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ABSTRACT. This paper begins a series studying D-modules on the Feigin-Frenkel semi-infinite flag
variety from the perspective of the Beilinson-Drinfeld factorization (or chiral) theory.

Here we calculate Whittaker-twisted cohomology groups of Zastava spaces, which are certain
finite-dimensional subvarieties of the affine Grassmannian. We show that such cohomology groups
realize the nilradical of a Borel subalgebra for the Langlands dual group in a precise sense, follow-
ing earlier work of Feigin-Finkelberg-Kuznetsov-Mirkovic and Braverman-Gaitsgory. Moreover, we
compare this geometric realization of the Langlands dual group to the standard one provided by
(factorizable) geometric Satake.
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1. INTRODUCTION

1.1. Semi-infinite flag variety. This paper begins a series concerning D-modules on the semi-
infinite flag variety of Feigin-Frenkel.
Let G be a split reductive group over k a field of characteristic zero. Let B be a Borel with
radical N and reductive quotient B/N = T.
Let X be a smooth curve. We let = € X be a fixed k-point. Let O, = k[[t,]] and K, = k((t;)) be
o

the rings Taylor and Laurent series based at x. Let D, and D, denote the spectra of these rings.
0

Informally, the semi-infinite flag variety should be a quotient F1? = G(K,)/N(K,)T(O,), but
this quotient is by an infinite-dimensional group and therefore leaves the realm of usual algebraic
geometry.
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[ee]
Still, we will explain in future work |[Ras3] how to make precise sense of D-modules on FI1?,
but we ask the reader to take on faith for this introduction that such a category makes senseE]
This category will not play any explicit role in the present paper, and will be carefully discussed
in [Ras3]; however, it plays an important motivational role in this introduction.

1.2. Why semi-infinite flags? The desire for a theory of sheaves on the semi-infinite flag vari-
ety stretches back to the early days of geometric representation theory: see [FF], [FM], [FFKM],
[BEGM], and [ABB™|. Among these works, there are diverse goals and perspectives, showing the

0
rich representation theoretic nature of F12 .

e [FF] explains that the analogy between Wakimoto modules for an affine Kac-Moody al-
gebra g, , and Verma modules for the finite-dimensional algebra g should be understood

through the Beilinson-Bernstein localization picture, with F17 playing the role of the finite-
dimensional G/B.

o [EM], [FFKM] and [ABB™] relate the semi-infinite flag variety to representations of Lusztig’s
small quantum group, following Finkelberg, Feigin-Frenkel and Lusztig.

e As noted in [ABBT], D(F1?) = D(G(K,)/N(K;)T(O.)) plays the role of the universal
unramified principal series representation of G(K,) in the categorical setting of local geo-
metric Langlands (see [FG2] and [Ber| for some modern discussion of this framework and
its ambitions).

However, these references (except [FE], which is not rigorous on these points) uses ad hoc finite-
dimensional models for the semi-infinite flag variety.

o8}
Remark 1.2.1. One of our principal motivations in this work and its sequels is to study D(F17? ) from
the perspective of the geometric Langlands program, and then to use local to global methods to
apply this to the study of geometric Eisenstein series in the global unramified geometric Langlands
program. But this present work is also closelyE] connected to the above, earlier work, as we hope to
explore further in the future.

0
1.3.  The present series of papers will introduce the whole category D(F1? ) and study some inter-
esting parts of its representation theory: e.g., we will explain how to compute Exts between certain
objects in terms of the Langlands dual group.
0

Studying the whole of D(F17? ) was neglected by previous works (presumably) due to the technical,
infinite-dimensional nature of its construction.

0
1.4. The role of the present paper. Whatever the definition of D(F1? ) is, it is not obvious how
to compute directly with it. The primary problem is that we do not have such a good theory of
perverse sheaves in the infinite type setting: the usual theory [BBD| of middle extensions — which
is so crucial in connecting combinatorics (e.g., Langlands duality) and geometry — does not exist
for embeddings of infinite codimension.

jee)
Therefore, to study D(FL? ), it is necessary to reduce our computations to finite-dimensional

0
ones. This paper performs those computations, and this is the reason why the category D(F1?)

IFor the overly curious reader: one takes the category D'(G(K,)) from [Ber] (c.f. also [Ras2?]) and imposes the
coinvariant condition with respect to the group indscheme N (K;)T(0.).
2But non-trivially, due to the ad hoc definitions in earlier works.
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does not explicitly appear hereﬁ (That said, the author finds these computations to be interesting
in their own right.)

1.5. In the remainder of the introduction, we will discuss problems close to those to be considered
in [Ras3], and discuss the contents of the present paper and their connection to the above problems.

1.6. D(F1?) is boring. One can sho that D(F1?) is equivalent to the category D(Flg’fm) of
D-modules on the affine flag variety G(K)/I (where I is the Iwahori subgroup) in a G(K)-
equivariant Wayﬂ

At first pass, this means that essentiallyf] every question in local geometric Langlands about

D(F1?) has either been answered in the exhaustive works of Bezrukavnikov and collaborators
(especially [AB], [ABGI, and [Bez]), or else is completely out of reach (e.g., some conjectures from
[FG2]).

Thus, it would appear that there is nothing new to say about D(F1? ).

ool
1.7. D(F17 ) is not boring (or: factorization). However, there is a significant difference between
the affine and semi-infinite flag varieties: the latter factorizes in the sense of Beilinson-Drinfeld [BD].
We refer to the introduction to |[Rasl] for an introduction to factorization. Modulo the non-

jes}
existence of FI7 , let us recall that this essentially means that for each finite set I, we have a “semi-
el ool
infinite flag variety” F13; over X T whose fiber at a point (x;)ic; € X7 is the product || (wi}hier F12.
Here {z;};cs is the unordered set in which we have forgotten the multiplicities with which points

appear.
However, it is well-known that the Iwahori subgroup (unlike G(O,)) does not factorizem

0
Remark 1.7.1. The methods of the Bezrukavnikov school do not readily adapt to studying F1;?
factorizably: they heavily rely on the ind-finite type and ind-proper nature of Flgﬁ, which are not
manifested in the factorization setting.

1.8. But why is it not boring? (Or: why factorization?) As discussed in the introduction to
[Ras]], there are several reasons to care about factorization structures.

e Most imminently (from the perspective of Remark , the theory of chiral homology
(c.f. [BD]) provides a way of constructing global invariants from factorizable local ones.
Therefore, identifying spectral and geometric factorization categories allows us to compare
globally defined invariants as well.

SWe hope the reader will benefit from this separation, and not merely suffer through an introduction some much of
whose contents has little to do with the paper at hand.

4This result will appear in [Ras3).

5This is compatible with the analogy with p-adic representation theory: c.f. [Cas].

6This is not completely true: for the study of Kac-Moody algebras, the semi-infinite flag variety has an interesting
global sections functor. It differs from the global sections functor of the affine flag variety in as much as Wakimoto
modules differ from Verma modules.

It is instructive to try and fail to define a factorization version of the Iwahori subgroup that lives over X?: a point
should be a pair of points x1, 2 in X, G-bundle on X with a trivialization away from z; and x2, and with a reduction
to the Borel B at the points 1 and z3. However, for this to define a scheme, we need to ask for a reduction to B at
the divisor-theoretic union of the points x1 and 2. Therefore, over a point z in the diagonal X < X?, we are asking
for a reduction to B on the first infinitesimal neighborhood of z, which defines a subgroup of G(O;) smaller than the
Iwahori group.
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e Factorization structures also play a key, if sometimes subtle, role in the purely local theory.
Let us mention one manifestation of this: the localization theory [FG3| (at critical level)
for Fl?;ﬂ has to do with the structure of the Kac-Moody algebra g..;: as a bare Lie algebra.

jeel
A factorizable localization theory for F17 would connect to the vertex algebra structure on
its vacuum representation.

e In [FM], [FFKM], [ABBY], and [BFS], sheaves on F1,? are defined using factorization struc-
tures. We anticipate the eventual comparison between our category D(F1; 2 ) and the previous

ones to pass through the factorization structure of FI; 3

1.9. Main conjecture. Our main conjecture is about Langlands duality for certain factorization
categories: the geometric side concerns some D-modules on the semi-infinite flag variety, and the
spectral side concerns coherent sheaves on certain spaces of local systems.

See below for a more evocative description of the two sides.

1.10. Let B~ be a Borel opposite to B, and let N~ denote its unipotent radical.

Recall that for any category C acted on by G(K) in the sense of [Ber], we can form its Whittaker
subcategory, Whit(C) < € consisting of objects equivariant against a non-degenerate character of
N7 (K).

Moreover, up to certain twists (which we ignore in this introduction: see for their definitions),
this makes sense factorizably.

0
For each finite set I, there is therefore a category Whit¢; to be the of Whittaker equivariant

D-modules on Fl;l, and the assignment [ — Whit;l defines a factorization category in the sense
of [Rasl]. This forms the geometric side of our conjecture.

o
1.11. For a point € X and an affine algebraic group I, let LocSys (D) denote the prestack of
o

de Rham local systems with structure group I" on D,.
Formally: we have the indscheme Connp of Lie(I")-valued 1-forms (i.e., connection forms) on the
punctured disc, which is equipped with the usual gauge action of I'(K,). We form the quotient and

o
denote this by LocSysp(Dy).

o
Remark 1.11.1. LocSysp(D;) is not an algebraic stack of any kind because we quotient by the loop
group I'(K,), an indscheme of ind-infinite type. It might be considered as a kind of semi-infinite
Artin stack, the theory of which has unfortunately not been developed.

o
The assignment x — LocSysp (D) factorizes in an obvious way.

1.12. Recall that for a finite type (derived) scheme (or stack) Z, |[GR] has defined a DG category
IndCoh(Z) of ind-coherent sheaves on Z
We would like to take as the spectral side of our equivalence the factorization category:

z — IndCoh( LocSys (10)3;) X LocSys;(Dy)).
LocSys(Dy)

8For the reader unfamiliar with the theory of loc. cit., we recall that this sheaf theoretic framework is very close
to the more familiar QCoh, but is the natural setting for Grothendieck’s functor f' of exceptional inverse image (as
opposed to the functor f*, which is adapted to QCoh).



CHIRAL PRINCIPAL SERIES CATEGORIES I: FINITE DIMENSIONAL CALCULATIONS 5

Here and everywhere, we use e.g. G to refer to the reductive group Langlands dual to G, and B < G
to refer to the corresponding Borel subgroup, etc. (c.f. .

However, note that IndCoh has not been defined in this setting: the spaces of local systems on
the punctured disc are defined as the quotient of an indscheme of ind-infinite type by a group of
ind-infinite type.

We ignore this problem in what follows, describing a substitute in below.

1.13. We now formulate the following conjecture:

Main Conjecture. There is an equivalence of factorization categories:

Whitz = (x — IndCoh(LocSysB(ZoDx) X LocSysTv(Dx))) (1.13.1)
LocSysT(Bx)

Remark 1.13.1. Identifying D-modules on the affine flag variety and on the semi-infinite flag variety,
one can show that fiberwise, this conjecture recovers the main result of [AB]. However, as noted in
Remark the methods of loc. cit. are not amenable to the factorizable setting.

1.14. What is contained in this paper? In [FM]|, Finkelberg and Mirkovic argue that their
Zastava spaces provide finite-dimensional models for the geometry of the semi-infinite flag variety.

In essence, we are using this model in the present paper: we compute some twisted cohomology
groups of Zastava spaces, and these computations will provide the main input for our later study
[Ras3] of semi-infinite flag varieties.

In §1.15H1.21] we describe a certain factorization algebra YTy and its role in the main conjecture
(from §1.13)). In §1.22{1.27] we recall some tactile aspects of the geometry of Zastava spaces. Finally,
in we formulate the main results of this text: these realize Y (and its modules) as twisted

cohomology groups on Zastava space.

Remark 1.14.1. Some of the descriptions below may go a bit quickly for a reader who is a non-
expert in this area. We hope that for such a reader, the material that follows helps to supplement
what it is written more slowly in the body of the text.

1.15. The factorization algebra Tj;. To describe the main results of this paper, we need to
describe how we model the spectral side of the main conjecture i.e., the category of ind-coherent
sheaves on the appropriate space of local systems.

We will do this using the graded factorization algebra Y, introduced in [BG2].

After preliminary remarks about what graded factorization algebras are in we introduce
T; in Finally, in we explain why factorization modules for T are related to the
spectral side of the main conjecture.

1.16. Let APs c A = {cocharacters of G} denote the Z=-span of the simple coroots (relative to
B).

Let Divéflfms denote the space of AP?s-valued divisors on X. Le., its k-points are written:

A (1.16.1)

{z;}SX finite
for \; € AP and for G of semi-simple rank 1, this space is the union of the symmetric powers of
X (for general G, connected components are products of symmetric powers of X ).

For A\ € AP% we let Divg‘ff denote the connected component of Divéé)os of divisors of total degree
A (i.e., in the above we have > A\; = A).
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A (AP )-graded factorization algebra is the datum of D-modules:

A* e D(DivYg), Ae Avos
plus symmetric and associative isomorphisms:
Aﬂ+ﬂ|[ :AXAM[

Y i Y . .
Divig x Divig]ais; Divig x Divig]ais;

Here:

[Divéﬁ X Divgﬁ]disj c Divé\ﬁ X Divgﬁ
denotes the open locus of pairs of (colored) divisors with disjoint supports, which we consider

mapping to Divg‘;{ f through the map of addition of divisors (which is étale on this locus).

Remark 1.16.1. The theory of graded factorization algebras closely imitates the theory of factor-
ization algebras from [BD], with the above Divé\égs replacing the Ran space from loc. cit.

1.17. The AP%*-graded Lie algebra i defines a Lie-« algebmﬂ

flX = @o‘z a coroot of G ﬁd ® Af’dR(kX) € D(Divéxfszs)-
In this notation, for a finite type scheme S, kg denotes its (D-module version of the) constant sheaf;
1% denotes the corresponding graded component of @; and A% : X — Divg‘ﬁ denotes the diagonal
embedding.
As in [BD], we may form the chiral enveloping algebra of fix: we let Ti denote the corresponding

factorization algebra. For the reader unfamiliar with [BD], we remind that Y} is associated to nx
as a sort of Chevalley complex; in particular, the =-fiber of T at a point (|1.16.1]) is:

® C. (i)™

where C, denotes the (homological) Chevalley complex of a Lie algebra (i.e., the complex computing
Lie algebra homology).

1.18. Next, we recall that in the general setup of to a graded factorization algebra A and
a closed point z € X, we can associate a DG category A-mod2 of its (A-graded) factorization
modules “at x € X.”

First, let Divé\;gs’w'x denote the indscheme of A-valued divisors on X that are AP*-valued on
X\z. So k-points of this space are sums:

{z;}S X\ finite
where i € A and A; € AP% (to see the indscheme structure, bound how small /i can be).

. . . . Apos . . . .
Then a factorization module for A is a D-module M € D Divy ) equipped with an isomor-
off quipp
phism:
! < ~ - =
add (M)|[Divé\fzfms X Divgf?os’w‘z ~A M|[Divé\ffos X Divé\ﬁos‘w‘z

which is associative with respect to the factorization structure on A, where add is the map:

9Here the structure of Lie- algebra is defined in [BD] (see also [FGI], [Rasl] for derived versions). For the reader’s
sake, we simply note that this datum encodes the natural structure on fix inherited from the Lie bracket on 1.
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. Apos . APOs o0 . APOS o
Diveg X Diveg — Div g

of addition of divisors.
Factorization modules form a DG category in the obvious way.

Remark 1.18.1. In what follows, we will need unital versions of the above, i.e., unital factorization
algebras and unital modules. This is a technical requirement, and for the sake of brevity we do not
spell it out here, referring to [BD] or [Rasl] for details. However, this is the reason that notations of
the form Afmodff;ffx appear below instead of A-mod. However, we remark that whatever these
unital structures are, chiral envelopes always carry them, and in particular Yy does.

Remark 1.18.2. Note that the affine Grassmannian Grr, = T(K,)/T(0;) with structure group
T embeds into Divé\éos’oo'x as the locus of divisors supported at the point z. We remind that the

reduced scheme underlying Grr is the discrete scheme A.

1.19. The following provides the connection between T and the main conjecture.

Principle. (1) There is a canonical equivalence:
o
Tﬁfmodfﬁffx ~ IndCoh(LocSysB(Dm)ﬁOCSyST(DI) X LocSys#(Dy)) (1.19.1)

LocSysp (%z)

o o
where LocSysB(Dx)ﬁocsysT(Dx) indicates the formal completion of LocSys 5 (D,) with respect

to the map from LocSysT(DI)m
(2) Under this equivalence, the functor["]

Ty-modfect OB, pypyj Aveticowy [restriction, 1y ) ~ Rep(T) ~ QCoh(LocSysy (D))

un,T

corresponds to the functor of !-restriction along the map:

o
LocSys (D) — LocSysz(D,) " X LocSysy(Dy).
LocSysT(ﬁz)

(8) The above two facts generalize to the factorization setting, where x is replaced by several
points allowed to move and collide.

Remark 1.19.1. This is a principle and not a theorem because the right hand side of is
not defined (we remind that this is because IndCoh is only defined in finite type situations, while
LocSys leaves this world). Therefore, the reader might take it simply as a definition.

For the reader familiar with derived deformation theory (as in [Lur2|, [GR]) and [BD], we will
explain heuristically in why we take this principle as given. However, the reader who is
not familiar with these subjects may safely skip this material, as it plays only a motivational role
for us.

0For a fixed k-point z € X, LocSysé(lo)z)ﬁocsyST(Dx) is isomorphic to b /N" - T, so the whole fiber product is
isomorphic to g /N AT. Here N* is the formal group for N, i.e., the formal completion at the identity.

"Here and throughout the text, for an algebraic group I', Rep(I') denotes the derived (i.e., DG) category of its
representations, i.e., QCoh(BG).
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Remark 1.19.2. We note that (heuristically) ind-coherent sheaves on ([1.19.1]) should be a full sub-

o
category of IndCoh( LocSysj(Dy) X LocSysy(Dy)) I
LocSysT(lo)z)
In [Ras3], we will use the computations of the present paper to construct a functor:

Whit2 = (:v > IndCoh ( LocSys 5(D5)" X LocSys(Dy)) = T;-modiact )

un,x
o

LocSysy(Dy)

[e)
and identify a full subcategory of Whit;? on which this functor is an equivalence. Moreover, this
equivalence is factorizable, and therefore gives the main conjecture (from §1.13) when restricted to
these full subcategories.

1.20. As stated above, the reader may safely skip which are included to justify the
principle of

We briefly recall Lurie’s approach to deformation theory [Lur2].

Suppose that X is a “nice enough” stack and x € X is a k-point, with the formal completion of
X at x denoted by X2. Then the fiber Ty ,[—1] of the shifted tangent complex of X at x identifies
with the Lie algebra of the (derived) automorphism group (alias: inertia) Aut,(X) == z xyx x of X
at x, and there is an identification of the DG category IndCoh(X,) of ind-coherent sheaves on the
formal completion of X at x with Ty ,[—1]-modules.

o
1.21. At the trivial local system, the fiber of the shifted tangent complex of LocSysy (D) is the

(derived) Lie algebra H ;‘R(Z%x,ﬁ ® k). The philosophy of [BD] indicates that modules for this Lie
algebra should be equivalent to factorization modules for the chiral envelope of the Lie-* algebra
n ® k X on X.

The A-graded variant of this—that is, the version in the setting of in which symmetric
powers of the curve replace the Ran space from [BD]—provides the principle of

1.22. Zastava spaces. Next, we describe the most salient features of Zastava spaces. We remark
that this geometry is reviewed in detail in

o A pos
1.23. There are two Zastava spaces, Z and Z, each fibered over Divé\f? : the relationship is that

o o
Z embeds into Z as an open, and for this reason, we sometimes refer to Z as Zastava space and Z
as open Zastava space.

For the purposes of this introduction, we content ourselves with a description of the fibers of the
maps:

pos

DiVé\H‘
To give this description, we will first recall the so-called central fibers of the Zastava spaces.

12This combines the facts that ind-coherent sheaves on a formal completion are a full subcategory of ind-coherent
sheaves of the whole space, and the fact that ind-coherent sheaves on the classifying stack of the formal group of a
unipotent group are a full subcategory of ind-coherent sheaves on the classifying stack of the group.
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1.24. Recall that e.g. Grg, denotes the affine Grassmannian G(K,)/G(O,) of G at x.

~ ~ 0 -+
For 2 € X a geometric point and A € AP%%, define the central fiber 3 as the intersection:

Gry- o0 Gr)y, = (N‘(KI)G(OI) ﬂN(Kx)X(tI)G(Ox)) /G(0,) € G(K,)/G(O,) = Greg

where t, is any uniformizer at x. Here we recall that Gry- , = N7 (K;)G(0;)/G(O;) and Gr?‘ix =

N(K;)A(tz)G(O.)/G(O,) embed into Grg, as ind-locally closed subschemes (of infinite dimension
and codimension)

o -
A small miracle: the intersections 3;‘ are finite type, and equidimensional of dimension (p, \).
~ o ~
Ezample 1.24.1. For \ = & a simple coroot, one has 3% ~ A\ {0}.

1.25. Let @2\?@ denote the closure of Grp, in GI‘G@ We remind that @)I‘g’m has an (infinite)
stratification by the ind-locally closed subschemes Grg_f for j1 € AP,

We then define 33);‘ as the corresponding intersection:

=X\
Gry- , NGrg, © Grg -

Again, this intersection is finite-dimensional, and equidimensional of dimension (p, A).

Ezample 1.25.1. For A = & a simple coroot, one has 3% ~ AL

X N N o -
1.26. Now, for a k-point ((1.16.1]) of Divéﬁ (for A := >1\;), the corresponding fiber of Z* along T

1S:

I 3 (1.26.1)
and similarly for Z.

o« < . 0 «
Again, Z* and Z* are equidimensional of dimension (2p, ), and moreover, Z* is actually smooth.

1.27.  Finally, there is a canonical map can : Z — G,, which is constructed (fiberwise) as follows.
First, define the map N~ (K,) — G, by:

N™(Kz) = (N7/[N7, NT])(Ky)

0

a

i —R -dty
H K;c sum over coordinates Kac f es(f ) G
simple roots
where Res denotes the residue map and t, is a coordinate in K.
Remark 1.27.1. The twists we mentioned in §1.10| are included so that we do not have to choose

a coordinate t,, but rather have a canonical residue map to G,. But we continue to ignore these
twists, reminding simply that they are spelled out in §2.8]

It is clear that this map factors uniquely through the projection N~ (K,) — Gry-.
We now map ([1.26.1)) by embedding into the product of Gry- ,. and summing the corresponding
maps to G, over the points x;.

13The requirement that A € AP°° is included so that this intersection is non-empty.

A5 a moduli problem, @;,z can be defined analogously to Drinfeld’s compactification of BunXB.
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o
In what follows, we let ¥z € D(Z) (resp. zp§ € D(Z2)) denote the !-pullback of the Artin-Shreier
(i.e., exponential) D-module on G, (normalized to be in the same cohomological degree as the
dualizing D-module of G,).

Remark 1.27.2. The above map N~ (K;) — G, is referred to as the Whittaker character, and we
refer to sheaves constructed out of it the Artin-Shreier sheaf (e.g., 1/1%, Vz) as Whittaker sheaves.

1.28. Formulation of the main results of this paper. Here is a rough overview of the main
results of this paper, to be expanded upon below:

Roughly, the first main result of this paper, Theorem identifies T; with certain Whittaker
cohomology groups on Zastava space; see loc. cit. for more details. This theorem, following [BG2]
and [FFKM], provides passage from the group G to the dual group G (via Y;) which is different
from geometric Satake.

The second main result, Theorem (see also Theorem [5.14.1)) compares Theorem with
the geometric Satake equivalence.

1.29. We now give a more precise description of the above theorems.
Our first main result is the following.

! A pos
Theorem (Thm. [4.6.1]). %*,dR(zﬂ% ® IC;) e D(Divy™) is concentrated in cohomological degree

zero, and identifies canonically with Y. Here 1C indicates the intersection cohomology sheaﬂ (by

O « o
smoothness of the Z*, this just effects cohomological shifts on the connected component of Z).
Moreover, the factorization structure on Zastava spaces induces a factorization algebra structure
|

on 7?'*7dR(’(/J%®IC%), and the above equivalence upgrades to an equivalence of factorization algebras.

In words: the (Divégos-parametrized) cohomology of Zastava spaces twisted by the Whittaker
sheaf is Tj.

Remark 1.29.1. We draw the reader’s attention to §1.35|below for a closely related result, but which
is less imminently related to the theme of semi-infinite flags.

o
1.30. Polar Zastava space. To formulate Theorem|5.14.1] we introduce a certain indscheme Z®*

9 A o8 . . . 9 . A
with a map O ZOT Divé\; P where the geometry is certainly analogous to T Z > Dlvé\ﬂc.
(Here we remind that Divé\f;m’oo':E parametrizes A-valued divisors on X that are AP%*-valued on X\z.)

o
As with Z, for this introduction we only describe the fibers of the map 7#%%. Namely, at a poin

fLx+ Z{xi}gX\z finite N - x; of Divé\;os’w'm, the fiber is:

- O
i Ai
Grhy , x [ [ 320
i
We refer the reader to §f] for more details on the definition.
15Since 20,’ is a union of the varieties %X, we define this IC sheaf as the direct sum of the IC sheaves of the connected

components.
16We remind that this means that fe A and \; € APos,
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1.31.  We will explain in §5/ how geometric Satake produces a functor Rep(G) — D(%Oo'x ).

Though this functor is not so complicated, giving its definition here would require further di-
gressions, so we ask the reader to take this point on faith. Instead, for the purposes of an overview,
we refer to where we explain what is going on when we restrict to divisors supported at the
point x, and certainly we refer to §5| where a detailed construction of this functor is given.

Ezample 1.31.1. The above functor sends the trivial representation to the x-extension of LZJ% under
o o
the natural embedding Z — Z%7%,

We now obtain a functor:

~ o 70T00'$ A Pos .
Rep(G) — D(2*%) "% D(Divly ™).
For geometric reasons explained in 5], Theorem allows us to upgrade this construction to
a functor:

Chevi™ : Rep(G) — T;-mod?act

un,T*

We now have the following compatibility between geometric Satake and Theorem 4.6.1

Theorem (Thm.|5.14.1). The functor Chev%i?m 1s canonically identified with the functor Chev?fjc,
which by definition s the functor:

~ - ~ n ch
Rep(G) Res, Rep(B) Res, ti-mod(Rep(7")) Ind i -modfact

un,T*

Here Ind“" is the chiral induction functor from Lie-* modules for i ® kx to factorization modules

for Ti.

Remark 1.31.2. Here we remind the reader that chiral induction is introduced (abelian categori-
cally) in [BD] §3.7.15. Like the chiral enveloping algebra operation used to define Yj, chiral induction
is again a kind of homological Chevalley complex.

Ezample 1.31.3. For the trivial representation, Example [1.31.1] reduces Theorem [5.14.1| to The-
orem Here, the claim is that Chevi, " of the trivial representation is the D-module on
D(Divé\;os’w'x) obtained by pushforward from Y; along Divf};os — Divé\éos’w'm, i.e., the so-called

vacuum representation of Ty (at x).

1.32.  Our last main result is the following, which we leave vague here.

Theorem (Thm. [7.9.1). A generalization of Theorem |5.14.1) holds when we work factorizably in
the variable x, i.e., working at several points at once, allowing them to move and to collide.

Somewhat more precisely, we define in a DG category Rep(G)y: “over X CIIR” (i.e., with a
D(X')-module category structure) encoding the symmetric monoidal structure on Rep(G) XIH
Most of is devoted to giving preliminary technical constructions that allow us to formulate

Theorem [7.9.1]

IThe construction of Rep(G) 1 is a categorification of the construction of [BD] that associated a factorization algebra
with a usual commutative algebra.
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1.33. Interpretation in terms of F17 . We now indicate briefly what e.g. Theorem [5.14.1| has to

[}
do with F12 . This section has nothing to do with the contents of the paper, and therefore can be
skipped; we include it only to make contact with our earlier motivation.
Fix a closed point 2 € X, and consider the spherical Whittaker category Whitiph < D(Grgz),
which by definition is the Whittaker category (in the sense of of D(Grg). There is a

canonical object in this category (supported on Gry- , € Grg,), and one can show (c.f. Theorem

6.36.1)) that the resulting functor:

( é) geometric Satake

Rep Sphg,, — Whit:?"

)G(O)w is the spherical Hecke category, and the latter

is an equivalence, where Sph , = D(Grg
functor is convolution with this preferred object of Whitf}’h.

Let i3 : D(Flf ) = D(Grr,) denote the functor encoding !-restriction along:

) 0

iz : Grry, = B(K;)/N(K,)T(0y) — G(Ky)/N(K,)T(0,) = F1Z .
Consider the problem of computing the composite functor:

Rep(G) ~ White?h 2222 \Whit(G(K,)/B(0,)) 2220 \Whitz 2255 D(Grry) ~ Rep(T).
By base-change, this amounts to computing pullback-pushforward of Whittakeﬁ sheaves along the
correspondence:

G(K:)/B(Oz) x Grr,==—=Grp,
F1

_— AN

GI‘G,x GrT,:c .

"8

One can see this is exactly the picture obtained by restricting the problem of Theorem [5.14.1

. APos . . . . .
to Grr, S Div g ¥ and therefore we obtain an answer in terms of factorization Ys-modules.

Namely, this result says that the resulting functor:
Rep(G) — Rep(T)
is computed as Lie algebra homology along .

Remark 1.33.1. The point of upgrading Theorem [5.14.1| to Theorem [7.9.1] is to allow a picture of
this sort which is factorizable in terms of the point x, i.e., in which we replace the point x € X by
a variable point in X7 for some finite set I.

1.34. Methods. We now remark one what goes into the proofs of the above theorems.

1.35.  Our key computational tool is the following result.

. !
Theorem (Limiting case of the Casselman-Shalika formula, Thm.|3.4.1)). The pushforward Tr,’k\ r(¥z®

ICz) € D(Divéé)os) is the (one-dimensional) skyscraper sheaf at the zero divisor (concentrated in
cohomological degree zero).

In particular, the restriction of this pushforward to each Divéﬁ with 0 # X € AP yanishes.

181 is crucial here that our character be with respect to N~ , not N.
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We prove this using reasonably standard methods (c.f. [BEGM]) for studying sheaves on Zastava
spaces.

1.36.  Our other major tool is the study of Yj given in [BG2|, where Yj is connected to the
untwisted cohomologies of Zastava spaces (in a less derived framework than in Theorem [4.6.1]).

1.37. Finally, we remark that the proofs of Theorems [3.4.1] [4.6.1] and [5.14.1] are elementary:
they use only standard perverse sheaf theory, and do not require the use of DG categories or
non-holonomic D-modules. (In particular, these theorems work in the ¢-adic setting, with the usual
Artin-Shreier sheaf replacing the exponential sheaf.) The reader uncomfortable with higher category
theory should run into no difficulties here by replacing the words “DG category” by “triangulated
category” essentially everywhere (one exception: it is important that the definition of Tﬁfmodia,‘ffz
be understood higher categorically).

However, Theorem|[7.9.1]is not elementary in this sense. This is the essential reason for the length
of we are trying to construct an isomorphism of combinatorial nature in a higher categorical
setting, and this is essentially impossible except in particularly fortuitous circumstances. We show
in and Appendix [B] that the theory of ULA sheaves provides a suitable method for this
particular problem.

1.38. Structure of the paper. §2]is a mostly self-contained review of the geometry of Zastava
spaces. In §3|and we prove the limiting case of the Casselman-Shalika formula (Thm. and
use it to realize Yy in the geometry of Zastava spaces (Thm. . Then in we give our first
comparison (Thm. [5.14.1] m ) between geometric Satake and the above construction of Tj.

The remainder of the paper is dedicated to a generalization (Thm. [7.9.1)) involving the fusion
structure from the geometric Satake theorem. In §6] we introduce prerequlslte ideas and discuss
the factorizable geometric Satake theorem; in particular, Theorem proves a version of the
factorizable Cassleman-Shalika equivalence of [FGV], which is a folklore result in the subject. In
g7} we use this language to formulate a comparison between geometric Satake and our construction
of T} using the factorizable structures on both sides.

There are two appendices. Appendix [A] proves a technical categorical lemma from Appendix
introduces a general categorical language based on the theory of universally locally acyclic (ULA)
sheaves, and which is suitable for general use in §6| The ULA methods are essential for

1.39. Conventions. For the remainder of this introduction, we establish the conventions for the
remainder of the text.

1.40. We fix a field k of characteristic zero throughout the paper. All schemes, etc, are understood
to be defined over k.

1.41. Lie theory. We fix the following notations from Lie theory.

Let G be a split reductive group over k, let B be a Borel subgroup of G with unipotent radical
N and let T be the Cartan B/N. Let B~ be a Borel opposite to B, i.e., B- n B = T. Let N~
denote the unipotent radical of B~

Let G denote the corresponding Langlands dual group with corresponding Borel B, who in turn
has unipotent radical N and torus T = B/N and similarly for B~ and N~

Let g, b,n,t, b=, n,§ b, 1§ b~ and i~ denote the corresponding Lie algebras.

Let A denote the lattice of weights of 7' and let A denote the lattice of coweights. We let A and
A denote the weights and coweights of G. We let A™ (resp. AT) denote the dominant weights (resp.
coweights), and let AP%® denote the Z>’-span of the simple coroots.
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Let Zg be the set of vertices in the Dynkin diagram of G. We recall that Zg is canonically
identified with the set of simple positive roots and coroots of G. For i € Zg, we let o; € A (resp.
&; € A) denote the corresponding root (resp. coroot).

Moreover, we fix a choice of Chevalley generators { f;}e5, of n™.

Finally, we use the notation p € A for the half-sum of the positive roots of g, and similarly for
peA.

1.42. For an algebraic group I, let let BI" denote the classifying stack Spec(k)/I" for I'.

1.43. Let X be a smooth projective curve.

We let Bung denote the moduli stack of G-bundles on X. Recall that Bung is a smooth Artin
stack locally of finite type (though not quasi-compact).

Similarly, we let Bunpg, Buny, and Bunr denote the corresponding moduli stacks of bundles on
X. However, we note that we will abuse notation in dealing specifically with bundles of structure
group N~ : we will systematically incorporate a twist discussed in detail in

1.44. Categorical remarks. The ultimate result in this paper, Theorem is about computing
a certain factorization functor between factorization (DG) categories. This means that we need to
work in a higher categorical framework (c.f. [Lurl], [Lur3]) at this point.

We will impose some notations and conventions below regarding this framework. With that said,
the reader may read up to §o|essentially without ever worrying about higher categories.

1.45. We impose the convention that essentially everything is assumed derived. We will make this
more clear below, but first, we note the only exception: schemes can be understood as classical
schemes throughout the body of the paper, since we deal only with D-modules on them.

1.46. We find it convenient to assume higher category theory as the basic assumption in our
language. That is, we will understand “category” and “l-category” to mean “(c0,1)-category,”
“colimit” to (necessarily) mean “homotopy colimit,” “groupoid” to mean “co-groupoid” (aliases:
homotopy type, space, etc.), and so on. We use the phrase “set” interchangeably with “discrete
groupoid,” i.e., a groupoid whose higher homotopy groups at any basepoint vanish.
When we need to refer to the more traditional notion of category, we use the term (1, 1)-category.
As an example: we let Gpd denote the category (i.e., co-category) of groupoids (i.e., co-groupoids).

1.47. DG categories. By DG category, we mean an (accessible) stable (co-)category enriched over
k-vector spaces.

We denote the category of DG categories under k-linear exact functors by DGCat and the category
of cocompletﬂ DG categories under continuouﬂ k-linear functors by DGCatcont.

We consider DGCatcont as equipped with the symmetric monoidal structure ® from [Lur3] §6.3.
For €,D € DGCatcopt and for Fe € and G € D, we let F[X] G denote the induced object of C® D,
since this notation is compatible with geometric settings.

For € an algebra in DGCat o, we let C-mod denote C-mod(DGCatcypt): n0 other interpretations
of C-module category will be considered, and moreover, € should systematically be regarded as an
algebra in DGCatcop-

19we actually mean presentable, which differs from cocomplete by a set-theoretic condition that will always be satisfied
for us throughout this text.

20There is some disagreement in the literature of the meaning of this word. By continuous functor, we mean a functor
commuting with filtered colimits. Similarly, by a cocomplete category, we mean one admitting all colimits.
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For € a DG category equipped with a t-structure, we let @>9 denote the subcategory of cocon-
nective objects, and €<% the subcategory of connective objects (i.e., the notation is the standard
notation for the convention of cohomological grading). We let % denote the heart of the t-structure.

We let Vect denote the DG category of k-vector spaces: this DG category has a t-structure with
heart Vect” the abelian category of k-vector spaces.

We use the material of the short note [Gai3] freely, taking for granted the reader’s comfort with
the ideas of loc. cit.

1.48. For a scheme S locally of finite type, we let D(S) denote its DG category of D-modules. For
amap f:S — T, welet f': D(T) — D(S) and f, 4r : D(S) — D(T) denote the corresponding
functors.

We always equip D(S) with the perverse t—structure)EI i.e., the one for which ICg lies in the heart
of the t-structure. In particular, if S is smooth of dimension d, then the dualizing sheaf wg lies in
degree —d and the constant sheaf kg lies in degree d. We sometimes refer to objects in the heart of
this t-structure as perverse sheaves (especially if the object is holonomic), hoping this will not cause
any confusion (since we do not assume k = C, we are in no position to apply the Riemann-Hilbert
correspondence).

1.49. Finally, we use the notation Oblv throughout for various forgetful functors.

1.50. Acknowledgements. We warmly thank Dennis Gaitsgory for suggesting this project to us
as his graduate student, and for his continuous support throughout its development. I have tried
to acknowledge his specific ideas throughout the paper, but in truth, his influence on me and on
this project runs more deeply.

We further thank Dima Arinkin, Sasha Beilinson, David Ben-Zvi, Dario Beraldo, Roman Bezrukavnikov,
Sasha Braverman, Vladimir Drinfeld, Sergey Lysenko, Ivan Mirkovic, Nick Rozenblyum, and Simon
Schieder for their interest in this work and their influence upon it.

Within our gratitude, we especially single out our thanks to Dario Beraldo for conversations that
significantly shaped

We thank MSRI for hosting us while this paper was in preparation.

This material is based upon work supported by the National Science Foundation under Award
No. 1402003.

2. REVIEW OF ZASTAVA SPACES

2.1. In this section, we review the geometry of Zastava spaces, introduced in [FM] and [BEGM].

Note that this section plays a purely expository role; our only hope is that by emphasizing
the role of local Zastava stacks, some of the basic geometry becomes more transparent than other
treatments.

2.2. Remarks on G. For simplicity, we assume throughout this section that G has a simply-
connected derived group.

However, [ABB™] §4.1 (c.f. also [Sch] §7) explains how to remove this hypothesis, and the basic
geometry of Zastava spaces and Drinfeld compactifications remains exactly the same. The reader
may therefore either assume G has simply-connected derived group for the rest of this text, or may
refer to [Sch] for how to remove this hypothesis (we note that this applies just as well for citations
to [BGI], [BG2], and [BEGM]).

21 Alias: the right (as opposed to left) t-structure. C.f. [BD] and [GRI.
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2.3. The basic affine space. Recall that the map:

G/N — G/N := Spec(H(I'(G/N,0g/n))) = Spec(Fun(G)™)

is an open embedding. We call G/N the basic affine space G/N the affine closure of the basic affine
space.
The following result is direct from the Peter-Weyl theorem.

Lemma 2.3.1. For S an affine test scheme amap ¢ : S — G/N with o~Y(G/N) dense in S is
equivalent to a “Drinfeld structure” on the trivial G-bundle G x S — S, i.e., a sequence of maps
for Ae AT.

o A R0s - VIR0
k k
are monomorphisms of quasi-coherent sheaves and satisfy the Pliicker relations.

Remark 2.3.2. By dense, we mean scheme-theoretically, not topologically (e.g., for Noetherian S,
the difference here is only apparent in the presence of associated points).

Ezample 2.3.3. For G = SLa, G/N identifies equivariantly with A2. The corresponding map SLy —
A? here is given by:

(‘CL Z) s (a,c) € A2,

2.4. Let T be the closure of T = B/N < G/N in G/N.

Lemma 2.4.1. (1) T is the toric variety Spec(k[AT]) (here k[AT] is the monoid algebra defined
by the monoid A*). Here the map T = Spec(k[A]) — T corresponds to the embedding

AT — A and the map Fun(G)N — k[A*] realizes the latter as N-coinvariants of the former.

(2) The action of T on G/N extends to an action of the monoid T on G/N (where the coalgebra

structure on Fun(T) = k[AT] is the canonical one, that is, defined by the diagonal map for
the monoid A™).

Here follows again from the Peter-Weyl theorem and follows similarly, noting that V* ®
MY < Fun(G)N = Fun(G/N) has A-grading (relative to the right action of T on G/N) equal to
AeAf.

2.5. Note that (after the choice of opposite Borel) T is canonically a retract of G/N, i.e., the
embedding T < G/N admits a canonical splitting:

G/N > T. (2.5.1)
Indeed, the retract corresponds to the map k[A*] — Fun(G)Y sending ) to the canonical element
in:
AR CVAEVMY < Fun(G)
(note that the embedding Y < VAV uses the opposite Borel).
By construction, this map factors as G/N — N-\(G/N) - T.

221¢ is important here that S is a classical scheme, i.e., not DG.
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Let T act on G/N through the action induced by the adjoint action of T' on G. Choosing a
regular dominant coweight A9 € A* we obtain a G,,-action on G/N that contract onto T. The
induced map G/N — T coincides with the one constructed above.

Warning 2.5.1. The induced map G/N — T does not factor through T'. The inverse image in G/N
of T < T is the open Bruhat cell B"N/N.

2.6. Define the stack BB as G\G/N/T. Note that BB has canonical maps to BG and BT

o
2.7. Local Zastava stacks. Let ¢ denote the stack B~\G/B = BB~ xp BB and and let ¢ denote
the stack B~\(G/N)/T = BB~ xpg BB. We have the sequence of open embeddings:

o
BT — (—(
where BT embeds as the open Bruhat cell.
The map BT — ( factors as:

BT = T\(T/T) — T\(T/T) = BT x T/T — (. (2.7.1)

One immediately verifies that the retraction G/N — T of (2.5.1) is B~ x T-equivariant, where

B~ acts on the left on G/N and T acts on the right, and the action on T is similar but is induced

by the T' x T-action and the homomorphism B~ x T' — T x T. Therefore, we obtain a canonical
map:

(=B \G/N/T - B"\T/T — T\T/T.
Moreover, up to the choice of \g from loc. cit. this retraction realizes BT x T/T as a “deformation
retract” of (.
We will identify T\T /T with BT x T/T in what follows by writing the former as T\(T/T') and
noting that 7' acts trivially here on T/T.
In particular, we obtain a canonical map:

¢ —T)T. (2.7.2)
By Lemma we have an action of the monoid stack T/T on ¢. The morphism ¢ -
BT x T/T 2 T/T is T /T-equivariant.
Lemma 2.7.1. A map ¢ : S — T/T with o~ (Spec(k)) dense (where Spec(k) is realized as the
open point T/T') is canonically equivalent to a A9 := —AP°S-valued Cartier divisor on S.

First, we recall the following standard result.

Lemma 2.7.2. A map S — G,,\A! with inverse image of the open point dense is equivalent to the
data of an effective Cartier divisor on S.

Proof. Tautologically, a map S — G,,\A! is equivalent to a line bundle £ on S with a section
seI(S,L).

We need to check that the morphism Og 2> £ is a monomorphism of quasi-coherent sheaves
under the density hypothesis. This is a local statement, so we can trivialize £. Now s is a function

23We recall that a contracting G, -action on an algebraic stack ) is an action of the multiplicative monoid A' on ).
For schemes, this is a property of the underlying G,, action, but for stacks it is not. Therefore, by the phrase “that
contracts,” we rather mean that it canonically admits the structure of contracting G,,-action. See [DG] for further
discussion of these points.
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f whose locus of non-vanishing is dense, and it is easy to see that this is equivalent to f being a
non-zero divisor.

O

Proof of Lemma[2.7.1] Let G' € G denote the derived subgroup [G,G] of G and let T/ = T n G’
and N’ = N A G'. Then with T' defined as the closure of 7" in the affine closure of G'/N’, the
induced map:

T /T —T/T
is an isomorphism, reducing to the case G = G'.

Because the derived group (assumed to be equal to G now) is assumed simply-connected, we
have have canonical fundamental weights {9;}iez,, ¥ € AT. The map HiEZG 9 T — HieIG Gm
extends to a map T — HieIG A' inducing an isomorphism:

T/T = (AY)G,,)%e.
Because we use the right action of 7" on T, the functions on T are graded negatively, and therefore

we obtain the desired result.
O

2.8. Twists. Fix an irreducible smooth projective curve X. We digress for a minute to normalize
certain twists.

Let Qx denote the sheaf of differentials on X. For an integer n, we will sometimes use the
notation €% for Q?(", there being no risk for confusion with n-forms because X is a curve.

1
We fix Q% a square root of 2x. This choice extends the definition of (2§ to n € %Z. We obtain
the T-bundle:

_1
PE = p(Q) = 2p(Q5°). (2.8.1)
We use the following notation:
Buny- = Bung- x {PF"}
unrm

1
Bung- := Bung,,xc,  x {Qx°}.
Bung,,,

Here G, x G, is the “negative” Borel of PGLs.

1 1
Note that Bung,- classifies extensions of 4? by 2% and therefore there is a canonical map:

cang- : Bung- — HY(X,Qx) = G,.
The choice of Chevalley generators {f;}iez, of n~ defines a map:
B7/IN",N] = | [ (G x Gy).
’iEIG
By definition of P#*", this induces a map:

H t; : Buny- — H BunG; .

€Zg €Za
We form the sequence:
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ez, cang—

Buny- — H BunG; H G, — G,

e i€lg
and denote the composition by:

can : Buny- — G,. (2.8.2)

2.9. For a pointed stack (V,y € Y(k)) and a test scheme S, we say that X x S — ) is non-
degenerate if there exists U € X x S universally schematically dense relative to S in the sense
of |[GAB™| Exp. XVIII, and such that the induced map U — Y admits a factorization as U —

Spec(k) % Y (so this is a property for a map, not a structure). We let Maps,, o, —degen. (X, V) denote

the open substack of Maps(X,)) consisting of non-degenerate maps X — ).
o —
We consider (, ¢, and T/T as openly pointed stacks in the obvious ways.

2.10. Zastava spaces. Observe that there is a canonical map:

(- BT (2.10.1)
given as the composition:

(=BB~ x BB —» BB~ — BT.
BG

Let Z be the stack of P#"-twisted non-degenerate maps X — ¢, i.e., the fiber product:

Mapsnon—degen.(‘X7 C) X {,P%an

Bunp
where the map Maps,,,;,_gegen. (X, () — Bung is given by (2.10.1)).
o o
Let Z < Z be the open substack of P#"-twisted non-degenerate maps X — (. Note that Z and

o o o
Z lie in Sch < PreStk. We call Z the Zastava space and Z the open Zastava space. We let 3: Z2 — Z
denote the corresponding open embedding.

We have a Cartesian square where all maps are open embeddings:

o

zZ zZ

Buny- x Bunp —— Buny- X Bunp
Bung Bung

The horizontal arrows realize the source as the subscheme of the target where the two reductions
are generically transverse.

2.11. Let Divg\ﬁppos = Maps X, T/T) denote the scheme of AP°*-divisors on X (we include

the subscript “eff” for emphasis that we are not taking A-valued divisors).
We have the canonical map:

non—degen.(

deg : ﬂo(Divééos) — APOS,

For A\ € AP%8 let Diviﬁ denote the corresponding connected component of Divgéos
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Remark 2.11.1. Writing A = ZieIG n;; as a sum of simple coroots, we see that DiVéH is a product
HieIG Sym™ X of the corresponding symmetric powers of the curve.

Recall that we have the canonical map r : ( — BT x T/T. For any non-degenerate map X x S —
¢, Warning implies that the induced map to T/T (given by composing r with the second
projection) is non-degenerate as well.

Therefore we obtain the map:

. Apos
T2 — Dlvé\ﬁp

o
We let 7 denote the restriction of 7 to Z. It is well-known that the morphism 7 is affine.

N O ¢ o < -
Let Z* (resp. Z*) denote the fiber of Z (resp. Z) over Div)y. We let 7 (resp. 7*) denote the

X [ N [ «
restriction of 7 to Z* (resp. Z*). We let 7 : Z* — Z* denote the restriction of the open embedding
J- § .
Note that 7 admits a canonical section s : Divly — Z, whose restriction to each Divlg we

denote by s*. Note that up to a choice of regular dominant coweight, the situation is given by
contraction.

. o -

Each Z? is of finite type (and therefore the same holds for Z*). It is known (c.f. [BEGM] Corollary

o -
3.8) that Z* is a smooth variety.
~ o

For A = 0, we have 2% = 2% = Div%; = Spec(k).

We have a canonical (up to choice of Chevalley generators) map Z — G, defined as the compo-
sition Z — Buny- — G,. For &; a positive simple coroot the induced map:

Z% - Divii xG, = X x G, (2.11.1)

o
is an isomorphism that identifies Z¢ with X x G,,,.

- O ¢ - v 3\
The dimension of Z* and Z* is (2p, \) = (p, \)+dim Div2y (this follows e.g. from the factorization

property discussed in §2.12|below and then by the realization discussed in §2.13|of the central fiber
as an intersection of semi-infinite orbits in the Grassmannian, that are known by [BEGM] §6 to be

equidimensional with dimension (p, A)).

Ezxample 2.11.2. Let us explain in more detail the case of G = SLs. In this case, tensoring with the

1
bundle Q% identifies Z with the moduli of commutative diagrams:

LV

o
in which the composition L — £V is zero and the morphism ¢ is non-zero. The open subscheme Z
is the locus where the induced map Coker(£L — €) — £V is an isomorphism. The associated divisor

[N

of such a datum is defined by the injection £ — Q2.
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o o
Over a point x € X, we have an identification of the fiber Z1 of Z1 over z € X (considering
1 € Z = Agy, as the unique positive simple coroot) with G,,. Up to the twist by our square root

1
Q% the point 1 € G,, corresponds to a canonical extension of Ox by Qx associated to the point
x, that can be constructed explicitly using the Atiyah sequence of the line bundle Ox (z).

Recall that for a vector bundle &, the Atiyah sequence (c.f. [Ati]) is a canonical short exact
sequence:

0 — End(&) — At(€) — Tx — 0

whose splittings correspond to connections on €. For a line bundle £, we obtain a canonical extension
At(L) @ QL of Ox by QL. Taking £ = Ox(x), we obtain the extension underlying the canonical
o
point of Z1.
Note that we have a canonical map £ = Ox(z) — At(Ox(z)) ® Q% that may be thought of
as a splitting of the Atiyah sequence with a pole of order 1, and this splitting corresponds to the

o
obvious connection on Ox(x) with a pole of order 1. This defines the corresponding point of Z!
completely.

2.12. Factorization. Now we recall the crucial factorization property of Z.

Let add : Divé\;fws X Divé\éws — Divé‘f}ws denote the addition map for the commutative monoid
structure defined by addition of divisors. For X and i fixed, we let add™ denote the induced map
Divé‘ﬂ X Div’;ff — DiV;\;{ﬂ.
Define:

pos

. Apos . Apos . Apos .
[Divi; x Divii lais; € Diviy x Diviy

as the moduli of pairs of disjoint AP°*-divisors. Note that the restriction of add to this locus is étale.
Then we have canonical “factorization” isomorphisms:

Z x  [DivA” x DivY i = (2 x 2) X [DivAr" x DivAr™ 4isi

APOS APOS APOS

s A - A - A
Div g Divig ™ x Diveg

that are associative in the natural sense.
The morphisms 7 and s are compatible with the factorization structure.

2.13. The central fiber. By definition, the central fiber 3X of the Zastava space 2 is the fiber
product:

P=z2 x X

DY
Divig

where X — Divéﬁ is the closed “diagonal” embedding, i.e., it is the closed subscheme where the

O ¢ v o -
divisor is concentrated at a single point. We let 3* denote the open in 3* corresponding to Z A ZA,
Similarly, we let 3 < Z be the closed corresponding to the union of the 3*.

v v N v (O O
We let $* (resp. ¥*) denote the closed embedding 3* < Z* (resp. 3% «— 2Z?).
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2.14. Twisted affine Grassmannian. Let Pg", Pg" and PZ" be the torsors induced by the
T-torsor P#™ under the embeddings of 7" into each of these groups.

We let Grg,x denote the “Pg'"-twisted Beilinson-Drinfeld affine Grassmannian” classifying a
point z € X, a G-bundle Pg on X, and an isomorphism PE"|x\, ~ Pg|x\,.- More precisely, the
S-points are:

z:S — X, PgaG-bundle on X x S,
S . . e .
« an isomorphism Pg|xxs\r, =~ PE" [ xxs\r.

Similarly for Grp x, etc. We define Gry- x = Grp- x Xarp x X, where the map X — Grr x
being the tautological section.
Let Grp x denote the “union of closures of semi-infinite orbits,” i.e., the indscheme:

z:S—> X, p: X x8—>G\(G/N)/T,
Grpx:S— { a a factorization of p|x«syr, through the }
canonical map Spec(k) — G\(G/N)/T.
Here I',, denotes the graph of the map .

2.15. In the above notation, we have a canonical isomorphism:

3 = GI’N— x X @B’X.
’ GI"G,X

Indeed, this is immediate from the definitions.

Note that Grp x has a canonical map to Grr x = [ [5.x Grg}’X. Letting Grj‘BvX be the fiber over
the corresponding connected component of Grr x, we obtain:

N~ ——A
3/\ —> GI'Nf x X GI'B X-
" Grg,x ’

2.16. By we have an action of Divf;\éms on Z so that the morphism 7 is Divégs—equivariant.
We let actz denote the action map Divé\fszs x Z — Z. We abuse notation in denoting the induced

X pos o o
map Divé‘;fo xZ — Z by act;j (that does not define an action on Z, i.e., this map does not factor
o
through Z).
For A € A acting on Z* defines the map:
act) : Diviy” x 2% - 2.
For 7 € AP°® we use the notation actzy’/\ for the induced map:
actg)‘ : DinH x ZA o ZA
Similarly, we have the maps actjg and acti‘,’ﬁ.

Z Z
The following lemma is well-known (see e.g. [BEGM]).

Lemma 2.16.1. For every X, € AP°, the act%’f' is finite morphism and the map act)%‘”7 s a locally

closed embedding. For fized \ the set of locally closed subschemes of ZA;



CHIRAL PRINCIPAL SERIES CATEGORIES I: FINITE DIMENSIONAL CALCULATIONS 23

forms a stratification.

2.17. Intersection cohomology of Zastava. For A € AP* we now review the description from
[BEGM] of the fibers of the intersection cohomology D-module IC_5 along the strata described
above, i.e., the D-modules:

. o o . <
actg“’!(ICZ;) e D(Divly x Z7), ij, e AP i+ 17 = A.
Theorem 2.17.1. (1) With notation as above, the regular holonomic D-module:
Loy . o .
ath’“"(ICZX) € D(Dinﬂc x ZH) (2.17.1)
Z

o ~
18 concentrated in constructible cohomological degree —dim Z*.
o .
(2) Forx € X a point, the further =-restriction of (2.17.1)) to 3% is a lisse sheaf in constructible

o
degree —dim Z* isomorphic to:

0.
U(R)07) @y, [dim 27
where U(n)(7) indicates the n-weight space.
o ~
(3) The !-restriction of (2.17.1)) to Z" is a sum of sheaves:

o .
ko, [—r + dim Z7] (2.17.2)
partitions 7=3"_, & Iz

&7 a positive coroot

o . .
Remark 2.17.2. Recall from the above that, Z* is equidimensional with dim Z* = 2(p, fi).

Remark 2.17.3. For clarity, in we sum over all partitions of 7; as a sum of positive coroots
(where two partitions are the same if the multiplicity of each coroot is the same). We emphasize
that the &7 are not assumed to be simple coroots, so the total number of summands is given by
the Kostant partition function.

Remark 2.17.4. This theorem is a combination of Theorem 4.5 and Lemma 4.3 of [BEGM] using
the inductive procedure of loc. cit.

1
2.18. Locality. For X a smooth (possibly affine) curve with choice of Q% , we obtain an iden-
tical geometric picture. One can either realize this by restriction from a compactification, or by
reinterpreting e.g. the map Z — G, through residues instead of through global cohomology.

3. LIMITING CASE OF THE CASSELMAN-SHALIKA FORMULA

3.1. The goal for this section is to prove Theorem [3.4.1} on the vanishing of the IC-Whittaker
cohomology groups of Zastava spaces. This vanishing will play a central role in the remainder of
the paper.

Remark 3.1.1. The method of proof is essentially by a reduction to the geometric Casselman-Shalika
formula of [FGV].
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Remark 3.1.2. We are grateful to Dennis Gaitsgory for suggesting this result to us.

3.2. Artin-Schreier sheaves. We define the !-Artin-Schreier D-module ¢ € D(G,) to be the
exponential local system normalized cohomologically so that [—1] € D(G,)¥. Note that 1) is
multiplicative with respect to !-pullback.

3.3. For A e AP let Yas € D(ZS‘) denote the !-pullback of the Artin-Schreier D-module 1 along
the composition:

Z* > Buny- 25 G,.

| .
Note that ¢.5 @ IC ;5 € D(Z*)".
We then also define:

1/] = ]5\’!<¢25\)'

3.4. The main result of this section is the following:

25
Theorem 3.4.1. If \ # 0, then:

< !
T ar(IC 53 @Y 55) = 0.

The proof will be given in below.
This theorem is étale local on X, and therefore we may assume that we have X = Al In

1
particular, we have a fixed trivialization of Q%.

3.5. Central fibers via affine Schubert varieties. In the proof of Theorem [3.4.1] we will use
Proposition[3.5.1|below. We note that it is well-known, though we do not know a published reference.

Throughout we work only with reduced schemes and indschemes, so all symbols refer to
the reduced indscheme underlying the corresponding indscheme. Note that this restriction does not
affect D-modules on the corresponding spaces.

Let T(K)x denote the group indscheme over X of meromorphic jets into 7' (so the fiber of
T(K)x at z € X is the loop group T(K)). Because we have chosen an identification X ~ A!, we
have a canonical homomorphism:

CGrrx ~A' x A - T(K)x ~ A x T(K)
(@, A) = (2, A(t))

where ¢ is the uniformizer of A! (of course, the formula Gryx ~ Al x A is only valid at the
reduced level). This induces an action of the X-group indscheme Gry x on Grp x, Grg x and

GrN—,X = GI‘%, X
Using this action, we obtain a canonical isomorphism:
3;\=Gr%_X X @2)(3(}1{78_){ x Grpy
’ GrG,X ’ G ’

of X-schemes for every 7j € A.

Proposition 3.5.1. For 7 deep enougﬂ in the dominant chamber we have:

24This should be understood in a way depending on A.
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i A+ 7
Grll_ X GrB’X GrB x . x Grgx.
" Grg,x Gra,x

This equality also identifies:

- A - X -
GrrT7 x X Gry +77 Gr%_ ¥ X GrG+)7(7—.
Grg,x “ Grg,x ’

Proof. Tt suffices to verify the result fiberwise and therefore we fix z = 0 € X = A! (this is really
v O N (O

just a notational convenience here). We let 37 (resp. 32) denote the fiber of 3* (resp. 3%) at x. Let

t € K, be a coordinate at x.

Because there are only finitely many 0 < /i < A and because each 5 is finite type, for 77 deep
enough in the dominant chamber we have:

o .
3 = Gry- oz N Ad_) (N(Oz)) - A(t)
(f1(t) being regarded as a point in Grg, here and the intersection symbol is short-hand for fiber
product over Grg ;) for all 0 < /i < \. Choosing 7 possibly larger, we can also assume that 7 + f
is dominant for all 0 < /i < A. Then we claim that such a choice 7 suffices for the purposes of the
proposition.
Observe that for each 0 < ji < A we have:

Grll A Gl ) 3 e ol (N<ox> i+ ﬁ)(t)> c Gl A G,

7
B~ x

Recall (c.f. [MV]) that @gj is a union of strata:

while for fi:

unless i = 0. Therefore, Gr ,, intersects Grh, B, only in the strata Gr‘jg”7 for 0 < i < A
The above analysis therefore shows that:

Gr mGr < Gr mGrAM’.
+

7
B~ x
7)(t) is open in Gr. Therefore, we have:

Now observe that B(O,) - (A
giving the opposite inclusion above.

O
It remains to show that the equality identifies 3} in the desired way. We have already shown
that:

7 Ay i /\+77
GrB,ﬁmmGerx cGrg_, = NnGrg,' .
so it remains to prove the opposite inclusion. Suppose that y is a geornetric point of the right hand
side. Then, by the Iwasawa decomposition, y € Grf,"" for some (unique) ji € A and we wish to show

that i = .
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Because:

Y€ Gr“Jrn mGr/\H’ #

we have i < A\. We also have:

yEGr“JranrB m;ﬁ@

which implies i > 0. Therefore, by construction of n we have:

Y E GrnB_ N Gr“Jr" - Gr"B_ N Gr“Jr" - Gr’”n

but Gr“ A GrAH7 & if i # X (because ji + 77 and \ + 7 are assumed dominant) and therefore

we must have fi = A as desired.
O

We continue to use the notation introduced in the proof of Proposition [3.5.1
Recall that ﬁ)‘ (resp. ¥*) denotes the closed embedding 3* — Z* (resp 3)‘ ) For z € X,
let 5/\ (resp. ¥ ) denote the closed embedding 3)‘ s ZA (resp. 3)‘ — Z)‘)

Corollary 3.5.2. For every x € X, the cohomology:

Hia (30,82 (105 ®00)) (35.1)

is concentrated in non-negative cohomological degrees, for for 0 # \, it is concentrated in strictly
positive cohomological degrees.

Remark 3.5.3. Tt follows a posteriori from Theorem that the whole cohomology vanishes for
0#A\

Proof. First, we claim that when either:

e <0, or: 3
ei=0and A\ #0
we have:

HdR(sg, IC,, é%ﬁ)) —0 (3.5.2)

o ¢ I3
Indeed, from the smoothness of Z*, we see that IC%X ®x§’!(¢%ﬂ) is a rank one local system
concentrated in perverse cohomological degree:

o X o 5 o 5
dim(Z2%) — dim(3;) = dim(37).
This gives the desired vanishing in negative degrees.

Moreover, from Proposition and the Casselman-Shalika formula ([FGV] Theorem 1), we
deduce that, for A # 0, the restriction of our rank one local system to every irreducible component

O
of 32 is moreover non-constant. This gives (3.5.2)).
To complete the argument, note that by Theorem [2.17.1 . for 0 < 1 < A, the !-restriction of

ICx to 31 lies in perverse cohomological degrees > (p, i), with strict inequality for j # A
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. X ! 0.
By lisseness of Y5, we deduce that for 0 < i < A, 5:2\’!(1ch ®¢Zx) has l-restriction to 3% in
perverse cohomological degrees strictly greater than (p, 1) = dim(Z*). Therefore, the non-positive

cohomologies of these restrictions vanish.
We find that the cohomology is the open stratum can contribute to the non-positive cohomology,

but this vanishes by (3.5.2)).

g
Corollary 3.5.4. If 0 # X\ € AP° then we have the vanishing Euler characteristic:
« (2X Ak !
X HdR(3x7 m’.(ICZ/'\ ®'¢Z5\)) =0.
Proof. The key point is to establish the following equality:
[62'(1C z5)] = [L!(ICG )] € Ko(Dhoi(32)) (3.5.3)

in the Grothendieck group of complexes of (coherent and) holonomic D-modules on 3§. Here the
map ¢ is defined as:

~ i A\ A7
3 — Gry-, G G-
It suffices to show that for each 0 < ji < ), the l-restrictions of these classes coincide in the
Grothendieck group of:

7 a+n
GrB_yx NnGrg,
Indeed, these locally closed subvarieties form a stratification.
First, note that the !-restriction of I1C

o to Grgxﬂ has constant cohomologies (by G(O)-
rG,z ’

equivariance). Moreover, by [Lus| the corresponding class in the Grothendieck group is the dimen-
sion of the weight component:

dim (V70N (=i =) - [IC 5 0]

G,z
Further !-restricting to Grg,’z N Grgj;ﬁ, we obtain that the right hand side of our equation is given
by:
) w3, -
dim V0D (=) - [ICq ]
By having U () act on a lowest weight vector of V;\+’7, we observe that for 7} large enough, we have:
Vol (—p— i) > U(R) (A — i),
The similar identification for the left hand side follows from the choice of 77 (so that Grg_ 20 Glr’(v‘;rm77

o .
identifies with 3%) and Theorem [2.17.1| (3).
Appealing to (3.5.3)), we see that in order to deduce the corollary, it suffices to prove that:

(i (3200 @82 (w,0) ) = .

Even better: by the geometric Casselman-Shalika formula [FGV], this cohomology itself vanishes.
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3.6. Now we give the proof of Theorem [3.4.1

Proof of Theorem [3.4.1. We proceed by induction on (p, 5\), so we assume the result holds for all
. . !

0 < iz < A. By factorization and induction, we see that F = 7} ar(IC 5 ®z5) is concentrated on

the main diagonal X < Div)g.

; . !
The (# =!-)restriction of F to X is the #-pushforward along 3* — X of M (IC ;5 @1 z5). More-

over, since 3;\ — X is a Zariski-locally trivial fibration, the cohomologies of & on X are lisse and
the fiber at z € X is:

Hin (33 B2 (103 @053) ).

© |
Because 7 is affine and IC 25 ) =5 is a perverse sheaf, F lies in perverse degrees < 0. Moreover,
by Corollary [3.5.2] its !-fibers are concentrated in strictly positive degrees. Since ¥ is lisse along X,
this implies that F is actually perverse. Now Corollary provides the vanishing of the Euler
characteristics of the fibers of &F, giving the result.
0

4. IDENTIFICATION OF THE CHEVALLEY COMPLEX

4.1. The goal for this section is to identify the Chevalley complex in the cohomology of Zastava
space with coefficients in the Whittaker sheaf: this is the content of Theorem [4.6.1
The argument combines Theorem with results from [BG2).

Remark 4.1.1. Theorem is one of the central results of this text: as explained in the introduc-
tion, it provides a connection between Whittaker sheaves on the semi-infinite flag variety and the
factorization algebra Tj, and therefore relates to the main conjecture of the introduction.

4.2.  We will use the language of graded factorization algebras.
The definition should encode the following: a ZZ°-graded factorization algebra is a system A, €
D(Sym" X)) such that we have, for every pair m,n we have isomorphisms:

~

<-Am An) ’[Symm X xSym"™ X]gis; —
satisfying (higher) associativity and commutativity. Note that the addition map Sym™ X xSym”" X —
Sym™*™ X is étale when restricted to the disjoint locus, and therefore the restriction notation above
is unambiguous.
Formally, the scheme Sym X = [ [, Sym™ X is naturally a commutative algebra under correspon-
dences, where the multiplication is induced by the maps:

(-Am+n> ‘ [Sym™ X xSym"™ X4,

[Sym”™ X x Sym™ X 4;s;

/\

Sym"™ X x Sym™ X Sym™ " X.
Therefore, as in [Rasi] we can apply the formalism of loc. cit. §5|to obtain the desired theory.
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Remark 4.2.1. We will only be working with graded factorization algebras in the heart of the ¢-
structure, and therefore the language may be worked out “by hand” as in [BD], i.e., without needing
to appeal to [Rasl].

Similarly, we have the notion of APos_graded factorization algebra: it is a collection of D-modules
on the schemes Div)g with similar identifications as above.

4.3. Recall that [BG2] has introduced a certain AP%-graded commutative factorization algebra,

i.e., a commutative factorization D-module on DiVAfI;os This algebra incarnates the homological
Chevalley complex of n. In loc. cit., this algebra is denoted by T(nx): we use the notation Ty

1nstead We denote the component of Y on Div) g by T)‘ Recall from loc. cit. that each T’\ lies in
D1V QQ.

Remark 4.3.1. To remind the reader of the relation between T; and the homological Chevalley
complex Co(11) of fn, we recall that the =-fiber of Ty at a AP%-colored divisor >, ; A; - z; (here
Xi € A% and the z; € X are distinct closed points) is canonically identified with:

® Cu(f)™

=1
where C, (ﬁ)j‘i denotes the A\;-graded piece of the complex.

Remark 4.3.2. The AP%-graded vector space:

n= @ n
& a positive coroot

gives rise to the D-module:

iy = ) AY 4 (1% ® kx) € D(Divly)
& a positive coroot
where for Ae A, A : X — Divé‘ﬁ is the diagonal embedding. The Lie algebra structure on n gives
a Lie-* structure on nix.
Then T; is tautologically given as the factorization algebra associated to the chiral enveloping
algebra of this Lie-* algebra.

Remark 4.3.3. We emphasize the miracle mentioned above and crucially exploited in [BG2] (and
below): although C, (1) is a cocommutative (DG) coalgebra that is very much non-classical, its
D-module avatar does lie in the heart of the t-structure. Of course, this is no contradiction, since
the #-fibers of a perverse sheaf need only live in degrees < 0.

*,dR

4.4. Observe that ), dR(ICo) naturally factorizes on Z. Therefore, 5% ]*VdR(Icg) is naturally a

factorization D-module in D(DIVAPOS).
The following key identification is essentially proved in [BG2|, but we include a proof with
detailed references to loc. cit. for completeness.

Theorem 4.4.1. There is a canonical identification:

HO (s, 4r(IC4)) = Ta
of AP -graded factorization algebras.

25We explicitly note that in this section we exclusively use the usual (perverse) t-structure.
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Remark 4.4.2. To orient the reader on cohomological shifts, we note that for A € AP%® fixed, IC‘%X

is concentrated in degree 0 and therefore the above H? is the maximal cohomology group of the
complex 5*’de*,dR(IC%X).

Proof of Theorem [J7-1, Let j : Divly S™Ple o, Divii” denote the open consisting of simple
divisors, i.e., its geometric points are d1v1sors of the form ZZ 1 041 x; for &; a positive Slmple coroot

and the points {z;} pairwise distinct. For each X € AP, we let j* DlvA simple

DlVeff denote the
corresponding open embedding. Note that j and each embedding 42 is affine.

Observe that Divé\;os’Simple has a factorization structure induced by that of Diveg. The restric-
tion of Y to Divé\;os’Simple identifies canonically with the exterior product over i € Zg of the
corresponding “sign” (rank 1) local systems under the identification:

DIV)\ simple H Symni,simpleX
iEZG
where \ = Zidc n;¢; and on the right the subscript simple means “simple effective divisor” in the

same sense as above. Moreover, these identifications are compatible with the factorization structure
in the natural sense.

Let ZSlmple and ZA simple denote the corresponding opens in Z and Z A obtamed by fiber product.
Let ES‘mple and s*MPle denote the corresponding restrictions of s and s
Then Zsimple =, Dw(’e\ffS imple Ggﬁ’/\) as a DlVi\f’fS mple_gcheme by 1) and these identifications

are compatible with factorization.
Therefore, we deduce an isomorphism:

HO(ssimple,*,dR )) = j'(Tﬁ)

note that the sign local system appears on the left by

Jx,dr(IC

o
Zsimple

of factorization D-modules on Div_g
the Koszul rule of signs).
Therefore, we obtain a diagram:

APos simple (

pHO e A, (10, L)) —— 55 (Ta)

l (4.4.1)
HO (545, dR(IC ) Ts

A POS

Note that the top horizontal arrow is a map of factorization algebras on Div/y
By (the Verdier duals to) [BG2] Lemma 4.8 and Proposition 4.9, the vertical maps in (4.4.1)

are epimorphisms in the abelian category D(Divéf?os)o. Moreover, by the analysis in loc. cit. §4.10,
there is a (necessarily unique) isomorphism:

HO (5%, dR(IC )) = Ta

completing the square (4.4.1). By uniqueness, this isomorphism is necessarily an isomorphism of
factorizable D-modules.
]
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o
4.5. Observe that the D-module w% canonically factorizes on Z. Therefore, j*7dR(w%) factorizes
in D(2).
By Theorem we have for each A € AP°® we have a map:

Ji\,dR(Icé;\) - 5;\,dR H° <5A’*’dRJ;\,dR(IC%X)) = 5*,dR(T%\)- (4.5.1)
These maps are compatible with factorization as we vary .

Lemma 4.5.1. The map (4.5.1)) is an epimorphism in the abelian category D(Zj‘)@.

Proof. Let I e D(ZS‘)@. Then the canonical map:

F — 8 gps () (4.5.2)

has kernel given by restricting to and then !-extending from the complement to the image of 52,
Since this is an open embedding, the kernel of (4.5.2)) is concentrated in cohomological degrees < 0.
Taking the long exact sequence on cohomology, we see that the map:

T — H(s2 gns™*(9)) = 53 4 HO(sM () € D27
is an epimorphism. )
Applying this to F = ji\,dR(IC%;\) gives the claim.
]

| < ~
4.6. Applying 1z ® — to (£5.1) and using the canonical identifications s (¢ 5) = w
obtain maps:

. X, WEe
Divig’

- - | v
AL - A
n ZJ*,dR(Tﬂ%; ®IC§;) — 54, dr(T3)-
Because everything above is compatible with factorization as we vary A, the maps 775‘ are as well.
|

We let 1 : J*,dR(¢§®IC§) — 5, qr(Ts) denote the induced map of factorizable D-modules on Z.

Theorem 4.6.1. The map:

) Tx,dr (M)

o ! !
w*,(m(w% ® IC%) = W*,dRJ*,dR(llf% ®IC% Tw drSx dr(Ti) = Ta (4.6.1)

s an equivalence of factorizable D-modules on Divéflf)os.

!
Remark 4.6.2. In particular, the theorem asserts that %*,dR(i/J% ®IC%) is concentrated in cohomo-
logical degree 0.

Proof of Theorem [J.6.1. Tt suffices to show for fixed A € AP that wi dR(nj‘) is an equivalence.
Recall from [BG2] Corollary 4.5 that we have an equality:

[]i\,dR(IC%;)] = Y, [lacth p(YIHICz:)] € Ko(D}y(27)). (4.6.2)
fmEeAPos
A=A
in the Grothendieck group of (coherent and) holonomic D-modules. Therefore, because 1z is lisse,
we obtain a similar equality:
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5 ! . ; !
[]i,dR(w%; ®1C, )] = > [actZ’, ar (TZ ¥, ®ICZﬂ)>] (4.6.3)
7 Apos
fitii=A

by the projection formula. .
For every decomposition i + 77 = A, we have:

5 o _ ! o _ _ !
T aracty g (TUE (0g, ®1Cz5)) = addllyy (TIE7L (g, @1C22)).

By Theorem this term vanishes for ji # 0.
Therefore, we see that the left hand side of is concentrated in degree 0, and that it agrees
in the Grothendieck group with the right hand side.
Moreover, by affineness of 7*, the functor 7ri‘7 4 18 right exact. Therefore, by Lemma 4.5.1, the

map ﬂ'i‘ d R(nj‘) is an epimorphism in the heart of the ¢-structure; since the source and target agree
in the Grothendieck group, we obtain that our map is an isomorphism.

0

5. HECKE FUNCTORS: ZASTAVA CALCULATION OVER A POINT

5.1. Next, we compare Theorem with the geometric Satake equivalence.

More precisely, given a representation V of the dual group G, there are two ways to associate a
factorization Yi-module: one is through its Chevalley complex C, (11, V'), and the other is through
a geometric procedure explained below, relying on geometric Satake and Theorem In what
follows, we refer to these two operations as the spectral and geometric Chevalley functors respec-
tively.

The main result of this section, Theorem [5.14.1] identifies the two functors.

Notation 5.1.1. We fix a k-point z € X in what follows.

5.2. Polar Drinfeld structures. Suppose X is proper for the moment.
Recall the ind-algebraic stack Buny- from [FGV]: it parametrizes Pg a G-bundle on X and
non-zero maps@
® V7A
Q2PN SV (0 )
defined for each dominant weight A and satisfying the Plucker relations.

Ezample 5.2.1. Let G = SLy. Then Bunﬁf classifies the datum of an S Lo-bundle € and a non-zero
1
map Q3% — &(o- x)

Ezample 5.2.2. For G = G, Bun?\?f is the affine Grassmannian for 1" at x.

1
26Here if (p, A) is half integral, we appeal to our choice of Q%.
2THere we are slightly abusing notation in letting & denote the rank two vector bundle underlying our SLs-bundle.
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5.3. Hecke action. The key feature of mﬁf is that Hecke functors at = act on D(%}‘ﬁ“)
More preclsely7 the action of the Hecke groupoid on Bung lifts in the obvious way to an action on
BunN_

For definiteness, we introduce the following notation. Let Hg denote the Hecke stack at x,
parametrizing pairs of G-bundles on X identified away from x. Let h; and ho denote the two
projections HE — Bung.

Define the Drmfeld Hecke stack J(¢ p,y, as the fiber product:

rx Bunl?
Bung

where we use the map hq : H§ — Bung in order to form this fiber product. We abuse notation in
0T
using the same notation for the two projections H¢, p ;) — Buny-.

Ezample 5.3.1. Let G = SLa. Then HE, 1 ;, parametrizes a pair of SLy-bundles € and & identified

1
away from x and a non-zero map Q3 — &;(00 - x). The two projections h; and hgy correspond to
the maps to Bunﬁf sending a datum as above to:

(61,93 — & (0 - 2))
(82,9)5( — 81(00 : :L‘) = 82(00 . x))

respectively.

We have the usual procedure for producing objects of ¢, from objects of Sph¢; , == D(Grgyx)G(O)x.

These give Hecke functors acting on D(Bung) using the correspondence ¢ from D(Bung) to it-
self and the kernel induced by this object of Sphe; ,. We normalize our Hecke functors so that we

l-pullback along hi and #*-pushforward along hs. The same discussion applies for D(Bunﬁf).
We use * to denote the action by convolution of Sphg; ,, on these categories.

5.4. Polar Zastava space. We let % ©% denote the indscheme defined by the ind-open embedding:

. = 00T
Z“% < Bung x Buny-
Bung

given by the usual generlc transversahty condition.
Note that Z c 2% ig the fiber of Z07 along Buny- < Bunj,~.

o
Remark 5.4.1. As in the case of usual Zastava, note that Z%7 is of local nature with respect to X:
i.e., the definition makes sense for any smooth curve, and is étale local on the curve. Therefore, we
typically remove our requirement that X is proper in what follows.

5.5. Let Divé\éos’oo'x be the indscheme parametrizing A-valued divisors on X that are AP°s-valued
away from zx.
As for usual Zastava space, we have the map:

o Jop- pos
zow 770, D1VAff T

APos 0.1

Remark 5.5.1. There is a canonical map deg : Div g —A (considering the target as a discrete

k-scheme) of taking the total degree of a divisor.
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,00-T

5.6. Factorization patterns. Note that Divé\;os is a wunital factorization module space for

. Apos .
Dlvé\ﬁ . This means that e.g. we have a correspondence:

. [\pos . APOS,CX)'x . APOS,CX)I
Diveg X Diveg Div g .

For this action, the left leg of the correspondence is the open embedding encoding disjointness of
pairs of divisors, while the right leg is given by addition. (For the sake of clarity, let us note that

0S8

the only reasonable notion of the support of a divisor in Divé\; P requires that x always lie in
the support).

Therefore, as in we can talk about unital factorization modules in Divﬁéos’wm for a unital

fact
un,x:*

graded factorization algebra A € D(Divééos). We denote this category by A-mod

.. . . jpos . APOS op.p . L.
Remark 5.6.1. The factorization action of Dlvé\; on Dlv(i\ff DT s commutative in the sense of

[Ras]] Indeed, it comes from the obvious action of the monoid Divg\ﬁpos on Divggos’oo'x.

Remark 5.6.2. We emphasize that there is no Ran space appearing here: all the geometry occurs
on finite-dimensional spaces of divisors.

o
5.7. There is a similar picture to the above for Zastava. More precisely, Z%* is a unital factor-

o
ization module space for Z in a way compatible with the structure maps to and from the spaces of
divisors.

o o
Therefore, for a unital factorization algebra B on Z, we can form the category B-modat(Zz© ),

o
Moreover, for M € B-modfat(z% @), 70?:?&:(}3(/\/1) is tautologically an object of %*,dR(B)—modfﬂffx.
We denote the corresponding functor by:

(0]
7L« B-mod™ct(Z7) — 7, 4p(B)-modfct

un,x*
5.8. Construction of the geometric Chevalley functor. We now define a functor:
Chevi?™ : Rep(G) — Yi-modfet,

using the factorization pattern for Zastava space.

Remark 5.8.1. Following our conventions, Rep(G) denotes the DG category of representations of

G.

Remark 5.8.2. We will give a global interpretation of the induced functor to D(Divééos’oo'x) in

§5.12} this phrasing may be easier to understand at first pass.

o
5.9. First, observe that there is a natural “compactification” Z%* of Z%*: for X proper, it is the
appropriate ind-open locus in:

Z%7% < Bunpy® x Bunj-.
Bung
Here Bung'x is defined analogously to Bunﬁf; we remark that it has a structure map to Bungp

with fibers the variants of BunﬁfC for other bundles. Again, Z%% is of local nature on the curve X.
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The advantage of Z* is that there is a Hecke action here, so Sphe; , acts on D(Z*¥). Note
that !-pullback from Bunﬁ_x commutes With Hecke functors.

There is again a canonical map to Div2 ff R , and the factorization pattern of carries over
in this setting as well, that is, Z%% is a unital factorization module space for Z. Moreover, this
factorization schema is compatible with the Hecke action.

5.10. Define Y € Z°* as the preimage of Buny- < Bum?\?fE in Z€%: again, Y is of local nature
on X.
Remark 5.10.1. The notation ZOO"” would be Just as approprlate for Y as for the space we have

denoted in this way: both are polar versions of Z but for ZOO * we allow poles for the N~ -bundle,
while for Y we allow poles for the B-bundle.

There is a canonical map Y — G, which e.g. for X proper comes from the canonical map
Buny- — G4. We can !-pullback the exponential D-module ¢ on G, (normalized as always to be
in perverse degree -1): we denote the resulting D-module by ¢y € D(Y).

We then cohomologically renormalize: define ¢1§C

Yy = Pyl (2p, deg)].
Here we recall that we have a degree map Y € Z®°% — A, so pairing with 2p, we obtain an integer
valued function on Y: we are shifting accordingly.

Remark 5.10.2. The reason for this shift is the normalization of Theorem [4.6.1} this shift is implicit

!
there in the notation ®IC%. This is also the reason for our notation 1/)1150.

5.11. Recall that y denotes the embedding % — Z. We let 7** denote the map %O‘m — ZPT
Let:

Saty : Rep(G)” = Sphg’m

denote the geometric Satake equivalence. Then let:

Sat™v¢ : Rep(G) — Sphg 4

denote the induced functor.
We then define Chevi™ as the following composition:

Satnaive 7*1#10
x

Rep(G) Sphg, ——

(5.11.1)

OO

| 00 x,! ! o
ran(th3 ®1C;)-modiie (27) L (1, ©1C,)-modiy (£7%) Z45 To-modis!

un,xr*

Here in the last step, we have appealed to the identification:

o |
W*,dR(¢§ ® IC%)) =Ty

of Theorem We also abuse notation in not distinguishing between @/}éc and its x-pushforward
to Z9%,
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5.12. Global interpretation. As promised in Remark[5.8.2] we will now give a description of the
functor Chevi™ in the case X is proper.

Since X is proper, we can speak about Buny- and its relatives. Let Whit € D(Buny-) denote
the canonical Whittaker sheaf, i.e., the !-pullback of the exponential sheaf on G, (normalized as
always to be in perverse degree —1). We then have the functor:

Rep((Y) — D(Div2y" )
given by applying geometric Satake, convolving with the (x =!)-pushforward of Whit to D(Bun?\?'_x),

and then !-pulling back to %OO'I and =-pushing forward along 7%%

Since !-pullback from Biunﬁx to Z%% commutes with Hecke functors, up to the cohomological
shifts by degrees, this functor computes the object of D(DIV ﬁ "0 )
Ti-module coming from Chevgeom

underlying the factorization

5.13. Spectral Chevalley functor. We need some remarks on factorization modules for Y;:
Recall from Remark [4.3.2] that Y; is defined as the chiral enveloping algebra of the graded Lie *

algebra nx € D(Divg\ém ). By Remark we may speak of Lie-# modules for nx on Div H Lo,

the definition follows [Rasl] § Let nix—mod, denote the DG category of Lie-* modules for

nx supported on Grr, < Divﬁéas’oo'x (this embedding is as divisors supported at z). We have a
tautological equivalence:

fix-mod, ~ #i-mod(Rep(T)) (5.13.1)
coming from identifying Rep(T) with the DG category of A-graded vector spaces. Note that the
right hand side of this equation is just the category of A-graded n-representations.

Moreover, by |[Rasl] § we have an induction functor Ind®" : # x—mod, — YTi;—mod
We then define ChevSpec Rep(@) — Ti-mod?t as the composition:

un,xr

fact
un,r*

Rep(G) P, Re p(B) Obly, fi-mod(Rep(T)) fx-mod, Ind”, T;-mod?act (5.13.2)

un,r*

5.14. Formulation of the main result. We can now give the main result of this section.
Theorem 5.14.1. There exists a canonical isomorphism between the functors ChevSpec and Chevgeom.
The proof will be given in §5.16| below after some preliminary remarks.

Remark 5.14.2. As stated, the result is a bit flimsy: we only claim that there is an identification
of functors. The purpose of §7] is essentially to strengthen this identification so that it preserves
structure encoding something about the symmetric monoidal structure of Rep(G).

5.15. Equalizing the Hecke action. Suppose temporarily that X is a smooth proper curve. One
then has the followmg relationship between Hecke functors acting on Bung B “ and Hecke functors
acting on Buan .

Let « (resp. ) denote the projection Z*% — Biun?\?'_x (resp. Z¥* — BTnO,S'””). Recall that o'
and ' commute with the actions of Sphg .-

. . pos
Let 7#%°* denote the canonical map Z%% — DlVAﬁ e

Lemma 5.15.1. For ¥ € D(Bunx-), §€ D(Bung "), and 8 € Sph¢ ., there is a canonical identi-
fication:
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nZin(0(8 * D) © 51(9))) ~ nZia (') @ 55 % 9)).

Proof. By base-change, each of these functors is constructed using a kernel on some correspondence
between Buny- x G(O,)\Grg, xBung* and DivZ%®.
In both cases, one finds that this correspondence is just the Hecke groupoid (at x) for Zastava,
mapping via hy to Bunﬁfc and via ho to Bungw, with the kernel being defined by 8.
O

5.16. We now give the proof of Theorem [5.14.1

Proof of Theorem [5.17.1 As Rep(G) is semi-simple, we reduce to showing this for V = VA an
irreducible highest weight representation with highest weight A € A™.
Our technique follows that of Theorem

Step 1. Let j : U — Divé\éos’w'z be the locally closed subscheme parametrizing divisors of the form:

w()(}\) '$+2di'xi

where z; € X are pairwise disjoint and distinct from z (this is the analogue of the open Divé\éms simple. —
Divé‘éos which appeared in the proof of Theorem (4.4.1)).
We have an easy commutative diagram:
' Chev ™ (V) ——— i Cheviy*(V2) = £33 (Xs)
l i (5.16.1)

ChevE®™ (V) CheviPe (V).

One easily sees that the right vertical map is an epimorphism (this is [BG2] Lemma 9.2).

It suffices to show that the left vertical map in ([5.16.1)) is an epimorphism, and that there exists
a (necessarily unique) isomorphism in the bottom row of the diagram .

This statement is local on X, and therefore we can (and do) assume that X is proper in what
follows.

Step 2. We claim that Chevg ™ (V4 lies in the heart of the ¢-structure, and that [Chevﬁi‘;m(vx)] =

[Chevzpsc(vj‘)] in the Grothendieck group.
By Lemma [5.15.1} for every representation V of G we have:

7 (0! (Saty (V) % Whit) ® B (ICBuny)) ~ 5162

7 (0! (Whit) @ B (Sate (V) % IChuny)).

Here ICgyn,, indicates the x-extension of this D-module to Bunog'a:.
By definition, Chev§®>™ (V) is the left hand side of (5.16.2). Therefore, Theorem and the

nx

discussion of [BG2] §8.7 gives the claim.
Step 3. We will use (a slight variant of) the following constructionﬁ

28 As Dennis Gaitsgory pointed out to us, one can argue somewhat more directly, by combining Lemma |5.15.1| with
Theorem 8.11 from [BG2] (and the limiting case of the Casselman-Shalika formula, Theorem [3.4.1)).
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Suppose that Y is a variety and F € D(Y x A)®m is G,,-equivariant for the action of G,, by
homotheties on the second factor, and that F is concentrated in negative (perverse) cohomological
degrees.

For c € k, let i. denote the embedding Y x {c} <> Y x Al

Then, for each k € Z, the theory of vanishing cycles furnishes specialization maps:

H*(i4(F)) —» H*(ip(F)) e D(Y)Y (5.16.3)
that are functorial in &, and which is an epimorphism for £ = 0. Indeed, these maps arise from the
boundary map in the triangleﬁ

i(F) = U (F) T T(F)
when we use Gj,-equivariance to identify U""(F) with Fi[1]. The t-exactness of ®*" and the
assumption that ¥ is in degrees < 0 shows that (5.16.3) is an epimorphism for k = 0:

= HH(U(F)) = HO(04(F)) — H (iy(Fo)) — HO(@"(F)) = 0

Step 4. We now apply the previous discussion to see that:
geom ~
Chevﬁff (V) ~ Chev;f’fc(V)
as objects of D(Divgéos’oo'z) for V € Rep(G)Y finite-dimensional.
Forget for the moment that we chose Chevalley generators {f;} and let W denote the vector
o
space (n~/[n~,n"])*. Note that T" acts on W through its adjoint action on n~. Let W < W denote

the open subscheme corresponding to non-degenerate characters.
Then we have a canonical map:

Yx W - G,
by imitating the construction of the map can : Z2 — G, of . Note that this map is T-
equivariant for the diagonal action on the source and the trivial action on the targetm
Let We D(Z2%°% x W)T denote the result of -pulling back of the exponential D-module on G,
to Y x W and then =-extending. We then define:

~

W= (72 x idw)w.ar (72 x idW)’(Satgm(V) % W[—(2p, deg)]) e DDA )T

. . . . . . . APos op.
Here the T-equivariance now refers to the T-action coming from the trivial action on Div g L

The notation for the cohomological shift is as in
~ X pos . o
By T-equivariance, the cohomologies of our W are constant along the open stratum Divé\é LT
Moreover, note that W is concentrated in cohomological degrees < —rank(G) = — dim(W): this

again follows from Lemma [5.15.1} §8.7 of [BG2], and ind-affineness of 7%°%,
Therefore, !-restricting to the line through our given non-degenerate character, Step [3] gives us
the specialization map:

HO (R0 (Sati e (V) x wy[— (20, deg)]))) — HO(Chevi?™(V)) € D(Divly ).

290ur nearby and vanishing cycles functors are normalized to preserve perversity.
30We use the canonical T-action on Z, coming from the action of 7" on Buny- induced by its adjoint action on N ™.
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By Step |3] this specialization map is an epimorphism.

However, the Zastava space version of Theorem 8.8 from [BG2] (which is implicit in loc. cit.
and easy to deduce from there) implies that the left hand term coincides with Chevi"*“(V'), and
therefore this map is an isomorphism by the computation in the Grothendieck group. 7

Moreover, one immediately sees that this picture is compatible with the diagram , and
therefore we actually do obtain an isomorphism of factorization modules, as desired.

O

6. AROUND FACTORIZABLE SATAKE

6.1. Our goal in §7] is to prove a generalization of Theorem [5.I4.1] in which we treat several
points {z1,...,x,} € X, allowing these points to move and collide (in the sense of the Ran space
formalism). This section plays a supplementary and technical role for this purpose.

6.2. Generalizing the geometric side of Theorem [5.14.1}is an old idea: one should use the Beilinson-
Drinfeld affine Grassmannian Grg yr and the corresponding factorizable version of the Satake
category.

Therefore, we need a geometric Satake theorem over powers of the curve. This has been treated
in [Gail], but the treatment of loc. cit. is inconvenient for us, relying too much on specific aspects
of perverse sheaves that do not generalize to non-holonomic D-modules.

6.3. The goal for this section is to give a treatment of factorizable geometric Satake for D-modules.
However, most of the work here actually goes into treating formal properties of the spectral side

of this equivalence. Here we have DG categories Rep(G)xr which provide factorizable versions of
the category Rep(G) appearing in the Satake theory.

These categories arise from a general construction, taking € a symmetric monoidal object of
DGCatcopnt (so we assume the tensor product commutes with colimits in each variable), and pro-
ducing Cyr € D(X')-mod. As we will see, this construction is especially well-behaved for € rigid

monoidal (as for € = Rep(&)).

6.4. Structure of this section. We treat the construction and general properties of the categories
Cxr in especially treating the case where € is rigid. We specialize to the case where C is
representations of an affine algebraic group in §6.19]

We then discuss the (naive) factorizable Satake theorem from until the end of this section.

6.5. Let C e ComAlg(DGCatcnt) be a symmetric monoidal DG category. We denote the monoidal
operation in C by ®.

6.6. Factorization. Recall from [Rasl] gﬂ that we have an operation attaching to each finite set
I a D(X')-module category Cy:

We will give an essentially self-contained treatment of this construction below, but first give
examples to give the reader a feeling for the construction.

Ezample 6.6.1. For I = *, we have Cx = C® D(X).

Ezample 6.6.2. Let I = {1,2}. Let j denote the open embedding U = X x X\X — X x X.
Then we have a fiber square:

31In [Rasl], we use the notation I'(X2g, LOCX£R(G)) in place of Cxr.
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Cy2 C® D(X?)
J{ iide ®j'
(—®—)®id p(x2
(e®e)® D(U) "2 eeD).

We emphasize that (— ® —) indicates the tensor product morphism C® € — C.

Ezample 6.6.3. If I" is an affine algebraic group and we take C = Rep(I"), then the above says that
Rep(I") x= parametrizes a representation of I" over X(%R with the structure of a I' x I'-representation
on the complement to the diagonal, compatible under the diagonal embedding I" < I" x I".

6.7. For the general construction of Cxr, we need the following combinatorics.
First, for any surjection p : I — J of finite sets, let U(p) denote the open subscheme of points
(x:)ier With z; # xy whenever p(i) # p(i').

Ezample 6.7.1. For p : I — #, we have U(p) = X!. For p : I , I, U(p) is the locus Xéisj of

pairwise disjoint points in X.

. . P q .
We let 8; denote the (1,1)-category indexing data I — J — K, where we allow morphisms of
diagrams that are contravariant in J and covariant in K, and surjective termwise.

6.8. For every ¥ = (I 575 K) in 87, define Cx € D(X')-mod as:

Cs = D(U(p)) ® €®*.
For ¥1 — ¥y € 87, we have a canonical map Cxg, — Cx, € D(X!)-mod constructed as follows. If
the morphism 3 — 39 is induced by the diagram:

I p1 Jl q1 Kl
bk

then our functor is given as the tensor product of:
COK1 _, P®K:2

M Ip— X ( ® )
ke Ky k'eKa k'ea~1(K)

and the D-module restriction along the map U(p2) — U(p1).
It is easy to upgrade this description to the homotopical level to define a functor:

87 — D(XT)-mod.
We define Cyr as the limit of this functor.

Ezxample 6.8.1. It is immediate to see that this description recovers our earlier formulae for I = =
and I = {1,2}.

Remark 6.8.2. This construction unwinds to say the following: we have an object F € € ® D(XT)
such that for every p : I — J, its restriction to € ® D(U(p)) has been lifted to an object of
C®7 ® D(U(p)).
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Ezample 6.8.3. For € = Rep(I") with I" an affine algebraic group, this construction is a derived
version of the construction of [Gail] §2.5.

Remark 6.8.4. Obviously each Cy: is a commutative algebra in D(X’)-mod. Indeed, each Cx =
D(U(p)) ® C®K is and the structure functors are symmetric monoidal. We have an obvious sym-
metric monoidal functor:

Loc = Locyz : ¥ — Gy
for each I, with these functors being compatible under diagonal maps.

6.9. Factorization. It follows from [Rasl] @ that the assignment I — Cy 1 defines a commutative
unital chiral category on X4g. For the sake of completeness, the salient pieces of structure here are
twofold:

(1) For every pair of finite sets I; and I, we have a symmetric monoidal map:

Cxn ®Cxn — Cxnn

of D(X 1 1112)-module categories that is an equivalence after tensoring with D([ X7t x X12]4;).
(2) For every I} — I3, an identification:

Cyn ® D(X?)~Cyr.
D(X11)

These should satisfy the obvious compatibilities, which we do not spell out here because in the
homotopical setting they are a bit difficult to say: we refer to [Rasl| §7|for a precise formulation.
We will construct these maps in §6.10| and

6.10. First, suppose I = I [ ] I».

Define a functor 8; — 8, as follows. We send 1 5 T35 Kto Iy — Image(p|r,) — Image(qop|r, ).
It is easy to see that this actually defines a functor. We have a similar functor 8 — 8p,, so we
obtain 87 — 87, x 8,.

) P q P q . .
Given I - J — K as above, let e.g. I3 = J1 5 K, denote the corresponding object of 8y, .
We have a canonical map:

Ulp) =>U(p1) xU(q1) < xh oy xI2 — xI

We also have a canonical map C®K1 @ ¢®K2 _ @®K ipnduced by tensor product and the obvious
map K; [ [ Ko — K. Together, we obtain maps:

(D(U(p1)) ® €¥51) @ (D(U (p2)) ® €8%2) — D(U(p)) ® ¥
that in passage to the limit define

Cxn ®Cxr, — Cxr.

That this map is an equivalence over the disjoint locus follows from a cofinality argument.
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6.11. Next, suppose for f : I} — Iy is given. We obtain 87, — 81, by restriction.

: P q C . .
Moreover, for any given Iy - J — K € 81,, we have the functorial identifications:

D(U(p))®@C®F ~(DU(po f)) ® D(X"))®Ee®N)
D(XT1)

that give a map:

Cxn ® D(X2) - Cyr,.
D(XT)

An easy cofinality argument shows that this map is an equivalence.
6.12. A variant. We now discuss a variant of the preceding material a categorical level down.

6.13. First, if A is a commutative algebra in Vect, then there is an assignment I — Ayr €
D(XT') defining a commutative factorization algebra. Indeed, it is given by the same procedure as
before—we have:

Axr= lim  jp.ar(A®" @up() € D(XT). (6.13.1)
1L 74 K)es;

The structure maps are as before.

6.14. More generally, when € is as before and A € € is a commutative algebra, we can attach a
(commutative) factorization algebra I — Ayr € Cxr.

We will need this construction in this generality below. However, the above formula does not
make sense, since there is no way to make sense of jj, « 4r(Wy(p)) ® A®K as an object of Cy:. So we
need the following additional remarks:

We do have Ay defined as an object of D(X?)® € by the above formula. Moreover, as in §6.10)

for every p: I - J we have canonical “multiplication” maps:

JAXIj — Axr € D(XI) ®C

JE

where I; is the fiber of I at j € J, and where our exterior product should be understood as a mix of
the tensor product for € and the exterior product of D-modules. This map is an equivalence over
U(p).

This says that for every p as above, the restriction of Ayr to U(p) has a canonical structure as
an object of D(U(p)) ® C®/, lifting its structure of an object of D(U(p)) ® €. Moreover, this is
compatible with further restrictions in the natural sense. This is exactly the data needed to upgrade
Axr1 to an object of Cxr (which we denote by the same name).

6.15. ULA objects. For the remainder of the section, assume that C is compactly generated and
rigid: recall that rigidity means that this means that the unit 1e is compact and every V e C
compact admits a dual.

Under this rigidity assumption, we discuss ULA aspects of the categories Cxr: we refer the reader
to Appendix [B] for the terminology here, which we assume for the remainder of this section.
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6.16. Recall that QCoh(X!,Cys) denotes the object of QCoh(X’)-mod obtained from Cys €
D(XT)-mod by induction along the (symmetric monoidal) forgetful functor D(X') — QCoh(X7).

Proposition 6.16.1. For 3 e C® compact, Locy:(F) € Cx1 is ULA.

We will deduce this from the following lemma.
Let 1e,, = Locy:(le) denote the unit for the (D(X?)-linear) symmetric monoidal structure on
Cyn.

Lemma 6.16.2. 1¢,, is ULA.

Proof. By 1-affineness (see [Gai4]) of X4r and X, the induction functor:

D(X)-mod — QCoh(X)-mod

commutes with limits.

It follows that QCoh(X?, @y1) is computed by a similar limit as defines €y, but with QCoh(U (p))
replacing D(U(p)) everywhere.

Since this limit is finite and since each of the terms corresponding to Oblv(1e,., ) € QCoh(X%, €xr)

is compact, we obtain the claim.
O

Proof of Proposition[6.16.1. Since the functor €®! — €y, is symmetric monoidal and since each
compact object in €®! admits a dual by assumption, we immediately obtain the result from Lemma
6.16.2]

O

Remark 6.16.3. Proposition [6.16.1] fails for more general €: the tensor product C® € — € typically
fails to preserve compact objects, which implies that Locy2 does not preserve compacts.

6.17. We now deduce the following result about the categories Cy: (for the terminology, see

Definition |B.6.1]).

Theorem 6.17.1. Cy; is ULA over X'.
We will use the following lemma, which is implicit but not quite stated in [Gaid].

Lemma 6.17.2. Let S be a (possibly DG) scheme (almost) of finite type, and let i : T — S be a
closed subscheme with complement j : U < S. For D € QCoh(S)-mod, the composite functor:

Ker(j* D — 'DU) D —->D QC(E?(S) QCOh(Sf) (6.17.1)

is an equivalence, where S; is the formal completion of S along T'.

Proof. By |Gai4] Proposition 4.1.5, the restriction functor:

QCoh(Sp)-mod — QCoh(S)—mod
is fully-faithful with essential image being those module categories on which objects of QCoh(U) <
QCoh(S) act by zero. But the endofunctor Ker(5*) of QCoh(S)-mod is a localization functor for

the same subcategory, giving the claim.
O
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Proof of Theorem [6.17.1. Suppose G € QCoh(X’,Cyr) is some object with:

HomQCOh(XI,GXI)(T ® Oblv LOCXI (Hj), 9) =0

for all P € QCoh(X') perfect and all 7 € €®! compact. Then by Proposition [6.16.1} it suffices to
show that G = 0.

Fix p: I — J. We will show by decreasing induction on |J| that the restriction of § to U(p) is
Zero.

We have the closed embedding X Zlfi s U(p) with complement being the union:

J
U(p)\(Xdisj) = U Ul(q)-
q /E; /y—
I—J ” J,q'q=p
In particular, the inductive hypothesis implies that the restriction of G to this complement is zero.

Let X denote the formal completion of Xfi]z‘sj in U(p) and let i, : X < U(p) denote the embedding.

By Lemma it suffices to show that:
i*(9) = 0 € QCoh(X,Cxs) == QCoh(X',€xs) ®  QCoh(X).
QCoh(x1)
The map X - X é r factors through X Zi]z‘ si.dR (embedded via p), so by factorization we have:
QCoh(X1,€x1) ® QCoh(X)=C€Cyr ® QCoh(X) =~ eC®’ ® QCoh(X).

QCoh(XT) D(XT)

P
This identification is compatible with the functors Loc in the following way. Let ® : C®! — ®/
denote the map induced by the tensor structure on €. We then have a commutative diagram:

Locy 1

G®I _— exl — QCOh(XI, exl)

e®J M8 _ o8/ @ QCoh(X).

by construction.
Since QCoh(X) is compactly generated by objects of the form i (P) with P € QCoh(U(p)) perfect

p
(and with set-theoretic support in X Zi]i s j), we reduce to the following:

Each F € C®/ compact then defines a continuous functor Fy : €®/ ® QCoh(X) — QCoh(X), and
our claim amounts to showing that an object in €®/ ® QCoh(X) is zero if and only if each functor
Fy annihilates it, but this is obvious e.g. from the theory of dualizable categories.

O
6.18. Dualizability. Next, we record the following technical result.
Lemma 6.18.1. For every D € D(X')-mod, the canonical map:
Cyr ® D= lim (e®K ®D(U(p))> ® D— lim (e®K ®DU®) ® :D)
D(XT) (1275 K)es; D(xT) (1275 K)es; D(XT)

1$ an equivalence.
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This proof is digressive, so we postpone the proof to Appendix [A] assuming it for the remainder
of this section.
We obtain the following consequence@

Corollary 6.18.2. Cy is dualizable and self-dual as a D(X')-module category.

Remark 6.18.3. In fact, one can avoid the full strength of Lemmal6.18.1|for our purposes: we include
it because it gives an aesthetically nicer treatment, and because it appears to be an important
technical result that should be included for the sake of completeness.

With that said, we apply it below only for D = Sph xr, and here it is easier: it follows from the

dualizability of Sphg xr as a D(X I-module category, which is much more straightforward.

6.19. Let I" be an affine algebraic group. We now specialize the above to the case € = Rep(I').

6.20. Induction. Our main tool in treating Rep(I") x: is the good behavior of the induction functor
AvY;, : D(XT) — Rep(I') xr introduced below.

6.21. The symmetric monoidal forgetful functor Oblv : Rep(I') — Vect induces a conservative
functor Oblvyr : Rep(I') x1 — D(X') compatible with D(X')-linear symmetric monoidal struc-
tures.

We abuse notation in also letting Oblv ys denote the QCoh(X)-linear functor:

Oblv y7 : QCoh(X !, Rep(I") y1) — QCoh(X7)

promising the reader to always take caution to make clear which functor we mean in the sequel.

6.22. Applying the discussion of §6.14, we obtain O, y1 € Rep(I") x: factorizable corresponding to
the regular representation Op € Rep(I') of I' (so we are not distinguishing between the sheaf Op
and its global sections in this notation)

Proposition 6.22.1. (1) The functor Oblvy: : Rep(I")x1 — D(XT) admits a D(XT)-linear
right adjoz’nﬂ AVir, D(XT) — Rep(I') x1 compatible with factorization
(2) The functor AV%I7* maps wxr to the factorization algebra Op x1 introduced above.

Proof. By Proposition and Theorem [6.17.1], it suffices to show that Oblvys maps the ULA
generators Loc (V) of Rep(I") y1 to ULA objects of D(X'), which is obvious.
For the second part, note that the counit map O — k € ComAlg(Vect) induces a map Oblvy: Op x1 —

wyr € D(XT) factorizably, and therefore induces factorizable maps:

OF,XI i AV;U(]’*(WXI).

By factorization, it is enough to show that this map is an equivalence for I = %, where it is clear.
O

32\We remark that this result is strictly weaker than the above, and more direct to prove.

33The D-module Oblv 1 (Op.x1) € D(X") (or its shift cohomologically up by |I|, depending on one’s conventions)
appears in [BD] as factorization algebra associated with the the constant Dx-scheme I x X = 'ch

34The superscript w stands for “weak,” and is included for compatibility with [FG2] §20.

35More generally, the proof below shows that the analogous statement holds more generally for any symmetric
monoidal functor F' : ¢ — D € DGCatcont with € rigid, where this is generalizing the forgetful functor Oblv :
Rep(I") — Vect.
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6.23. Coalgebras. We now realize the categories Rep(I") y: in more explicit terms.

Lemma 6.23.1. The functor Oblvxr is comonadic, i.e., satisfies the conditions of the comonadic
Barr-Beck theorem.

In fact, we will prove the following strengthening:

Lemma 6.23.2. For any D € D(X!)-mod, the forgetful functor:

OblVXI ®id@ . Rep(F)XJ ® @ — D
D(XI)

18 comonadic.

Proof. Using Lemma [6.18.1] we deduce that Oblvyr ®idp arises by passage to the limit over 8;
from the compatible system of functors:

Rep(I')®* @ D(U(p)) = D — D(U(p)) 28 D.

Therefore, it suffices to show that each of these functors is conservative and commutes with Oblv-
split totalizations.
But by |Gaid] Theorem 2.2.2 and Lemma 5.5.4, the functor Rep(I™) ® & — € is comonadic for
any € € DGCatgopne. This obviously gives the claim.
O

6.24. t-structures. It turns out that the categories Rep(I')x: admit particularly favorable ¢-
structures.

Proposition 6.24.1. There is a unique t-structure on Rep(I") x1 (resp. QCoh(X ', Rep(I") x1)) such
that Oblv xr is t-exact. This t-structure is left and right complete.

Proof. We first treat the quasi-coherent case.

For every (I 575 K) € 8, the category:

Rep(1")®’ ® QCoh(U(p)) = QCoh(BIY x U(p))

admits a canonical ¢-structure, since it is quasi-coherent sheaves on an algebraic stack. This ¢-
structure is left and right exact, and the forgetful functor to QCoh(U(p)) is obviously t-exact.
Moreover, the structure functors corresponding to maps in 8; are t-exact, and therefore we obtain
a t-structure with the desired properties on the limit, which is QCoh(X?’, Rep(I") xr).

We now deduce the D-module version. We have the adjoint functors

Ind
QCoh(X’,Rep(I") x1) <Ob%> Rep(I) xr.

Since the monad OblvInd is t-exact on QCoh(X! Rep(I')y:) and since Oblv is conservative, it
follows that Rep(I")x: admits a unique t-structure such that the functorﬂ Oblv[dim(X1)] =
ObIv[|I]] : Rep(I") x1 — QCoh(X’,Rep(I') 1) is t-exact. Since this functor is continuous and com-
mutes with limits (being a right adjoint), this ¢-structure on Rep(I") 1 is left and right complete.

36Apologies are due to the reader for using the different functors Oblv and Oblv x: in almost the same breath.
3TWe use a cohomological shift here since for S smooth, Oblv : D(S) — QCoh(S) only t-exact up to shift by the
dimension, since Oblv(ws) = Og. This is because we are working with the so-called left forgetful functor, not the
right one.
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It remains to see that Oblvy: : Rep(I') xr — D(XT) is t-exact. This is immediate: we see that

: . . o Oblv[|I
the t-structure we have constructed is the unique one for which the composition Rep(I”) 1 Qblviifl],

Oblv
QCoh(Rep(I") xr1) X1, QCoh(X7) is t-exact, and this composition coincides with Rep(I") y1
D(XT) Oblv[|I|

Oblv 7

] QCoh(X'). We obtain the claim, since the standard t-structure on D(X?) is the
unique one for which Oblv y:[|I]] : D(XT) — QCoh(X?) is t-exact.
g

Proposition 6.24.2. The functor AvY, . : D(X') — Rep(I')x: is t-ezact for the t-structure

of Proposition |6.24.1, and similarly for the corresponding quasi-coherent functor QCoh(X!) —
QCoh(X ', Rep(I") x1).

We will use the following result of [BD]. We include a proof for completeness.

Lemma 6.24.3. Let A € Vect” be a classical (unital) commutative algebra and let I — Axr €
D(XT) be the corresponding factorization algebra. Then Ax:[—|I|] € D(XT)".

Proof. We can assume |I| > 1, since otherwise the result is clear.

Choose i,j € I distinct. Let I — I be the set obtained by contracting i and j onto a single
element (so |I| = |I] — 1).

The map I — I defines a diagonal closed embedding A : X! — X!, Let j : U < X! denote the
complement, which here is affine.

Since A'(Ay:) = A 7, the result follows inductively if we show that the map Jwdri (Ax1) —
Ay arA'(Ax1)[1] is surjective after taking cohomology in degree —|1|.

Writing I = {i} ][I using the evident splitting, we obtain the following commutative diagram
from unitality of A and from the commutative factorization structure:

wx KA 7 — judrj (wx KA 7)) — Ay ar(Ag7)[1]

| |

Ax WAyt Jxdri (Ax ®Ayr) =

| |

Ax1 Jxard (Axr) Ay arA(Axr)[1]

The top line is obviously (by induction) a short exact sequence in the |I|-shifted heart of the
t-structure. Since the right vertical map is an isomorphism, this implies the claim.
([l

Proof of Proposition|6.24.4 E.g.,in the quasi-coherent setting: it suffices to show that Av%,’* o Oblv xr
is t-exact. This composition is given by tensoring with O yr € D(X ) by construction, which we
have just seen is in the heart of the t-structure (since Oblv : D(X!) — QCoh(XT) is t-exact only
after a shift by |I]).

It follows that this functor is right t-exact, since it is given by tensoring with something in the

heart. But it is also left t-exact, since it is right adjoint to the t-exact functor Oblvyr.
O

Corollary 6.24.4. Rep(I') y1 is the derived category of the heart of this t-structure.
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Proof. At the level of bounded below derived categories, this is a formal consequence of the corre-
sponding fact for D(X') and the fact that Oblvy: and AvY; , are t-exact.

@

To treat unbounded derived categories, it suffices to show that the derived category of Rep(I”) 1

is left complete, but this is clear: the category has finite homological dimension.
O

6.25. Constructibility. We now show how to recover Rep(I")x: from a holonomic version.
This material is not necessary for our purposes, but we include it for completeness. The reader

may safely skip straight to §6.28

6.26. Let Djy(X') € D(X') denote the ind-completion of the subcategory of D(X?) formed by
compact objects (i.e., coherent D-modules) that are holonomic in the usual sense. We emphasize
that we allow infinite direct sums of holonomic objects to be counted as such.

Definition 6.26.1. Define the holonomic subcategory Rep(I”) x1 o of Rep(I") x1 to consist of those
objects that map into Dy, (X?) under the forgetful functor.

Remark 6.26.2. We have:

Rep(I") x1 po =~ lim Rep(I)®X ® Dy (U(p)) ©
1% %K)
lim Rep(I)®X ® D(U(p)) =: Rep(I") xr.
(I5J5K)
Indeed, the key point is that Rep(I")®% ® Dy, (U(p)) — Rep(I'®X @ D(U(p)) is actually fully-
faithful, and this follows from the general fact that tensoring a fully-faithful functor (here Dy, (U (p))
D(U(p)) with a dualizable category (here Rep(I")®X) gives a fully-faithful functor.

Since e.g. for each p : I — J, Dpy(X”) is dualizable as a Dy (X')-module category (for
the same reason as for the non-holonomic categories), we deduce that Rep(I")xr p, satisfies the
same factorization patterns at Rep(I")yr, but with holonomic D-module categories being used
everywhere. Indeed, the arguments we gave were basically formal cofinality arguments, and therefore
apply verbatim.

(6.26.1)

6.27. We have the following technical result.
Proposition 6.27.1. The functor:

Rep(I) xr o ® D(XT) — Rep(I') x1
Dhol(XI)

s an equivalence.

Remark 6.27.2. In light of (6.26.1)), this amounts to commuting a limit with a tensor product.
However, we are not sure how to use this perspective to give a direct argument, since D(X! ) is
(almost surely) not dualizable as a Dy, (X!)-module category.

Proof of Proposition|6.27.1. The idea is to appeal to use Proposition

Step 1. Let V € Rep(I")®! be given. We claim that Locxr (V) lies in Rep(I") x1 1, and that induced
object of Rep(I)x1 4y ® D(X!) is ULA in this category (considered as a D(X!)-module
’ hol I)
category in the obvious way) if V' is compact.
Indeed, that Locy1(V) is holonomic follows since Oblv (V) is lisse. The ULA condition then

follows from Proposition and Remark
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Step 2. Next, we claim that Rep(I')yr j, is generated as a Dpy(X!)-module category by the
objects Locx1(V), V € Rep(I')®/, i.e., the minimal Djq(X”)-module subcategory of Rep(I") x1 4
containing the Locy (V) is the whole category.

Indeed, this follows as in the proof of Theorem [6.17.1

Step 3. We now claim that Rep(I")y7,, ® D(X')is ULA as a D(X')-module category.
' hol(XI)
We have to show that Rep(I")yr ® QCoh(X') is generated as a QCoh(X!)-module category
Dhol(X )

by objects coming from Locy: (V). But this is clear from Step

Step 4. Finally, we apply Proposition [B-8.1] to obtain the result:
Our functor sends a set of ULA generators to ULA objects. And moreover, by Remark [6.26.2]

this functor is an equivalence after tensoring with D(X C‘l]i Sj) for each p : I — J, giving the result.
O

Remark 6.27.3. Taking (6.26.1) as a definition of Cxr j,, for general rigid €, the above argument
shows that the analogue of Proposition [6.27.1]is true in this generality.

6.28. The naive Satake functor. We now specialize the above to I' = G.

6.29. Digression: more on twists. We will work with Grassmannians and loop groups twisted
by P§™ as in

To define Grp, x1 for I' € {T, B, N~, G}, one exactly follows

Similarly, we have a group scheme (resp. group indscheme) I'(O) xs (resp. I'(K) 1) over X! for
I" as above, where I'(K) x1 acts on Grg y:. Trivializing P#" locally on X I the picture becomes the
usual picture for factorizable versions of the arc and loop groups: c.f. [BD] and [KV] for example.

6.30. Let Sphg x: denote the spherical Hecke category D(GrQXz)G(O)XI. The assignment [ —
Sphg x1 defines a factorization monoidal category.
Our goal for the remainder of this section is to construct and study certain monoidal functors:

S naive

at’iéi’¢ : Rep(G) x1 — Sph¢ x1
compatible with factorization.
Remark 6.30.1. We follow Gaitsgory in calling this functor naive because it is an equivalence only

on the hearts of the t-structures (indeed, it is not an equivalence on Exts between unit objects,
since equivariant cohomology appears in the right hand side but not the left).

6.31. The following results provide toy models for constructing the functors Sat}‘?”e.

Lemma 6.31.1. For D € DGCatont, the map:

{F : Rep(I') > D € DGCatcypt} — Op—comod(D)
F— F(Or)
s an equivalence.

Proof. Since Rep(I") is self-dual and since Rep(I") ® D OV, Vect @ D = D is comonadic (c.f. the

proof of Lemma |6.23.1)), we obtain the claim.
O
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Lemma 6.31.2. For D € Alg(DGCatcopnt) a monoidal (in the cocomplete sense) DG category, the
map:

{F : Rep(I') > D continuous and lax monoidal} — Alg(Op—comod(D))
F— F(Or)

is an equivalence. Here O p—comod(D) is equipped with the obvious monoidal structure, induced from

that of D.

Remark 6.31.3. Here is a heuristic for Lemma

Given A € Op—comod(D), the corresponding functor Rep(I') — D is given by the formula
V > (V® A)' (where the invariants here are of course derived). If A is moreover equipped with a
I'-equivariant algebra structure, we obtain the canonical maps:

VRAreWRA! - (VAW RA)! = (VRWRARA)! - (VWA
as desired, where the last map comes from the multiplication on A.
Proof of Lemma[6.31.2. This follows e.g. from the identification of the monoidal structure of Rep(I")®
D with the Day convolution structure on the functor category Hompgcat..,,,, (Rep(I"), D), identifying

the two via self-duality of Rep(I").
O

6.32. We will use the following more sophisticated version of the above lemmas.

Lemma 6.32.1. For D e D(X')-mod, the functor:

{F : Rep(F)X] —De D(XI)*mOd} _ Rep(F)XI ® D Lem.
D(x1)
F— F(OF,XI)

is an equivalence. Giving a lax monoidal structure in the left hand side amounts to giving an algebra
structure on the right hand side.

Proof. By Lemma [6.18.1, D(X7)-linear functors Rep(I')y: — D are equivalent to objects of
Rep(F)XI ®D(XI) D
The result then follows from Lemma [6.23.2] and Lemma [6.31.21

O x1-comod(D)

O
6.33. Construction of the functor. By Lemma |6.32.1} to construct Sa }a}'“e as a lax monoidal

functor, we need to specify an object of Rep(G) s with an algebra structure.
Such objects HS € Rep(G)x1 ®p(x1y Sphg, x1 are defined in a factorizable way in Appendix
B of [Gail@(they go by the name chiral Hecke algebra and were probably first constructed by

Beilinson)*®| For each I, Hg?, is concentrated in cohomological degree —|I].

Ezxample 6.33.1. For I = #, ’Hg? comes from the regular representation of G under geometric Satake.

Remark 6.33.2. We emphasize that the general construction (and the data required to define the
output) is purely abelian categorical, and comes from the usual construction of the geometric Satake
equivalence.

Lemma 6.33.3. The lax monoidal functors Sa }a}'”e are actually monoidal.

381n the notation of [Gail], we have HS = R%[d] = TR%[d].
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Proof. We need to check that some maps between some objects of Sphg; x: are isomorphisms. It
suffices to do this after restriction to strata on X!, and by factorization, we reduce to the case I =

where it follows from usual geometric Satake and the construction of the chiral Hecke algebra.
O

6.34. We have the following important fact:

natve

Proposition 6.34.1. Sat'/’c is t-exact.

We begin with the following.
Lemma 6.34.2. The functor Sph¢ x1 — Sphg x1 defined by convolution with ’Hg?, 1s t-exact.

Proof. Recall that for each I and J, there is the exterior convolution functor:

Sth7XI ® Sth’XJ i SthyxlUJ

which is a morphism of D(X!L7)-module categories The relation to usual convolution is that
for J = I, convolution is obtained by applying exterior convolution and then !-restricting to the
diagonal.

The usual semi-smallness argument shows that exterior convolution is t-exact. Therefore, since
’Hg?, lies in degree —|I|, we deduce from the above that convolution with ’Hg?, has cohomological
amplitude [—|I|,0]: in particular, it is right t-exact.

It remains to see that this convolution functor is left t-exact. For a given partition p : I — J,
let 4, @ X Zl]z‘sj — X! denote the embedding of the corresponding stratum of X?. The !-restriction

of ’Hg?, to X ;jisj is concentrated in cohomological degree —|.J|, and is the object corresponding to
the regular representation under geometric Satake. It follows that the functor of convolution with
z'p’*’dm']!g(%%”,) is left t-exact from the exactness of convolution in the Satake category for a point.

We now obtain the claim by dévissage.
0

Proof of Proposition |6.34.1. First, we claim that our functor is left t-exact.

We can write Sa }a]“’e as a composition of tensoring F with the delta D-module on the unit of

Grg x1, convolving with ?—l%‘,, and then taking invariants with respect to the “diagonal” actions

for the G”. The first step is obviously t-exact, and the second step is t-exact by Lemma the
third step is obviously left t-exact.

It remains to show that it is right ¢t-exact.

First, let V € Rep(GT)® = Rep(G)®/“. We claim that convolution with Sat’i/*¢(Locy:(V)) is

t-exact (as an endofunctor of Sphg xr).
naive

It suffices to show this for V' finite-dimensional, and then duality of V' and monoidality of Sat'y7
reduces us to showing exactness in either direction: we show that this convolution functor is left
t-exact. This then follows by the same stratification argument as in the proof of Lemma [6.34.2

In particular, convolving with the unit, we see that Sats/**(Locxr(V)) is concentrated in coho-

naive

mological degree —|I|, and more generally, Sat’y7

shift.
For simplicity, we localize on X to assume X is affine. Then by Theorem [6.17.1 Rep(Gv’)f(? is
generated under colimits by objects of the form Ind Oblv(Locy:(V)) for V € Rep(I'")<H!: indeed,

this follows from the observation that Ind Oblv is t-exact, which is true since after applying Oblv

o Locyr is t-exact up to this same cohomological

39We emphasize that I and J play an asymmetric role in the definition, i.e., the definition depends on an ordered
pair of finite sets, not just a pair of finite sets.



52 SAM RASKIN

again, it is given by tensoring with the ind-vector bundle of differential operators on X!. The same

reasoning shows that Ind Oblv is t-exact on Sphg; xr, giving the result.
O

6.35. The naive Satake theorem. We will not need the following result, but include a proof for
completeness. Since we are not going to use it, we permit ourselves to provide substandard detail.

Theorem 6.35.1. The functor Sa }‘?”e induces an equivalence between the hearts of the t-structures:
Sati, : Rep(é)i, = SphZ’X,.
We will give an argument in §6.37

Remark 6.35.2. In the setting of perverse sheaves, Theorem [6.35.1| is proved in |[Gail] Appendix
B. We provide a different argument from loc. cit. that more easily deals with the problem of non-
holonomic D-modules.

6.36. Spherical Whittaker sheaves. Our argument for Satake will appeal to the following. Let
Whiti?? denote the category of Whittaker D-modules on Grg y1, i.e., D-modules equivariant against
N~ (K)xr equipped with its standard character (we use the p(wx)-twist here).

We have a canonical functor Sphg xr — Whiti?? given by convolution with the wunit object
unity, . sph € Whit;??, i.e., the canonical object cleanly extended from Gry- y: (i.e., the * and

x1
l-extensions coincide here).

Theorem 6.36.1 (Frenkel-Gaitsgory-Vilonen, Gaitsgory, Beraldo). The composite functor:

naive
Sat” %

Rep(G) x1 ——> Sphg x1 — Whit "}

s an equivalence.

Proof. We will appeal to Proposition

It is easy to see that the unit object of Whit;ﬁ1
argument. We then formally deduce from dualizability of ULA objects in Rep(G) yr and monoidality
of Sat}af”e that the above functor sends ULA objects to ULA objects.

Then since these sheaves of categories are locally constant along strata (by factorizability), we
obtain the claim by noting that this functor is an equivalence over a point, as follows from [FGV]
and the comparison of local and globa@ definitions of spherical Whittaker categories, as has been
done e.g. in the unpublished work [Gai2].

is ULA: this follows from the usual cleanness

O
We also use the following fact about Whittaker categories.

Lemma 6.36.2. The object AVG(O)X,,*(Unit ) € Sphg x1 lies in cohomological degrees = —|I|.

Whit*?}!
X
The adjunction map:

unitsph, , — AVG(O)XIv*(unltWhit;’Ih)

is an equivalence on cohomology in degree —|I|. (Here unitsth or S the delta D-module on X'

x-pushed forward to Grg x1 using the tautological section).

401 ¢., using Drinfeld’s compactifications as in [FGV].
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Proof. The corresponding fact over a point is obvious: the fact that Sphg , — Whitiph is t-exact
on hearts of t-structures implies that its right adjoint left t-exact, so applying the above averaging
to the unit, one obtains an object in degrees > 0. The adjunction map is an equivalence on Oth
cohomology because Sphg , — Whit?P" is an equivalence on hearts of t-structures.

We then deduce that from factorization that for each p : I — J, the !-restriction of:

Coker(unitsphaxl — AVG(O)XL*(unitWhiti??))

to the corresponding stratum X &Z]z‘ sj defined by p is concentrated in cohomological degrees > —|J|,

which immediately gives the claim.
O

6.37. We now deduce factorizable Satake.
Proof of Theorem [6.35.1. We have an adjunction Sphg x1 =—= Whiti?? where the left adjoint is

convolution with the unit and the right adjoint is *-averaging with respect to G(O) xr.
From Theorem [6.36.1] we obtain the adjunction:

Sphe x1 Rep(G) y1.

naive
SatXI

Since Sat}af”e is t-exact, we obtain a corresponding adjunction between the hearts of the ¢t-structure.
Lemma [6.36.2 implies that the left adjoint is fully-faithful at the abelian categorical level, and the
right adjoint Sat?ﬁ,we’QQ is conservative by Theorem [6.36.1, so we obtain the claim.

O

7. HECKE FUNCTORS: ZASTAVA WITH MOVING POINTS

7.1. As in §5] the main result of this section, Theorem will compare geometrically and
spectrally defined Chevalley functors. However, in this section, we work over powers of the curve:
we are giving a compatibility now between Theorem and the factorizable Satake theorem of

G

7.2. Structure of this section. In we give “moving points” analogues of the construc-
tions of §5] and formulate our main theorem.

The remainder of the section is dedicated to deducing this theorem from Theorem

There are two main difficulties in proving the main theorem: working over powers of the curve
presents difficulties, and the fact that we are giving a combinatorial (i.e., involving Langlands
duality) comparison functors in the derived setting.

The former we treat by exploiting ULA objects: c.f. Appendix [B| and These at once exhibit
good functoriality properties and provide a method for passing from information the disjoint locus
Xéisj to the whole of X7,

We treat the homotopical difficulties by exploiting a useful ¢-structure on factorization Y;-
modules, c.f. Proposition [7.11.1
7.3. Define the indscheme Divé\éf;(’?o'x over X! as parametrizing an I-tuple = (z;) of points of
X and a A-valued divisor on X that is AP*-valued on X\{z;}.

Warning 7.3.1. The notation o0 - x in the superscript belies that x is a dynamic variable: it is used
to denote our I-tuple of points in X. We maintain this convention in what follows, keeping the
subscript X! to indicate that we work over powers of the curve now.
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A POS . ~
A ,OO:E_)A

Remark 7.3.2. We again have a degree map Div g /;

APos 0.1

Let Tﬁfmodffg’tx r denote the DG category of unital factorization modules for T on Diveﬁr’ 1

fact

The two functors we will compare will go from Rep(G)y: to Ti—mod, 1.

7.4. Geometric Chevalley functor. To construct the geometric Chevalley functor, we imitate
much of the geometry that appeared in §5.2{{5.14

7.5. For starters, define Bunﬁf,xl — X1 as parametrizing © = (z;)es € X' a G-bundle P on
X, and non-zero maps:

O - VA, (0 @)
defined for each dominant weight A\ and satisfying the Plucker relations, in the notation of §5.2]
Here the notation of twisting by Ox (oo - ) makes sense in S-points: for z = (2;)ser : S — X', we
take the sum of the Cartier divisors on X x S associated with the graphs of the maps z; to define

OXXS(:C)'

o
7.6. We can imitate the other constructions in the same fashion, giving the indscheme ZT7 (resp.

Z%) over X! and the map 7r ZOOI — Div HO;I * (resp. " 2L — D1VA§;(’?O‘$).

Let Yy: be the inverse image of X! x Buny- < BunNin. We have a distinguished object
Yy, € D(Yx1), obtained by !-pullback from wx: X]Whit € D(X! x Buny-).

We also have a D(X')-linear action of Sphg x1 on D(Z%;).

We obtain a D(X?)-linear functor:

geom | a L fact
Chevyyr Rep(G)x1 — Ta—mod 2™
geom

imitating our earlier functor Chev; ™. Indeed, we use the naive Satake functor, convolution with

OOI

(the #-pushforward of) ¢y _,, l-restriction to % ff s

as in
7.7. Spectral Chevalley functor. To construct Chev

and then #-pushforward to D1v , exactly

XIa

spec

o y1» we will use the following.

Lemma 7.7.1. The category nx *mdelv of Lie-* modules on X for nx € Rep(T)x is canonically
identified with the category i-mod(Rep(T))x1, i-e., the D(X')-module category associated with the
symmetric monoidal DG category ti-mod(Rep(T)) by the procedure of

Proof. Let T' € X x X! be the union of the graphs of the projections X! — X. Let a (resp. j3)
denote the projection from I' to X (resp. X7).
Since [ is proper, one finds that:

Biara' : D(X) — D(X')

!
is colax symmetric monoidal, and in particular maps Lie coalgebras for (D(X),®) to Lie coalgebras

!
for (D(X'),®).
Moreover, if L € D(X) is a Lie-* algebra and compact as a D-module, then its Verdier dual
!

Dy eragier(L) is a Lie coalgebra in (D(X),®), and L-modules on X' are equivalent to B*’dRa! (Dv erdier(L))-
comodules. We have an obvious translation of this for the “graded” case, where e.g. D(Gry, x7)
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replaces D(X7'). (See [Roz] Proposition 4.5.2 for a non-derived version of this; essentially the same
argument works in general).
One then easily finds that for V' € Vect, one has:

! . . K
B*,dROé (V ® WX)([a»JlL»HII()ES] ]p,*,dR(V@ ® wU(p))

where the notation is as in We remark that this limit is a “logarithm” of the one appearing in
(6.13.1): we use the addition maps VOK — VOK' for K — K’ to give the structure maps in the
limit, i.e., the canonical structure of commutative algebra on V' in (Vect,®).

Moreover, this identification is compatible with Lie cobrackets, so that the Lie coalgebra (1 )®@wx
maps to the Lie coalgebra:

Buara' (Y @ wx) ctm Jpear(0)EE @ wiry)).

This immediately gives the claim.
O

Remark 7.7.2. We identify fix-mody: and fi-mod(Rep(T)) ys in what follows. We emphasize that
although the A-grading does not appear explicitly in the notation, it is implicit in the fact that nx
is always considered as A-graded.

We obtain the restriction functor:

Rep(B)xr — fix-modyr.

d fac

Using the chiral induction functor Ind® : fix-modys — Yi-mo n

tX ; and the restriction functor

from G to B, we obtain:

Chev??;cl : Rep(G) 1 — Tﬁfmodia;fxf

as desired.

7.8. For convenience, we record the following consequence of Lemma The reader may skip
this section.

Recall from [Rasl] §6.12| and §8.14] that the external fusion construction defines a lax unital
factorization category structure on the assignment:

o fact
I— Ty modun’XI.

Corollary 7.8.1. The lax factorization structure is a true factorization structure. lLe., for every
1,J € Set—y, the external fusion functor:

L fact L fact 1 J1) L fact 1 J1 ...
[Ta-mod,; @Y mOdun’XJ]D(XC?uJ)D([X XX aisj) — [Ta mOdU":XIU"D(XC?UJ)D([X x X disj)

1 an equivalence.

Proof. The corresponding result for Lie-* modules over fiy follows from Lemma Using the
adjoint functors (IndCh , OblVCh), we see that factorization modules for T are modules for a monad

on Lie-* modules, and the two monads obviously match up e.g. by the chiral PBW theorem.
O
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spec
X1
and Chev?le;)g1 are compatible with factorization as we vary the finite set I (here we use the external

7.9. Formulation of the main theorem. Observe that formation of each of the functors Chev

. : . fact
fusion construction Tn—modun,XI ).

Theorem 7.9.1. The factorization functors I — Chevlsvlp;cl and I — Chevﬁe;r? are canonically

isomorphic as factorization functors.
The proof of Theorem will occupy the remainder of this section.

Remark 7.9.2. Here is the idea of the argument: since both functors factorize, we know the result
over strata of X! by Theorem [5.14.1] We glue these isomorphisms over all of X! by analyzing ULA
objects.

Remark 7.9.3. This theorem is somewhat loose as stated, as it does not specify how they are
isomorphic. This is because the construction of the isomorphism is somewhat difficult, due in part
to the difficulty of constructing anything at all in the higher categorical setting.

However, we remark that for G simply-connected, we will see that such an isomorphism of
factorization functors is uniquely characterized as such. Similarly, for G a torus, it is easy to write
down such an isomorphism by hand (just as it is easy to write down the (naive) geometric Satake
by hand in this case). This should be taken to indicate the existence of a canonical isomorphism in
general. We refer to Remark [7.10.2] and §7.22] for further discussion of this point.

7.10. First, we observe the following.

Lemma 7.10.1. Chev:"{ and Chevi™YT are canonically isomorphic for I = .

Proof. We are comparing two D(X)-linear functors:

Rep(G)x = Rep(G) ® D(X) — Tﬁ*modi‘aﬁfx

or equivalently, two continuous functors:

Rep(G) — Ts-modfcty .

By lisseness along X, we obtain the result from Theorem [5.14.1| (alternatively: the methods of
Theorem [5.14.1| work when the point z is allowed to vary, giving the result).
O

Remark 7.10.2. In what follows, we will see that the isomorphism of Theorem is uniquely
pinned down by a choice of isomorphism over X, i.e., an isomorphism as in Lemma In-
deed, this will follow from Proposition Note that we have constructed such an isomorphism
explicitly in the proof of Theorem and therefore this completely pins down Theorem

7.11. Digression: a t-structure on factorization modules. We now digress to discussion the
following result.

Proposition 7.11.1. (1) There is a (necessarily unique) t-structure on Ty —modiaifXI such that
the forgetful functor:
Oblvy, : Ta-modicty, — D(Divyr) (7.11.1)

s t-exact.
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(2) With respect to this t-structure, the chiral induction functor:

fact
un, X1

is t-exact with respect to the t-structure on the left hand side coming from Proposition[7.7.1]
(8) This t-structure is left and right complete.

IndCh : ﬁX*mOdXI - T;fmod

Proof. Note that we have a commutative diagram:

Tﬁfmodff‘y‘;txl — fixy—modyr

iomvrﬁ l (7.11.2)

D(Divﬁéf;;’”) > D(Gryx1)

APOS 0.
eff, X1

Define (Tﬁfmodqfﬁftx 1)SY as the subcategory generated under colimits by ﬁXfmodf((} by Ind".

This defines a t-structure in the usual way. Note that an object lies in (Tﬁfmodf;ftX 1)~ 0 if and only

where we use ¢ to denote the map Grp xr — Div

if its image under Oblv®" lies in @t x—mod3y.
The main observation is that the composition Oblvy, o Ind” is t-exact:

The PBW theorem for factorization modules [Rasi] says that for M € ix—mod yr, Ind*" (M)
. APos op.g
Div .

off X1 ) with subquotients given by the x-pushforward of:

has a filtration as an object of D(

Ax[1] 5. . Kix[1]69 M € D((Divi")" x Gry xr)

—~
n times

APos . . . . . .
off XIOO *. Formation of this exterior product is obviously t-exact, and

the #-pushforward operation is as well by finiteness, giving our claim.

Then from the commutative diagram , we see that Oblv®” o Ind”" is left ¢-exact. This
immediately implies the t-exactness of Ind®”.

It remains to show that Oblvy, is t-exact. By the above computation of Oblvy, Ind®", it is right
t-exact.

Suppose M € Tﬁfmodiaiij with ¢ Oblvy, (M) € D(Gryp x1)”". By factorization and since T €
D(DiviE"™)?, we deduce that Oblvy, (M) is in degree > 0. By the commutative diagram (7.11.2),
this hypothesis is equivalent to assuming that M € ('I}rmodfaLCt )>0

un, X!
exactness.
Finally, that this t-structure is left and right complete follows immediately from .

along the addition map to Div

, so we deduce our left t-

Corollary 7.11.2. The functor Chev®®S, : Rep(G)x: — Yi-mod®t , is t-exact.

n, X1 un, X!

7.12. ULA objects. Next, we discuss the behavior of ULA objects under the Chevalley functors.
In the discussion that follows, we use the term “ULA” as an abbreviation for “ULA over X'.”

7.13. We begin with a technical remark on the spectral side.

Proposition 7.13.1. (1) The functor Chev ’(; maps ULA objects in Rep(G) x1 to ULA objects
fact 7

m TﬁfmoduanI.
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(2) For every V € Rep(G)®!, the object Oblvy, Chevzf);cl(V) € D(Divfg;?o'x) underlying
Chev?’);c, (V) is ind-ULA. o
More precisely, if V' is compact, then for every A € A, the restriction of this D-module to
the locus of divisors of total degree \ is ULA@

Proof. The functor Rep(B)yr — fix-mody: preserves ULA objects by the same argument as in
Proposition [6.16.1) and then the first part follows from D(X?)-linearity of the adjoint functors

dch
= > fact
anmodXI P — TﬁfmodunyXI .

For the second part, we claim more generally that Oblvy, Ind“* maps ULA objects in Rep(B) xr

L - APos oz
to objects in D(DlVeE7X1

To this end, we immediately reduce to the case of one-dimensional representations of B!, since
every compact object of Rep(B)®! admits a finite filtration with such objects as the subquotients.

In the case of the trivial representation of B, the corresponding object is the vacuum repre-
sentation, which in this setting is obtained by s#-pushforward from wyr [x] Ti along the obvious
map:

) whose restriction to each degree is ULA.

I . Apos . APOS 0.z
X" x Divgg —>D1VeH7X[ .

Since this map is a closed embedding, we obtain the claim since wyr [X] T obviously has the
corresponding property.
The general case of a 1-dimensional representation differs from this situation by a translation on

Diy A’ o

g r » giving the claim here as well.

O
7.14. Next, we make the following observation on the geometric side.

Proposition 7.14.1. (1) For every V e Rep(G)®, Oblvy, Chevé?;T(LocXJ(V)) € D(Divgg;?o'z)
is ind-ULA. o
More precisely, for V compact and X € A, the restriction of Oblvy, Chevd Y] (Locx:(V))

X7
to the locus of divisors of total degree \ is ULA.

(2) For V e Rep(G)®LY, Chev??;??(Loch(V)) € Tﬁ*modfua;fX[ lies in cohomological degree
=]

Proof. As in Proposition suffices to show that for V € Rep(G)®LY compact, then that
Chevif;T(LocXI (V)) admits a filtration by A/ with fi-subquotient Ind*" (¢#) ® V (ji), where V(i) is
the ji-weight space of V and ¢* € Rep(B)®I 'Y is the corresponding one dimensional representation.

This follows exactly as in Step of the proof of Theorem the weight space of V' € Rep(G)®!
appears as a semi-infinite integral a la Mirkovic-Vilonen by the appropriate moving points version

of Lemma B.15.1]
U

7.15.  'We now deduce the following key result, comparing Chevgefg1 and Chevlsvlp)(zcl on ULA objects.

Proposition 7.15.1. The two functors:

4INote that this claim is wrong if we do not restrict to components, since ULA objects are compact.
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Chevi*y} o Locr : Rep(G)®" — Ts-mod™et,

Chevi?;cl oLocyr : Rep(G)® — Tﬁfmodfz‘ifxl
are isomorphic.
More precisely, there exists a unique such isomorphism extending the isomorphism between these

functors over Xéisj coming from Lemma|7.10.1| and factorization.

Proof. Tt suffices to produce an isomorphism between the restrictions of Chevt’y}" and Chev’Y; to
the category of compact objects in the heart of Rep(G)®L".

Suppose V € Rep(G)®1 is compact. By [Rei] IV.2.8*) ULAness of ChevEY} (Locx1(V)) and

o (Locyr(V)) is concentrated in one

7XI
degree, and as such, it is middle extended from this disjoint locus. The same conclusion holds for

Chevi"{; (Locxr(V)) for the same reason.

Since the isomorphism above over Div

perversity (up to shift) imply that as a D-module, Chev;

APOS 0.
eff, X1

ule structures, we deduce that the factorization module structures on Chev:"V7(Locx:(V)) and
Chevi"{ (Locyr(V)) are compatible with the middle extension construction, and we obtain that
these two are isomorphic as factorization modules for Y.

X x1X éi sj 18 compatible with factorization mod-

0

Corollary 7.15.2. The functor Chevi(] is t-ezact.
Proof. For simplicity, we localize to assume that X is affine.
First, we claim that Chevi")7 is right t-exact.

Indeed, as in the proof of Proposition |6.34.1 Rep(@)fﬁ is generated under colimits by objects

! . .
of the form Ind Oblv(Locyr(V)) = Dyr ® Locyr (V) for V € Rep(G!)SH| = Rep(G)®<I1
|

The functor Dy; ® — is t-exact on D(Divg\;(’;?o'x) (since after applying forgetful functors, it is

given by tensoring with the ind-vector bundle that is the pullback of differential operators on X7),
and since:

! ! rop. ! spec
Chev??;’(r?(DXf ®Locx1(V)) = Dx1 ® Chevgf;T(Loch (V) Prop. [[.I5.1] Dy ® Chevﬁl’)X, (Locx1(V))

we obtain the result from Corollary [7.11.2]

For left t-exactness: let p : I — J be given, and let 4, denote the corresponding locally closed em-
bedding X7, ;X . Note that the functors i;, ChevE?YT are left t-exact by factorization. Therefore,
.

geom

o T we obtain the claim.
n,X

since Chev is filtered by the functors in*,dRi; Chev

0

Warning 7.15.3. It is not clear at this point that the isomorphisms of Proposition are
compatible with restrictions to diagonals. Here we note that, as in the proof of loc. cit., this question
reduces to the abelian category, and here it becomes a concrete, yes-or-no question. The problem
is that the isomorphism of Proposition was based on middle extending from X éisj c X1

42Note that loc. cit. only formulates its claim for complements to smooth Cartier divisors, since this reference only
defines the ULA condition in this case. However, the claim from loc. cit. is still true in this generality, as one sees by
combining Beilinson’s theory [Bei] and Corollary
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and X7

andforXJ<—>XI XL dis

disj
q7.22
7.16. Factoring through Rep(B)ys. Next, we construct a functor:

do not speak to one another. We will deal with this problem in

Chevge;’;? Rep(G) x1 — Rep(B) x1

so that the composition:

lCheVgeom

- a.xI
Rep(G) xr =, Rep(B) 1 — fix-mod In—»T modfua;fxl

identifies with Chevgeom

Lemma 7.16.1. The t-exact functor:

Indc? fact
Rep(B) xr — fix -mod yr —— Ts- mod ;s

is fully-faithful on the hearts of the t-structures.

Proof. The functor Rep(B)y: — fix-modyr is obviously fully-faithful (even at the derived level),
as is clear by writing both categories as limits and using the fully-faithfulness of the functors
Rep(B)®’ — fi-mod(Rep(T)®”.

So it remains to show that Ind°" : nx—-mody:r — Ti—mo
categorical level.

This follows from the chiral PBW theorem, as in the proof of Proposition

fact
d un,

vr is fully-faithful at the abelian

Indeed, let Oblv" denote the right adjoint to Ind®". Then for M € fix— mod X1 Oblv Ind" (M)
is filtered as a D-module with associated graded terms:
i addy, x4 (ﬁX[l] o Xax[1] i*,dR(M)> € D(Grr xr1) (7.16.1)
n times
where add,, is the addition map:
(DivA? )" % Divh o X;’O T, DivA;O;?O'””

59T Tt suffices to show that HO of this term vanishes for

and 1 is the embedding Gryp x1 <— Divt ff XI

n # 0.
Observe that we have a fiber square:

G, x x Grefl ; x Grp yr (DivAZ”)m « Div e
TXT X oo T,X1 T,X off ff XI
I I
N XX bl
n times \L add,,
i .. APoS 0.
GrT,XI Div ffXI

where GreTﬂX ; is the locus of points in X! x Diveg of pairs ((x;)ier, D) so that D is zero when

restricted to X\{z;} (so the reduced fiber of GrT 1 over a point x € X 2, X7 is the discrete

scheme APo%).
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Let '€ X x X I be the incidence divisor, as in the proof of Lemma [7.7.1} For A given, we have a
canonical map f* : ' — GreTHX, over X!, sending (z, (z;)",) € T to the divisor \-z. More generally,

for every datum (5\7«);‘:1 with A, € AP we obtain a map:

/B(AT)?:lzI‘ X ... X P—)GrTXI X .. X GI'TXI
X1 XTI X1

By base-change, the !-restriction of nx[1]X. . X x [1]Xlix qr (M) to GrT 1 X X GrT 1 X Grp xr
X1t el ’
is the direct sum of terms:

AN (PG @hx[1]) @ .. @ phd! (3% @ ke [1]) @7 1 (M),

where the p; are the projections and ¢ is the map I' — X, and where the sum runs over all n-tuples
(&)1 of positive coroots. Since kx[1] = wx[—1], these terms are concentrated in cohomological
degree > n, which gives the claim.

O

Proposition 7.16.2. The functor Chevgeom °, factors through Rep(B ) , € Ta-modet

‘Rep un,X!*

Proof. Since Rep(@)§9 is generated under colimits by objects of the form Ind Oblv(Locy:(V)) =
! . . .

Dyr®Locy: (V) for V e Rep(GT)SHI = Rep(G)®L<II Rep(G)?(I is generated under (for emphasis:

possibly non-filtered) colimits by the top cohomologies of such objects, i.e., by objects of the form

! -
D1 ®Locy: (V) for V e Rep(G)®! concentrated in degree |I].

But we have seen that such objects map into Rep(B3)

1+ giving the claim.

0

We now obtain the desired functor 'Chev®Y? from Corollary [6.24.4] i.e., from the fact that

XI
Rep(G) xr is the derived category of its heart. These functors factorize as one varies I.

7.17. Kernels. By Lemma [6.32.1] the functor /Chevie;r}l is defined by a kernel:

K™ € Rep(G x B)x1.
Recall that the object of Rep(B) yr underlying :ngom is Chevgeom(OG X ). Moreover, we recall that

one recovers the functor /Chevg'?;r? by noting that for 7 € Rep(G) x1, ff®iKX1 € Rep(G x G x B) y1,
and then we take invariants with respect to G on each U(p) (p : I — J), where G acts diagonally
through the embedding G < G x G).
Let K7 € Rep(G x B) x1 denote the kernel defining the tautological functor Rep(G) — Rep(B),
e, for each p : I — J, X{7°|y(p) is given by the regular representation Oy, considered as a
(G’, B”)-bimodule by restriction from its (G, G’)-bimodule structure (i.e., forgetting X%r down
to Rep(G) xr, we recover Og x1 from .

7.18.  We have the following preliminary observations about these kernels.

Lemma 7.18.1. K57 and X[° are concentrated in cohomological degree —|I| in Rep(G x B)x2
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Proof. For X°P7¢, this follows from Lemma [6.24.3

X1
By construction, we recover K%??m as an object of Rep(B) yr by evaluating /Chevgf;r? on O¢ xr.

Since this object is concentrated in degree —|I| by Lemma [6.24.3] we obtain the claim from t-

exactness of Chevi .
b

0

Proposition 7.18.2. The groupiﬂ of automorphisms of IK;??C restricting to the identity automor-
phism on Xéisj is trivial.

Proof. Note that the underlying object of Gpd underlying this group is a set by Lemma
Then automorphisms of JC?;?C inject into automorphisms of O¢.x1 € Rep(é) 1, so it suffices to
verify the claim here.
By adjunction, we have: @

Homgeo ey (O x1, O x1) = Hompx1) (O x1, wxr)-

Therefore, it suffices to show that:

.l
is an injection, where j denotes the open embedding X th; 5 X1

Note that j!(oé,xl) ~ j'(Locx1(0p)) is obviously ind-lisse, so ji is defined on it. Let i denote
the closed embedding of the union of all diagonal divisors into X!, so j is the complementary open
embedding. We then have the long exact sequence:

dR(

0 — Hom(ix ¢ri™*(0g x1),wxr) = Hom(Opg yr,wyr) — Hom(j;j!((‘)axl),wxz) =

Hom(j!(OG,XI)’WXCL-Sj) > ...

We can compute the first term as:

Hom(iy api™ (O x1),wxr) = Hom(i* (0 y1), i (wx1))

which we then see vanishes, since i*’dR(O@ 1) is obviously concentrated in cohomological degrees

< —|I| (since O y is in degree —|I|), while ' (wx1) is the dualizing sheaf of a variety of dimension

|I| — 1, and therefore is concentrated in cohomological degrees > —|I| + 1.
([l

Remark 7.18.3. Note that by factorization and by the |I| = 1 case, we have an isomorphism
between X57™ and X over the disjoint locus. We deduce from Proposition [7.18.2] that there is
at most one isomorphism extending this given isomorphism, or equivalently, there is at most one
isomorphism between ,Chevie;? and the functor of restriction of representations that extends the
known isomorphism over the7disjoint locus.

43Here by group, we mean a group object of Gpd.
e emphasize here that Hom means the the groupoid of maps, not the whole chain complex of maps. In particular,
these Homs are actually sets, not more general groupoids.
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7.19. Commutative structure. The following discussion will play an important role in the sequel.
By factorization:

I — f](:‘g;?m = /Chevif;T(Oc’XI) € Rep(GY X B)XI

is a factorization algebra in a commutative factorization category.
Lemma 7.19.1. [ — K%f?m is a commutative factorization algebra.

Remark 7.19.2. Since each term .'Kio?m is concentrated in cohomological degree —|I|, this factor-
ization algebra is classical, i.e., of the kind considered in [BD]. In particular, its commutativity is
a property, not a structure.

Proof of Lemma[7.19.1. Let = denote the functor:

= : Rep(G x B)x ® Rep(G x B)x — Rep(G x B) 2.
By [BD] §3.4, we only need to show that there is a map:

E(KE RKE™) > K55™ € Rep(G x Rep(B) 2 (7.19.1)

extending the factorization isomorphism on X2\ X.
Let i denote diagonal embedding X < X2 and let j denote the complementary open embedding
X2 s X2
iSJ
Since z"(f}<§§§m) = K%°™ is in cohomological degree —1, we have a short exact sequence:
0 — KE2™ — jiard (KES™) — iy ar(KE™)[1] — 0

in the shifted heart of the ¢-structure.
Therefore, the obstruction to a map ([7.19.1)) is the existence of a non-zero map:

K%gom K%}som N Z*’dR(:K%(eom)[l]'

We know (from the I = = case of §7.10) that X5°™ = Locx(0g), so K" K Kx is similarly
localized. It follows that i*% (K™ x K5™) is concentrated in cohomological degree —3, while

K‘%(eom[l] is concentrated in cohomological degeree —2, giving the claim.
O

7.20. Lemma |7.19.1 endows fK%fom with the structure of commutative algebra object of Rep(é X
B) x. Moreover, since UCAg,fom is isomorphic to O y, this object lies in the full subcategory:

Rep(G x @)X < Rep(G x B)X.

Moreover, the Beilinson-Drinfeld theory [BD] §3.4 then implies that fKie?m can be recovered from
ngXeom equipped with its commutative algebra structure. For example, this observation already buys
us that for every I, K yr € Rep(G x G) 1 < Rep(G x B)xr, and that I — Xy has a factorization
commutative algebra structure.

Using Lemma it follows that the factorization functor ,Chevgeom is induced from a sym-
metric monoidal functor equivalence F' : Rep(G) —> Rep(G) by composing F with the restriction
functor to Rep(B) and applying the functoriality of the construction € — (I — Cy1) from
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7.21. We claim that F' is equivalent as a symmetric monoidal functor to the identity functor.
Indeed, this follows from the next lemma.

Lemma 7.21.1. Let F: Rep(G) — Rf:p(é) be a symmetric monoidal equivalence such that for
every A e A*, F(V?) is equivalent to V> in Rep(G). Then F is equivalent (non-canonically) to the
identity functor as a symmetric monoidal functor.

Proof. By the Tannakian formalism, Fis given by restriction along an isomorphism ¢ : G — G.
We need to show that ¢ is an inner automorphism. We now obtain the result, since the outer
automorphism group of a reductive group is the automorphism group of its based root datum
and since our assumption implies that the corresponding isomorphism is the identity on A and
therefore on all of A.

O

7.22. Trivializing the central gerbe. The above shows that there exists an isomorphism of the
factorization functors Chevt®™ and Chev;”®.

However, the above technique is not strong enough yet to produce a particular isomorphism.
Indeed, the isomorphism of Lemma |7.21.1]is non-canonical: the problem is that the identity functor

of Rep(GG) admits generally admits automorphisms as a symmetric monoidal functor: this automor-
phism group is the canonical the set of k-points of the center Z (G’)

Unwinding the above constructions, we see that the data of a factorizable isomorphism Chev
and Chevi"* form a trivial Z(G)-gerbe.

In order to trivialize this gerbe, it suffices (by Proposition c.f. Remark to show

the following.

geom
n

Proposition 7.22.1. There exists a (necessarily unique) isomorphism of factorization functors
Chevi™™ ~ Chevi®* whose restriction to X is the one given by Lemma|7.10.1]
Remark 7.22.2. Even when Z(G) = , this assertion is not obvious: c.f. Warning [7.15.3, Essentially,

the difficulty is that the identity functor of Rep(G) admits many automorphisms that are not tensor
automorphisms.

7.23. We will deduce the above proposition using the following setup.

Lemma 7.23.1. Suppose that we are given a symmetric monoidal functor F : Rep(G) — Rep(G)
such that F is (abstractly) isomorphic to the identity as a tensor functor, and such that we are
given a fixed isomorphism:

Resl oF ~ ResC
a.ResT oF_ResT

of symmetric monoidal functors Rep(G) — Rep(T') (Res indicates the restriction functor here).
Then there exists an isomorphism of symmetric monoidal functors between F and the identity

functor on Rep(G) inducing o if and only if, for every V € Rep(G)Y irreducible, there exists an
isomorphism By : F(V) = V € Rep(G) inducing the map:

a(V): Rest:, F(V) ~ Resg(V) € Rep(T)
upon application of Resg.
Moreover, a symmetric monoidal isomorphism between F and the identity compatible with o is
unique if it exists. At the level of objects, it is given by the maps By .
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Remark 7.23.2. In words: an isomorphism « as above may not be compatible with any tensor
isomorphism between F and the identity. Indeed, consider the case where G is adjoint, so that a
tensor isomorphism between F' and the identity is unique if it exists, while there are many choices
for o as above. However, if this isomorphism exists, it is unique. Moreover, there is an object-wise
criterion to test whether or not such an isomorphism exists.

Proof. Choose some isomorphism (8 between F' and the identity functor (of symmetric monoidal

functors). From «, we obtain a symmetric monoidal automorphism of ResCTv;. By Tannakian theory,

this is given by the action of some t € T'(k).

Since the symmetric monoidal automorphism group of the identity functor of Rep(é) is the center
of this group, it suffices to show that ¢ lies in the center of G. (Moreover, we immediately deduce
the uniqueness from this observation).

To this end, it suffices to show that ¢ acts by a scalar on every irreducible representation on G.

But by Schur’s lemma, this is follows from our hypothesis.
O

7.24.  We now indicate how to apply Lemma in our setup.

7.25. First, we give factorizable identifications of the composite functors:

_ ChevE®
Rep(G) xr '

with the functors induced from Resg.

Indeed, we have done this implicitly already in the proof of Proposition one rewrites the
functors Chevgf;r? using (the appropriate generalization of) Lemma[5.15.1} and then uses the (fac-

torizablﬂ of the) Mirkovic-Vilonen identification of restriction as cohomology along semi-infinite
orbits.

Rep(B) 1 — Rep(T) xr

7.26. Now suppose that V € Rep(G)" is irreducible.
Then for x € X, Theorem [5.14.1| produces a certain isomorphism between Chev&"™ (V) and

i,z
Chevy" (V) in Rep(B)Y < Ti-modinct:¥.
To check that the conditions of Lemma [7.23.1] are satisfied, it suffices to show that this isomor-
phism induces the isomorphism of of @ when we map to Rep(T).
Indeed, the isomorphism of Theorem [5.14.1] was constructed using a related isomorphism from
[BG2] Theorem 8.8. The isomorphism of [BG2| has the property above, as is noted in loc. cit.

Since the construction in Theorem [5.14.1| for reducing to the setting of [BG2] is compatible further

restriction to Rep(7’), we obtain the claim.

APPENDIX A. PROOF OF LEMMA [6.18.1]

A.1. Suppose that we have a diagram i — ©G; € DGCat,y,t 0Of categories with each ©; dualizable
with dual €Y in the sense of [Gai3].

In this case, we can form the dual diagram i — €.

We can ask: when is € := lim;egor C; dualizable with dual colim;eg €;”? More precisely, there is a
canonical Vect valued pairing between the limit and colimit here, and we can ask when it realizes
the two categories as mutually dual.

As in [Gai3|, we recall that this occurs if and only if colim;eg €Y is dualizable, which occurs if
and only if, for every D € DGCat,ppt, the canonical map:

45This generalization is straightforward given the Mirkovic-Vilonen theory and the methods of this section and
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(hm (‘31) ®'D i zlelf% (Gz ®D)

ieJop
is an equivalence.
This section gives a criterion, Lemma in which this occurs, and which we will use to deduce

Lemma in

A.2. A dualizability condition. Suppose we have a diagram:

Co

lzﬁ
e, > ey

of dualizable categories. Let € denote the fiber product of this diagram.
The main result of this section is the following.

Lemma A.2.1. Suppose that v and ' have right adjoints ¢ and G respectively. Suppose in addition
that G is fully-faithful.

Then if each C; is dualizable, C is dualizable as well. Moreover, for each D € DGCatcopnt, the
canonical map:

CRD >C®D x C@D (A.2.1)
C3®D

1 an equivalence.

The proof of this lemma is given in
A.3. Proof of Lemma [6.18.1, We now explain how to deduce Lemma [6.18.1]

Proof that Lemma implies Lemma[6.18.1 Fix I a finite set. We proceed by induction on |1,
the case |I| = 1 being obvious.

Recall that we have € € DGCat ¢ rigid and symmetric monoidal, and X a smooth curve.

By 1-affineness of XéR and X' (c.f. [Gaid]), we easily reduce to checking the corresponding
fact in the quasi-coherent setting. Note that by rigidity of QCoh(X7), dualizability questions in
QCoh(X')-mod are equivalent to dualizability questions in DGCateop.

Let U < X! be the complement of the diagonally embedded X < X'. We can then express Cyr
as a fiber product:

QCoh(X',Cx1) —= QCoh(X',Cx:1) ®  QCoh(U)
QCoh(XT)

i

QCoh(X) ® € QCoh(U) ® €.

The two structure functors involved in defining this pullback admit continuous right adjoints,
and the right adjoint to the bottom functor is fully-faithful. Moreover, the bottom two terms are
obviously dualizable. Therefore, by Lemma it suffices to see that formation of the limit
involved in defining the top right term commutes with tensor products over QCoh(U).

Note that U is covered by the open subsets U(p) for p: I — J with |J| > 1. By Zariski descent
for sheaves of categories, it suffices to check the commutation of tensor products and limits after
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restriction to each U(p). But this follows from factorization and induction, using the same cofinality
result as in §6.10)
O

A.4. The remainder of this section is devoted to the proof of Lemma

A.5. Gluing. Define the glued category Glue to consist of the triples (F, 9, n) where F € €1, G € Gy,
and 7 is a morphism 7 : ¥(G) — F(¥F) € Cs.
Note that the limit C:= C; x¢, Ca is a full subcategory of Glue.

Lemma A.5.1. The functor € — Glue admits a continuous right adjoint.

Proof. We construct this right adjoint explicitly:
For (5,9,n) as above, define F € C; as the fiber product:

F—— Gy(9)

Tk

F——= GF(9).

Since G is fully-faithful, the map e : F(F) — FGy(G) ~ ¢(S) is an isomorphism, and therefore

(g" , G, ) defines an object of C. It is easy to see that the resulting functor is the desired right adjoint.
O

A.6. Let D e DGCateopns be given.
Define Gluep as with Glue, but instead use the diagram:

Co®D

ldf@idp
e, D2 e, oD

Lemma A.6.1. The canonical functor:

Glue® D — Gluep

1 an equivalence.

Proof. First, we give a description of functors Glue — & € DGCat,,,s for a test object &:
We claim that such a functor is equivalent to the datum of a pair § : € — € and & : C3 — &
of continuous functors, plus a natural transformation:

S1pF — &o
of functors €; — €.

Indeed, given a functor Z : Glue — & as above, we obtain such a datum as follows: for F € €y,
we let £o(F) == E(F[—1],0,0), for G € Cy we let £1(G) = Z(0,G,0) (here we write objects of Glue
as triples as above). The natural transformation comes from the boundary morphism for the exact
triangle Glue:

(F,0,0) — (F, oF(F),15) — (0, pF(F),0) 5
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where 7y is the adjunction map Y F(F) — F(F). It is straightforward to see that this construction
is an equivalence.

This universal property then makes the above property clear.
O

A.7. We now deduce the lemma.

Proof of Lemma[A.2.1. We need to see that for every D € DGCat,ops, the map is an equiv-
alence.

First, observe that each of these categories is a full subcategory of Gluep. Indeed, for the left
hand side of , this follows from Lemma and for the right hand side, this follows from
Lemma Moreover, this is compatible with the above functor by construction.

Let L denote the right adjoint to ¢ : € — Glue, and let Ly denote the right adjoint to the
embedding;:

i@:€1®Dex Cr ® D — Gluep.

3®D

We need to show that:

(1o L)®idp =ip o Ly
as endofunctors of Gluep, since the image of the left hand side is the left hand side of (A.2.1]), and
the image of the right hand side is the right hand side of ((A.2.1]).

But writing Gluep as Glue ® D, this becomes clear.
O

APPENDIX B. UNIVERSAL LOCAL ACYCLICITY

B.1. Notation. Let S be a scheme of finite type and let € be a D(S)-module category in DGCatcpp-
Let QCoh(S, €) denote the category € ®p(g)y QCoh(S).

Remark B.1.1. Everything in this section works with S a general DG scheme almost of finite type.
The reader comfortable with derived algbraic geometry may therefore happily understand “scheme”
in the derived sense everywhere here.

B.2. The adjoint functorsﬁ

Ind
Coh(S D(S
QCoh(S) == (S)
induce adjoint functors:
QCoh(s,€) =——2—=¢.
Oblv

Lemma B.2.1. The functor Oblv : € — QCoh(S, C) is conservative.

Proof. This is shown in |[GR] in the case € = D(S).
In the general case, it suffices to show that Ind : QCoh(S,€) — C generates the target under
colimits. It suffices to show that the functor:

46Throughout this section, we use only the “left” forgetful and induction functors from [GR].
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QCoh(S)® € — D(S) ® € — D(S) 8 e

generates, as it factors through Ind. But the first term generates by the [GR] result, and the second
term obviously generates.
0

B.3. Universal local acyclicity. We have the following notion.

Definition B.3.1. F € € is universally locally acyclic (ULA) over S if Oblv(F) € QCoh(S,C) is
compact.

Notation B.3.2. We let CUL4 < @ denote the full (non-cocomplete) subcategory of ULA objects.

B.4. We have the following basic consequences of the definition.

!
Proposition B.4.1. For every F € CUL4 and for every compact G € D(S), §® T is compact in C.

Proof. Since Ind : QCoh(S) — D(S) generates the target, objects of the form Ind(P) € D(S) for
P € QCoh(S) perfect generate the compact objects in the target under finite colimits and direct
summands.

!
Therefore, it suffices to see that Ind(P) ® F is compact for every perfect P € QCoh(S).
To this end, it suffices to show:

Ind(P ® Oblv (%)) = Ind(P) @ F (B.4.1)

since the left hand side is obviously compact by the ULA condition on . We have an obvious map
from the left hand side to the right hand side. To show it is an isomorphism, we localize to assume
S is affine, and then by continuity this allows us to check the claim when P = Og. Then the claim
follows because Ind and Oblv are D(S)-linear functors.

O

Corollary B.4.2. Any F e CVLA is compact in €.

Ezample B.4.3. Suppose that S is smooth and € = D(S). Then F is ULA if and only if F is compact
with lisse cohomologies. Indeed, if F is ULA, the cohomologies of Oblv(F) € QCoh(S) are coherent
sheaves and therefore the cohomologies of F are lisse.

Proposition B.4.4. Suppose that F : € — D is a morphism in D(S)-mod with a D(S)-linear
right adjoint G. Then F maps ULA objects to ULA objects.

Proof. We have the commutative diagram:

e r D
lOblv l Oblv

QCoh(S, @) — QCoh(S, D)

and the functor QCoh(S, €) — QCoh(S, D) preserves compacts by assumption on F.
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B.5. Reformulations. For § € C, let Home(F, —) : € — D(SS) denote the (possibly non-continuous)
functor right adjoint to D(S) — C given by tensoring with F.

Proposition B.5.1. For F € C, the following conditions are equivalent.
(1) F is ULA.
(2) Home(F, —) : € — D(S) is continuous and D(S)-linear.
(8) For every M € D(S)-mod and every M € M compact, the induced object:

J MeC @ M
D(S) D(S)

18 compact.
Proof. First, we show implies .
Proposition the functor D(S) — C of tensoring with F sends compacts to compacts, so its

right adjoint is continuous. We need to show that Home(F, —) is D(S)-linear.
Observe first that Oblv Home (F, —) computeﬂHochoh(S’@)(Oblv(ff), Oblv(—)) : € — QCoh(S).

!
Indeed, both are right adjoints to (— ® F) o Ind = Ind o(— ® Oblv(¥F)), where we have identified
these functors by (B.4.1)).

Then observe that:

Homgcon(s,e) (OPIv(F), —) : QCoh(S, €) — QCoh(S)

is a morphism of QCoh(S)-module categories: this follows from rigidity of QCoh(.S). This now easily
gives the claim since Oblv is conservative.

Next, we show that implies (3).

Let M and M € M be as given. The composite functor:

!
(—®F)@idy

Vect —22, M = D(S) @ M C® M
D(9) D(S)
obviously sends k € Vect to F M. But this composite functor also obviously admits a continuous

D(S)
right adjoint: the first functor does because M is compact, and the second functor does because
D(S) — € admits a D(S)-linear right adjoint by assumption.
It remains to show that implies (I)), but this is tautological: take M = QCoh(S).
0

Remark B.5.2. Note that conditions and make sense for any algebra A € DGCat,,,s replacing
D(S) and any F € € a right A-module category in DGCat,op¢. That implies holds in this
generality follows by the same argument.

Here is a sample application of this perspective.

!
Corollary B.5.3. For G € D(U) holonomic and F € CVL4, j1(S® j'(F)) € € is defined, and the
natural map:

(S é)j!(?)) —>J'!(9)6!<>?

is an isomorphism. In particular, ji(F) is defined.

47The notation indicates internal Hom for QCoh(S, €) considered as a QCoh(S)-module category.



CHIRAL PRINCIPAL SERIES CATEGORIES I: FINITE DIMENSIONAL CALCULATIONS 71

Proof. We begin by showing that there is an isomorphism:

J'(Home(%, —)) ~ Home, (5(%),5'(-))
as functors € — D(U). Indeed, we have:

! !
Juard (Home(F, =) = jydr(wr) ® Home(F, —) = Home(F, jx ar(wr) ® (—))
and the right hand side obviously identifies with j, 4qgHome,, (j M), 5 ().

Now for any Fe C, we see:

Home (j1(S) ® F, F) = Homp(s) (1 (3), Home (F, F)) = Homp (G, ' Home(F, F)) =

Hom (17 (9, Home(j'(9), 5(5))) = Home,, (§® 5'(5), 5'(F))
as desired.

B.6. We now discuss a ULA condition for D(S)-module categories themselves.

Definition B.6.1. C as above is ULA over S if QCoh(S, €) is compactly generated by objects of the
form P ® Oblv(F) with F e CUF4 and P e QCoh(S) perfect.

Ezample B.6.2. D(S) is ULA. Indeed, wg is ULA with Oblv(wg) = Og.
Lemma B.6.3. If C is ULA, then C is compactly generated.

Proof. Immediate from conservativity of Oblv.

B.7. In this setting, we have the following converse to Proposition [B.4.4]

Proposition B.7.1. For C ULA, a D(S)-linear functor F : C — D admits a D(S)-linear right
adjoint if and only if F' preserves ULA objects.

Proof. We have already seen one direction in Proposition [B.4.4] For the converse, suppose F' pre-
serves ULA objects.

Since € is compactly generated and F' preserves compact objects, F' admits a continuous right
adjoint G.

We will check linearity using Proposition

Suppose that F € D(S). We want to show that the natural transformation:

| !
FRG(—) - G(F®-)
of functors D — € is an equivalence.
It is easy to see that it is enough to show that for any G e , the natural transformation of
functors D — D(S) induced by applying Home (G, —) is an equivalence.
But this follows from the simple identity Homq) (F(G), —) = Home (9, G(—)). Indeed, we see:

GULA

Homg (T ® G(—)) = T ® Home(S, G(—)) = F @ Homy (F(9), (—)) =

Homy (F(9), T ® (~)) = Homp (3, G(T @ (-))

as desired.
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B.8. Suppose that i : T' < S is closed with complement j : U — §.

Proposition B.8.1. Suppose C is ULA as a D(S)-module category. Then F : € — D a morphism
in D(S)-mod is an equivalence if and only if if preserves ULA objects and the functors:

FU:GU:=G ® D(U)—>®UZ=® ® D(U)

D(S) D(S)
FT . GT =C ® D(T) — DT =D ® D(T)
D(S) D(S)

are equivalences.

Remark B.8.2. Note that a result of this form is not true without ULA hypotheses: the restriction
functor D(S) — D(U) @ D(T) is D(S)-linear and an equivalence over T' and over U, but not an
equivalence.

Proof of Proposition[B.8.1. By Proposition the functor F' admits a D(S)-linear right adjoint
G. We need to check that the unit and counit of this adjunction are equivalences.

By the usual Cousin dévissage, we reduce to checking that the unit and counit are equivalences
for objects pushed forward from U and T. But by D(S)-linearity of our functors, this follows from
our assumption.

0
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