorem, Theorem 6.1.2.1.
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Step 2. Next, we show that if F ∈ ShvNilp(BunG) with NilpKos ⊆ SS(F), then coeff(F) ∕= 0.

The logic is the essentially same as in the previous step. There exists some integer i and some
construcible subobject G ⊆ H i(F) such that NilpKos ⊆ SS(G).

In this case, coeff(G) is concentrated in cohomological degree dimBunG. Moreover, it is non-zero

by Theorem 6.1.2.1; here we remind that for objects of Shv♥, the characteristic cycle assigns positive
integers to components of the singular support.

By exactness of coeff, we then have:

HdimBunG(coeff(G)) ↩→ HdimBunG(coeff(H i(F))) = HdimBunG +i coeff(F).

Clearly this implies coeff(F) ∕= 0.

□
Corollary 10.1.1.2. Suppose F ∈ ShvNilp(BunG) has non-zero projection to ShvNilp(BunG)

temp.

Then there is a Λ̌+-valued divisor D on X and a point PZ0 ∈ BunZ0 such that coeffD(transPZ0
F) ∕=

0. Here Z0 is as in Proposition 2.5.4.1.

Proof. By assumption, F ∕∈ ShvNilp(BunG)
anti–temp. Therefore, by Theorem 4.1.0.1, F ∩ N̊ilp ∕= ∅.

Therefore, by Theorem 9.1.0.1, there is a Λ̌+-valued divisor D on X and PZ0 ∈ BunZ0 such that
NilpKos ⊆ SS(VD 󰂏 transPZ0

F). In this case, by Lemma 10.1.1.1 and Theorem 5.3.0.1, we obtain:

coeffD(transPZ0
F) = coeff(VD 󰂏 transPZ0

F) ∕= 0.

□

10.2. Enhanced coefficient functors. It is now convenient to introduce the following functor
encoding all Whittaker coefficient functors simultaneously.

10.2.1. Nilpotent setting. Recall the prestack LSrestr
Ǧ

from [AGKRRV1]. By loc. cit. Theorem 14.3.2,

there is a canonical spectral action of QCoh(LSrestr
Ǧ

) on ShvNilp(BunG) that is suitably compatible
with Hecke functors.

Moreover, the category QCoh(LSrestr
Ǧ

) is canonically self-dual by [AGKRRV1] Corollary 7.8.9. As
in loc. cit., we let:

Γ! = Γ!(LS
restr
Ǧ

,−) : QCoh(LSrestr
Ǧ

) → Vect

denote the functor dual to the structure sheaf OLSrestr
Ǧ

∈ QCoh(LSrestr
Ǧ

).

10.2.2. On formal grounds, we obtain a canonical functor:

coeffenh : ShvNilp(BunG) → QCoh(LSrestr
Ǧ

)

fitting into a commutative diagram:

ShvNilp(BunG)

QCoh(LSrestr
Ǧ

) Vect.

coeffenh coeff

Γ!

(10.2.1)
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Namely, the construction proceeds as follows. We have an action functor:

QCoh(LSrestr
Ǧ

)⊗ ShvNilp(BunG) → ShvNilp(BunG).

Dualizing the first tensor factor and applying its self-duality, we obtain a functor:

ShvNilp(BunG) → QCoh(LSrestr
Ǧ

)⊗ ShvNilp(BunG).

Now compose this functor with id⊗ coeff. By construction, this functor has the desired property.

By construction, coeffenh factors through ShvNilp(BunG)
temp. We abuse notation in also denoting

this functor by coeffenh.

10.2.3. More generally, for G ∈ QCoh(LSrestr
Ǧ

) and F ∈ ShvNilp(BunG), if we let 󰂏 denote the action
of the former category on the latter, we have:

coeff(G 󰂏 F) = Γ!(LS
restr
Ǧ

,G⊗ coeffenh(F)).

Recalling that Hecke functors (at points) factor through the action of QCoh(LSrestr
Ǧ

) and applying

Theorem 5.3.0.1, we see that coeffD(F) can be algorithmically extracted from coeffenh(F).

In particular, we obtain:

Theorem 10.2.3.1. The functor:

coeffenh : ShvNilp(BunG)
temp → QCoh(LSrestr

Ǧ
)

is conservative.

Indeed, this is immediate from Corollary 10.1.1.2, Lemma 10.1.1.1, and [GR1] Theorem 5.1.7
(the last of which states that transPZ0

coincides with tensoring by a certain line bundle on LSǦ
under the spectral action).

Remark 10.2.3.2. The reader might object to the citation to [GR1], which builds on the results of
this paper and proves much stronger results than we are considering presently. However, §8 from
loc. cit., which contains the proof of Theorem 5.1.7, is self-contained and can be read independently
from the rest of [GR1].

10.2.4. Variant for D-modules. Recall from [Gai2] (see also [Gai6] §4.3-4.5 and §11.1) that there is
a canonical action of QCoh(LSǦ) on D(BunG), similar to the above functors.

As LSǦ is a QCA stack, QCoh(LSǦ) is canonically self-dual; this time, the functor dual to O is
simply usual global sections.

Therefore, we obtain a functor:

coeffenh : D(BunG) → QCoh(LSǦ)

fitting into a commutative diagram:

D(BunG)

QCoh(LSǦ) Vect.

coeffenh coeff

Γ
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10.2.5. We now state the natural compatibility between the above two constructions.

Let ι : LSrestr
Ǧ

→ LSǦ denote the natural map. The symmetric monoidal functor:

ι∗ : QCoh(LSǦ) → QCoh(LSrestr
Ǧ

)

admits a left adjoint ι? (denoted ι! in [AGKRRV1] §7.1.3); this functor is naturally the dual to ι∗

for the self-duality of both sides. In particular, Γ(LSǦ, ι?(−)) = Γ!.

We obtain commutative diagrams:

ShvNilp(BunG) QCoh(LSrestr
Ǧ

)

D(BunG) QCoh(LSǦ)

coeffenh

ι?

coeffenh

and:

ShvNilp(BunG) QCoh(LSrestr
Ǧ

)

D(BunG) QCoh(LSǦ).

coeffenh

coeffenh

ι∗

Here the left arrow in the second diagram is the right adjoint to the embedding, and the commu-
tativity of this latter diagram follows from [AGKRRV1] Proposition 14.5.3.

10.3. Conservativeness for general D-modules. We now conclude the proof of our main result,
Theorem 10.3.3.1 below.

10.3.1. Field extensions. We briefly digress to discuss field extensions.

Suppose k′/k is a (possibly transcendental) field extension. For Y over k, we let Yk′ denote the
base-change of Y to k′.

For prestacks over k′, we write D/k′(−) to denote D-modules considered relative to the field
k′. We use Shv/k′ similarly: this means the ind-category version of regular holonomic objects of
D/k′(−).

10.3.2. Let x ∈ X(k) be fixed, and let x′ ∈ X ′(k′) be the induced point.

There is a natural equivalence:

Hsph
x ⊗ Vectk′ ≃ H

sph
x′ .

Here the right hand side is taken to be defined with D-modules over k′, as above. In other words, up
to extending scalars, the spherical Hecke categories are the same. This identification is compatible
in the natural sense with derived Satake.

It follows from the definitions that for C ∈ H
sph
x –mod with C′ := C⊗Vectk′ , we have commutative

diagrams:

Cx– anti–temp C Cx– temp

C′,x– anti–temp C′ C′,x– temp.
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There are similar functors if we work with the adjoints to the horizontal arrows. Moreover, the
vertical arrows induce isomorphisms after tensoring with Vectk′ .

10.3.3. General case. Finally, we show:

Theorem 10.3.3.1. The functor

coeffenh : D(BunG)
temp → QCoh(LSǦ)

is conservative.

Suppose F ∈ D(BunG) is given with coeffenh(F) ∈ QCoh(LSǦ) vanishing. We need to show that
F is anti-tempered, i.e., its image in D(BunG)

temp is zero.

As in [AGKRRV1] Lemma 21.4.6, it suffices to show that for any field extension k′/k and any
σ ∈ LSǦ(k

′), the image of F in:

D(BunG)
temp ⊗

QCoh(LSǦ)
Vectk′

is zero.

The functor:

Shv/k′,Nilpk′
(BunG,k′) ⊗

QCoh(LSǦ,k′ )
Vectk′ → D(BunG) ⊗

QCoh(LSǦ)
Vectk′

is an equivalence by [AGKRRV1] Proposition 13.5.3. The same applies for tempered variants by
§10.3.2.

From §10.2.5, we have a commutative diagram:

Shv/k′,Nilpk′
(BunG,k′)

temp ⊗
QCoh(LSǦ,k′ )

Vectk′

D(BunG)
temp ⊗

QCoh(LSǦ)
Vectk′ Vectk′ .

≃ (10.3.1)

Here the rightward arrows are induced by extension of scalars from the functors coeffenh. The left
arrow in this diagram is conservative by Theorem 10.2.3.1, observing that we have a commutative
diagram:

Shv/k′,Nilpk′
(BunG,k′)

temp ⊗
QCoh(LSǦ,k′ )

Vectk′ Shv/k′,Nilpk′
(BunG,k′)

temp

Vectk′ QCoh(LSǦ,k′)

coeffenh

with horizontal and right arrows conservative. Therefore, the right arrow in (10.3.1) is conservative,
implying F maps to zero in this category, yielding the claim.

11. The structure of Hecke eigensheaves

In this section, we use our earlier results to deduce structural properties of Hecke eigensheaves.
The main result is Theorem 11.1.4.1.

Throughout this section, to simplify the discussion a bit, we assume the ground field k to be
algebraically closed (in addition to being of characteristic 0).
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11.1. Setup.

11.1.1. Notation for local systems. Throughout this section, fix σ ∈ LSǦ(k) an irreducible Ǧ-local

system on X; i.e., σ does not admit a reduction to any parabolic P̌ ⊊ Ǧ.

11.1.2. Our discussion will be nicest when σ is very irreducible in the sense described below.

Let Aut(σ) denote the algebraic52 group of automorphisms of σ as a local system. Note that a
choice of point x ∈ X(k) induces an embedding Aut(σ) ↩→ Ǧ.

Definition 11.1.2.1. We say that σ is very irreducible if the natural map ZǦ → Aut(σ) is an

isomorphism; here ZǦ is the center of Ǧ.

Remark 11.1.2.2. Of course, for GLn, an irreducible local system is very irreducible.

Remark 11.1.2.3. Very irreducible local systems form an open substack of LSǦ that is non-empty
when the genus of the curve is greater than 1. This follows from the existence of opers (without
singularity) on X, which are always very irreducible, cf. [BD] §3.1.

Probably very irreducible local systems are dense in LSǦ (for genus > 1), but we are not sure.

Remark 11.1.2.4. It is not hard to see that Aut(σ)/ZǦ is zero-dimensional. Therefore, the gap
between irreducible and very irreducible local systems concerns finite groups.

Example 11.1.2.5. For completeness, we provide an explicit (quite elementary) example of an irre-
ducible local system that is not very irreducible. The group is PGL2.

Suppose k = C and X has genus 2; we freely use Riemann-Hilbert. It is simple to see that the
topological fundamental group πtop

1 (X) surjects onto the symmetric group S3. Indeed, the former
has standard generators a1, b1, a2, b2 with defining relation [a1, b1][a2, b2] = 1, while the latter can
be generated by elements r and s with r an element of order 3 and s a transposition with defining
relation srs = r−1. Then the map:

a1 󰀁→ r, b1 󰀁→ s, a2 󰀁→ r2, b2 󰀁→ s

defines our desired surjective homomorphism.

Then S3 has a unique (up to isomorphism) irreducible 2-dimensional representation, which via
the homomorphism above induces an irreducible GL2-local system on X. The induced PGL2-local
system is also irreducible, but is easily seen not to be very irreducible.

11.1.3. Let kσ ∈ QCoh(LSǦ)
♥ denote the structure sheaf of σ, i.e., the ∗-pushforward of k ∈ Vect ≃

QCoh(Spec(k)) along the map:

Spec(k)
σ−→ LSǦ

11.1.4. The main result. The goal of this section is to outline a proof of the following result.

Theorem 11.1.4.1. There exists Fσ ∈ D(BunG) an eigensheaf for σ such that:

• Fσ is perverse up to shifts (i.e., locally compact, concentrated in cohomological degree 0, and
with regular singularities).

• If σ is very irreducible, the restriction of Fσ to every connected component of BunG is an
irreducible perverse sheaf.

In addition, one has:

52In particular, Aut(σ) is something classical – we ignore the finer derived structures on Aut(σ).
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• Fσ is cuspidal.
• coeffenh(Fσ) ≃ kσ[− dimBunG] ∈ QCoh(LSǦ).

We emphasize that the argument combines work of many other authors, and some portion of
what follows is simply a matter of proving a folklore result by stringing together results of other
authors. In particular, the existence of a non-zero complex of sheaves Fσ (Theorem 11.2.1.1 below) is
the culmination of work of many authors, notably Arinkin, Gaitsgory, Frenkel-Gaitsgory, Beilinson-
Drinfeld, and not us.

We consider our contribution to be to the questions of perversity and irreducibility of Fσ. This is
a classical question: the above result proves [Fre] Conjecture 1.53 We highlight that it has previously
been unknown how to deduce any result of this type from the categorical properties of the geometric
Langlands conjecture.

Remark 11.1.4.2. At some points, complete proofs of some key assertions are missing in the litera-
ture. Most glaringly: we need a generalization of [BG3]; loc. cit. is written for the Borel only, and
we need the (folklore) generalization to a general parabolic subgroup.54

Remark 11.1.4.3. In the case of general irreducible σ, Fσ ought to be a semi-simple perverse
sheaf with irreducible factors indexed by isomorphism classes irreducible representations Wi ∈
Rep(Aut(σ))♥, with each simple factor Fσ,Wi appearing with multiplicity dim(Wi). We are unable
to unconditonally prove this assertion at the moment, but our methods combined with the categor-
ical geometric Langlands conjecture yield this conclusion, which seems not to have been previously
contemplated.

Remark 11.1.4.4. The condition coeffenh(Fσ) ≃ kσ[− dimBunG] is often referred to as theWhittaker
normalization of a Hecke eigensheaf (at least, up to conventions regarding the shift). It plays a key
role for us in what follows, cf. Theorem 11.2.1.2.

Remark 11.1.4.5. The assumption that k is algebraically closed is used in the reference to [Ari],
and specifically to the existence of Whittaker normalized Fσ; otherwise, we may a priori need to
extend the ground field to obtain an oper structure (conjecturally, this should not be necessary).

11.2. Formulation of intermediate results. We now formulate a series of results from which we
deduce Theorem 11.1.4.1.

11.2.1. Existence of eigensheaves. Crucially, we have:

Theorem 11.2.1.1 (Folklore). There exists an object Fσ ∈ D(BunG) such that:

• Fσ is a Hecke eigensheaf with eigenvalue σ (see §11.3.1 for the definition).

• coeffenh(Fσ) ≃ kσ[− dimBunG] ∈ QCoh(LSǦ).

Briefly: the proof is via the Kac-Moody localization method pioneered by Beilinson-Drinfeld,
appealing to later developments due to Frenkel-Gaitsgory, independent ideas of Gaitsgory, and
Arinkin. We review the relevant results in Appendix A.

In §11.3, we will show the following result.

Theorem 11.2.1.2. Any object Fσ satisfying the conclusion of Theorem 11.2.1.1 also satisfies the
conclusion of Theorem 11.1.4.1.

53Technically, loc. cit. ignores the discrepancy between irreducible and very irreducible local systems. For irre-
ducible σ that are not very irreducible, the conjecture from loc. cit. is not reasonable; cf. Remark 11.1.4.3.

54We also remark that the literature has at other times appealed to this same folklore generalization. See e.g.
[BHKT] Appendix A.
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Remark 11.2.1.3 (Application to [BD]). Suppose σ admits an oper structure (without singularities).
In this case, σ is necessarily very irreducible (cf. Remark 11.1.2.3). We can take Fσ to be the D-
module constructed in [BD] §5.1.1.;55 that Fσ is Whittaker-normalized is a special case of the
discussion in Appendix A. Therefore, Theorem 11.2.1.2 implies that the eigensheaves constructed
in [BD] are perverse sheaves with irreducible restrictions to each connected component of BunG,
answering in the affirmative a question of Beilinson-Drinfeld (see [BD] §5.2.7).

11.2.2. Cuspidality. We have the following result:

Theorem 11.2.2.1 (Braverman-Gaitsgory). Let P ⊆ G be a parabolic subgroup with Levi quotient
M . Let P̌ ⊆ Ǧ be the dual parabolic.

Let QCoh(LSǦ)P̌ ⊆ QCoh(LSǦ) denote the full subcategory of objects supported (set theoretically)
on the image of the (proper) morphism LSP̌ → LSǦ.

Then the composition:

D(BunM )
Eis!−−→ D(BunG)

maps into the full subcategory:

D(BunG) ⊗
QCoh(LSǦ)

QCoh(LSǦ)P̌ ⊆ D(BunG) ⊗
QCoh(LSǦ)

QCoh(LSǦ) = D(BunG).

Proof. For P̌ = B̌, this follows from the Hecke property of Eisenstein series shown in [BG3] Theorem
8.8 (see also loc. cit. Theorem 1.11).

In general, it is expected that the results of [BG3] generalize without major changes to parabolics.
In particular, the assertion of the present theorem is asserted (and refined) by Gaitsgory in [Gai6]
Proposition 11.1.3.

□

Let LSirred
Ǧ

⊆ LSǦ denote the open parametrizing irreducible Ǧ-local systems; i.e., LSirred
Ǧ

is the

complement to the images of the maps LSP̌ → LSǦ for P̌ ∕= Ǧ. Let j denote the relevant open
embedding.

By adjunction, we have adjoint functors:

j∗ : D(BunG) ⇄ D(BunG) ⊗
QCoh(LSǦ)

QCoh(LSirred
Ǧ

) : j∗

with j∗ being fully faithful.

Corollary 11.2.2.2. For M a Levi besides G, the composition:

D(BunM )
Eis!−−→ D(BunG)

j∗−→ D(BunG) ⊗
QCoh(LSǦ)

QCoh(LSirred
Ǧ

)

is zero.

As cuspidal objects of BunG are exactly those objects in the right orthogonal to Eisenstein series
along proper parabolics (cf. [DG2] §1.4), we obtain:

55In [BD], our σ is denoted F and our Fσ is denoted MF.
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Corollary 11.2.2.3. Any object of D(BunG) in the essential image of the functor:

j∗ : D(BunG) ⊗
QCoh(LSǦ)

QCoh(LSirred
Ǧ

) → D(BunG)

is cuspidal.

Remark 11.2.2.4. The geometric Langlands conjectures predict that conversely, any cuspidal object
of D(BunG) lies in the essential image of the above functor. This converse appears to be out of
reach using present methods.

11.3. Proof of Theorem 11.2.1.2.

11.3.1. Let Dσ(BunG) denote the category:

Dσ(BunG) := HomQCoh(LSǦ)–mod(Vect, D(BunG)) ≃ D(BunG) ⊗
QCoh(LSǦ)

Vect

where QCoh(LSǦ) acts on Vect via the symmetric monoidal functor of pullback along σ : Spec(k) →
LSǦ and we are using self-duality of Vect in the above identification.

By definition, a Hecke eigensheaf with eigenvalue σ is an object of this category Dσ(BunG).

Let D󰁥σ(BunG) ⊆ D(BunG) denote the full subcategory generated under colimits by the essential
image of Dσ(BunG) → D(BunG).

We now have:

Lemma 11.3.1.1 ([AGKRRV1]). (1) Every object of D󰁥σ(BunG) lies in ShvNilp(BunG) and has
regular singularities.

(2) The embedding D󰁥σ(BunG) ↩→ ShvNilp(BunG) extends to a decomposition:

ShvNilp(BunG) = D󰁥σ(BunG)× ShvNilp, ∕=σ(BunG).

Proof. These are all structural results from [AGKRRV1].

That every object ofD󰁥σ(BunG) lies in ShvNilp(BunG) (and in particular, has regular singularities)
is [AGKRRV1] Proposition 14.5.3 combined with loc. cit. Main Corollary 16.5.6.

The asserted product decomposition follows from [AGKRRV1] Corollary 14.3.5.

□

Remark 11.3.1.2. Only (2) above uses irreducibility of σ.

11.3.2. By Lemma 11.3.1.1 (2), the subcategory:

D󰁥σ(BunG) ⊆ ShvNilp(BunG)

is closed under truncation functors for the natural t-structure on the right hand side; therefore, this
subcategory inherits a canonical t-structure (uniquely characterized by t-exactness of the above
embedding).
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11.3.3. We now consider the functor:

coeffenh
󰁥σ : D󰁥σ(BunG) → QCoh(LSrestr

Ǧ
)

given as the restriction of coeffenh (in its ShvNilp incarnation, cf. §10.2.2).

By the argument of §1.6.2, combining Theorem 8.0.0.1, Theorem 7.1.0.1, and [AGKRRV1] The-
orem 1.4.5, we find that the functor:

coeffenh
󰁥σ [dimBunG] : ShvNilp(BunG) → QCoh(LSrestr

Ǧ
)

is t-exact. The same applies for coeffenh
󰁥σ .

Moreover, by Corollary 11.2.2.3, any object of D󰁥σ(BunG) is cuspidal, hence, by [Ber2], tempered.

Therefore, Theorem 10.3.3.1 implies that coeffenh
󰁥σ is conservative, as well as t-exact (up to shift).

11.3.4. Irreducible case. We now clearly obtain the assertion of Theorem 11.2.1.2 in the case of
(possibly not very) irreducible σ.

Namely, for Fσ ∈ Dσ(BunG) as in the statement of the theorem. We abuse notation in also
letting Fσ denote the corresponding object of D󰁥σ(BunG).

We have already noted that any object of D󰁥σ(BunG) has regular singularities and is cuspidal.

For i ∈ Z, t-exactness of coeffenh yields:

coeffenh(H i(Fσ)) = H i+dimBunG coeffenh(Fσ).

By assumption on Fσ, the right hand side vanishes for i ∕= 0. As coeffenh is conservative, this means
H i(Fσ) = 0 for i ∕= 0, so Fσ is ind-perverse.

We prove that Fσ is perverse in Remarks 11.3.5.2 and 11.3.6.1 below.

11.3.5. Very irreducible case; G is semi-simple. We now prove Theorem 11.2.1.2 for σ very irre-
ducible. The argument is more direct for G semi-simple, so we impose this assumption at first.

Recall that the connected components of BunG are labeled by elements c ∈ πalg
1 (G). For c ∈

πalg
1 (G), let BuncG denote the corresponding connected component and let Fσ = ⊕

c∈πalg
1 (G)

Fc
σ denote

the decomposition of Fσ by connected components (so Fc
σ is the restriction of Fσ to BuncG).

It suffices to show:

Lemma 11.3.5.1. (1) For each c ∈ πalg
1 (G), Fc

σ is non-zero.

(2) The length of Fσ ∈ D(BunG)
♥ as a perverse56 sheaf is ≤ |πalg

1 (G)|.

Indeed, this suffices as we then have (for ℓ denoting length):

|πalg
1 (G)| ≤

󰁛

c∈πalg
1 (G)

ℓ(Fc
σ) = ℓ(Fσ) ≤ |πalg

1 (G)|

with the first inequality being (1) and the second being (2); this forces the inequalities to be
equalities, which then forces each summand to be exactly 1, as desired.

56A priori, F is ind-perverse. The finiteness in this bound amounts to perversity.
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Proof of Lemma 11.3.5.1. First, (1) is immediate from the eigensheaf property, since Fσ is non-zero.

Alternatively, we can see this from the Whittaker normalization. Calculating coeffD(Fσ) from

coeffenh(Fσ) = kσ[− dimBunG] (as in §10.2.3), we find that coeffD(Fσ) is non-zero for every D;
however, by definition, we have:

coeffD(Fσ) = coeffD(F
c
σ)

where c ∈ πalg
1 (G) is the class represented by the cocharacter (ρ̌ · deg(Ω1

X))− deg(D). This clearly
implies that Fc

σ must be non-zero for each c.

We now prove (2). Note that any subquotient of Fσ ∈ D(BunG) also lies in D󰁥σ(BunG)
♥. As

coeffenh
󰁥σ [dimBunG] is conservative and t-exact, it follows that:

ℓ(Fσ) ≤ ℓ(coeffenh
󰁥σ (Fσ)[dimBunG]) = ℓ(kσ). (11.3.1)

But kσ ∈ QCoh(LSǦ)
♥ is calculated as a pushforward along the composition:

Spec(k) → BZǦ ↩→ LSǦ

where the second map is a closed embedding by very irreducibility of σ. Therefore, the length of
kσ is the same as the length of the regular representation of ZǦ. As ZǦ is finite abelian, we have:

ℓ(kσ) = |ZǦ| = |πalg
1 (G)|

as desired.

□
Remark 11.3.5.2. In the case of (not necessarily very) irreducible σ, the statement of Lemma
11.3.5.1 (2) should instead say ℓ(Fσ) ≤

󰁓
dim(Wi) for notation as in Remark 11.1.4.3, i.e., the

Wi are isomorphism classes of irreducible representations of Aut(σ), the automorphism group of
σ. We note that the same argument as in Lemma 11.3.5.1 (2) yields this bound. As in Remark
11.1.2.4, Aut(σ) is a finite group (when G is semi-simple), so this upper bound is finite. We again
reiterate: the categorical geometric Langlands conjecture predicts that this upper bound is an
equality; however, it is not clear how to a priori obtain the lower bound in this setting without the
categorical conjecture.

In particular, this estimate implies that Fσ is perverse (not ind-perverse) under this relaxed
hypothesis, resolving a leftover point from §11.3.4 (for G semi-simple).

11.3.6. Very irreducible case; general reductive G. In the previous section, it was important that Fσ

ultimately had finite length, so that the inequality (11.3.1) was forced to be an equality. In turn,
this corresponded to the geometric fact that LSǦ is Deligne-Mumford in a neighborhood of σ. This

will not be the case when πalg
1 (G) is infinite; we describe the remedy below.

Let Z◦
G be the connected component of the identity in the center of G. Let Λ̌Z◦

G
⊆ Λ̌ be the

sublattice of coweights of the torus Z◦
G. Note that the torus dual to Z◦

G is Ǧab, the abelianization

of Ǧ.

Fix x ∈ X(k) a k-point. This choice yields57 an action of the lattice Λ̌Z◦
G
on BunG. It also yields

a map LSǦ → BǦ by restriction of a local system to x ∈ X, and then by composition, a map

LSǦ → BǦab.

57Via the natural map Λ̌Z◦
G
= (GrZ◦

G
,x)

red → BunZ◦
G

and the evident action of BunZ◦
G

on BunG.
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These are compatible in the following sense. The action of QCoh(Λ̌Z◦
G
) (with its convolution

monoidal structure) on D(BunG) is the same as the one obtained from:

QCoh(Λ̌Z◦
G
) ≃ Rep(Ǧab) = QCoh(BǦab) → QCoh(LSǦ) ↷ D(BunG).

Indeed, this is an immediate consequence of the construction of the spectral action (via Satake)
and a basic compatibility of geometric Satake.

Therefore, up to trivializing58 the restriction of σ at x, we obtain a commutative diagram:

Dσ(BunG) Vect

D󰁥σ(BunG /Λ̌Z◦
G
) = D󰁥σ(BunG)

Λ̌Z◦
G QCoh(LSrestr

Ǧ
×

BǦab

Spec(k))

D󰁥σ(BunG) QCoh(LSrestr
Ǧ

).
coeffenh

󰁥σ

Here the left arrows are forgetful functors, and the right arrows are the evident pushforwards.

Observe that LSrestr
Ǧ

×
BǦab

Spec(k) is Deligne-Mumford in an open neighborhood of the point σ.

Therefore, the analysis of §11.3.5 goes through when considering the middle arrow, up to replacing

πalg
1 (G) with the finite group πalg

1 (G/Z◦
G). Noting that for each c ∈ πalg

1 (G) = π0(BunG), the map

BuncG → BunG /Λ̌Z◦
G
is the embedding of a connected component, this clearly yields the result in

the case of general G and very irreducible σ.

Remark 11.3.6.1. Combining the above method with that of Remark 11.3.5.2 yields the perversity
(i.e., local compactness) of Fσ for general G and irreducible σ; specifically, this shows that the
restriction of Fσ to each connected component of BunG has finite length. This finally resolves the
leftover point from §11.3.5.

A. Existence of Hecke eigensheaves via localization

In this appendix, we prove Theorem 11.2.1.1, the existence of Whittaker-normailzed Hecke eigen-
sheaves (at least when k is algebraically closed). The construction of Fσ from loc. cit. is via the
localization construction of Beilinson-Drinfeld developed in [BD], using refinements of the critical
level Kac-Moody theory due to Frenkel-Gaitsgory and Arinkin’s existence of oper structures on
irreducible local systems.

At times, we use mild extensions of existing results that are not well recorded in the literature.
In general, we point to [ABGRR] and [CF] for an introduction to the relevant circle of ideas.59

We reiterate that we do not claim originality for the material here, which we generally consider
to be folklore consequences of the work of others.

A.1. Background on opers and localization.

58This has the effect of simplifying the notation below by removing certain twists involving this restriction. In
other words, this trivialization is innocuous and chosen out of laziness.

59Since the original version of this article circulated, the work [ABCFGLRR] appeared. This work contains a
detailed treatment of the material used here, and much more. In particular, Theorem 0.1.2 from its introduction
succinctly covers essentially all the foundations needed in this appendix.
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A.1.1. Opers with singularities: local aspects. Let x ∈ X(k) be a marked point with coordinate t.

We let Dx = Spec(k[[t]]) be a disc and let λ ∈ Λ+ be a dominant weight. Recall that there is a
scheme Opλ

Ǧ,x
of opers with singularity λ (at x). These are defined in [FG2] §2.9, where they are

denoted Opλ,regǧ . We remind that these opers are Ǧ-local systems on the disc Dx (i.e., points of

BǦ) equipped with extra structure.

Remark A.1.1.1. We remind that any k-point of OpǦ(D̊), the indscheme of opers on the punctured

disc, underlying a local system on Dx (rather than D̊x) lies in Opλ
Ǧ,x

for some λ.60

A.1.2. We use Kac-Moody notation as in [Ras5]. In particular, we let 󰁥gcrit–modG(O) be the Kazhdan-

Lusztig category at critical level, which we also denote by KLcrit,x. Let Vλ
crit ∈ 󰁥gcrit–modG(O),♥ be

the Weyl module, i.e., the module ind
󰁥gcrit
g[[t]](V

λ) where V λ is the G-representation corresponding to

λ, acted on by g[[t]] via the evaluation homomorphism g[[t]] → g.

By [FG4] Theorem 1, there is a natural action of Fun(Opλ
Ǧ,x

) by endomorphisms on Vλ
crit. There-

fore, we obtain a functor:

QCoh(Opλ
Ǧ,x

) → 󰁥gcrit–modG(O) (A.1.1)

sending the structure sheaf in the left hand side to the Weyl module Vλ
crit.

Moreover, by [FG1] Theorem 1.10, the above is compatible with the Rep(Ǧ) actions on both sides.
Specifically, the map Opλ

Ǧ,x
→ BǦ induces a symmetric monoidal functor Rep(Ǧ) → QCoh(Opλ

Ǧ,x
),

while Rep(Ǧ) acts on the right hand side via geometric Satake. For us, [FG1] Theorem 1.10 amounts
to the assertion that the above functor is naturally Rep(Ǧ)-linear. We refer to [Ras5] Corollary 7.10.1
for homotopical details regarding a similar situation.

Notation A.1.2.1. Later, we will wish to explicitly note the dependence on the point x. We will
write Vλ·x

crit ∈ KLcrit,x in this case.

A.1.3. Suppose x ∈ X(k) is a marked point, which the reader should imagine was implicitly
equipped with the coordinate t in the previous discussion.

There is a localization functor:

Locx : 󰁥gcrit–modG(O) → D(BunG)

where we implicitly choose a square root of the canonical bundle on BunG, as in [BD] §4, to identify
Dcrit(BunG) with D(BunG).

This functor is equivariant for the action of the spherical Hecke category at x acting on both
sides, and in particular, Rep(Ǧ)-linear for Hecke functors (again: at x).

We recall that Locx(Vλ
crit) is the critically twisted D-module:

indcrit(V
λ·x) ∈ Dcrit(BunG) ≃ D(BunG)

induced from induced from the vector bundle Vλ·x := ev∗x(V
λ) where where the map evx : BunG →

BG takes the fiber at x of a G-bundle on X.

60See for example the second equation of [FG3] §2.2, where this is stated explicitly. We remark that, as in loc. cit.,
the assertion holds for k replaced by any reduced k-algebra, but not for non-reduced algebras.
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A.1.4. By composition, we obtain a Rep(Ǧ)-linear functor:

Locx : QCoh(Opλ
Ǧ,x

) → D(BunG)

sending the structure sheaf to indcrit(V
λ·x).

A.1.5. Ran space extension. We now use a variant of the above with multiple points, working over
Ran space.

Fix points x1, . . . , xn ∈ X. We let S := {x1, . . . , xn} ⊆ X. We also fix dominant weights
λ1, . . . ,λn.

Let RanX,S denote the marked Ran space, as in [Gai3]. As in [ABGRR] and [CF], there is a

natural category KLcrit,RanX over RanX,dR with fiber 󰁥gcrit–modG(O) at a marked point x ∈ X(k).
We can pull it back to RanX,S,dR to obtain a similar category KLcrit,RanX,S

.

The category Rep(Ǧ)RanX acts by Hecke functors on KLcrit,RanX . We can pull back to RanX,S,dR

to obtain an action of Rep(Ǧ)RanX,S
on KLcrit,RanX,S

.

We also have relative affine scheme Op
󰁓

λixi

Ǧ,RanX,S
→ RanX,S,dR whose fibers parametrize a finite set

Σ ⊆ X containing our marked points S, plus a Ǧ-bundle with connection on the formal completion
to X at Σ, which is equipped with an oper structure of type λi at each xi ∈ S and type 0 (i.e.,
regular) at each y ∈ Σ \ S.

A.1.6. We let:

V
󰁓

λi·xi

crit ∈ KLcrit,S = ⊗n
i=1KLcrit,xi

denote the object ⊠n
i=1V

λ·xi
crit .

By unital chiral algebra techniques, there is an induced object:

V
󰁓

λi·xi

crit,unit ∈ KLcrit,RanX,S

obtained by inserting the vacuum representation at points away from S.

Using standard (non-derived!) chiral algebra techniques, we readily obtain an extension of [FG4]
that yields a (D(RanX,S)-linear) functor (generalizing (A.1.1)):

QCoh(Op
󰁓

λixi

Ǧ,RanX,S
) → KLcrit,RanX,S

(A.1.2)

sending the structure sheaf on the left hand side to V
󰁓

λi·xi

crit,unit. Moreover, this functor is naturally

Rep(Ǧ)RanX,S
-linear.

A.1.7. We can then compose with the Rep(Ǧ)RanX,S
-linear localization functor:

LocRanX,S
: KLcrit,RanX,S

→ D(BunG×RanX,S)

to obtain a Rep(Ǧ)RanX,S
-linear functor:

QCoh(Op
󰁓

λixi

Ǧ,RanX,S
) → D(BunG×RanX,S).
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Taking cohomology along RanX,S then yields a61 Rep(Ǧ)RanX,S ,indep = Ran(Ǧ)RanX ,indep-linear
functor:

LocRanX,S
: QCoh(Op

󰁓
λixi

Ǧ,RanX,S
)indep → D(BunG). (A.1.3)

Remark A.1.7.1. We abuse notation in omitting the divisor
󰁓

λixi from the notation Loc.

A.1.8. Globalization. Now let Op
glob,

󰁓
λixi

Ǧ
denote the scheme of global opers with singularity, i.e.,

Ǧ-local systems on X with B̌-reductions as a Ǧ-bundle satisfying the usual oper condition away
from S = {x1, . . . , xn} and satisfying the version with singularity λi at xi.

There is a natural symmetric monoidal functor:

LocOpǦ
: QCoh(Op

󰁓
λixi

Ǧ,RanX,S
)indep → QCoh(Op

glob,
󰁓

λixi

Ǧ
)

admitting a fully faithful right adjoint. In particular, LocOpǦ
is a quotient functor.

It follows from the constructions that (A.1.3) factors as:

QCoh(Op
󰁓

λixi

Ǧ,RanX,S
)indep

QCoh(Op
glob,

󰁓
λixi

Ǧ
) D(BunG).

LocRanX,SLocOp
Ǧ

Locglob

The functor Locglob is a priori Rep(Ǧ)RanX,S ,indep-linear; but as Rep(Ǧ)RanX,S ,indep acts through
its quotient QCoh(LSǦ), this functor is actually QCoh(LSǦ)-linear.

A.1.9. Next, we claim that there is a commutative diagram:

QCoh(Op
glob,

󰁓
λixi

Ǧ
)

D(BunG) QCoh(LSǦ)

Locglob

π∗

coeffenh(−)

(A.1.4)

where π is the natural map Op
glob,

󰁓
λixi

Ǧ
→ LSǦ.

Indeed, since these two functors QCoh(Op
glob,

󰁓
λixi

Ǧ
) → QCoh(LSǦ) are QCoh(LSǦ)-linear, it

suffices to produce a commutative diagram:

QCoh(Op
glob,

󰁓
λixi

Ǧ
)

D(BunG) QCoh(LSǦ) Vect.

Locglob

Γ(LSǦ,π∗(−))

coeffenh(−) Γ(LSǦ,π∗(−))

61Here and elsewhere, the subscript (−)indep is taken to mean the independent category, see [Ber1] for detailed
discussion.
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Equivalently, it suffices to produce a commutative diagram:

QCoh(Op
glob,

󰁓
λixi

Ǧ
)

D(BunG) Vect.

Locglob

Γ(Op
glob,

󰁓
λixi

Ǧ
,−)

coeff

By construction of Locglob and [FG4] Theorem 2, it suffices to construct a commutative diagram:

KLcrit,RanX,S
D(RanX,S)

D(BunG) Vect.

LocRanX,S

Ψ

CdR(RanX,S ,−)

coeff

Here the functor Ψ displayed above is the quantum Drinfeld-Sokolov functor (at a point: this functor
is BRST for n((t)) twisted by the standard character).

The necessary commutative diagram now follows from [Gai5] Corollary 6.4.4 and Proposition
7.3.2.62 63

A.2. Proof of Theorem 11.2.1.1. Let us return to our fixed, irreducible local system σ ∈ LSǦ(k).

First, we note a certain subtlety regarding opers. The “right” definition of opers is given in [Gai6]
and involves fixing the induced Ť -bundle to be ρ(ΩX). This convention differs from the one used in
[BD] and [Ari]; we refer to the latter notion as BD opers to distinguish. When Ǧ is adjoint, the two
notions coincide. When Ǧ has connected center, any BD oper structure is easily seen to lift to an
actual oper structure after restricting to an open.64 In general, the latter assertion is not evident.65

With that said, let us first assume Ǧ has connected center. Then by [Ari] Theorem A (and
more precisely, its Corollary 1.1), there exists a dense open U ⊆ X such that σ|U admits a BD
oper structure (without defect on U). By assumption on Ǧ, up to further restricting U , σ therefore
admits a “true” oper structure. By Remark A.1.1.1, this means that there exists a Λ̌+-valued divisor󰁓

λ̌ixi on X such that σ lifts to a k-point χσ ∈ Op
glob,

󰁓
λixi

Ǧ
.

Finally, take:

Fσ := Locglob(kχσ)[− dimBunG]

62In fact, Theorem 5.1.5 from [Gai5] immediately yields a stronger statement than we are using here. However, it
references a certain functor denoted in [Gai5] by D-SKL, and whose construction is not given there. There is folklore
knowledge about how to construct this functor, so this point can be overcome; still, we prefer to circumvent it using
the above simplification.

63Note that [Gai5] does not account for the shift [− dimBunΩ
N ] in the definition of our functor coeff. This shift is

explained in [CF] Theorem 4.0.5 (see also [CF] Example 4.0.4 and the appearance of CTshifted
∗ in §2.4).

64Namely, the B̌-bundle PB̌ of our oper has induced Ť ad-bundle being ρ(Ω1
X). The obstruction to lifting this

isomorphism to Ť -bundles is a ZǦ-bundle on X, and this is necessarily Zariski-locally trivial when ZǦ is a torus.
65The issue is about the fixed square root of Ω1

X implicit in considering ρ(ΩX).
E.g., if Ǧ = SL2, a BD oper is a rank 2 bundle E with connection ∇, a flat isomorphism α : Λ2(E,∇) ≃ (O, d) and a

line bundle L ⊆ E such that ∇ maps L isomorphically onto (E/L)⊗Ω1
X . Note that this data induces an isomorphism

σ : L⊗2 ≃ Ω1
X . A “true” oper is one where L is fixed to be the once and for all fixed square root of Ω1

X .
Note that if we have a BD oper structure on (E,∇)|U , there can be significant difficulties in comparing this to a

true oper structure on U ; the BD oper structure defines a square root of Ω1
U that may not extend to a square root of

Ω1
X .



74 JOAKIM FÆRGEMAN AND SAM RASKIN

for kχσ ∈ QCoh(Op
glob,

󰁓
λixi

Ǧ
) the skyscraper sheaf at the point χσ.

That Fσ is a Hecke eigensheaf follows from QCoh(LSǦ)-linearity of Locglob. The Whittaker
normalization:

coeffenh(Fσ) ≃ kσ[− dimBunG]

follows from (A.1.4).

Finally, let us extend to general G. We have the central isogeny G1 := [G,G]sc × Z(G)◦ → G,
where [G,G]sc is the simply-connected cover of [G,G] and Z(G)◦ is the connected component of
the identity in the center Z(G).

Note that σ induces a Ǧ1-local system σǦ1
. By [GR1] Theorem 8.4.8, there is an equivalence:

α : D(BunG1) ⊗
QCoh(LSǦ1

)
QCoh(LSǦ) ≃ D(BunG)

of QCoh(LSǦ)-module categories. Under this equivalence, the induced functor:

D(BunG1) → D(BunG)

is given by !-pushforward, and therefore sends PoincG1,! to PoincG,!. Therefore, the equivalence α

commutes with forming coeffenh (for G1 vs. G).

Taking the fiber of α at the point σ, we obtain an equivalence:

DσǦ1
(BunG1) ≃ Dσ(BunG)

between eigensheaf categories, and this equivalence is compatible with taking coeff, so we see that
the existence of a normalized eigensheaf for σǦ1

implies the same for σ.
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