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Abstract. This paper begins a series studying 𝐷-modules on the Feigin-Frenkel semi-infinite flag
variety from the perspective of the Beilinson-Drinfeld factorization (or chiral) theory.

Here we calculate Whittaker-twisted cohomology groups of Zastava spaces, which are certain
finite-dimensional subvarieties of the affine Grassmannian. We show that such cohomology groups
realize the nilradical of a Borel subalgebra for the Langlands dual group in a precise sense, follow-
ing earlier work of Feigin-Finkelberg-Kuznetsov-Mirkovic and Braverman-Gaitsgory. Moreover, we
compare this geometric realization of the Langlands dual group to the standard one provided by
(factorizable) geometric Satake.
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1. Introduction

1.1. Semi-infinite flag variety. This paper begins a series concerning 𝐷-modules on the semi-
infinite flag variety of Feigin-Frenkel.

Let 𝐺 be a split reductive group over 𝑘 a field of characteristic zero. Let 𝐵 be a Borel with
radical 𝑁 and reductive quotient 𝐵{𝑁 “ 𝑇 .

Let 𝑋 be a smooth curve. We let 𝑥 P 𝑋 be a fixed 𝑘-point. Let 𝑂𝑥 “ 𝑘rr𝑡𝑥ss and 𝐾𝑥 “ 𝑘pp𝑡𝑥qq be

the rings Taylor and Laurent series based at 𝑥. Let 𝒟𝑥 and
𝑜
𝒟𝑥 denote the spectra of these rings.

Informally, the semi-infinite flag variety should be a quotient Fl
8
2
𝑥 :“ 𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q, but

this quotient is by an infinite-dimensional group and therefore leaves the realm of usual algebraic
geometry.
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Still, we will explain in future work [Ras3] how to make precise sense of 𝐷-modules on Fl
8
2
𝑥 ,

but we ask the reader to take on faith for this introduction that such a category makes sense.1

This category will not play any explicit role in the present paper, and will be carefully discussed
in [Ras3]; however, it plays an important motivational role in this introduction.

1.2. Why semi-infinite flags? The desire for a theory of sheaves on the semi-infinite flag vari-
ety stretches back to the early days of geometric representation theory: see [FF], [FM], [FFKM],
[BFGM], and [ABB`]. Among these works, there are diverse goals and perspectives, showing the

rich representation theoretic nature of Fl
8
2
𝑥 .

‚ [FF] explains that the analogy between Wakimoto modules for an affine Kac-Moody al-
gebra ĝ𝜅,𝑥 and Verma modules for the finite-dimensional algebra g should be understood

through the Beilinson-Bernstein localization picture, with Fl
8
2
𝑥 playing the role of the finite-

dimensional 𝐺{𝐵.
‚ [FM], [FFKM] and [ABB`] relate the semi-infinite flag variety to representations of Lusztig’s

small quantum group, following Finkelberg, Feigin-Frenkel and Lusztig.

‚ As noted in [ABB`], 𝐷pFl
8
2
𝑥 q “ 𝐷p𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥qq plays the role of the universal

unramified principal series representation of 𝐺p𝐾𝑥q in the categorical setting of local geo-
metric Langlands (see [FG2] and [Ber] for some modern discussion of this framework and
its ambitions).

However, these references (except [FF], which is not rigorous on these points) uses ad hoc finite-
dimensional models for the semi-infinite flag variety.

Remark 1.2.1. One of our principal motivations in this work and its sequels is to study 𝐷pFl
8
2
𝑥 q from

the perspective of the geometric Langlands program, and then to use local to global methods to
apply this to the study of geometric Eisenstein series in the global unramified geometric Langlands
program. But this present work is also closely2 connected to the above, earlier work, as we hope to
explore further in the future.

1.3. The present series of papers will introduce the whole category 𝐷pFl
8
2
𝑥 q and study some inter-

esting parts of its representation theory: e.g., we will explain how to compute Exts between certain
objects in terms of the Langlands dual group.

Studying the whole of𝐷pFl
8
2
𝑥 q was neglected by previous works (presumably) due to the technical,

infinite-dimensional nature of its construction.

1.4. The role of the present paper. Whatever the definition of 𝐷pFl
8
2
𝑥 q is, it is not obvious how

to compute directly with it. The primary problem is that we do not have such a good theory of
perverse sheaves in the infinite type setting: the usual theory [BBD] of middle extensions — which
is so crucial in connecting combinatorics (e.g., Langlands duality) and geometry — does not exist
for embeddings of infinite codimension.

Therefore, to study 𝐷pFl
8
2
𝑥 q, it is necessary to reduce our computations to finite-dimensional

ones. This paper performs those computations, and this is the reason why the category 𝐷pFl
8
2
𝑥 q

1For the overly curious reader: one takes the category 𝐷!
p𝐺p𝐾𝑥qq from [Ber] (c.f. also [Ras2]) and imposes the

coinvariant condition with respect to the group indscheme 𝑁p𝐾𝑥q𝑇 p𝑂𝑥q.
2But non-trivially, due to the ad hoc definitions in earlier works.
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does not explicitly appear here.3 (That said, the author finds these computations to be interesting
in their own right.)

1.5. In the remainder of the introduction, we will discuss problems close to those to be considered
in [Ras3], and discuss the contents of the present paper and their connection to the above problems.

1.6. 𝐷pFl
8
2
𝑥 q is boring. One can show4 that 𝐷pFl

8
2
𝑥 q is equivalent to the category 𝐷pFlaff𝐺,𝑥q of

𝐷-modules on the affine flag variety 𝐺p𝐾𝑥q{𝐼 (where 𝐼 is the Iwahori subgroup) in a 𝐺p𝐾𝑥q-
equivariant way.5

At first pass, this means that essentially6 every question in local geometric Langlands about

𝐷pFl
8
2
𝑥 q has either been answered in the exhaustive works of Bezrukavnikov and collaborators

(especially [AB], [ABG], and [Bez]), or else is completely out of reach (e.g., some conjectures from
[FG2]).

Thus, it would appear that there is nothing new to say about 𝐷pFl
8
2
𝑥 q.

1.7. 𝐷pFl
8
2
𝑥 q is not boring (or: factorization). However, there is a significant difference between

the affine and semi-infinite flag varieties: the latter factorizes in the sense of Beilinson-Drinfeld [BD].
We refer to the introduction to [Ras1] for an introduction to factorization. Modulo the non-

existence of Fl
8
2
𝑥 , let us recall that this essentially means that for each finite set 𝐼, we have a “semi-

infinite flag variety” Fl
8
2

𝑋𝐼 over 𝑋𝐼 whose fiber at a point p𝑥𝑖q𝑖P𝐼 P 𝑋
𝐼 is the product

ś

t𝑥𝑖u𝑖P𝐼
Fl

8
2
𝑥𝑖 .

Here t𝑥𝑖u𝑖P𝐼 is the unordered set in which we have forgotten the multiplicities with which points
appear.

However, it is well-known that the Iwahori subgroup (unlike 𝐺p𝑂𝑥q) does not factorize.7

Remark 1.7.1. The methods of the Bezrukavnikov school do not readily adapt to studying Fl
8
2
𝑥

factorizably: they heavily rely on the ind-finite type and ind-proper nature of Flaff𝐺 , which are not
manifested in the factorization setting.

1.8. But why is it not boring? (Or: why factorization?) As discussed in the introduction to
[Ras1], there are several reasons to care about factorization structures.

‚ Most imminently (from the perspective of Remark 1.2.1), the theory of chiral homology
(c.f. [BD]) provides a way of constructing global invariants from factorizable local ones.
Therefore, identifying spectral and geometric factorization categories allows us to compare
globally defined invariants as well.

3We hope the reader will benefit from this separation, and not merely suffer through an introduction some much of
whose contents has little to do with the paper at hand.
4This result will appear in [Ras3].
5This is compatible with the analogy with 𝑝-adic representation theory: c.f. [Cas].
6This is not completely true: for the study of Kac-Moody algebras, the semi-infinite flag variety has an interesting
global sections functor. It differs from the global sections functor of the affine flag variety in as much as Wakimoto
modules differ from Verma modules.
7It is instructive to try and fail to define a factorization version of the Iwahori subgroup that lives over 𝑋2: a point
should be a pair of points 𝑥1, 𝑥2 in 𝑋, 𝐺-bundle on 𝑋 with a trivialization away from 𝑥1 and 𝑥2, and with a reduction
to the Borel 𝐵 at the points 𝑥1 and 𝑥2. However, for this to define a scheme, we need to ask for a reduction to 𝐵 at
the divisor-theoretic union of the points 𝑥1 and 𝑥2. Therefore, over a point 𝑥 in the diagonal 𝑋 Ď 𝑋2, we are asking
for a reduction to 𝐵 on the first infinitesimal neighborhood of 𝑥, which defines a subgroup of 𝐺p𝑂𝑥q smaller than the
Iwahori group.
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‚ Factorization structures also play a key, if sometimes subtle, role in the purely local theory.
Let us mention one manifestation of this: the localization theory [FG3] (at critical level)

for Flaff𝐺 has to do with the structure of the Kac-Moody algebra pg𝑐𝑟𝑖𝑡 as a bare Lie algebra.

A factorizable localization theory for Fl
8
2
𝑥 would connect to the vertex algebra structure on

its vacuum representation.

‚ In [FM], [FFKM], [ABB`], and [BFS], sheaves on Fl
8
2
𝑥 are defined using factorization struc-

tures. We anticipate the eventual comparison between our category𝐷pFl
8
2
𝑥 q and the previous

ones to pass through the factorization structure of Fl
8
2
𝑥 .

1.9. Main conjecture. Our main conjecture is about Langlands duality for certain factorization
categories: the geometric side concerns some 𝐷-modules on the semi-infinite flag variety, and the
spectral side concerns coherent sheaves on certain spaces of local systems.

See below for a more evocative description of the two sides.

1.10. Let 𝐵´ be a Borel opposite to 𝐵, and let 𝑁´ denote its unipotent radical.
Recall that for any category C acted on by 𝐺p𝐾𝑥q in the sense of [Ber], we can form its Whittaker

subcategory, WhitpCq Ď C consisting of objects equivariant against a non-degenerate character of
𝑁´p𝐾q.

Moreover, up to certain twists (which we ignore in this introduction: see S2.8 for their definitions),
this makes sense factorizably.

For each finite set 𝐼, there is therefore a category Whit
8
2

𝑋𝐼 to be the of Whittaker equivariant

𝐷-modules on Fl
8
2

𝑋𝐼 , and the assignment 𝐼 ÞÑ Whit
8
2

𝑋𝐼 defines a factorization category in the sense
of [Ras1]. This forms the geometric side of our conjecture.

1.11. For a point 𝑥 P 𝑋 and an affine algebraic group 𝛤 , let LocSys𝛤 p
𝑜
𝒟𝑥q denote the prestack of

de Rham local systems with structure group 𝛤 on
𝑜
𝒟𝑥.

Formally: we have the indscheme Conn𝛤 of Liep𝛤 q-valued 1-forms (i.e., connection forms) on the
punctured disc, which is equipped with the usual gauge action of 𝛤 p𝐾𝑥q. We form the quotient and

denote this by LocSys𝛤 p
𝑜
𝒟𝑥q.

Remark 1.11.1. LocSys𝛤 p
𝑜
𝒟𝑥q is not an algebraic stack of any kind because we quotient by the loop

group 𝛤 p𝐾𝑥q, an indscheme of ind-infinite type. It might be considered as a kind of semi-infinite
Artin stack, the theory of which has unfortunately not been developed.

The assignment 𝑥 ÞÑ LocSys𝛤 p
𝑜
𝒟𝑥q factorizes in an obvious way.

1.12. Recall that for a finite type (derived) scheme (or stack) 𝑍, [GR] has defined a DG category
IndCohp𝑍q of ind-coherent sheaves on 𝑍.8

We would like to take as the spectral side of our equivalence the factorization category:

𝑥 ÞÑ IndCoh
`

LocSys𝐵̌p
𝑜
𝒟𝑥q ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q
˘

.

8For the reader unfamiliar with the theory of loc. cit., we recall that this sheaf theoretic framework is very close
to the more familiar QCoh, but is the natural setting for Grothendieck’s functor 𝑓 ! of exceptional inverse image (as
opposed to the functor 𝑓˚, which is adapted to QCoh).
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Here and everywhere, we use e.g. 𝐺̌ to refer to the reductive group Langlands dual to 𝐺, and 𝐵̌ Ď 𝐺̌
to refer to the corresponding Borel subgroup, etc. (c.f. S1.41).

However, note that IndCoh has not been defined in this setting: the spaces of local systems on
the punctured disc are defined as the quotient of an indscheme of ind-infinite type by a group of
ind-infinite type.

We ignore this problem in what follows, describing a substitute in S1.15 below.

1.13. We now formulate the following conjecture:

Main Conjecture. There is an equivalence of factorization categories:

Whit
8
2
»
ÝÑ

´

𝑥 ÞÑ IndCoh
`

LocSys𝐵̌p
𝑜
𝒟𝑥q ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q
˘

¯

. (1.13.1)

Remark 1.13.1. Identifying 𝐷-modules on the affine flag variety and on the semi-infinite flag variety,
one can show that fiberwise, this conjecture recovers the main result of [AB]. However, as noted in
Remark 1.7.1, the methods of loc. cit. are not amenable to the factorizable setting.

1.14. What is contained in this paper? In [FM], Finkelberg and Mirkovic argue that their
Zastava spaces provide finite-dimensional models for the geometry of the semi-infinite flag variety.

In essence, we are using this model in the present paper: we compute some twisted cohomology
groups of Zastava spaces, and these computations will provide the main input for our later study
[Ras3] of semi-infinite flag varieties.

In S1.15-1.21, we describe a certain factorization algebra Υň and its role in the main conjecture
(from S1.13). In S1.22-1.27, we recall some tactile aspects of the geometry of Zastava spaces. Finally,
in S1.28-1.37, we formulate the main results of this text: these realize Υň (and its modules) as twisted
cohomology groups on Zastava space.

Remark 1.14.1. Some of the descriptions below may go a bit quickly for a reader who is a non-
expert in this area. We hope that for such a reader, the material that follows helps to supplement
what it is written more slowly in the body of the text.

1.15. The factorization algebra Υň. To describe the main results of this paper, we need to
describe how we model the spectral side of the main conjecture i.e., the category of ind-coherent
sheaves on the appropriate space of local systems.

We will do this using the graded factorization algebra Υň, introduced in [BG2].
After preliminary remarks about what graded factorization algebras are in S1.16, we introduce

Υň in S1.17. Finally, in S1.20-1.21, we explain why factorization modules for Υň are related to the
spectral side of the main conjecture.

1.16. Let Λ̌𝑝𝑜𝑠 Ď Λ̌ :“ tcocharacters of 𝐺u denote the Zě0-span of the simple coroots (relative to
𝐵).

Let DivΛ̌𝑝𝑜𝑠

eff denote the space of Λ̌𝑝𝑜𝑠-valued divisors on 𝑋. I.e., its 𝑘-points are written:

ÿ

t𝑥𝑖uĎ𝑋 finite

𝜆̌𝑖 ¨ 𝑥𝑖 (1.16.1)

for 𝜆̌𝑖 P Λ̌𝑝𝑜𝑠, and for 𝐺 of semi-simple rank 1, this space is the union of the symmetric powers of
𝑋 (for general 𝐺, connected components are products of symmetric powers of 𝑋).

For 𝜆̌ P Λ̌𝑝𝑜𝑠, we let Div𝜆̌eff denote the connected component of DivΛ̌𝑝𝑜𝑠

eff of divisors of total degree

𝜆̌ (i.e., in the above we have
ř

𝜆̌𝑖 “ 𝜆̌).



6 SAM RASKIN

A (Λ̌𝑝𝑜𝑠)-graded factorization algebra is the datum of 𝐷-modules:

A𝜆̌ P 𝐷pDiv𝜆̌effq, 𝜆̌ P Λ̌𝑝𝑜𝑠

plus symmetric and associative isomorphisms:

A𝜆̌`𝜇̌|
rDiv𝜆̌eff ˆDiv𝜇̌eff s𝑑𝑖𝑠𝑗

» A𝜆̌ bA𝜇̌|
rDiv𝜆̌eff ˆDiv𝜇̌eff s𝑑𝑖𝑠𝑗

.

Here:

rDiv𝜆̌eff ˆDiv𝜇̌eff s𝑑𝑖𝑠𝑗 Ď Div𝜆̌eff ˆDiv𝜇̌eff
denotes the open locus of pairs of (colored) divisors with disjoint supports, which we consider

mapping to Div𝜆̌`𝜇̌eff through the map of addition of divisors (which is étale on this locus).

Remark 1.16.1. The theory of graded factorization algebras closely imitates the theory of factor-

ization algebras from [BD], with the above DivΛ̌𝑝𝑜𝑠

eff replacing the Ran space from loc. cit.

1.17. The Λ̌𝑝𝑜𝑠-graded Lie algebra ň defines a Lie-˚ algebra:9

ň𝑋 :“ ‘𝛼̌ a coroot of 𝐺 ň𝛼̌ b∆𝛼̌
˚,𝑑𝑅p𝑘𝑋q P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q.

In this notation, for a finite type scheme 𝑆, 𝑘𝑆 denotes its (𝐷-module version of the) constant sheaf;
ň𝛼̌ denotes the corresponding graded component of ň; and ∆𝛼̌ : 𝑋 Ñ Div𝛼̌eff denotes the diagonal
embedding.

As in [BD], we may form the chiral enveloping algebra of ň𝑋 : we let Υň denote the corresponding
factorization algebra. For the reader unfamiliar with [BD], we remind that Υň is associated to ň𝑋
as a sort of Chevalley complex; in particular, the ˚-fiber of Υň at a point (1.16.1) is:

b
𝑖
𝐶‚pňq

𝜆̌𝑖

where 𝐶‚ denotes the (homological) Chevalley complex of a Lie algebra (i.e., the complex computing
Lie algebra homology).

1.18. Next, we recall that in the general setup of S1.16, to a graded factorization algebra A and
a closed point 𝑥 P 𝑋, we can associate a DG category A–modfact𝑥 of its (Λ̌-graded) factorization
modules “at 𝑥 P 𝑋.”

First, let DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff denote the indscheme of Λ̌-valued divisors on 𝑋 that are Λ̌𝑝𝑜𝑠-valued on

𝑋z𝑥. So 𝑘-points of this space are sums:

𝜇̌ ¨ 𝑥`
ÿ

t𝑥𝑖uĎ𝑋z𝑥 finite

𝜆̌𝑖 ¨ 𝑥𝑖

where 𝜇̌ P Λ̌ and 𝜆̌𝑖 P Λ̌𝑝𝑜𝑠 (to see the indscheme structure, bound how small 𝜇̌ can be).

Then a factorization module for A is a 𝐷-module 𝑀 P 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q equipped with an isomor-

phism:

add!p𝑀q|
rDivΛ̌

𝑝𝑜𝑠
eff ˆDivΛ̌

𝑝𝑜𝑠,8¨𝑥
eff

» Ab𝑀 |
rDivΛ̌

𝑝𝑜𝑠
eff ˆDivΛ̌

𝑝𝑜𝑠,8¨𝑥
eff

which is associative with respect to the factorization structure on A, where add is the map:

9Here the structure of Lie-˚ algebra is defined in [BD] (see also [FG1], [Ras1] for derived versions). For the reader’s
sake, we simply note that this datum encodes the natural structure on ň𝑋 inherited from the Lie bracket on ň.
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DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff

of addition of divisors.
Factorization modules form a DG category in the obvious way.

Remark 1.18.1. In what follows, we will need unital versions of the above, i.e., unital factorization
algebras and unital modules. This is a technical requirement, and for the sake of brevity we do not
spell it out here, referring to [BD] or [Ras1] for details. However, this is the reason that notations of

the form A–modfact𝑢𝑛,𝑥 appear below instead of A–modfact𝑥 . However, we remark that whatever these
unital structures are, chiral envelopes always carry them, and in particular Υň does.

Remark 1.18.2. Note that the affine Grassmannian Gr𝑇,𝑥 “ 𝑇 p𝐾𝑥q{𝑇 p𝑂𝑥q with structure group

𝑇 embeds into DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff as the locus of divisors supported at the point 𝑥. We remind that the

reduced scheme underlying Gr𝑇,𝑥 is the discrete scheme Λ̌.

1.19. The following provides the connection between Υň and the main conjecture.

Principle. (1) There is a canonical equivalence:

Υň–modfact𝑢𝑛,𝑥 » IndCoh
`

LocSys𝐵̌p
𝑜
𝒟𝑥q

^
LocSys𝑇 p𝒟𝑥q

ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q
˘

(1.19.1)

where LocSys𝐵̌p
𝑜
𝒟𝑥q

^
LocSys𝑇 p𝒟𝑥q

indicates the formal completion of LocSys𝐵̌p
𝑜
𝒟𝑥q with respect

to the map from LocSys𝑇 p𝒟𝑥q.
10

(2) Under this equivalence, the functor:11

Υň–modfact𝑢𝑛,𝑥
Oblv
ÝÝÝÑ 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff q
!´restriction
ÝÝÝÝÝÝÝÝÑ 𝐷pGr𝑇,𝑥q » Repp𝑇 q » QCohpLocSys𝑇 p𝒟𝑥qq

corresponds to the functor of !-restriction along the map:

LocSys𝑇 p𝒟𝑥q Ñ LocSys𝐵̌p
𝑜
𝒟𝑥q

^ ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q.

(3) The above two facts generalize to the factorization setting, where 𝑥 is replaced by several
points allowed to move and collide.

Remark 1.19.1. This is a principle and not a theorem because the right hand side of (1.19.1) is
not defined (we remind that this is because IndCoh is only defined in finite type situations, while
LocSys leaves this world). Therefore, the reader might take it simply as a definition.

For the reader familiar with derived deformation theory (as in [Lur2], [GR]) and [BD], we will
explain heuristically in S1.20-1.21 why we take this principle as given. However, the reader who is
not familiar with these subjects may safely skip this material, as it plays only a motivational role
for us.

10For a fixed 𝑘-point 𝑥 P 𝑋, LocSys𝐵̌p
𝑜

𝒟𝑥q
^
LocSys𝑇 p𝒟𝑥q

is isomorphic to b̌^0 {𝑁̌
^
¨ 𝑇 , so the whole fiber product is

isomorphic to ň^0 {𝑁̌
^𝑇 . Here 𝑁̌^ is the formal group for 𝑁̌ , i.e., the formal completion at the identity.

11Here and throughout the text, for an algebraic group 𝛤 , Repp𝛤 q denotes the derived (i.e., DG) category of its
representations, i.e., QCohpB𝐺q.
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Remark 1.19.2. We note that (heuristically) ind-coherent sheaves on (1.19.1) should be a full sub-

category of IndCoh
`

LocSys𝐵̌p
𝑜
𝒟𝑥q ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q
˘

.12

In [Ras3], we will use the computations of the present paper to construct a functor:

Whit
8
2
𝑥

»
ÝÑ

´

𝑥 ÞÑ IndCoh
`

LocSys𝐵̌p
𝑜
𝒟𝑥q

^ ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q
˘

:“ Υň–modfact𝑢𝑛,𝑥

¯

and identify a full subcategory of Whit
8
2
𝑥 on which this functor is an equivalence. Moreover, this

equivalence is factorizable, and therefore gives the main conjecture (from S1.13) when restricted to
these full subcategories.

1.20. As stated above, the reader may safely skip S1.20-1.21, which are included to justify the
principle of S1.19.

We briefly recall Lurie’s approach to deformation theory [Lur2].
Suppose that X is a “nice enough” stack and 𝑥 P X is a 𝑘-point, with the formal completion of

X at 𝑥 denoted by X^𝑥 . Then the fiber 𝑇X,𝑥r´1s of the shifted tangent complex of X at 𝑥 identifies
with the Lie algebra of the (derived) automorphism group (alias: inertia) Aut𝑥pXq :“ 𝑥ˆX 𝑥 of X
at 𝑥, and there is an identification of the DG category IndCohpX^𝑥 q of ind-coherent sheaves on the
formal completion of X at 𝑥 with 𝑇X,𝑥r´1s-modules.

1.21. At the trivial local system, the fiber of the shifted tangent complex of LocSys𝑁̌ p
𝑜
𝒟𝑥q is the

(derived) Lie algebra 𝐻˚𝑑𝑅p
𝑜
𝒟𝑥, ň b 𝑘q. The philosophy of [BD] indicates that modules for this Lie

algebra should be equivalent to factorization modules for the chiral envelope of the Lie-˚ algebra
ňb 𝑘𝑋 on 𝑋.

The Λ̌-graded variant of this—that is, the version in the setting of S1.16 in which symmetric
powers of the curve replace the Ran space from [BD]—provides the principle of S1.19.

1.22. Zastava spaces. Next, we describe the most salient features of Zastava spaces. We remark
that this geometry is reviewed in detail in S2.

1.23. There are two Zastava spaces,
𝑜
𝒵 and 𝒵, each fibered over DivΛ̌𝑝𝑜𝑠

eff : the relationship is that
𝑜
𝒵 embeds into 𝒵 as an open, and for this reason, we sometimes refer to 𝒵 as Zastava space and

𝑜
𝒵

as open Zastava space.
For the purposes of this introduction, we content ourselves with a description of the fibers of the

maps:

𝑜
𝒵 �
� //

𝑜
𝜋 ""

𝒵

𝜋
��

DivΛ̌𝑝𝑜𝑠

eff .

To give this description, we will first recall the so-called central fibers of the Zastava spaces.

12This combines the facts that ind-coherent sheaves on a formal completion are a full subcategory of ind-coherent
sheaves of the whole space, and the fact that ind-coherent sheaves on the classifying stack of the formal group of a
unipotent group are a full subcategory of ind-coherent sheaves on the classifying stack of the group.
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1.24. Recall that e.g. Gr𝐺,𝑥 denotes the affine Grassmannian 𝐺p𝐾𝑥q{𝐺p𝑂𝑥q of 𝐺 at 𝑥.

For 𝑥 P 𝑋 a geometric point and 𝜆̌ P Λ̌𝑝𝑜𝑠, define the central fiber
𝑜
Z𝜆̌𝑥 as the intersection:

Gr𝑁´,𝑥XGr𝜆̌𝐵,𝑥 “
´

𝑁´p𝐾𝑥q𝐺p𝑂𝑥q
č

𝑁p𝐾𝑥q𝜆̌p𝑡𝑥q𝐺p𝑂𝑥q
¯

{𝐺p𝑂𝑥q Ď 𝐺p𝐾𝑥q{𝐺p𝑂𝑥q “ Gr𝐺,𝑥

where 𝑡𝑥 is any uniformizer at 𝑥. Here we recall that Gr𝑁´,𝑥 “ 𝑁´p𝐾𝑥q𝐺p𝑂𝑥q{𝐺p𝑂𝑥q and Gr𝜆̌𝐵,𝑥 “

𝑁p𝐾𝑥q𝜆̌p𝑡𝑥q𝐺p𝑂𝑥q{𝐺p𝑂𝑥q embed into Gr𝐺,𝑥 as ind-locally closed subschemes (of infinite dimension
and codimension).13

A small miracle: the intersections
𝑜
Z𝜆̌𝑥 are finite type, and equidimensional of dimension p𝜌, 𝜆̌q.

Example 1.24.1. For 𝜆̌ “ 𝛼̌ a simple coroot, one has
𝑜
Z𝛼̌𝑥 » A1zt0u.

1.25. Let Gr
𝜆̌
𝐵,𝑥 denote the closure of Gr𝐵,𝑥 in Gr𝐺,𝑥.14 We remind that Gr

𝜆̌
𝐵,𝑥 has an (infinite)

stratification by the ind-locally closed subschemes Gr𝜆̌´𝜇̌𝐵,𝑥 for 𝜇̌ P Λ̌𝑝𝑜𝑠.

We then define Z𝜆̌𝑥 as the corresponding intersection:

Gr𝑁´,𝑥XGr
𝜆̌
𝐵,𝑥 Ď Gr𝐺,𝑥 .

Again, this intersection is finite-dimensional, and equidimensional of dimension p𝜌, 𝜆̌q.

Example 1.25.1. For 𝜆̌ “ 𝛼̌ a simple coroot, one has Z𝛼̌𝑥 » A1.

1.26. Now, for a 𝑘-point (1.16.1) of Div𝜆̌eff (for 𝜆̌ :“
ř

𝜆̌𝑖), the corresponding fiber of
𝑜
𝒵 𝜆̌ along

𝑜
𝜋

is:

ź 𝑜
Z𝜆̌𝑖𝑥𝑖 (1.26.1)

and similarly for 𝒵.

Again,
𝑜
𝒵 𝜆̌ and 𝒵 𝜆̌ are equidimensional of dimension p2𝜌, 𝜆̌q, and moreover,

𝑜
𝒵 𝜆̌ is actually smooth.

1.27. Finally, there is a canonical map can : 𝒵 Ñ G𝑎, which is constructed (fiberwise) as follows.
First, define the map 𝑁´p𝐾𝑥q Ñ G𝑎 by:

𝑁´p𝐾𝑥q Ñ p𝑁´{r𝑁´, 𝑁´sqp𝐾𝑥q »
ź

simple roots

𝐾𝑥
sum over coordinates
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ 𝐾𝑥

𝑓 ÞÑResp𝑓 ¨𝑑𝑡𝑥q
ÝÝÝÝÝÝÝÝÑ G𝑎

where Res denotes the residue map and 𝑡𝑥 is a coordinate in 𝐾𝑥.

Remark 1.27.1. The twists we mentioned in S1.10 are included so that we do not have to choose
a coordinate 𝑡𝑥, but rather have a canonical residue map to G𝑎. But we continue to ignore these
twists, reminding simply that they are spelled out in S2.8.

It is clear that this map factors uniquely through the projection 𝑁´p𝐾𝑥q Ñ Gr𝑁´ .
We now map (1.26.1) by embedding into the product of Gr𝑁´,𝑥𝑖 and summing the corresponding

maps to G𝑎 over the points 𝑥𝑖.

13The requirement that 𝜆̌ P Λ̌𝑝𝑜𝑠 is included so that this intersection is non-empty.
14As a moduli problem, Gr

𝜆̌
𝐵,𝑥 can be defined analogously to Drinfeld’s compactification of Bun𝜆̌

𝐵 .
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In what follows, we let 𝜓𝒵 P 𝐷p𝒵q (resp. 𝜓 𝑜
𝒵
P 𝐷p

𝑜
𝒵q) denote the !-pullback of the Artin-Shreier

(i.e., exponential) 𝐷-module on G𝑎 (normalized to be in the same cohomological degree as the
dualizing 𝐷-module of G𝑎).

Remark 1.27.2. The above map 𝑁´p𝐾𝑥q Ñ G𝑎 is referred to as the Whittaker character, and we
refer to sheaves constructed out of it the Artin-Shreier sheaf (e.g., 𝜓 𝑜

𝒵
, 𝜓𝒵) as Whittaker sheaves.

1.28. Formulation of the main results of this paper. Here is a rough overview of the main
results of this paper, to be expanded upon below:

Roughly, the first main result of this paper, Theorem 4.6.1, identifies Υň with certain Whittaker
cohomology groups on Zastava space; see loc. cit. for more details. This theorem, following [BG2]
and [FFKM], provides passage from the group 𝐺 to the dual group 𝐺̌ (via Υň) which is different
from geometric Satake.

The second main result, Theorem 7.9.1 (see also Theorem 5.14.1) compares Theorem 4.6.1 with
the geometric Satake equivalence.

1.29. We now give a more precise description of the above theorems.
Our first main result is the following.

Theorem (Thm. 4.6.1).
𝑜
𝜋˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q is concentrated in cohomological degree

zero, and identifies canonically with Υň. Here IC indicates the intersection cohomology sheaf15 (by

smoothness of the
𝑜
𝒵 𝜆̌, this just effects cohomological shifts on the connected component of

𝑜
𝒵).

Moreover, the factorization structure on Zastava spaces induces a factorization algebra structure

on
𝑜
𝜋˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q, and the above equivalence upgrades to an equivalence of factorization algebras.

In words: the (DivΛ̌𝑝𝑜𝑠

eff -parametrized) cohomology of Zastava spaces twisted by the Whittaker
sheaf is Υň.

Remark 1.29.1. We draw the reader’s attention to S1.35 below for a closely related result, but which
is less imminently related to the theme of semi-infinite flags.

1.30. Polar Zastava space. To formulate Theorem 5.14.1, we introduce a certain indscheme
𝑜
𝒵8¨𝑥

with a map
𝑜
𝜋8¨𝑥 :

𝑜
𝒵8¨𝑥 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff , where the geometry is certainly analogous to
𝑜
𝜋 :

𝑜
𝒵 Ñ DivΛ̌

eff .

(Here we remind that DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff parametrizes Λ̌-valued divisors on𝑋 that are Λ̌𝑝𝑜𝑠-valued on𝑋z𝑥.)

As with
𝑜
𝒵, for this introduction we only describe the fibers of the map

𝑜
𝜋8¨𝑥. Namely, at a point16

𝜇̌ ¨ 𝑥`
ř

t𝑥𝑖uĎ𝑋z𝑥 finite 𝜆̌𝑖 ¨ 𝑥𝑖 of DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff , the fiber is:

Gr𝜇̌𝐵,𝑥ˆ
ź

𝑖

𝑜
Z𝜆̌𝑖𝑥𝑖 .

We refer the reader to S5 for more details on the definition.

15Since
𝑜

𝒵 is a union of the varieties
𝑜

𝒵 𝜆̌, we define this IC sheaf as the direct sum of the IC sheaves of the connected
components.
16We remind that this means that 𝜇̌ P Λ̌ and 𝜆̌𝑖 P Λ̌𝑝𝑜𝑠.
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1.31. We will explain in S5 how geometric Satake produces a functor Repp𝐺̌q Ñ 𝐷p
𝑜
𝒵8¨𝑥q.

Though this functor is not so complicated, giving its definition here would require further di-
gressions, so we ask the reader to take this point on faith. Instead, for the purposes of an overview,
we refer to S1.33, where we explain what is going on when we restrict to divisors supported at the
point 𝑥, and certainly we refer to S5 where a detailed construction of this functor is given.

Example 1.31.1. The above functor sends the trivial representation to the ˚-extension of 𝜓 𝑜
𝒵

under

the natural embedding
𝑜
𝒵 ãÑ

𝑜
𝒵8¨𝑥.

We now obtain a functor:

Repp𝐺̌q Ñ 𝐷p
𝑜
𝒵8¨𝑥q

𝑜
𝜋8¨𝑥
˚,𝑑𝑅
ÝÝÝÑ 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff q.

For geometric reasons explained in S5, Theorem 4.6.1 allows us to upgrade this construction to
a functor:

Chevgeom
ň,𝑥 : Repp𝐺̌q Ñ Υň–modfact𝑢𝑛,𝑥.

We now have the following compatibility between geometric Satake and Theorem 4.6.1.

Theorem (Thm. 5.14.1). The functor Chevgeom
ň,𝑥 is canonically identified with the functor Chevspec

ň,𝑥 ,
which by definition is the functor:

Repp𝐺̌q
Res
ÝÝÑ Repp𝐵̌q

Res
ÝÝÑ ň–modpRepp𝑇 qq

Ind𝑐ℎ
ÝÝÝÑ Υň–modfact𝑢𝑛,𝑥.

Here Ind𝑐ℎ is the chiral induction functor from Lie-* modules for ňb 𝑘𝑋 to factorization modules
for Υň.

Remark 1.31.2. Here we remind the reader that chiral induction is introduced (abelian categori-
cally) in [BD] S3.7.15. Like the chiral enveloping algebra operation used to define Υň, chiral induction
is again a kind of homological Chevalley complex.

Example 1.31.3. For the trivial representation, Example 1.31.1 reduces Theorem 5.14.1 to The-
orem 4.6.1. Here, the claim is that Chevgeom

ň,𝑥 of the trivial representation is the 𝐷-module on

𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q obtained by pushforward from Υň along DivΛ̌𝑝𝑜𝑠

eff ãÑ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff , i.e., the so-called

vacuum representation of Υň (at 𝑥).

1.32. Our last main result is the following, which we leave vague here.

Theorem (Thm. 7.9.1). A generalization of Theorem 5.14.1 holds when we work factorizably in
the variable 𝑥, i.e., working at several points at once, allowing them to move and to collide.

Somewhat more precisely, we define in S6 a DG category Repp𝐺̌q𝑋𝐼 “over 𝑋𝐼
𝑑𝑅” (i.e., with a

𝐷p𝑋𝐼q-module category structure) encoding the symmetric monoidal structure on Repp𝐺̌q𝑋𝐼 .17

Most of S6 is devoted to giving preliminary technical constructions that allow us to formulate
Theorem 7.9.1.

17The construction of Repp𝐺̌q𝑋𝐼 is a categorification of the construction of [BD] that associated a factorization algebra
with a usual commutative algebra.
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1.33. Interpretation in terms of Fl
8
2
𝑥 . We now indicate briefly what e.g. Theorem 5.14.1 has to

do with Fl
8
2
𝑥 . This section has nothing to do with the contents of the paper, and therefore can be

skipped; we include it only to make contact with our earlier motivation.
Fix a closed point 𝑥 P 𝑋, and consider the spherical Whittaker category Whit𝑠𝑝ℎ𝑥 Ď 𝐷pGr𝐺,𝑥q,

which by definition is the Whittaker category (in the sense of S1.10) of 𝐷pGr𝐺,𝑥q. There is a
canonical object in this category (supported on Gr𝑁´,𝑥 Ď Gr𝐺,𝑥), and one can show (c.f. Theorem
6.36.1) that the resulting functor:

Repp𝐺̌q
geometric Satake
ÝÝÝÝÝÝÝÝÝÝÑ Sph𝐺,𝑥 ÑWhit𝑠𝑝ℎ𝑥

is an equivalence, where Sph𝐺,𝑥 :“ 𝐷pGr𝐺,𝑥q
𝐺p𝑂q𝑥 is the spherical Hecke category, and the latter

functor is convolution with this preferred object of Whit𝑠𝑝ℎ𝑥 .

Let 𝑖
8
2
,! : 𝐷pFl

8
2
𝑥 q Ñ 𝐷pGr𝑇,𝑥q denote the functor encoding !-restriction along:

𝑖
8
2 : Gr𝑇,𝑥 “ 𝐵p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q ãÑ 𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q “ Fl

8
2
𝑥 .

Consider the problem of computing the composite functor:

Repp𝐺̌q »Whit𝑠𝑝ℎ𝑥
pullback
ÝÝÝÝÝÑWhitp𝐺p𝐾𝑥q{𝐵p𝑂𝑥qq

pushforward
ÝÝÝÝÝÝÝÑWhit

8
2
𝑥

𝑖
8
2 ,!

ÝÝÑ 𝐷pGr𝑇,𝑥q » Repp𝑇 q.

By base-change, this amounts to computing pullback-pushforward of Whittaker18 sheaves along the
correspondence:

𝐺p𝐾𝑥q{𝐵p𝑂𝑥q ˆ
Fl
8
2
𝑥

Gr𝑇,𝑥

ww

Gr𝐵,𝑥

""
Gr𝐺,𝑥 Gr𝑇,𝑥 .

One can see this is exactly the picture obtained by restricting the problem of Theorem 5.14.1

to Gr𝑇,𝑥 Ď DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff , and therefore we obtain an answer in terms of factorization Υň-modules.

Namely, this result says that the resulting functor:

Repp𝐺̌q Ñ Repp𝑇 q

is computed as Lie algebra homology along ň.

Remark 1.33.1. The point of upgrading Theorem 5.14.1 to Theorem 7.9.1 is to allow a picture of
this sort which is factorizable in terms of the point 𝑥, i.e., in which we replace the point 𝑥 P 𝑋 by
a variable point in 𝑋𝐼 for some finite set 𝐼.

1.34. Methods. We now remark one what goes into the proofs of the above theorems.

1.35. Our key computational tool is the following result.

Theorem (Limiting case of the Casselman-Shalika formula, Thm. 3.4.1). The pushforward 𝜋𝜆̌˚,𝑑𝑅p𝜓𝒵
!
b

IC𝒵q P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q is the (one-dimensional) skyscraper sheaf at the zero divisor (concentrated in
cohomological degree zero).

In particular, the restriction of this pushforward to each Div𝜆̌eff with 0 ‰ 𝜆̌ P Λ̌𝑝𝑜𝑠 vanishes.

18It is crucial here that our character be with respect to 𝑁´, not 𝑁 .
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We prove this using reasonably standard methods (c.f. [BFGM]) for studying sheaves on Zastava
spaces.

1.36. Our other major tool is the study of Υň given in [BG2], where Υň is connected to the
untwisted cohomologies of Zastava spaces (in a less derived framework than in Theorem 4.6.1).

1.37. Finally, we remark that the proofs of Theorems 3.4.1, 4.6.1, and 5.14.1 are elementary:
they use only standard perverse sheaf theory, and do not require the use of DG categories or
non-holonomic 𝐷-modules. (In particular, these theorems work in the ℓ-adic setting, with the usual
Artin-Shreier sheaf replacing the exponential sheaf.) The reader uncomfortable with higher category
theory should run into no difficulties here by replacing the words “DG category” by “triangulated
category” essentially everywhere (one exception: it is important that the definition of Υň–modfact𝑢𝑛,𝑥

be understood higher categorically).
However, Theorem 7.9.1 is not elementary in this sense. This is the essential reason for the length

of S6: we are trying to construct an isomorphism of combinatorial nature in a higher categorical
setting, and this is essentially impossible except in particularly fortuitous circumstances. We show
in S6, S7 and Appendix B that the theory of ULA sheaves provides a suitable method for this
particular problem.

1.38. Structure of the paper. S2 is a mostly self-contained review of the geometry of Zastava
spaces. In S3 and S4, we prove the limiting case of the Casselman-Shalika formula (Thm. 3.4.1) and
use it to realize Υň in the geometry of Zastava spaces (Thm. 4.6.1). Then in S5, we give our first
comparison (Thm. 5.14.1) between geometric Satake and the above construction of Υň.

The remainder of the paper is dedicated to a generalization (Thm. 7.9.1) involving the fusion
structure from the geometric Satake theorem. In S6, we introduce prerequisite ideas and discuss
the factorizable geometric Satake theorem; in particular, Theorem 6.36.1 proves a version of the
factorizable Cassleman-Shalika equivalence of [FGV], which is a folklore result in the subject. In
S7, we use this language to formulate a comparison between geometric Satake and our construction
of Υň using the factorizable structures on both sides.

There are two appendices. Appendix A proves a technical categorical lemma from S6. Appendix
B introduces a general categorical language based on the theory of universally locally acyclic (ULA)
sheaves, and which is suitable for general use in S6. The ULA methods are essential for S6-7.

1.39. Conventions. For the remainder of this introduction, we establish the conventions for the
remainder of the text.

1.40. We fix a field 𝑘 of characteristic zero throughout the paper. All schemes, etc, are understood
to be defined over 𝑘.

1.41. Lie theory. We fix the following notations from Lie theory.
Let 𝐺 be a split reductive group over 𝑘, let 𝐵 be a Borel subgroup of 𝐺 with unipotent radical

𝑁 and let 𝑇 be the Cartan 𝐵{𝑁 . Let 𝐵´ be a Borel opposite to 𝐵, i.e., 𝐵´ X 𝐵
»
ÝÑ 𝑇 . Let 𝑁´

denote the unipotent radical of 𝐵´.
Let 𝐺̌ denote the corresponding Langlands dual group with corresponding Borel 𝐵̌, who in turn

has unipotent radical 𝑁̌ and torus 𝑇 “ 𝐵̌{𝑁̌ , and similarly for 𝐵̌´ and 𝑁̌´.
Let g, b, n, t, b´, n´, ǧ, b̌, ň, ť, b̌´ and ň´ denote the corresponding Lie algebras.
Let Λ denote the lattice of weights of 𝑇 and let Λ̌ denote the lattice of coweights. We let Λ and

Λ̌ denote the weights and coweights of 𝐺. We let Λ` (resp. Λ̌`) denote the dominant weights (resp.
coweights), and let Λ̌𝑝𝑜𝑠 denote the Zě0-span of the simple coroots.
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Let ℐ𝐺 be the set of vertices in the Dynkin diagram of 𝐺. We recall that ℐ𝐺 is canonically
identified with the set of simple positive roots and coroots of 𝐺. For 𝑖 P ℐ𝐺, we let 𝛼𝑖 P Λ (resp.
𝛼̌𝑖 P Λ̌) denote the corresponding root (resp. coroot).

Moreover, we fix a choice of Chevalley generators t𝑓𝑖u𝑖PI𝐺 of n´.
Finally, we use the notation 𝜌 P Λ for the half-sum of the positive roots of g, and similarly for

𝜌 P Λ̌.

1.42. For an algebraic group 𝛤 , let let B𝛤 denote the classifying stack Specp𝑘q{𝛤 for 𝛤 .

1.43. Let 𝑋 be a smooth projective curve.
We let Bun𝐺 denote the moduli stack of 𝐺-bundles on 𝑋. Recall that Bun𝐺 is a smooth Artin

stack locally of finite type (though not quasi-compact).
Similarly, we let Bun𝐵, Bun𝑁 , and Bun𝑇 denote the corresponding moduli stacks of bundles on

𝑋. However, we note that we will abuse notation in dealing specifically with bundles of structure
group 𝑁´: we will systematically incorporate a twist discussed in detail in S2.8.

1.44. Categorical remarks. The ultimate result in this paper, Theorem 7.9.1, is about computing
a certain factorization functor between factorization (DG) categories. This means that we need to
work in a higher categorical framework (c.f. [Lur1], [Lur3]) at this point.

We will impose some notations and conventions below regarding this framework. With that said,
the reader may read up to S5 essentially without ever worrying about higher categories.

1.45. We impose the convention that essentially everything is assumed derived. We will make this
more clear below, but first, we note the only exception: schemes can be understood as classical
schemes throughout the body of the paper, since we deal only with 𝐷-modules on them.

1.46. We find it convenient to assume higher category theory as the basic assumption in our
language. That is, we will understand “category” and “1-category” to mean “p8, 1q-category,”
“colimit” to (necessarily) mean “homotopy colimit,” “groupoid” to mean “8-groupoid” (aliases:
homotopy type, space, etc.), and so on. We use the phrase “set” interchangeably with “discrete
groupoid,” i.e., a groupoid whose higher homotopy groups at any basepoint vanish.

When we need to refer to the more traditional notion of category, we use the term p1, 1q-category.
As an example: we let Gpd denote the category (i.e.,8-category) of groupoids (i.e.,8-groupoids).

1.47. DG categories. By DG category, we mean an (accessible) stable (8-)category enriched over
𝑘-vector spaces.

We denote the category of DG categories under 𝑘-linear exact functors by DGCat and the category
of cocomplete19 DG categories under continuous20 𝑘-linear functors by DGCat𝑐𝑜𝑛𝑡.

We consider DGCat𝑐𝑜𝑛𝑡 as equipped with the symmetric monoidal structure b from [Lur3] S6.3.
For C,D P DGCat𝑐𝑜𝑛𝑡 and for F P C and G P D, we let F b G denote the induced object of C bD,
since this notation is compatible with geometric settings.

For C an algebra in DGCat𝑐𝑜𝑛𝑡, we let C–mod denote C–modpDGCat𝑐𝑜𝑛𝑡q: no other interpretations
of C-module category will be considered, and moreover, C should systematically be regarded as an
algebra in DGCat𝑐𝑜𝑛𝑡.

19We actually mean presentable, which differs from cocomplete by a set-theoretic condition that will always be satisfied
for us throughout this text.
20There is some disagreement in the literature of the meaning of this word. By continuous functor, we mean a functor
commuting with filtered colimits. Similarly, by a cocomplete category, we mean one admitting all colimits.
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For C a DG category equipped with a 𝑡-structure, we let Cě0 denote the subcategory of cocon-
nective objects, and Cď0 the subcategory of connective objects (i.e., the notation is the standard
notation for the convention of cohomological grading). We let C♡ denote the heart of the 𝑡-structure.

We let Vect denote the DG category of 𝑘-vector spaces: this DG category has a 𝑡-structure with
heart Vect♡ the abelian category of 𝑘-vector spaces.

We use the material of the short note [Gai3] freely, taking for granted the reader’s comfort with
the ideas of loc. cit.

1.48. For a scheme 𝑆 locally of finite type, we let 𝐷p𝑆q denote its DG category of 𝐷-modules. For
a map 𝑓 : 𝑆 Ñ 𝑇 , we let 𝑓 ! : 𝐷p𝑇 q Ñ 𝐷p𝑆q and 𝑓˚,𝑑𝑅 : 𝐷p𝑆q Ñ 𝐷p𝑇 q denote the corresponding
functors.

We always equip 𝐷p𝑆q with the perverse 𝑡-structure,21 i.e., the one for which IC𝑆 lies in the heart
of the 𝑡-structure. In particular, if 𝑆 is smooth of dimension 𝑑, then the dualizing sheaf 𝜔𝑆 lies in
degree ´𝑑 and the constant sheaf 𝑘𝑆 lies in degree 𝑑. We sometimes refer to objects in the heart of
this 𝑡-structure as perverse sheaves (especially if the object is holonomic), hoping this will not cause
any confusion (since we do not assume 𝑘 “ C, we are in no position to apply the Riemann-Hilbert
correspondence).

1.49. Finally, we use the notation Oblv throughout for various forgetful functors.

1.50. Acknowledgements. We warmly thank Dennis Gaitsgory for suggesting this project to us
as his graduate student, and for his continuous support throughout its development. I have tried
to acknowledge his specific ideas throughout the paper, but in truth, his influence on me and on
this project runs more deeply.

We further thank Dima Arinkin, Sasha Beilinson, David Ben-Zvi, Dario Beraldo, Roman Bezrukavnikov,
Sasha Braverman, Vladimir Drinfeld, Sergey Lysenko, Ivan Mirkovic, Nick Rozenblyum, and Simon
Schieder for their interest in this work and their influence upon it.

Within our gratitude, we especially single out our thanks to Dario Beraldo for conversations that
significantly shaped S6.

We thank MSRI for hosting us while this paper was in preparation.
This material is based upon work supported by the National Science Foundation under Award

No. 1402003.

2. Review of Zastava spaces

2.1. In this section, we review the geometry of Zastava spaces, introduced in [FM] and [BFGM].
Note that this section plays a purely expository role; our only hope is that by emphasizing

the role of local Zastava stacks, some of the basic geometry becomes more transparent than other
treatments.

2.2. Remarks on 𝐺. For simplicity, we assume throughout this section that 𝐺 has a simply-
connected derived group.

However, [ABB`] S4.1 (c.f. also [Sch] S7) explains how to remove this hypothesis, and the basic
geometry of Zastava spaces and Drinfeld compactifications remains exactly the same. The reader
may therefore either assume 𝐺 has simply-connected derived group for the rest of this text, or may
refer to [Sch] for how to remove this hypothesis (we note that this applies just as well for citations
to [BG1], [BG2], and [BFGM]).

21Alias: the right (as opposed to left) 𝑡-structure. C.f. [BD] and [GR].
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2.3. The basic affine space. Recall that the map:

𝐺{𝑁 Ñ 𝐺{𝑁 :“ Specp𝐻0pΓp𝐺{𝑁,O𝐺{𝑁 qqq “ SpecpFunp𝐺q𝑁 q

is an open embedding. We call 𝐺{𝑁 the basic affine space 𝐺{𝑁 the affine closure of the basic affine
space.

The following result is direct from the Peter-Weyl theorem.

Lemma 2.3.1. For 𝑆 an affine test scheme,22 a map 𝜙 : 𝑆 Ñ 𝐺{𝑁 with 𝜙´1p𝐺{𝑁q dense in 𝑆 is
equivalent to a “Drinfeld structure” on the trivial 𝐺-bundle 𝐺 ˆ 𝑆 Ñ 𝑆, i.e., a sequence of maps
for 𝜆 P Λ`.

𝜎𝜆 : ℓ𝜆 b
𝑘
O𝑆 Ñ 𝑉 𝜆 b

𝑘
O𝑆

are monomorphisms of quasi-coherent sheaves and satisfy the Plücker relations.

Remark 2.3.2. By dense, we mean scheme-theoretically, not topologically (e.g., for Noetherian 𝑆,
the difference here is only apparent in the presence of associated points).

Example 2.3.3. For 𝐺 “ SL2, 𝐺{𝑁 identifies equivariantly with A2. The corresponding map SL2 Ñ

A2 here is given by:

ˆ

𝑎 𝑏
𝑐 𝑑

˙

ÞÑ p𝑎, 𝑐q P A2.

2.4. Let 𝑇 be the closure of 𝑇 “ 𝐵{𝑁 Ď 𝐺{𝑁 in 𝐺{𝑁 .

Lemma 2.4.1. (1) 𝑇 is the toric variety Specp𝑘rΛ`sq (here 𝑘rΛ`s is the monoid algebra defined
by the monoid Λ`). Here the map 𝑇 “ Specp𝑘rΛsq Ñ 𝑇 corresponds to the embedding
Λ` Ñ Λ and the map Funp𝐺q𝑁 Ñ 𝑘rΛ`s realizes the latter as 𝑁 -coinvariants of the former.

(2) The action of 𝑇 on 𝐺{𝑁 extends to an action of the monoid 𝑇 on 𝐺{𝑁(where the coalgebra
structure on Funp𝑇 q “ 𝑘rΛ`s is the canonical one, that is, defined by the diagonal map for
the monoid Λ`).

Here (1) follows again from the Peter-Weyl theorem and (2) follows similarly, noting that 𝑉 𝜆 b

ℓ𝜆,_ Ď Funp𝐺q𝑁 “ Funp𝐺{𝑁q has Λ-grading (relative to the right action of 𝑇 on 𝐺{𝑁) equal to
𝜆 P Λ`.

2.5. Note that (after the choice of opposite Borel) 𝑇 is canonically a retract of 𝐺{𝑁 , i.e., the

embedding 𝑇 ãÑ 𝐺{𝑁 admits a canonical splitting:

𝐺{𝑁 Ñ 𝑇 . (2.5.1)

Indeed, the retract corresponds to the map 𝑘rΛ`s Ñ Funp𝐺q𝑁 sending 𝜆 to the canonical element
in:

ℓ𝜆 b ℓ𝜆,_ Ď 𝑉 𝜆 b 𝑉 𝜆,_ Ď Funp𝐺q

(note that the embedding ℓ𝜆,_ ãÑ 𝑉 𝜆,_ uses the opposite Borel).

By construction, this map factors as 𝐺{𝑁 Ñ 𝑁´zp𝐺{𝑁q Ñ 𝑇 .

22It is important here that 𝑆 is a classical scheme, i.e., not DG.
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Let 𝑇 act on 𝐺{𝑁 through the action induced by the adjoint action of 𝑇 on 𝐺. Choosing a

regular dominant coweight 𝜆0 P Λ̌` we obtain a G𝑚-action on 𝐺{𝑁 that contracts23 onto 𝑇 . The

induced map 𝐺{𝑁 Ñ 𝑇 coincides with the one constructed above.

Warning 2.5.1. The induced map 𝐺{𝑁 Ñ 𝑇 does not factor through 𝑇 . The inverse image in 𝐺{𝑁
of 𝑇 Ď 𝑇 is the open Bruhat cell 𝐵´𝑁{𝑁 .

2.6. Define the stack B𝐵 as 𝐺z𝐺{𝑁{𝑇 . Note that B𝐵 has canonical maps to B𝐺 and B𝑇 .

2.7. Local Zastava stacks. Let
𝑜
𝜁 denote the stack 𝐵´z𝐺{𝐵 “ B𝐵´ˆB𝐺B𝐵 and and let 𝜁 denote

the stack 𝐵´zp𝐺{𝑁q{𝑇 “ B𝐵´ ˆB𝐺 B𝐵. We have the sequence of open embeddings:

B𝑇 ãÑ
𝑜
𝜁 ãÑ 𝜁

where B𝑇 embeds as the open Bruhat cell.
The map B𝑇 ãÑ 𝜁 factors as:

B𝑇 “ 𝑇 zp𝑇 {𝑇 q ãÑ 𝑇 zp𝑇 {𝑇 q “ B𝑇 ˆ 𝑇 {𝑇 ãÑ 𝜁. (2.7.1)

One immediately verifies that the retraction 𝐺{𝑁 Ñ 𝑇 of (2.5.1) is 𝐵´ ˆ 𝑇 -equivariant, where

𝐵´ acts on the left on 𝐺{𝑁 and 𝑇 acts on the right, and the action on 𝑇 is similar but is induced
by the 𝑇 ˆ 𝑇 -action and the homomorphism 𝐵´ ˆ 𝑇 Ñ 𝑇 ˆ 𝑇 . Therefore, we obtain a canonical
map:

𝜁 “ 𝐵´z𝐺{𝑁{𝑇 Ñ 𝐵´z𝑇 {𝑇 Ñ 𝑇 z𝑇 {𝑇.

Moreover, up to the choice of 𝜆0 from loc. cit. this retraction realizes B𝑇 ˆ 𝑇 {𝑇 as a “deformation
retract” of 𝜁.

We will identify 𝑇 z𝑇 {𝑇 with B𝑇 ˆ 𝑇 {𝑇 in what follows by writing the former as 𝑇 zp𝑇 {𝑇 q and
noting that 𝑇 acts trivially here on 𝑇 {𝑇 .

In particular, we obtain a canonical map:

𝜁 Ñ 𝑇 {𝑇. (2.7.2)

By Lemma 2.4.1 (2) we have an action of the monoid stack 𝑇 {𝑇 on 𝜁. The morphism 𝜁
𝑟
ÝÑ

B𝑇 ˆ 𝑇 {𝑇 𝑝2
ÝÑ 𝑇 {𝑇 is 𝑇 {𝑇 -equivariant.

Lemma 2.7.1. A map 𝜙 : 𝑆 Ñ 𝑇 {𝑇 with 𝜙´1pSpecp𝑘qq dense (where Specp𝑘q is realized as the
open point 𝑇 {𝑇 ) is canonically equivalent to a Λ̌𝑛𝑒𝑔 :“ ´Λ̌𝑝𝑜𝑠-valued Cartier divisor on 𝑆.

First, we recall the following standard result.

Lemma 2.7.2. A map 𝑆 Ñ G𝑚zA1 with inverse image of the open point dense is equivalent to the
data of an effective Cartier divisor on 𝑆.

Proof. Tautologically, a map 𝑆 Ñ G𝑚zA1 is equivalent to a line bundle L on 𝑆 with a section
𝑠 P Γp𝑆,Lq.

We need to check that the morphism O𝑆
𝑠
ÝÑ L is a monomorphism of quasi-coherent sheaves

under the density hypothesis. This is a local statement, so we can trivialize L. Now 𝑠 is a function

23We recall that a contracting G𝑚-action on an algebraic stack 𝒴 is an action of the multiplicative monoid A1 on 𝒴.
For schemes, this is a property of the underlying G𝑚 action, but for stacks it is not. Therefore, by the phrase “that
contracts,” we rather mean that it canonically admits the structure of contracting G𝑚-action. See [DG] for further
discussion of these points.
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𝑓 whose locus of non-vanishing is dense, and it is easy to see that this is equivalent to 𝑓 being a
non-zero divisor.

�

Proof of Lemma 2.7.1. Let 𝐺1 Ď 𝐺 denote the derived subgroup r𝐺,𝐺s of 𝐺 and let 𝑇 1 “ 𝑇 X 𝐺1

and 𝑁 1 “ 𝑁 X 𝐺1. Then with 𝑇
1

defined as the closure of 𝑇 1 in the affine closure of 𝐺1{𝑁 1, the
induced map:

𝑇
1
{𝑇 1 Ñ 𝑇 {𝑇

is an isomorphism, reducing to the case 𝐺 “ 𝐺1.
Because the derived group (assumed to be equal to 𝐺 now) is assumed simply-connected, we

have have canonical fundamental weights t𝜗𝑖u𝑖Pℐ𝐺 , 𝜗𝑖 P Λ`. The map
ś

𝑖Pℐ𝐺 𝜗𝑖 : 𝑇 Ñ
ś

𝑖Pℐ𝐺 G𝑚

extends to a map 𝑇 Ñ
ś

𝑖Pℐ𝐺 A1 inducing an isomorphism:

𝑇 {𝑇
»
ÝÑ pA1{G𝑚q

ℐ𝐺 .

Because we use the right action of 𝑇 on 𝑇 , the functions on 𝑇 are graded negatively, and therefore
we obtain the desired result.

�

2.8. Twists. Fix an irreducible smooth projective curve 𝑋. We digress for a minute to normalize
certain twists.

Let Ω𝑋 denote the sheaf of differentials on 𝑋. For an integer 𝑛, we will sometimes use the
notation Ω𝑛

𝑋 for Ωb𝑛𝑋 , there being no risk for confusion with 𝑛-forms because 𝑋 is a curve.

We fix Ω
1
2
𝑋 a square root of Ω𝑋 . This choice extends the definition of Ω𝑛

𝑋 to 𝑛 P 1
2Z. We obtain

the 𝑇 -bundle:

𝒫𝑐𝑎𝑛
𝑇 :“ 𝜌pΩ´1𝑋 q :“ 2𝜌pΩ

´ 1
2

𝑋 q. (2.8.1)

We use the following notation:

Bun𝑁´ :“ Bun𝐵´ ˆ
Bun𝑇

t𝒫𝑐𝑎𝑛
𝑇 u

BunG´𝑎 :“ BunG𝑚˙G𝑎 ˆ
BunG𝑚

tΩ
´ 1

2
𝑋 u.

Here G𝑚 ˙G𝑎 is the “negative” Borel of PGL2.

Note that BunG´𝑎 classifies extensions of Ω
´ 1

2
𝑋 by Ω

1
2
𝑋 and therefore there is a canonical map:

canG´𝑎 : BunG´𝑎 Ñ 𝐻1p𝑋,Ω𝑋q “ G𝑎.

The choice of Chevalley generators t𝑓𝑖u𝑖Pℐ𝐺 of n´ defines a map:

𝐵´{r𝑁´, 𝑁´s Ñ
ź

𝑖Pℐ𝐺

pG𝑚 ˙G𝑎q.

By definition of 𝒫𝑐𝑎𝑛
𝑇 , this induces a map:

ź

𝑖Pℐ𝐺

r𝑖 : Bun𝑁´ Ñ
ź

𝑖Pℐ𝐺

BunG´𝑎 .

We form the sequence:
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Bun𝑁´ Ñ
ź

𝑖Pℐ𝐺

BunG´𝑎

ś

𝑖Pℐ𝐺
canG´𝑎

ÝÝÝÝÝÝÝÝÑ
ź

𝑖Pℐ𝐺

G𝑎 Ñ G𝑎

and denote the composition by:

can : Bun𝑁´ Ñ G𝑎. (2.8.2)

2.9. For a pointed stack p𝒴, 𝑦 P 𝒴p𝑘qq and a test scheme 𝑆, we say that 𝑋 ˆ 𝑆 Ñ 𝒴 is non-
degenerate if there exists 𝑈 Ď 𝑋 ˆ 𝑆 universally schematically dense relative to 𝑆 in the sense
of [GAB`] Exp. XVIII, and such that the induced map 𝑈 Ñ 𝒴 admits a factorization as 𝑈 Ñ

Specp𝑘q
𝑦
ÝÑ 𝒴 (so this is a property for a map, not a structure). We let Maps𝑛𝑜𝑛´𝑑𝑒𝑔𝑒𝑛.p𝑋,𝒴q denote

the open substack of Mapsp𝑋,𝒴q consisting of non-degenerate maps 𝑋 Ñ 𝒴.

We consider
𝑜
𝜁, 𝜁, and 𝑇 {𝑇 as openly pointed stacks in the obvious ways.

2.10. Zastava spaces. Observe that there is a canonical map:

𝜁 Ñ B𝑇 (2.10.1)

given as the composition:

𝜁 “ B𝐵´ ˆ
B𝐺

B𝐵 Ñ B𝐵´ Ñ B𝑇.

Let 𝒵 be the stack of 𝒫𝑐𝑎𝑛
𝑇 -twisted non-degenerate maps 𝑋 Ñ 𝜁, i.e., the fiber product:

Maps𝑛𝑜𝑛´𝑑𝑒𝑔𝑒𝑛.p𝑋, 𝜁q ˆ
Bun𝑇

t𝒫𝑐𝑎𝑛
𝑇 u

where the map Maps𝑛𝑜𝑛´𝑑𝑒𝑔𝑒𝑛.p𝑋, 𝜁q Ñ Bun𝑇 is given by (2.10.1).

Let
𝑜
𝒵 Ď 𝒵 be the open substack of 𝒫𝑐𝑎𝑛

𝑇 -twisted non-degenerate maps 𝑋 Ñ
𝑜
𝜁. Note that 𝒵 and

𝑜
𝒵 lie in Sch Ď PreStk. We call 𝒵 the Zastava space and

𝑜
𝒵 the open Zastava space. We let 𝚥 :

𝑜
𝒵 Ñ 𝒵

denote the corresponding open embedding.
We have a Cartesian square where all maps are open embeddings:

𝑜
𝒵 //

��

𝒵

��
Bun𝑁´ ˆ

Bun𝐺
Bun𝐵 // Bun𝑁´ ˆ

Bun𝐺
Bun𝐵

The horizontal arrows realize the source as the subscheme of the target where the two reductions
are generically transverse.

2.11. Let DivΛ̌𝑝𝑜𝑠

eff “ Maps𝑛𝑜𝑛´𝑑𝑒𝑔𝑒𝑛.p𝑋,𝑇 {𝑇 q denote the scheme of Λ̌𝑝𝑜𝑠-divisors on 𝑋 (we include

the subscript “eff” for emphasis that we are not taking Λ̌-valued divisors).
We have the canonical map:

deg : 𝜋0pDivΛ̌𝑝𝑜𝑠

eff q Ñ Λ̌𝑝𝑜𝑠.

For 𝜆̌ P Λ̌𝑝𝑜𝑠 let Div𝜆̌eff denote the corresponding connected component of DivΛ̌𝑝𝑜𝑠

eff .
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Remark 2.11.1. Writing 𝜆̌ “
ř

𝑖Pℐ𝐺 𝑛𝑖𝛼̌𝑖 as a sum of simple coroots, we see that Div𝜆̌eff is a product
ś

𝑖Pℐ𝐺 Sym𝑛𝑖 𝑋 of the corresponding symmetric powers of the curve.

Recall that we have the canonical map 𝑟 : 𝜁 Ñ B𝑇 ˆ𝑇 {𝑇 . For any non-degenerate map 𝑋ˆ𝑆 Ñ
𝜁, Warning 2.5.1 implies that the induced map to 𝑇 {𝑇 (given by composing 𝑟 with the second
projection) is non-degenerate as well.

Therefore we obtain the map:

𝜋 : 𝒵 Ñ DivΛ̌𝑝𝑜𝑠

eff .

We let
𝑜
𝜋 denote the restriction of 𝜋 to

𝑜
𝒵. It is well-known that the morphism 𝜋 is affine.

Let 𝒵 𝜆̌ (resp.
𝑜
𝒵 𝜆̌) denote the fiber of 𝒵 (resp.

𝑜
𝒵) over Div𝜆̌eff . We let 𝜋𝜆̌ (resp.

𝑜
𝜋𝜆̌) denote the

restriction of 𝜋 to 𝒵 𝜆̌ (resp.
𝑜
𝒵 𝜆̌). We let 𝚥𝜆̌ :

𝑜
𝒵 𝜆̌ Ñ 𝒵 𝜆̌ denote the restriction of the open embedding

𝚥.

Note that 𝜋 admits a canonical section s : DivΛ̌𝑝𝑜𝑠

eff Ñ 𝒵, whose restriction to each Div𝜆̌eff we

denote by s𝜆̌. Note that up to a choice of regular dominant coweight, the situation is given by
contraction.

Each 𝒵 𝜆̌ is of finite type (and therefore the same holds for
𝑜
𝒵 𝜆̌). It is known (c.f. [BFGM] Corollary

3.8) that
𝑜
𝒵 𝜆̌ is a smooth variety.

For 𝜆̌ “ 0, we have
𝑜
𝒵0 “ 𝒵0 “ Div0

eff “ Specp𝑘q.
We have a canonical (up to choice of Chevalley generators) map 𝒵 Ñ G𝑎 defined as the compo-

sition 𝒵 Ñ Bun𝑁´
can
ÝÝÑ G𝑎. For 𝛼̌𝑖 a positive simple coroot the induced map:

𝒵 𝛼̌𝑖 Ñ Div𝛼̌𝑖
eff ˆG𝑎 “ 𝑋 ˆG𝑎 (2.11.1)

is an isomorphism that identifies
𝑜
𝒵 𝛼̌𝑖 with 𝑋 ˆG𝑚.

The dimension of 𝒵 𝜆̌ and
𝑜
𝒵 𝜆̌ is p2𝜌, 𝜆̌q “ p𝜌, 𝜆̌q`dim Div𝜆̌eff (this follows e.g. from the factorization

property discussed in S2.12 below and then by the realization discussed in S2.13 of the central fiber
as an intersection of semi-infinite orbits in the Grassmannian, that are known by [BFGM] S6 to be
equidimensional with dimension p𝜌, 𝜆̌q).

Example 2.11.2. Let us explain in more detail the case of 𝐺 “ SL2. In this case, tensoring with the

bundle Ω
1
2
𝑋 identifies 𝒵 with the moduli of commutative diagrams:

L

��

𝜙

!!

0 // Ω
1
2
𝑋

//

𝜙_   

E //

��

Ω
´ 1

2
𝑋

// 0

L_

in which the composition LÑ L_ is zero and the morphism 𝜙 is non-zero. The open subscheme
𝑜
𝒵

is the locus where the induced map CokerpLÑ Eq Ñ L_ is an isomorphism. The associated divisor

of such a datum is defined by the injection L ãÑ Ω
´ 1

2
𝑋 .
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Over a point 𝑥 P 𝑋, we have an identification of the fiber
𝑜
𝒵1
𝑥 of

𝑜
𝒵1 over 𝑥 P 𝑋 (considering

1 P Z “ Λ̌SL2 as the unique positive simple coroot) with G𝑚. Up to the twist by our square root

Ω
1
2
𝑋 , the point 1 P G𝑚 corresponds to a canonical extension of O𝑋 by Ω𝑋 associated to the point

𝑥, that can be constructed explicitly using the Atiyah sequence of the line bundle O𝑋p𝑥q.
Recall that for a vector bundle E, the Atiyah sequence (c.f. [Ati]) is a canonical short exact

sequence:

0 Ñ EndpEq Ñ AtpEq Ñ 𝑇𝑋 Ñ 0

whose splittings correspond to connections on E. For a line bundle L, we obtain a canonical extension
AtpLq b Ω1

𝑋 of O𝑋 by Ω1
𝑋 . Taking L “ O𝑋p𝑥q, we obtain the extension underlying the canonical

point of
𝑜
𝒵1
𝑥.

Note that we have a canonical map L “ O𝑋p𝑥q Ñ AtpO𝑋p𝑥qq b Ω1
𝑋 that may be thought of

as a splitting of the Atiyah sequence with a pole of order 1, and this splitting corresponds to the

obvious connection on O𝑋p𝑥q with a pole of order 1. This defines the corresponding point of
𝑜
𝒵1

completely.

2.12. Factorization. Now we recall the crucial factorization property of 𝒵.

Let add : DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff Ñ DivΛ̌𝑝𝑜𝑠

eff denote the addition map for the commutative monoid

structure defined by addition of divisors. For 𝜆̌ and 𝜇̌ fixed, we let add𝜆̌,𝜇̌ denote the induced map

Div𝜆̌eff ˆDiv𝜇̌eff Ñ Div𝜆̌`𝜇̌eff .
Define:

rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗 Ď DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff

as the moduli of pairs of disjoint Λ̌𝑝𝑜𝑠-divisors. Note that the restriction of add to this locus is étale.
Then we have canonical “factorization” isomorphisms:

𝒵 ˆ
DivΛ̌

𝑝𝑜𝑠
eff

rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗
»
ÝÑ p𝒵 ˆ 𝒵q ˆ

DivΛ̌
𝑝𝑜𝑠

eff ˆDivΛ̌
𝑝𝑜𝑠

eff

rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗

that are associative in the natural sense.
The morphisms 𝜋 and s are compatible with the factorization structure.

2.13. The central fiber. By definition, the central fiber Z𝜆̌ of the Zastava space 𝒵 𝜆̌ is the fiber
product:

Z𝜆̌ :“ 𝒵 𝜆̌ ˆ
Div𝜆̌eff

𝑋

where 𝑋 Ñ Div𝜆̌eff is the closed “diagonal” embedding, i.e., it is the closed subscheme where the

divisor is concentrated at a single point. We let
𝑜
Z𝜆̌ denote the open in Z𝜆̌ corresponding to

𝑜
𝒵 𝜆̌ ãÑ 𝒵 𝜆̌.

Similarly, we let Z Ď 𝒵 be the closed corresponding to the union of the Z𝜆̌.

We let 𝛽𝜆̌ (resp. 7𝜆̌) denote the closed embedding Z𝜆̌ ãÑ 𝒵 𝜆̌ (resp.
𝑜
Z𝜆̌ ãÑ

𝑜
𝒵 𝜆̌).
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2.14. Twisted affine Grassmannian. Let 𝒫𝑐𝑎𝑛
𝐺 ,𝒫𝑐𝑎𝑛

𝐵 and 𝒫𝑐𝑎𝑛
𝐵´ be the torsors induced by the

𝑇 -torsor 𝒫𝑐𝑎𝑛
𝑇 under the embeddings of 𝑇 into each of these groups.

We let Gr𝐺,𝑋 denote the “𝒫𝑐𝑎𝑛
𝐺 -twisted Beilinson-Drinfeld affine Grassmannian” classifying a

point 𝑥 P 𝑋, a 𝐺-bundle 𝒫𝐺 on 𝑋, and an isomorphism 𝒫𝑐𝑎𝑛
𝐺 |𝑋z𝑥 » 𝒫𝐺|𝑋z𝑥. More precisely, the

𝑆-points are:

𝑆 ÞÑ

#

𝑥 : 𝑆 Ñ 𝑋, 𝒫𝐺 a 𝐺-bundle on 𝑋 ˆ 𝑆,
𝛼 an isomorphism 𝒫𝐺|𝑋ˆ𝑆zΓ𝑥

» 𝒫𝑐𝑎𝑛
𝐺 |𝑋ˆ𝑆zΓ𝑥

+

.

Similarly for Gr𝐵,𝑋 , etc. We define Gr𝑁´,𝑋 :“ Gr𝐵´,𝑋 ˆGr𝑇,𝑋
𝑋, where the map 𝑋 Ñ Gr𝑇,𝑋

being the tautological section.
Let Gr𝐵,𝑋 denote the “union of closures of semi-infinite orbits,” i.e., the indscheme:

Gr𝐵,𝑋 : 𝑆 ÞÑ

#

𝑥 : 𝑆 Ñ 𝑋, 𝜙 : 𝑋 ˆ 𝑆 Ñ 𝐺zp𝐺{𝑁q{𝑇 ,
𝛼 a factorization of 𝜙|p𝑋ˆ𝑆qzΓ𝑥

through the

canonical map Specp𝑘q Ñ 𝐺zp𝐺{𝑁q{𝑇 .

+

.

Here Γ𝑥 denotes the graph of the map 𝑥.

2.15. In the above notation, we have a canonical isomorphism:

Z
»
ÝÑ Gr𝑁´,𝑋 ˆ

Gr𝐺,𝑋

Gr𝐵,𝑋 .

Indeed, this is immediate from the definitions.

Note that Gr𝐵,𝑋 has a canonical map to Gr𝑇,𝑋 “
š

𝜆̌PΛ̌ Gr𝜆̌𝑇,𝑋 . Letting Gr𝜆̌𝐵,𝑋 be the fiber over
the corresponding connected component of Gr𝑇,𝑋 , we obtain:

Z𝜆̌
»
ÝÑ Gr𝑁´,𝑋 ˆ

Gr𝐺,𝑋

Gr
𝜆̌
𝐵,𝑋 .

2.16. By S2.7, we have an action of DivΛ̌𝑝𝑜𝑠

eff on 𝒵 so that the morphism 𝜋 is DivΛ̌𝑝𝑜𝑠

eff -equivariant.

We let act𝒵 denote the action map DivΛ̌𝑝𝑜𝑠

eff ˆ𝒵 Ñ 𝒵. We abuse notation in denoting the induced

map DivΛ̌𝑝𝑜𝑠

eff ˆ
𝑜
𝒵 Ñ 𝒵 by act 𝑜

𝒵
(that does not define an action on

𝑜
𝒵, i.e., this map does not factor

through
𝑜
𝒵).

For 𝜆̌ P Λ̌ acting on 𝒵 𝜆̌ defines the map:

act𝜆̌𝒵 : DivΛ̌𝑝𝑜𝑠

eff ˆ𝒵 𝜆̌ Ñ 𝒵.

For 𝜂 P Λ̌𝑝𝑜𝑠 we use the notation act𝜂,𝜆̌𝒵 for the induced map:

act𝜂,𝜆̌𝒵 : Div𝜂eff ˆ𝒵
𝜆̌ Ñ 𝒵 𝜆̌`𝜂.

Similarly, we have the maps act𝜆̌𝑜
𝒵

and act𝜆̌,𝜂𝑜
𝒵

.

The following lemma is well-known (see e.g. [BFGM]).

Lemma 2.16.1. For every 𝜆̌, 𝜂 P Λ̌𝑝𝑜𝑠, the act𝜆̌,𝜂𝒵 is finite morphism and the map act𝜆̌,𝜂𝑜
𝒵

is a locally

closed embedding. For fixed 𝜆̌ the set of locally closed subschemes of 𝒵 𝜆̌:
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tact𝜂,𝜇̌𝑜
𝒵
pDiv𝜂eff ˆ

𝑜
𝒵 𝜇̌qu 𝜇̌`𝜂“𝜆̌

𝜇̌,𝜂PΛ̌𝑝𝑜𝑠

forms a stratification.

2.17. Intersection cohomology of Zastava. For 𝜆̌ P Λ̌𝑝𝑜𝑠 we now review the description from
[BFGM] of the fibers of the intersection cohomology 𝐷-module IC𝒵𝜆̌ along the strata described
above, i.e., the 𝐷-modules:

act𝜂,𝜇̌,!𝑜
𝒵

pIC𝒵𝜆̌q P 𝐷pDiv𝜂eff ˆ
𝑜
𝒵 𝜇̌q, 𝜂, 𝜇̌ P Λ̌𝑝𝑜𝑠, 𝜇̌` 𝜂 “ 𝜆̌.

Theorem 2.17.1. (1) With notation as above, the regular holonomic 𝐷-module:

act𝜂,𝜇̌,!𝑜
𝒵

pIC𝒵𝜆̌q P 𝐷pDiv𝜂eff ˆ
𝑜
𝒵 𝜇̌q (2.17.1)

is concentrated in constructible cohomological degree ´dim
𝑜
𝒵 𝜇̌.

(2) For 𝑥 P 𝑋 a point, the further ˚-restriction of (2.17.1) to
𝑜
Z𝜇̌𝑥 is a lisse sheaf in constructible

degree ´dim
𝑜
𝒵 𝜇̌ isomorphic to:

𝑈pňqp𝜂q b 𝑘𝑜
Z𝜇̌
𝑥

rdim
𝑜
𝒵 𝜇̌s

where 𝑈pňqp𝜂q indicates the 𝜂-weight space.

(3) The !-restriction of (2.17.1) to
𝑜
𝒵 𝜇̌ is a sum of sheaves:

‘
partitions 𝜂“

ř𝑟
𝑗“1 𝛼̌

𝑗

𝛼̌𝑗 a positive coroot

𝑘𝑜
Z𝜇̌
𝑥

r´𝑟 ` dim
𝑜
𝒵 𝜇̌s (2.17.2)

Remark 2.17.2. Recall from the above that,
𝑜
𝒵 𝜇̌ is equidimensional with dim𝒵 𝜇̌ “ 2p𝜌, 𝜇̌q.

Remark 2.17.3. For clarity, in (2.17.2) we sum over all partitions of 𝜂 as a sum of positive coroots
(where two partitions are the same if the multiplicity of each coroot is the same). We emphasize
that the 𝛼̌𝑗 are not assumed to be simple coroots, so the total number of summands is given by
the Kostant partition function.

Remark 2.17.4. This theorem is a combination of Theorem 4.5 and Lemma 4.3 of [BFGM] using
the inductive procedure of loc. cit.

2.18. Locality. For 𝑋 a smooth (possibly affine) curve with choice of Ω
1
2
𝑋 , we obtain an iden-

tical geometric picture. One can either realize this by restriction from a compactification, or by
reinterpreting e.g. the map 𝒵 Ñ G𝑎 through residues instead of through global cohomology.

3. Limiting case of the Casselman-Shalika formula

3.1. The goal for this section is to prove Theorem 3.4.1, on the vanishing of the IC-Whittaker
cohomology groups of Zastava spaces. This vanishing will play a central role in the remainder of
the paper.

Remark 3.1.1. The method of proof is essentially by a reduction to the geometric Casselman-Shalika
formula of [FGV].
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Remark 3.1.2. We are grateful to Dennis Gaitsgory for suggesting this result to us.

3.2. Artin-Schreier sheaves. We define the !-Artin-Schreier 𝐷-module 𝜓 P 𝐷pG𝑎q to be the
exponential local system normalized cohomologically so that 𝜓r´1s P 𝐷pG𝑎q

♡. Note that 𝜓 is
multiplicative with respect to !-pullback.

3.3. For 𝜆̌ P Λ̌𝑝𝑜𝑠, let 𝜓𝒵𝜆̌ P 𝐷p𝒵 𝜆̌q denote the !-pullback of the Artin-Schreier 𝐷-module 𝜓 along
the composition:

𝒵 𝜆̌ Ñ Bun𝑁´
can
ÝÝÑ G𝑎.

Note that 𝜓𝒵𝜆̌

!
b IC𝒵𝜆̌ P 𝐷p𝒵 𝜆̌q♡.

We then also define:

𝜓 𝑜
𝒵𝜆̌
“ 𝚥𝜆̌,!p𝜓𝒵𝜆̌q.

3.4. The main result of this section is the following:

Theorem 3.4.1. If 𝜆̌ ‰ 0, then:

𝜋𝜆̌˚,𝑑𝑅pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q “ 0.

The proof will be given in S3.6 below.
This theorem is étale local on 𝑋, and therefore we may assume that we have 𝑋 “ A1. In

particular, we have a fixed trivialization of Ω
1
2
𝑋 .

3.5. Central fibers via affine Schubert varieties. In the proof of Theorem 3.4.1 we will use
Proposition 3.5.1 below. We note that it is well-known, though we do not know a published reference.

Throughout S3.5, we work only with reduced schemes and indschemes, so all symbols refer to
the reduced indscheme underlying the corresponding indscheme. Note that this restriction does not
affect 𝐷-modules on the corresponding spaces.

Let 𝑇 p𝐾q𝑋 denote the group indscheme over 𝑋 of meromorphic jets into 𝑇 (so the fiber of
𝑇 p𝐾q𝑋 at 𝑥 P 𝑋 is the loop group 𝑇 p𝐾𝑥q). Because we have chosen an identification 𝑋 » A1, we
have a canonical homomorphism:

Gr𝑇,𝑋 » A1 ˆ Λ̌ Ñ 𝑇 p𝐾q𝑋 » A1 ˆ 𝑇 p𝐾q

p𝑥, 𝜆̌q ÞÑ p𝑥, 𝜆̌p𝑡qq

where 𝑡 is the uniformizer of A1 (of course, the formula Gr𝑇,𝑋 » A1 ˆ Λ̌ is only valid at the
reduced level). This induces an action of the 𝑋-group indscheme Gr𝑇,𝑋 on Gr𝐵,𝑋 , Gr𝐺,𝑋 and

Gr𝑁´,𝑋 “ Gr0𝐵´,𝑋 .

Using this action, we obtain a canonical isomorphism:

Z𝜆̌ “ Gr0𝐵´,𝑋 ˆ
Gr𝐺,𝑋

Gr
𝜆̌
𝐵,𝑋

»
ÝÑ Gr𝜂

𝐵´,𝑋
ˆ

Gr𝐺,𝑋

Gr
𝜆̌`𝜂
𝐵,𝑋

of 𝑋-schemes for every 𝜂 P Λ̌.

Proposition 3.5.1. For 𝜂 deep enough24 in the dominant chamber we have:

24This should be understood in a way depending on 𝜆̌.
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Gr𝜂
𝐵´,𝑋

ˆ
Gr𝐺,𝑋

Gr
𝜆̌`𝜂
𝐵,𝑋 “ Gr𝜂

𝐵´,𝑋
ˆ

Gr𝐺,𝑋

Gr𝜆̌`𝜂𝐺,𝑋 .

This equality also identifies:

Gr𝜂
𝐵´,𝑋

ˆ
Gr𝐺,𝑋

Gr𝜆̌`𝜂𝐵,𝑋 “ Gr𝜂
𝐵´,𝑋

ˆ
Gr𝐺,𝑋

Gr𝜆̌`𝜂𝐺,𝑋 .

Proof. It suffices to verify the result fiberwise and therefore we fix 𝑥 “ 0 P 𝑋 “ A1 (this is really

just a notational convenience here). We let Z𝜆̌𝑥 (resp.
𝑜
Z𝜆̌𝑥) denote the fiber of Z𝜆̌ (resp.

𝑜
Z𝜆̌) at 𝑥. Let

𝑡 P 𝐾𝑥 be a coordinate at 𝑥.

Because there are only finitely many 0 ď 𝜇̌ ď 𝜆̌ and because each
𝑜
Z𝜇̌𝑥 is finite type, for 𝜂 deep

enough in the dominant chamber we have:

𝑜
Z𝜇̌𝑥 “ Gr𝑁´,𝑥XAd´𝜂p𝑡qp𝑁p𝑂𝑥qq ¨ 𝜇̌p𝑡q

(𝜇̌p𝑡q being regarded as a point in Gr𝐺,𝑥 here and the intersection symbol is short-hand for fiber

product over Gr𝐺,𝑥) for all 0 ď 𝜇̌ ď 𝜆̌. Choosing 𝜂 possibly larger, we can also assume that 𝜂 ` 𝜇̌

is dominant for all 0 ď 𝜇̌ ď 𝜆̌. Then we claim that such a choice 𝜂 suffices for the purposes of the
proposition.

Observe that for each 0 ď 𝜇̌ ď 𝜆̌ we have:

Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐵,𝑥 “ 𝜂p𝑡q ¨
𝑜
Z𝜇̌𝑥 Ď Gr𝜂

𝐵´,𝑥
X

ˆ

𝑁p𝑂𝑥q ¨ p𝜇̌` 𝜂qp𝑡q

˙

Ď Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐺,𝑥 .

Recall (c.f. [MV]) that Gr
𝜆̌`𝜂
𝐵,𝑥 is a union of strata:

Gr
𝜇̌`𝜂
𝐵,𝑥 , 𝜇̌ ď 𝜆̌

while for 𝜇̌:

Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐵,𝑥 “ H

unless 𝜇̌ ě 0. Therefore, Gr𝜂
𝐵´,𝑥

intersects Gr
𝜇̌
𝐵,𝑥 only in the strata Gr𝜇̌`𝜂𝐵,𝑥 for 0 ď 𝜇̌ ď 𝜆̌.

The above analysis therefore shows that:

Gr𝜂
𝐵´,𝑥

XGr
𝜆̌`𝜂
𝐵,𝑥 Ď Gr𝜂

𝐵´,𝑥
XGr𝜆̌`𝜂𝐺,𝑥 .

Now observe that 𝐵p𝑂𝑥q ¨ p𝜆̌` 𝜂qp𝑡q is open in Gr𝜆̌. Therefore, we have:

Gr𝜆̌`𝜂𝐺,𝑥 Ď Gr
𝜆̌`𝜂
𝐵

giving the opposite inclusion above.

It remains to show that the equality identifies
𝑜
Z𝜆̌𝑥 in the desired way. We have already shown

that:

Gr𝜂
𝐵´,𝑥

XGr𝜆̌`𝜂𝐵,𝑥 Ď Gr𝜂
𝐵´,𝑥

XGr𝜆̌`𝜂𝐺,𝑥 .

so it remains to prove the opposite inclusion. Suppose that 𝑦 is a geometric point of the right hand
side. Then, by the Iwasawa decomposition, 𝑦 P Gr𝜇̌`𝜂𝐵,𝑥 for some (unique) 𝜇̌ P Λ̌ and we wish to show

that 𝜇̌ “ 𝜆̌.
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Because:

𝑦 P Gr𝜇̌`𝜂𝐵,𝑥 XGr𝜆̌`𝜂𝐺,𝑥 ‰ H

we have 𝜇̌ ď 𝜆̌. We also have:

𝑦 P Gr𝜇̌`𝜂𝐵,𝑥 XGr𝜂
𝐵´,𝑥

‰ H

which implies 𝜇̌ ě 0. Therefore, by construction of 𝜂 we have:

𝑦 P Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐵,𝑥 Ď Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐺,𝑥 Ď Gr𝜇̌`𝜂𝐺,𝑥

but Gr𝜇̌`𝜂𝐺,𝑥 XGr𝜆̌`𝜂𝐺,𝑥 “ H if 𝜇̌ ‰ 𝜆̌ (because 𝜇̌ ` 𝜂 and 𝜆̌ ` 𝜂 are assumed dominant) and therefore

we must have 𝜇̌ “ 𝜆̌ as desired.
�

We continue to use the notation introduced in the proof of Proposition 3.5.1.

Recall that 𝛽𝜆̌ (resp. 7𝜆̌) denotes the closed embedding Z𝜆̌ ãÑ 𝒵 𝜆̌ (resp.
𝑜
Z𝜆̌ ãÑ

𝑜
𝒵 𝜆̌). For 𝑥 P 𝑋,

let 𝛽𝜆̌𝑥 (resp. 7𝜆̌𝑥) denote the closed embedding Z𝜆̌𝑥 ãÑ 𝒵 𝜆̌ (resp.
𝑜
Z𝜆̌𝑥 ãÑ

𝑜
𝒵 𝜆̌).

Corollary 3.5.2. For every 𝑥 P 𝑋, the cohomology:

𝐻˚𝑑𝑅

´

Z𝜆̌𝑥, 𝛽
𝜆̌,!
𝑥 pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q

¯

(3.5.1)

is concentrated in non-negative cohomological degrees, for for 0 ‰ 𝜆̌, it is concentrated in strictly
positive cohomological degrees.

Remark 3.5.3. It follows a posteriori from Theorem 3.4.1 that the whole cohomology vanishes for
0 ‰ 𝜆̌.

Proof. First, we claim that when either:

‚ 𝑖 ă 0, or:
‚ 𝑖 “ 0 and 𝜆̌ ‰ 0

we have:

𝐻 𝑖
𝑑𝑅

´ 𝑜
Z𝜆̌𝑥, 7

𝜆̌,!
𝑥 pIC 𝑜

𝒵𝜆̌

!
b𝜓 𝑜

𝒵𝜆̌
q

¯

“ 0 (3.5.2)

Indeed, from the smoothness of
𝑜
𝒵 𝜆̌, we see that IC 𝑜

𝒵𝜆̌

!
b7𝜆̌,!𝑥 p𝜓 𝑜

𝒵𝜆̌
q is a rank one local system

concentrated in perverse cohomological degree:

dimp
𝑜
𝒵 𝜆̌q ´ dimp

𝑜
Z𝜆̌𝑥q “ dimp

𝑜
Z𝜆̌𝑥q.

This gives the desired vanishing in negative degrees.
Moreover, from Proposition 3.5.1 and the Casselman-Shalika formula ([FGV] Theorem 1), we

deduce that, for 𝜆̌ ‰ 0, the restriction of our rank one local system to every irreducible component

of
𝑜
Z𝜆̌𝑥 is moreover non-constant. This gives (3.5.2).
To complete the argument, note that by Theorem 2.17.1 (3), for 0 ď 𝜇̌ ď 𝜆̌, the !-restriction of

IC𝒵𝜆̌ to
𝑜
Z𝜇̌𝑥 lies in perverse cohomological degrees ě p𝜌, 𝜇̌q, with strict inequality for 𝜇̌ ‰ 𝜆̌.
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By lisseness of 𝜓𝒵𝜆̌ , we deduce that for 0 ď 𝜇̌ ă 𝜆̌, 𝛽𝜆̌,!𝑥 pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q has !-restriction to

𝑜
Z𝜇̌𝑥 in

perverse cohomological degrees strictly greater than p𝜌, 𝜇̌q “ dimp𝒵 𝜆̌q. Therefore, the non-positive
cohomologies of these restrictions vanish.

We find that the cohomology is the open stratum can contribute to the non-positive cohomology,
but this vanishes by (3.5.2).

�

Corollary 3.5.4. If 0 ‰ 𝜆̌ P Λ̌𝑝𝑜𝑠 then we have the vanishing Euler characteristic:

𝜒

ˆ

𝐻˚𝑑𝑅

´

Z𝜆̌𝑥, 𝛽
𝜆̌,!
𝑥 pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q

¯

˙

“ 0.

Proof. The key point is to establish the following equality:

r𝛽𝜆̌,!𝑥 pIC𝒵𝜆̌qs “ r𝜄
!pIC

Gr𝜆̌`𝜂
𝐺,𝑥

qs P 𝐾0p𝐷
𝑏
ℎ𝑜𝑙pZ

𝜆̌
𝑥qq (3.5.3)

in the Grothendieck group of complexes of (coherent and) holonomic 𝐷-modules on Z𝜆̌𝑥. Here the
map 𝜄 is defined as:

Z𝑥
»
ÝÑ Gr𝜂

𝐵´,𝑥
XGr𝜆̌`𝜂𝐺,𝑥 Ñ Gr𝜆̌`𝜂𝐺,𝑥 .

It suffices to show that for each 0 ď 𝜇̌ ď 𝜆̌, the !-restrictions of these classes coincide in the
Grothendieck group of:

Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐺,𝑥 .

Indeed, these locally closed subvarieties form a stratification.

First, note that the !-restriction of IC
Gr𝜆̌`𝜂

𝐺,𝑥

to Gr𝜆̌`𝜇̌𝐺,𝑥 has constant cohomologies (by 𝐺p𝑂q-

equivariance). Moreover, by [Lus] the corresponding class in the Grothendieck group is the dimen-
sion of the weight component:

dim
`

𝑉 ´𝑤0p𝜆̌`𝜂qp´𝜇̌´ 𝜂q
˘

¨ rIC
Gr𝜆̌`𝜇̌

𝐺,𝑥

s.

Further !-restricting to Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐺,𝑥 , we obtain that the right hand side of our equation is given

by:

dim𝑉 ´𝑤0p𝜆̌`𝜂qp´𝜇̌´ 𝜂q ¨ rICGr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂
𝐺,𝑥
s.

By having 𝑈pňq act on a lowest weight vector of 𝑉 𝜆̌`𝜂, we observe that for 𝜂 large enough, we have:

𝑉 ´𝑤0p𝜆̌`𝜂qp´𝜇̌´ 𝜂q » 𝑈pňqp𝜆̌´ 𝜇̌q.

The similar identification for the left hand side follows from the choice of 𝜂 (so that Gr𝜂
𝐵´,𝑥

XGr𝜇̌`𝜂𝐺,𝑥

identifies with
𝑜
Z𝜇̌𝑥) and Theorem 2.17.1 (3).

Appealing to (3.5.3), we see that in order to deduce the corollary, it suffices to prove that:

𝜒

ˆ

𝐻˚𝑑𝑅

´

Z𝜆̌𝑥, 𝜄
!pIC

Gr𝜆̌`𝜂
𝐺,𝑥

q
!
b 𝛽𝜆̌,!𝑥 p𝜓𝒵𝜆̌q

¯

˙

“ 0.

Even better: by the geometric Casselman-Shalika formula [FGV], this cohomology itself vanishes.
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�

3.6. Now we give the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. We proceed by induction on p𝜌, 𝜆̌q, so we assume the result holds for all

0 ă 𝜇̌ ă 𝜆̌. By factorization and induction, we see that F :“ 𝜋𝜆̌˚,𝑑𝑅pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q is concentrated on

the main diagonal 𝑋 Ď Div𝜆̌eff .

The (˚ “!-)restriction of F to 𝑋 is the ˚-pushforward along Z𝜆̌ Ñ 𝑋 of 𝛽𝜆̌,!pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q. More-

over, since Z𝜆̌ Ñ 𝑋 is a Zariski-locally trivial fibration, the cohomologies of F on 𝑋 are lisse and
the fiber at 𝑥 P 𝑋 is:

𝐻˚𝑑𝑅

´

Z𝜆̌𝑥, 𝛽
𝜆̌,!
𝑥 pIC𝒵𝜆̌

!
b𝜓𝒵𝜆̌q

¯

.

Because 𝜋𝜆̌ is affine and IC𝒵𝜆̌

!
b𝜓𝒵𝜆̌ is a perverse sheaf, F lies in perverse degrees ď 0. Moreover,

by Corollary 3.5.2, its !-fibers are concentrated in strictly positive degrees. Since F is lisse along 𝑋,
this implies that F is actually perverse. Now Corollary 3.5.4 provides the vanishing of the Euler
characteristics of the fibers of F, giving the result.

�

4. Identification of the Chevalley complex

4.1. The goal for this section is to identify the Chevalley complex in the cohomology of Zastava
space with coefficients in the Whittaker sheaf: this is the content of Theorem 4.6.1.

The argument combines Theorem 3.4.1 with results from [BG2].

Remark 4.1.1. Theorem 4.6.1 is one of the central results of this text: as explained in the introduc-
tion, it provides a connection between Whittaker sheaves on the semi-infinite flag variety and the
factorization algebra Υň, and therefore relates to the main conjecture of the introduction.

4.2. We will use the language of graded factorization algebras.
The definition should encode the following: a Zě0-graded factorization algebra is a system A𝑛 P

𝐷pSym𝑛𝑋q such that we have, for every pair 𝑚,𝑛 we have isomorphisms:

´

A𝑚 bA𝑛

¯

|rSym𝑚𝑋ˆSym𝑛𝑋s𝑑𝑖𝑠𝑗
»
ÝÑ

´

A𝑚`𝑛

¯

|rSym𝑚𝑋ˆSym𝑛𝑋s𝑑𝑖𝑠𝑗

satisfying (higher) associativity and commutativity. Note that the addition map Sym𝑚𝑋ˆSym𝑛𝑋 Ñ

Sym𝑚`𝑛𝑋 is étale when restricted to the disjoint locus, and therefore the restriction notation above
is unambiguous.

Formally, the scheme Sym𝑋 “
š

𝑛 Sym𝑛𝑋 is naturally a commutative algebra under correspon-
dences, where the multiplication is induced by the maps:

rSym𝑛𝑋 ˆ Sym𝑚𝑋s𝑑𝑖𝑠𝑗

tt ))
Sym𝑛𝑋 ˆ Sym𝑚𝑋 Sym𝑚`𝑛𝑋.

Therefore, as in [Ras1] S6, we can apply the formalism of loc. cit. S5 to obtain the desired theory.
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Remark 4.2.1. We will only be working with graded factorization algebras in the heart of the 𝑡-
structure, and therefore the language may be worked out “by hand” as in [BD], i.e., without needing
to appeal to [Ras1].

Similarly, we have the notion of Λ̌𝑝𝑜𝑠-graded factorization algebra: it is a collection of 𝐷-modules

on the schemes Div𝜆̌eff with similar identifications as above.

4.3. Recall that [BG2] has introduced a certain Λ̌𝑝𝑜𝑠-graded commutative factorization algebra,

i.e., a commutative factorization 𝐷-module on DivΛ̌𝑝𝑜𝑠

eff . This algebra incarnates the homological
Chevalley complex of ň. In loc. cit., this algebra is denoted by Υpň𝑋q: we use the notation Υň

instead. We denote the component of Υň on Div𝜆̌eff by Υ𝜆̌
ň . Recall from loc. cit. that each Υ𝜆̌

ň lies in

𝐷pDiv𝜆̌effq
♡.25

Remark 4.3.1. To remind the reader of the relation between Υň and the homological Chevalley
complex 𝐶‚pňq of ň, we recall that the ˚-fiber of Υň at a Λ̌𝑝𝑜𝑠-colored divisor

ř𝑛
𝑖“1 𝜆̌𝑖 ¨ 𝑥𝑖 (here

𝜆̌𝑖 P Λ̌𝑝𝑜𝑠 and the 𝑥𝑖 P 𝑋 are distinct closed points) is canonically identified with:

𝑛
b
𝑖“1
𝐶‚pňq

𝜆̌𝑖

where 𝐶‚pňq
𝜆̌𝑖 denotes the 𝜆̌𝑖-graded piece of the complex.

Remark 4.3.2. The Λ̌𝑝𝑜𝑠-graded vector space:

ň “ ‘
𝛼̌ a positive coroot

ň𝛼̌

gives rise to the 𝐷-module:

ň𝑋 :“ ‘
𝛼̌ a positive coroot

∆𝛼̌
˚,𝑑𝑅pň

𝛼̌ b 𝑘𝑋q P 𝐷pDivΛ̌
effq

where for 𝜆̌ P Λ̌, ∆𝜆̌ : 𝑋 Ñ Div𝜆̌eff is the diagonal embedding. The Lie algebra structure on ň gives
a Lie-˚ structure on ň𝑋 .

Then Υň is tautologically given as the factorization algebra associated to the chiral enveloping
algebra of this Lie-˚ algebra.

Remark 4.3.3. We emphasize the miracle mentioned above and crucially exploited in [BG2] (and
below): although 𝐶‚pňq is a cocommutative (DG) coalgebra that is very much non-classical, its
𝐷-module avatar does lie in the heart of the 𝑡-structure. Of course, this is no contradiction, since
the ˚-fibers of a perverse sheaf need only live in degrees ď 0.

4.4. Observe that 𝚥˚,𝑑𝑅pIC 𝑜
𝒵
q naturally factorizes on 𝒵. Therefore, s˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜

𝒵
q is naturally a

factorization 𝐷-module in 𝐷pDivΛ̌𝑝𝑜𝑠

eff q.
The following key identification is essentially proved in [BG2], but we include a proof with

detailed references to loc. cit. for completeness.

Theorem 4.4.1. There is a canonical identification:

𝐻0ps˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜
𝒵
qq

»
ÝÑ Υň

of Λ̌𝑝𝑜𝑠-graded factorization algebras.

25We explicitly note that in this section we exclusively use the usual (perverse) 𝑡-structure.
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Remark 4.4.2. To orient the reader on cohomological shifts, we note that for 𝜆̌ P Λ̌𝑝𝑜𝑠 fixed, IC 𝑜
𝒵𝜆̌

is concentrated in degree 0 and therefore the above 𝐻0 is the maximal cohomology group of the
complex s˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜

𝒵𝜆̌
q.

Proof of Theorem 4.4.1. Let 𝑗 : DivΛ̌𝑝𝑜𝑠,simple
eff ãÑ DivΛ̌𝑝𝑜𝑠

eff denote the open consisting of simple
divisors, i.e., its geometric points are divisors of the form

ř𝑛
𝑖“1 𝛼̌𝑖 ¨𝑥𝑖 for 𝛼̌𝑖 a positive simple coroot

and the points t𝑥𝑖u pairwise distinct. For each 𝜆̌ P Λ̌𝑝𝑜𝑠, we let 𝑗𝜆̌ : Div𝜆̌,simple
eff Ñ Div𝜆̌eff denote the

corresponding open embedding. Note that 𝑗 and each embedding 𝑗𝜆̌ is affine.

Observe that DivΛ̌𝑝𝑜𝑠,simple
eff has a factorization structure induced by that of Diveff . The restric-

tion of Υň to DivΛ̌𝑝𝑜𝑠,simple
eff identifies canonically with the exterior product over 𝑖 P ℐ𝐺 of the

corresponding “sign” (rank 1) local systems under the identification:

Div𝜆̌,simple
eff »

ź

𝑖Pℐ𝐺

Sym𝑛𝑖,simple𝑋

where 𝜆̌ “
ř

𝑖Pℐ𝐺 𝑛𝑖𝛼̌𝑖 and on the right the subscript simple means “simple effective divisor” in the
same sense as above. Moreover, these identifications are compatible with the factorization structure
in the natural sense.

Let
𝑜
𝒵simple and

𝑜
𝒵 𝜆̌,simple denote the corresponding opens in

𝑜
𝒵 and

𝑜
𝒵 𝜆̌ obtained by fiber product.

Let ssimple and s𝜆̌,simple denote the corresponding restrictions of s and s𝜆̌.

Then
𝑜
𝒵 𝜆̌,simple »

ÝÑ Div𝜆̌,simple
eff ˆGp𝜌,𝜆̌q𝑚 as a Div𝜆̌,simple

eff -scheme by (2.11.1), and these identifications
are compatible with factorization.

Therefore, we deduce an isomorphism:

𝐻0pssimple,˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜
𝒵simple

qq
»
ÝÑ 𝑗!pΥňq

of factorization 𝐷-modules on DivΛ̌𝑝𝑜𝑠,simple
eff (note that the sign local system appears on the left by

the Koszul rule of signs).
Therefore, we obtain a diagram:

𝑗!𝐻
0pssimple,˚,𝑑𝑅𝚥˚pIC 𝑜

𝒵simple
qq

» //

��

𝑗!𝑗
!pΥňq

��
𝐻0ps˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜

𝒵
qq Υň

(4.4.1)

Note that the top horizontal arrow is a map of factorization algebras on DivΛ̌𝑝𝑜𝑠

eff .
By (the Verdier duals to) [BG2] Lemma 4.8 and Proposition 4.9, the vertical maps in (4.4.1)

are epimorphisms in the abelian category 𝐷pDivΛ̌𝑝𝑜𝑠

eff q♡. Moreover, by the analysis in loc. cit. S4.10,
there is a (necessarily unique) isomorphism:

𝐻0ps˚,𝑑𝑅𝚥˚,𝑑𝑅pIC 𝑜
𝒵
qq

»
ÝÑ Υň

completing the square (4.4.1). By uniqueness, this isomorphism is necessarily an isomorphism of
factorizable 𝐷-modules.

�
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4.5. Observe that the 𝐷-module 𝜓 𝑜
𝒵

canonically factorizes on
𝑜
𝒵. Therefore, 𝚥˚,𝑑𝑅p𝜓 𝑜

𝒵
q factorizes

in 𝐷p𝒵q.
By Theorem 4.4.1, we have for each 𝜆̌ P Λ̌𝑝𝑜𝑠 we have a map:

𝚥𝜆̌˚,𝑑𝑅pIC 𝑜
𝒵𝜆̌
q Ñ s𝜆̌˚,𝑑𝑅𝐻

0
´

s𝜆̌,˚,𝑑𝑅𝚥𝜆̌˚,𝑑𝑅pIC 𝑜
𝒵𝜆̌
q

¯

“ s˚,𝑑𝑅pΥ
𝜆̌
ňq. (4.5.1)

These maps are compatible with factorization as we vary 𝜆̌.

Lemma 4.5.1. The map (4.5.1) is an epimorphism in the abelian category 𝐷p𝒵 𝜆̌q♡.

Proof. Let F P 𝐷p𝒵 𝜆̌qď0. Then the canonical map:

F Ñ s𝜆̌˚,𝑑𝑅s
𝜆̌,˚,𝑑𝑅pFq (4.5.2)

has kernel given by restricting to and then !-extending from the complement to the image of s𝜆̌.
Since this is an open embedding, the kernel of (4.5.2) is concentrated in cohomological degrees ď 0.

Taking the long exact sequence on cohomology, we see that the map:

F Ñ 𝐻0ps𝜆̌˚,𝑑𝑅s
𝜆̌,˚,𝑑𝑅pFqq “ s𝜆̌˚,𝑑𝑅𝐻

0ps𝜆̌,˚,𝑑𝑅pFqq P 𝐷p𝒵 𝜆̌q♡

is an epimorphism.

Applying this to F “ 𝚥𝜆̌˚,𝑑𝑅pIC 𝑜
𝒵𝜆̌
q gives the claim.

�

4.6. Applying 𝜓𝒵
!
b´ to (4.5.1) and using the canonical identifications s𝜆̌,!,𝑑𝑅p𝜓𝒵𝜆̌q

»
ÝÑ 𝜔

Div𝜆̌eff
, we

obtain maps:

𝜂𝜆̌ : 𝚥𝜆̌˚,𝑑𝑅p𝜓 𝑜
𝒵𝜆̌

!
b IC 𝑜

𝒵𝜆̌
q Ñ s˚,𝑑𝑅pΥ

𝜆̌
ňq.

Because everything above is compatible with factorization as we vary 𝜆̌, the maps 𝜂𝜆̌ are as well.

We let 𝜂 : 𝚥˚,𝑑𝑅p𝜓 𝑜
𝒵

!
bIC 𝑜

𝒵
q Ñ s˚,𝑑𝑅pΥňq denote the induced map of factorizable 𝐷-modules on 𝒵.

Theorem 4.6.1. The map:

𝑜
𝜋˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q “ 𝜋˚,𝑑𝑅𝚥˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q
𝜋˚,𝑑𝑅p𝜂q
ÝÝÝÝÝÑ 𝜋˚,𝑑𝑅s˚,𝑑𝑅pΥňq “ Υň (4.6.1)

is an equivalence of factorizable 𝐷-modules on DivΛ̌𝑝𝑜𝑠

eff .

Remark 4.6.2. In particular, the theorem asserts that
𝑜
𝜋˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q is concentrated in cohomo-

logical degree 0.

Proof of Theorem 4.6.1. It suffices to show for fixed 𝜆̌ P Λ̌𝑝𝑜𝑠 that 𝜋𝜆̌˚,𝑑𝑅p𝜂
𝜆̌q is an equivalence.

Recall from [BG2] Corollary 4.5 that we have an equality:

r𝚥𝜆̌˚,𝑑𝑅pIC 𝑜
𝒵𝜆̌
qs “

ÿ

𝜇̌,𝜂PΛ̌𝑝𝑜𝑠

𝜇̌`𝜂“𝜆̌

ract𝜂,𝜇̌𝒵,˚,𝑑𝑅pΥ
𝜂
ň b IC𝒵𝜇̌qs P 𝐾0p𝐷

𝑏
ℎ𝑜𝑙p𝒵 𝜆̌qq. (4.6.2)

in the Grothendieck group of (coherent and) holonomic 𝐷-modules. Therefore, because 𝜓𝒵 is lisse,
we obtain a similar equality:
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r𝚥𝜆̌˚,𝑑𝑅p𝜓 𝑜
𝒵𝜆̌

!
b IC 𝑜

𝒵𝜆̌
qs “

ÿ

𝜇̌,𝜂PΛ̌𝑝𝑜𝑠

𝜇̌`𝜂“𝜆̌

ract𝜂,𝜇̌𝒵,˚,𝑑𝑅

´

Υ𝜂
ň b p𝜓 𝑜

𝒵𝜇̌

!
b IC𝒵𝜇̌q

¯

s (4.6.3)

by the projection formula.
For every decomposition 𝜇̌` 𝜂 “ 𝜆̌, we have:

𝜋𝜆̌˚,𝑑𝑅 act𝜂,𝜇̌𝒵,˚,𝑑𝑅

´

Υ𝜂
ň b p𝜓 𝑜

𝒵𝜇̌

!
b IC𝒵𝜇̌q

¯

“ add𝜂,𝜇̌
˚,𝑑𝑅

´

Υ𝜂
ň b 𝜋𝜇̌

˚,𝑑𝑅p𝜓 𝑜
𝒵𝜇̌

!
b IC𝒵𝜇̌q

¯

.

By Theorem 3.4.1, this term vanishes for 𝜇̌ ‰ 0.
Therefore, we see that the left hand side of (4.6.1) is concentrated in degree 0, and that it agrees

in the Grothendieck group with the right hand side.

Moreover, by affineness of 𝜋𝜆̌, the functor 𝜋𝜆̌˚,𝑑𝑅 is right exact. Therefore, by Lemma 4.5.1, the

map 𝜋𝜆̌˚,𝑑𝑅p𝜂
𝜆̌q is an epimorphism in the heart of the 𝑡-structure; since the source and target agree

in the Grothendieck group, we obtain that our map is an isomorphism.
�

5. Hecke functors: Zastava calculation over a point

5.1. Next, we compare Theorem 4.6.1 with the geometric Satake equivalence.
More precisely, given a representation 𝑉 of the dual group 𝐺̌, there are two ways to associate a

factorization Υň-module: one is through its Chevalley complex 𝐶‚pň, 𝑉 q, and the other is through
a geometric procedure explained below, relying on geometric Satake and Theorem 4.6.1. In what
follows, we refer to these two operations as the spectral and geometric Chevalley functors respec-
tively.

The main result of this section, Theorem 5.14.1, identifies the two functors.

Notation 5.1.1. We fix a 𝑘-point 𝑥 P 𝑋 in what follows.

5.2. Polar Drinfeld structures. Suppose 𝑋 is proper for the moment.
Recall the ind-algebraic stack Bun

8¨𝑥
𝑁´ from [FGV]: it parametrizes 𝒫𝐺 a 𝐺-bundle on 𝑋 and

non-zero maps:26

Ω
bp𝜌,𝜆q
𝑋 Ñ 𝑉 𝜆

𝒫𝐺
p8 ¨ 𝑥q

defined for each dominant weight 𝜆 and satisfying the Plucker relations.

Example 5.2.1. Let 𝐺 “ 𝑆𝐿2. Then Bun
8¨𝑥
𝑁´ classifies the datum of an 𝑆𝐿2-bundle E and a non-zero

map Ω
1
2
𝑋 Ñ Ep8 ¨ 𝑥q.27

Example 5.2.2. For 𝐺 “ G𝑚, Bun
8¨𝑥
𝑁´ is the affine Grassmannian for 𝑇 at 𝑥.

26Here if p𝜌, 𝜆q is half integral, we appeal to our choice of Ω
1
2
𝑋 .

27Here we are slightly abusing notation in letting E denote the rank two vector bundle underlying our 𝑆𝐿2-bundle.
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5.3. Hecke action. The key feature of Bun
8¨𝑥
𝑁´ is that Hecke functors at 𝑥 act on 𝐷pBun

8¨𝑥
𝑁´ q.

More precisely, the action of the Hecke groupoid on Bun𝐺 lifts in the obvious way to an action on
Bun

8¨𝑥
𝑁´ .

For definiteness, we introduce the following notation. Let H𝑥
𝐺 denote the Hecke stack at 𝑥,

parametrizing pairs of 𝐺-bundles on 𝑋 identified away from 𝑥. Let ℎ1 and ℎ2 denote the two
projections H𝑥

𝐺 Ñ Bun𝐺.
Define the Drinfeld-Hecke stack H𝑥

𝐺,Drin as the fiber product:

H𝑥
𝐺 ˆ

Bun𝐺
Bun

8¨𝑥
𝑁´

where we use the map ℎ1 : H𝑥
𝐺 Ñ Bun𝐺 in order to form this fiber product. We abuse notation in

using the same notation for the two projections H𝑥
𝐺,Drin Ñ Bun

8¨𝑥
𝑁´ .

Example 5.3.1. Let 𝐺 “ 𝑆𝐿2. Then H𝑥
𝐺,Drin parametrizes a pair of 𝑆𝐿2-bundles E1 and E2 identified

away from 𝑥 and a non-zero map Ω
1
2
𝑋 Ñ E1p8 ¨ 𝑥q. The two projections ℎ1 and ℎ2 correspond to

the maps to Bun
8¨𝑥
𝑁´ sending a datum as above to:

`

E1,Ω
1
2
𝑋 Ñ E1p8 ¨ 𝑥q

˘

`

E2,Ω
1
2
𝑋 Ñ E1p8 ¨ 𝑥q

»
ÝÑ E2p8 ¨ 𝑥q

˘

respectively.

We have the usual procedure for producing objects of H𝑥
𝐺 from objects of Sph𝐺,𝑥 :“ 𝐷pGr𝐺,𝑥q

𝐺p𝑂q𝑥 .
These give Hecke functors acting on 𝐷pBun𝐺q using the correspondence H𝑥

𝐺 from 𝐷pBun𝐺q to it-
self and the kernel induced by this object of Sph𝐺,𝑥. We normalize our Hecke functors so that we

!-pullback along ℎ1 and ˚-pushforward along ℎ2. The same discussion applies for 𝐷pBun
8¨𝑥
𝑁´ q.

We use ˙ to denote the action by convolution of Sph𝐺,𝑥 on these categories.

5.4. Polar Zastava space. We let
𝑜
𝒵8¨𝑥 denote the indscheme defined by the ind-open embedding:

𝒵8¨𝑥 Ď Bun𝐵 ˆ
Bun𝐺

Bun
8¨𝑥
𝑁´

given by the usual generic transversality condition.

Note that
𝑜
𝒵 Ď

𝑜
𝒵8¨𝑥 is the fiber of

𝑜
𝒵8¨𝑥 along Bun𝑁´ Ď Bun

8¨𝑥
𝑁´ .

Remark 5.4.1. As in the case of usual Zastava, note that
𝑜
𝒵8¨𝑥 is of local nature with respect to 𝑋:

i.e., the definition makes sense for any smooth curve, and is étale local on the curve. Therefore, we
typically remove our requirement that 𝑋 is proper in what follows.

5.5. Let DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff be the indscheme parametrizing Λ̌-valued divisors on 𝑋 that are Λ̌𝑝𝑜𝑠-valued

away from 𝑥.
As for usual Zastava space, we have the map:

𝑜
𝒵8¨𝑥

𝑜
𝜋8¨𝑥
ÝÝÝÑ DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff .

Remark 5.5.1. There is a canonical map deg : DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff Ñ Λ̌ (considering the target as a discrete

𝑘-scheme) of taking the total degree of a divisor.



34 SAM RASKIN

5.6. Factorization patterns. Note that DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff is a unital factorization module space for

DivΛ̌𝑝𝑜𝑠

eff . This means that e.g. we have a correspondence:

ℋ

ww $$

DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff .

For this action, the left leg of the correspondence is the open embedding encoding disjointness of
pairs of divisors, while the right leg is given by addition. (For the sake of clarity, let us note that

the only reasonable notion of the support of a divisor in DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff requires that 𝑥 always lie in

the support).

Therefore, as in S4.2, we can talk about unital factorization modules in DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff for a unital

graded factorization algebra A P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q. We denote this category by A–modfact𝑢𝑛,𝑥.

Remark 5.6.1. The factorization action of DivΛ̌𝑝𝑜𝑠

eff on DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff is commutative in the sense of

[Ras1] S7. Indeed, it comes from the obvious action of the monoid DivΛ̌𝑝𝑜𝑠

eff on DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff .

Remark 5.6.2. We emphasize that there is no Ran space appearing here: all the geometry occurs
on finite-dimensional spaces of divisors.

5.7. There is a similar picture to the above for Zastava. More precisely,
𝑜
𝒵8¨𝑥 is a unital factor-

ization module space for
𝑜
𝒵 in a way compatible with the structure maps to and from the spaces of

divisors.

Therefore, for a unital factorization algebra B on
𝑜
𝒵, we can form the category B–modfact𝑢𝑛 p

𝑜
𝒵8¨𝑥q.

Moreover, for ℳ P B–modfact𝑢𝑛 p
𝑜
𝒵8¨𝑥q, 𝑜

𝜋8¨𝑥˚,𝑑𝑅pℳq is tautologically an object of
𝑜
𝜋˚,𝑑𝑅pBq–modfact𝑢𝑛,𝑥.

We denote the corresponding functor by:

𝑜
𝜋8¨𝑥˚,𝑑𝑅 : B–modfact𝑢𝑛 p

𝑜
𝒵8¨𝑥q Ñ 𝑜

𝜋˚,𝑑𝑅pBq–modfact𝑢𝑛,𝑥.

5.8. Construction of the geometric Chevalley functor. We now define a functor:

Chevgeom
ň,𝑥 : Repp𝐺̌q Ñ Υň–modfact𝑢𝑛,𝑥

using the factorization pattern for Zastava space.

Remark 5.8.1. Following our conventions, Repp𝐺̌q denotes the DG category of representations of
𝐺̌.

Remark 5.8.2. We will give a global interpretation of the induced functor to 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q in

S5.12; this phrasing may be easier to understand at first pass.

5.9. First, observe that there is a natural “compactification” 𝒵8¨𝑥 of
𝑜
𝒵8¨𝑥: for 𝑋 proper, it is the

appropriate ind-open locus in:

𝒵8¨𝑥 Ď Bun
8¨𝑥
𝐵 ˆ

Bun𝐺
Bun

8¨𝑥
𝑁´ .

Here Bun
8¨𝑥
𝐵 is defined analogously to Bun

8¨𝑥
𝑁´ ; we remark that it has a structure map to Bun𝑇

with fibers the variants of Bun
8¨𝑥
𝑁´ for other bundles. Again, 𝒵8¨𝑥 is of local nature on the curve 𝑋.
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The advantage of 𝒵8¨𝑥 is that there is a Hecke action here, so Sph𝐺,𝑥 acts on 𝐷p𝒵8¨𝑥q. Note

that !-pullback from Bun
8¨𝑥
𝑁´ commutes with Hecke functors.

There is again a canonical map to DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff , and the factorization pattern of S5.7 carries over

in this setting as well, that is, 𝒵8¨𝑥 is a unital factorization module space for 𝒵. Moreover, this
factorization schema is compatible with the Hecke action.

5.10. Define Y Ď 𝒵8¨𝑥 as the preimage of Bun𝑁´ Ď Bun
8¨𝑥
𝑁´ in 𝒵8¨𝑥: again, Y is of local nature

on 𝑋.

Remark 5.10.1. The notation
𝑜
𝒵8¨𝑥 would be just as appropriate for Y as for the space we have

denoted in this way: both are polar versions of
𝑜
𝒵, but for

𝑜
𝒵8¨𝑥 we allow poles for the 𝑁´-bundle,

while for Y we allow poles for the 𝐵-bundle.

There is a canonical map Y Ñ G𝑎 which e.g. for 𝑋 proper comes from the canonical map
Bun𝑁´ Ñ G𝑎. We can !-pullback the exponential 𝐷-module 𝜓 on G𝑎 (normalized as always to be
in perverse degree -1): we denote the resulting 𝐷-module by 𝜓Y P 𝐷pYq.

We then cohomologically renormalize: define 𝜓IC
Y by:

𝜓IC
Y :“ 𝜓Yr´p2𝜌, degqs.

Here we recall that we have a degree map Y Ď 𝒵8¨𝑥 Ñ Λ̌, so pairing with 2𝜌, we obtain an integer
valued function on Y: we are shifting accordingly.

Remark 5.10.2. The reason for this shift is the normalization of Theorem 4.6.1: this shift is implicit

there in the notation
!
b IC 𝑜

𝒵
. This is also the reason for our notation 𝜓IC

Y .

5.11. Recall that 𝚥 denotes the embedding
𝑜
𝒵 ãÑ 𝒵. We let 𝚥8¨𝑥 denote the map

𝑜
𝒵8¨𝑥 ãÑ 𝒵8¨𝑥.

Let:

Sat♡𝑥 : Repp𝐺̌q♡
»
ÝÑ Sph♡𝐺,𝑥

denote the geometric Satake equivalence. Then let:

Sat𝑛𝑎𝑖𝑣𝑒𝑥 : Repp𝐺̌q Ñ Sph𝐺,𝑥

denote the induced functor.
We then define Chevgeom

ň,𝑥 as the following composition:

Repp𝐺̌q
Sat𝑛𝑎𝑖𝑣𝑒

𝑥
ÝÝÝÝÝÑ Sph𝐺,𝑥

´˙𝜓IC
Y

ÝÝÝÝÑ

𝚥˚,𝑑𝑅p𝜓 𝑜
𝒵

!
b IC 𝑜

𝒵
q–modfact𝑢𝑛 p𝒵8¨𝑥q

𝚥8¨𝑥,!
ÝÝÝÑ p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
q–modfact𝑢𝑛 p

𝑜
𝒵8¨𝑥q

𝑜
𝜋8¨𝑥
˚,𝑑𝑅
ÝÝÝÑ Υň–modfact𝑢𝑛,𝑥.

(5.11.1)

Here in the last step, we have appealed to the identification:

𝑜
𝜋˚,𝑑𝑅p𝜓 𝑜

𝒵

!
b IC 𝑜

𝒵
qq “ Υň

of Theorem 4.6.1. We also abuse notation in not distinguishing between 𝜓IC
Y and its ˚-pushforward

to 𝒵8¨𝑥.
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5.12. Global interpretation. As promised in Remark 5.8.2, we will now give a description of the
functor Chevgeom

ň,𝑥 in the case 𝑋 is proper.

Since 𝑋 is proper, we can speak about Bun𝑁´ and its relatives. Let Wℎ𝑖𝑡 P 𝐷pBun𝑁´q denote
the canonical Whittaker sheaf, i.e., the !-pullback of the exponential sheaf on G𝑎 (normalized as
always to be in perverse degree ´1). We then have the functor:

Repp𝐺̌q Ñ 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q

given by applying geometric Satake, convolving with the p˚ “!q-pushforward of Wℎ𝑖𝑡 to 𝐷pBun
8¨𝑥
𝑁´ q,

and then !-pulling back to
𝑜
𝒵8¨𝑥 and ˚-pushing forward along

𝑜
𝜋8¨𝑥.

Since !-pullback from Bun
8¨𝑥
𝑁´ to 𝒵8¨𝑥 commutes with Hecke functors, up to the cohomological

shifts by degrees, this functor computes the object of 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q underlying the factorization

Υň-module coming from Chevgeom
ň,𝑥 .

5.13. Spectral Chevalley functor. We need some remarks on factorization modules for Υň:
Recall from Remark 4.3.2 that Υň is defined as the chiral enveloping algebra of the graded Lie-˚

algebra ň𝑋 P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q. By Remark 5.6.1, we may speak of Lie-˚ modules for ň𝑋 on DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff :

the definition follows [Ras1] S7.19. Let ň𝑋–mod𝑥 denote the DG category of Lie-˚ modules for

ň𝑋 supported on Gr𝑇,𝑥 Ď DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff (this embedding is as divisors supported at 𝑥). We have a

tautological equivalence:

ň𝑋–mod𝑥 » ň–modpRepp𝑇 qq (5.13.1)

coming from identifying Repp𝑇 q with the DG category of Λ̌-graded vector spaces. Note that the
right hand side of this equation is just the category of Λ̌-graded ň-representations.

Moreover, by [Ras1] S7.19, we have an induction functor Ind𝑐ℎ : ň𝑋–mod𝑥 Ñ Υň–modfact𝑢𝑛,𝑥.

We then define Chevspec
ň,𝑥 : Repp𝐺̌q Ñ Υň–modfact𝑢𝑛,𝑥 as the composition:

Repp𝐺̌q
Oblv
ÝÝÝÑ Repp𝐵̌q

Oblv
ÝÝÝÑ ň–modpRepp𝑇 qq

(5.13.1)
» ň𝑋–mod𝑥

Ind𝑐ℎ
ÝÝÝÑ Υň–modfact𝑢𝑛,𝑥. (5.13.2)

5.14. Formulation of the main result. We can now give the main result of this section.

Theorem 5.14.1. There exists a canonical isomorphism between the functors Chevspec
ň,𝑥 and Chevgeom

ň,𝑥 .

The proof will be given in S5.16 below after some preliminary remarks.

Remark 5.14.2. As stated, the result is a bit flimsy: we only claim that there is an identification
of functors. The purpose of S7 is essentially to strengthen this identification so that it preserves
structure encoding something about the symmetric monoidal structure of Repp𝐺̌q.

5.15. Equalizing the Hecke action. Suppose temporarily that 𝑋 is a smooth proper curve. One
then has the following relationship between Hecke functors acting on Bun

8¨𝑥
𝐵 and Hecke functors

acting on Bun
8¨𝑥
𝑁´ .

Let 𝛼 (resp. 𝛽) denote the projection 𝒵8¨𝑥 Ñ Bun
8¨𝑥
𝑁´ (resp. 𝒵8¨𝑥 Ñ Bun

8¨𝑥
𝐵 ). Recall that 𝛼!

and 𝛽! commute with the actions of Sph𝐺,𝑥.

Let 𝜋8¨𝑥 denote the canonical map 𝒵8¨𝑥 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff .

Lemma 5.15.1. For F P 𝐷pBun
8¨𝑥
𝑁´ q, G P 𝐷pBun

8¨𝑥
𝐵 q, and S P Sph𝐺,𝑥, there is a canonical identi-

fication:
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𝜋8¨𝑥˚,𝑑𝑅

´

𝛼!pS˙ Fq
!
b 𝛽!pGq

¯

q » 𝜋8¨𝑥˚,𝑑𝑅

´

𝛼!pFq
!
b 𝛽!pS˙ Gq

¯

.

Proof. By base-change, each of these functors is constructed using a kernel on some correspondence
between Bun

8¨𝑥
𝑁´ ˆ𝐺p𝑂𝑥qzGr𝐺,𝑥ˆBun

8¨𝑥
𝐵 and Div8¨𝑥eff .

In both cases, one finds that this correspondence is just the Hecke groupoid (at 𝑥) for Zastava,

mapping via ℎ1 to Bun
8¨𝑥
𝑁´ and via ℎ2 to Bun

8¨𝑥
𝐵 , with the kernel being defined by S.

�

5.16. We now give the proof of Theorem 5.14.1.

Proof of Theorem 5.14.1. As Repp𝐺̌q is semi-simple, we reduce to showing this for 𝑉 “ 𝑉 𝜆̌ an
irreducible highest weight representation with highest weight 𝜆̌ P Λ̌`.

Our technique follows that of Theorem 4.4.1.

Step 1. Let 𝑗 : 𝑈 ãÑ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff be the locally closed subscheme parametrizing divisors of the form:

𝑤0p𝜆̌q ¨ 𝑥`
ÿ

𝛼̌𝑖 ¨ 𝑥𝑖

where 𝑥𝑖 P 𝑋 are pairwise disjoint and distinct from 𝑥 (this is the analogue of the open DivΛ̌𝑝𝑜𝑠,simple
eff Ď

DivΛ̌𝑝𝑜𝑠

eff which appeared in the proof of Theorem 4.4.1).
We have an easy commutative diagram:

𝑗!𝑗
! Chevgeom

ň,𝑥 p𝑉 𝜆̌q

��

» // 𝑗!𝑗
! Chevspec

ň,𝑥 p𝑉
𝜆̌q “ 𝑡

𝑤0p𝜆̌q
˚,𝑑𝑅 pΥňq

��

Chevgeom
ň,𝑥 p𝑉 𝜆̌q Chevspec

ň,𝑥 p𝑉
𝜆̌q.

(5.16.1)

One easily sees that the right vertical map is an epimorphism (this is [BG2] Lemma 9.2).
It suffices to show that the left vertical map in (5.16.1) is an epimorphism, and that there exists

a (necessarily unique) isomorphism in the bottom row of the diagram (5.16.1).
This statement is local on 𝑋, and therefore we can (and do) assume that 𝑋 is proper in what

follows.

Step 2. We claim that Chevgeom
ň,𝑥 p𝑉 𝜆̌q lies in the heart of the 𝑡-structure, and that rChevgeom

ň,𝑥 p𝑉 𝜆̌qs “

rChevspec
ň,𝑥 p𝑉

𝜆̌qs in the Grothendieck group.

By Lemma 5.15.1, for every representation 𝑉 of 𝐺̌ we have:

𝜋8¨𝑥˚,𝑑𝑅

`

𝛼!pSat𝑥p𝑉 q˙Wℎ𝑖𝑡q
!
b 𝛽!pICBun𝐵 q

˘

»

𝜋8¨𝑥˚,𝑑𝑅

`

𝛼!pWℎ𝑖𝑡q
!
b 𝛽!pSat𝑥p𝑉 q˙ ICBun𝐵 q

˘

.

(5.16.2)

Here ICBun𝐵 indicates the ˚-extension of this 𝐷-module to Bun
8¨𝑥
𝐵 .

By definition, Chevgeom
ň,𝑥 p𝑉 q is the left hand side of (5.16.2). Therefore, Theorem 3.4.1 and the

discussion of [BG2] S8.7 gives the claim.

Step 3. We will use (a slight variant of) the following construction.28

28As Dennis Gaitsgory pointed out to us, one can argue somewhat more directly, by combining Lemma 5.15.1 with
Theorem 8.11 from [BG2] (and the limiting case of the Casselman-Shalika formula, Theorem 3.4.1).



38 SAM RASKIN

Suppose that 𝑌 is a variety and F P 𝐷p𝑌 ˆ A1qG𝑚 is G𝑚-equivariant for the action of G𝑚 by
homotheties on the second factor, and that F is concentrated in negative (perverse) cohomological
degrees.

For 𝑐 P 𝑘, let 𝑖𝑐 denote the embedding 𝑌 ˆ t𝑐u ãÑ 𝑌 ˆ A1.
Then, for each 𝑘 P Z, the theory of vanishing cycles furnishes specialization maps:

𝐻𝑘p𝑖!1pFqq Ñ 𝐻𝑘p𝑖!0pFqq P 𝐷p𝑌 q
♡ (5.16.3)

that are functorial in F, and which is an epimorphism for 𝑘 “ 0. Indeed, these maps arise from the
boundary map in the triangle:29

𝑖!0pFq Ñ Φ𝑢𝑛pFq
var
ÝÝÑ Ψ𝑢𝑛pFq

`1
ÝÝÑ

when we use G𝑚-equivariance to identify Ψ𝑢𝑛pFq with F1r1s. The 𝑡-exactness of Φ𝑢𝑛 and the
assumption that F is in degrees ă 0 shows that (5.16.3) is an epimorphism for 𝑘 “ 0:

. . .Ñ 𝐻´1pΨ𝑢𝑛pFqq “ 𝐻0p𝑖!1pFqq Ñ 𝐻0p𝑖!0pF0qq Ñ 𝐻0pΦ𝑢𝑛pFqq “ 0

Step 4. We now apply the previous discussion to see that:

Chevgeom
ň,𝑥 p𝑉 q » Chevspec

ň,𝑥 p𝑉 q

as objects of 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff q for 𝑉 P Repp𝐺̌q♡ finite-dimensional.

Forget for the moment that we chose Chevalley generators t𝑓𝑖u and let 𝑊 denote the vector

space pn´{rn´, n´sq˚. Note that 𝑇 acts on 𝑊 through its adjoint action on n´. Let
𝑜
𝑊 Ď𝑊 denote

the open subscheme corresponding to non-degenerate characters.
Then we have a canonical map:

Yˆ𝑊 Ñ G𝑎

by imitating the construction of the map can : 𝒵 Ñ G𝑎 of (2.8.2). Note that this map is 𝑇 -
equivariant for the diagonal action on the source and the trivial action on the target.30

Let W P 𝐷p𝒵8¨𝑥 ˆ𝑊 q𝑇 denote the result of !-pulling back of the exponential 𝐷-module on G𝑎

to Yˆ𝑊 and then ˚-extending. We then define:

rW :“ p
𝑜
𝜋8¨𝑥 ˆ id𝑊 q˚,𝑑𝑅 p𝚥

8¨𝑥 ˆ id𝑊 q
!
´

Sat𝑛𝑎𝑖𝑣𝑒𝑥 p𝑉 q˙Wr´p2𝜌,degqs
¯

P 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff ˆ𝑊 q𝑇 .

Here the 𝑇 -equivariance now refers to the 𝑇 -action coming from the trivial action on DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff .

The notation for the cohomological shift is as in S5.10.

By 𝑇 -equivariance, the cohomologies of our rW are constant along the open stratum DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff ˆ

𝑜
𝑊 .

Moreover, note that rW is concentrated in cohomological degrees ď ´ rankp𝐺q “ ´dimp𝑊 q: this

again follows from Lemma 5.15.1, S8.7 of [BG2], and ind-affineness of
𝑜
𝜋8¨𝑥.

Therefore, !-restricting to the line through our given non-degenerate character, Step 3 gives us
the specialization map:

𝐻0
` 𝑜
𝜋8¨𝑥˚,𝑑𝑅𝚥

8¨𝑥,!pSat𝑛𝑎𝑖𝑣𝑒𝑥 p𝑉 q˙ 𝜔Yr´p2𝜌, degqsqq
˘

Ñ 𝐻0pChevgeom
ň,𝑥 p𝑉 qq P 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff q♡.

29Our nearby and vanishing cycles functors are normalized to preserve perversity.
30We use the canonical 𝑇 -action on 𝒵, coming from the action of 𝑇 on Bun𝑁´ induced by its adjoint action on 𝑁´.
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By Step 3, this specialization map is an epimorphism.
However, the Zastava space version of Theorem 8.8 from [BG2] (which is implicit in loc. cit.

and easy to deduce from there) implies that the left hand term coincides with Chevspec
ň,𝑥 p𝑉 q, and

therefore this map is an isomorphism by the computation in the Grothendieck group.
Moreover, one immediately sees that this picture is compatible with the diagram (5.16.1), and

therefore we actually do obtain an isomorphism of factorization modules, as desired.
�

6. Around factorizable Satake

6.1. Our goal in S7 is to prove a generalization of Theorem 5.14.1 in which we treat several
points t𝑥1, . . . , 𝑥𝑛u Ď 𝑋, allowing these points to move and collide (in the sense of the Ran space
formalism). This section plays a supplementary and technical role for this purpose.

6.2. Generalizing the geometric side of Theorem 5.14.1 is an old idea: one should use the Beilinson-
Drinfeld affine Grassmannian Gr𝐺,𝑋𝐼 and the corresponding factorizable version of the Satake
category.

Therefore, we need a geometric Satake theorem over powers of the curve. This has been treated
in [Gai1], but the treatment of loc. cit. is inconvenient for us, relying too much on specific aspects
of perverse sheaves that do not generalize to non-holonomic 𝐷-modules.

6.3. The goal for this section is to give a treatment of factorizable geometric Satake for 𝐷-modules.
However, most of the work here actually goes into treating formal properties of the spectral side

of this equivalence. Here we have DG categories Repp𝐺̌q𝑋𝐼 which provide factorizable versions of
the category Repp𝐺̌q appearing in the Satake theory.

These categories arise from a general construction, taking C a symmetric monoidal object of
DGCat𝑐𝑜𝑛𝑡 (so we assume the tensor product commutes with colimits in each variable), and pro-
ducing C𝑋𝐼 P 𝐷p𝑋𝐼q–mod. As we will see, this construction is especially well-behaved for C rigid
monoidal (as for C “ Repp𝐺̌q).

6.4. Structure of this section. We treat the construction and general properties of the categories
C𝑋𝐼 in S6.5-6.18, especially treating the case where C is rigid. We specialize to the case where C is
representations of an affine algebraic group in S6.19.

We then discuss the (naive) factorizable Satake theorem from S6.28 until the end of this section.

6.5. Let C P ComAlgpDGCat𝑐𝑜𝑛𝑡q be a symmetric monoidal DG category. We denote the monoidal
operation in C by b.

6.6. Factorization. Recall from [Ras1] S7 that we have an operation attaching to each finite set
𝐼 a 𝐷p𝑋𝐼q-module category C𝑋𝐼 .31

We will give an essentially self-contained treatment of this construction below, but first give
examples to give the reader a feeling for the construction.

Example 6.6.1. For 𝐼 “ ˚, we have C𝑋 “ Cb𝐷p𝑋q.

Example 6.6.2. Let 𝐼 “ t1, 2u. Let 𝑗 denote the open embedding 𝑈 “ 𝑋 ˆ𝑋z𝑋 ãÑ 𝑋 ˆ𝑋.
Then we have a fiber square:

31In [Ras1], we use the notation Γp𝑋𝐼
𝑑𝑅, Loc𝑋𝐼

𝑑𝑅
pCqq in place of C𝑋𝐼 .
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C𝑋2 //

��

Cb𝐷p𝑋2q

idCb𝑗
!

��
`

Cb C
˘

b𝐷p𝑈q
p´b´qbid𝐷p𝑋2q // Cb𝐷p𝑈q.

We emphasize that p´ b ´q indicates the tensor product morphism Cb CÑ C.

Example 6.6.3. If 𝛤 is an affine algebraic group and we take C “ Repp𝛤 q, then the above says that
Repp𝛤 q𝑋2 parametrizes a representation of 𝛤 over 𝑋2

𝑑𝑅 with the structure of a 𝛤 ˆ𝛤 -representation
on the complement to the diagonal, compatible under the diagonal embedding 𝛤 ãÑ 𝛤 ˆ 𝛤 .

6.7. For the general construction of C𝑋𝐼 , we need the following combinatorics.
First, for any surjection 𝑝 : 𝐼 � 𝐽 of finite sets, let 𝑈p𝑝q denote the open subscheme of points

p𝑥𝑖q𝑖P𝐼 with 𝑥𝑖 ‰ 𝑥𝑖1 whenever 𝑝p𝑖q ‰ 𝑝p𝑖1q.

Example 6.7.1. For 𝑝 : 𝐼 Ñ ˚, we have 𝑈p𝑝q “ 𝑋𝐼 . For 𝑝 : 𝐼
id
ÝÑ 𝐼, 𝑈p𝑝q is the locus 𝑋𝐼

𝑑𝑖𝑠𝑗 of

pairwise disjoint points in 𝑋𝐼 .

We let S𝐼 denote the p1, 1q-category indexing data 𝐼
𝑝
� 𝐽

𝑞
� 𝐾, where we allow morphisms of

diagrams that are contravariant in 𝐽 and covariant in 𝐾, and surjective termwise.

6.8. For every Σ “ p𝐼
𝑝
� 𝐽

𝑞
� 𝐾q in S𝐼 , define CΣ P 𝐷p𝑋

𝐼q–mod as:

CΣ “ 𝐷p𝑈p𝑝qq b Cb𝐾 .

For Σ1 Ñ Σ2 P S𝐼 , we have a canonical map CΣ1 Ñ CΣ2 P 𝐷p𝑋
𝐼q–mod constructed as follows. If

the morphism Σ1 Ñ Σ2 is induced by the diagram:

𝐼
𝑝1 // // 𝐽1

𝑞1 // // 𝐾1

𝛼
����

𝐼
𝑝2 // // 𝐽2

OOOO

𝑞2 // // 𝐾2

then our functor is given as the tensor product of:

Cb𝐾1 Ñ Cb𝐾2

b
𝑘P𝐾1

F𝑘 ÞÑ b
𝑘1P𝐾2

p b
𝑘2P𝛼´1p𝑘1q

F𝑘2q

and the 𝐷-module restriction along the map 𝑈p𝑝2q Ñ 𝑈p𝑝1q.
It is easy to upgrade this description to the homotopical level to define a functor:

S𝐼 Ñ 𝐷p𝑋𝐼q–mod.

We define C𝑋𝐼 as the limit of this functor.

Example 6.8.1. It is immediate to see that this description recovers our earlier formulae for 𝐼 “ ˚
and 𝐼 “ t1, 2u.

Remark 6.8.2. This construction unwinds to say the following: we have an object F P C b𝐷p𝑋𝐼q

such that for every 𝑝 : 𝐼 � 𝐽 , its restriction to C b 𝐷p𝑈p𝑝qq has been lifted to an object of
Cb𝐽 b𝐷p𝑈p𝑝qq.
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Example 6.8.3. For C “ Repp𝛤 q with 𝛤 an affine algebraic group, this construction is a derived
version of the construction of [Gai1] S2.5.

Remark 6.8.4. Obviously each C𝑋𝐼 is a commutative algebra in 𝐷p𝑋𝐼q–mod. Indeed, each CΣ “

𝐷p𝑈p𝑝qq b Cb𝐾 , is and the structure functors are symmetric monoidal. We have an obvious sym-
metric monoidal functor:

Loc “ Loc𝑋𝐼 : Cb𝐼 Ñ C𝑋𝐼

for each 𝐼, with these functors being compatible under diagonal maps.

6.9. Factorization. It follows from [Ras1] S7 that the assignment 𝐼 ÞÑ C𝑋𝐼 defines a commutative
unital chiral category on 𝑋𝑑𝑅. For the sake of completeness, the salient pieces of structure here are
twofold:

(1) For every pair of finite sets 𝐼1 and 𝐼2, we have a symmetric monoidal map:

C𝑋𝐼1 b C𝑋𝐼2 Ñ C𝑋𝐼1
š

𝐼2

of𝐷p𝑋𝐼1
š

𝐼2q-module categories that is an equivalence after tensoring with𝐷pr𝑋𝐼1 ˆ𝑋𝐼2s𝑑𝑖𝑠𝑗q.
(2) For every 𝐼1 � 𝐼2, an identification:

C𝑋𝐼1 b
𝐷p𝑋𝐼1 q

𝐷p𝑋𝐼2q » C𝑋𝐼2 .

These should satisfy the obvious compatibilities, which we do not spell out here because in the
homotopical setting they are a bit difficult to say: we refer to [Ras1] S7 for a precise formulation.

We will construct these maps in S6.10 and 6.11.

6.10. First, suppose 𝐼 “ 𝐼1
š

𝐼2.

Define a functor S𝐼 Ñ S𝐼1 as follows. We send 𝐼
𝑝
� 𝐽

𝑞
� 𝐾 to 𝐼1 � Imagep𝑝|𝐼1q� Imagep𝑞˝𝑝|𝐼1q.

It is easy to see that this actually defines a functor. We have a similar functor S𝐼 Ñ S𝐼2 , so we
obtain S𝐼 Ñ S𝐼1 ˆ S𝐼2 .

Given 𝐼
𝑝
� 𝐽

𝑞
� 𝐾 as above, let e.g. 𝐼1

𝑝1
� 𝐽1

𝑞1
� 𝐾1 denote the corresponding object of S𝐼1 .

We have a canonical map:

𝑈p𝑝q ãÑ 𝑈p𝑝1q ˆ 𝑈p𝑞1q Ď 𝑋𝐼1 ˆ𝑋𝐼2 “ 𝑋𝐼 .

We also have a canonical map Cb𝐾1 b Cb𝐾2 Ñ Cb𝐾 induced by tensor product and the obvious
map 𝐾1

š

𝐾2 Ñ 𝐾. Together, we obtain maps:

p𝐷p𝑈p𝑝1qq b Cb𝐾1q b p𝐷p𝑈p𝑝2qq b Cb𝐾2q Ñ 𝐷p𝑈p𝑝qq b C𝐾

that in passage to the limit define

C𝑋𝐼1 b C𝑋𝐼2 Ñ C𝑋𝐼 .

That this map is an equivalence over the disjoint locus follows from a cofinality argument.
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6.11. Next, suppose for 𝑓 : 𝐼1 � 𝐼2 is given. We obtain S𝐼2 Ñ S𝐼1 by restriction.

Moreover, for any given 𝐼2
𝑝
� 𝐽

𝑞
� 𝐾 P S𝐼2 , we have the functorial identifications:

𝐷p𝑈p𝑝qq b Cb𝐾 » p𝐷p𝑈p𝑝 ˝ 𝑓qq b
𝐷p𝑋𝐼1 q

𝐷p𝑋𝐼2qq b Cb𝐾q

that give a map:

C𝑋𝐼1 b
𝐷p𝑋𝐼1 q

𝐷p𝑋𝐼2q Ñ C𝑋𝐼2 .

An easy cofinality argument shows that this map is an equivalence.

6.12. A variant. We now discuss a variant of the preceding material a categorical level down.

6.13. First, if 𝐴 is a commutative algebra in Vect, then there is an assignment 𝐼 ÞÑ 𝐴𝑋𝐼 P

𝐷p𝑋𝐼q defining a commutative factorization algebra. Indeed, it is given by the same procedure as
before—we have:

𝐴𝑋𝐼 :“ lim
p𝐼

𝑝
�𝐽

𝑞
�𝐾qPS𝐼

𝑗𝑝,˚,𝑑𝑅p𝐴
b𝐾 b 𝜔𝑈p𝑝qq P 𝐷p𝑋

𝐼q. (6.13.1)

The structure maps are as before.

6.14. More generally, when C is as before and 𝐴 P C is a commutative algebra, we can attach a
(commutative) factorization algebra 𝐼 ÞÑ 𝐴𝑋𝐼 P C𝑋𝐼 .

We will need this construction in this generality below. However, the above formula does not
make sense, since there is no way to make sense of 𝑗𝑝,˚,𝑑𝑅p𝜔𝑈p𝑝qqb𝐴

b𝐾 as an object of C𝑋𝐼 . So we
need the following additional remarks:

We do have 𝐴𝑋𝐼 defined as an object of 𝐷p𝑋𝐼qbC by the above formula. Moreover, as in S6.10,
for every 𝑝 : 𝐼 � 𝐽 we have canonical “multiplication” maps:

b
𝑗P𝐽
𝐴
𝑋𝐼𝑗 Ñ 𝐴𝑋𝐼 P 𝐷p𝑋𝐼q b C

where 𝐼𝑗 is the fiber of 𝐼 at 𝑗 P 𝐽 , and where our exterior product should be understood as a mix of
the tensor product for C and the exterior product of 𝐷-modules. This map is an equivalence over
𝑈p𝑝q.

This says that for every 𝑝 as above, the restriction of 𝐴𝑋𝐼 to 𝑈p𝑝q has a canonical structure as
an object of 𝐷p𝑈p𝑝qq b Cb𝐽 , lifting its structure of an object of 𝐷p𝑈p𝑝qq b C. Moreover, this is
compatible with further restrictions in the natural sense. This is exactly the data needed to upgrade
𝐴𝑋𝐼 to an object of C𝑋𝐼 (which we denote by the same name).

6.15. ULA objects. For the remainder of the section, assume that C is compactly generated and
rigid : recall that rigidity means that this means that the unit 1C is compact and every 𝑉 P C

compact admits a dual.
Under this rigidity assumption, we discuss ULA aspects of the categories C𝑋𝐼 : we refer the reader

to Appendix B for the terminology here, which we assume for the remainder of this section.
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6.16. Recall that QCohp𝑋𝐼 ,C𝑋𝐼 q denotes the object of QCohp𝑋𝐼q–mod obtained from C𝑋𝐼 P

𝐷p𝑋𝐼q–mod by induction along the (symmetric monoidal) forgetful functor 𝐷p𝑋𝐼q Ñ QCohp𝑋𝐼q.

Proposition 6.16.1. For F P Cb𝐼 compact, Loc𝑋𝐼 pFq P C𝑋𝐼 is ULA.

We will deduce this from the following lemma.
Let 1C𝑋𝑛 “ Loc𝑋𝐼 p1Cq denote the unit for the (𝐷p𝑋𝐼q-linear) symmetric monoidal structure on

C𝑋𝑛 .

Lemma 6.16.2. 1C𝑋𝑛 is ULA.

Proof. By 1-affineness (see [Gai4]) of 𝑋𝑑𝑅 and 𝑋, the induction functor:

𝐷p𝑋q–modÑ QCohp𝑋q–mod

commutes with limits.
It follows that QCohp𝑋𝐼 ,C𝑋𝐼 q is computed by a similar limit as defines C𝑋𝐼 , but with QCohp𝑈p𝑝qq

replacing 𝐷p𝑈p𝑝qq everywhere.
Since this limit is finite and since each of the terms corresponding to Oblvp1C𝑋𝑛 q P QCohp𝑋

𝐼 ,C𝑋𝐼 q

is compact, we obtain the claim.
�

Proof of Proposition 6.16.1. Since the functor Cb𝐼 Ñ C𝑋𝐼 is symmetric monoidal and since each
compact object in Cb𝐼 admits a dual by assumption, we immediately obtain the result from Lemma
6.16.2.

�

Remark 6.16.3. Proposition 6.16.1 fails for more general C: the tensor product CbCÑ C typically
fails to preserve compact objects, which implies that Loc𝑋2 does not preserve compacts.

6.17. We now deduce the following result about the categories C𝑋𝐼 (for the terminology, see
Definition B.6.1).

Theorem 6.17.1. C𝑋𝐼 is ULA over 𝑋𝐼 .

We will use the following lemma, which is implicit but not quite stated in [Gai4].

Lemma 6.17.2. Let 𝑆 be a (possibly DG) scheme (almost) of finite type, and let 𝑖 : 𝑇 ãÑ 𝑆 be a
closed subscheme with complement 𝑗 : 𝑈 ãÑ 𝑆. For D P QCohp𝑆q–mod, the composite functor:

Kerp𝑗˚ : DÑ D𝑈 q ãÑ DÑ D b
QCohp𝑆q

QCohp𝑆^𝑇 q (6.17.1)

is an equivalence, where 𝑆^𝑇 is the formal completion of 𝑆 along 𝑇 .

Proof. By [Gai4] Proposition 4.1.5, the restriction functor:

QCohp𝑆^𝑇 q–modÑ QCohp𝑆q–mod

is fully-faithful with essential image being those module categories on which objects of QCohp𝑈q Ď
QCohp𝑆q act by zero. But the endofunctor Kerp𝑗˚q of QCohp𝑆q–mod is a localization functor for
the same subcategory, giving the claim.

�
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Proof of Theorem 6.17.1. Suppose G P QCohp𝑋𝐼 ,C𝑋𝐼 q is some object with:

HomQCohp𝑋𝐼 ,C
𝑋𝐼 q
pPbOblv Loc𝑋𝐼 pFq,Gq “ 0

for all P P QCohp𝑋𝐼q perfect and all F P Cb𝐼 compact. Then by Proposition 6.16.1, it suffices to
show that G “ 0.

Fix 𝑝 : 𝐼 � 𝐽 . We will show by decreasing induction on |𝐽 | that the restriction of G to 𝑈p𝑝q is
zero.

We have the closed embedding 𝑋𝐽
𝑑𝑖𝑠𝑗 ãÑ 𝑈p𝑝q with complement being the union:

𝑈p𝑝qzp𝑋𝐽
𝑑𝑖𝑠𝑗q “

ď

𝐼
𝑞
�𝐽 1

𝑞1

�
‰
𝐽,𝑞1𝑞“𝑝

𝑈p𝑞q.

In particular, the inductive hypothesis implies that the restriction of G to this complement is zero.
Let X denote the formal completion of 𝑋𝐽

𝑑𝑖𝑠𝑗 in 𝑈p𝑝q and let 𝑖𝑝 : X ãÑ 𝑈p𝑝q denote the embedding.
By Lemma 6.17.2, it suffices to show that:

𝑖˚𝑝pGq “ 0 P QCohpX,C𝑋𝐼 q :“ QCohp𝑋𝐼 ,C𝑋𝐼 q b
QCohp𝑋𝐼q

QCohpXq.

The map XÑ 𝑋𝐼
𝑑𝑅 factors through 𝑋𝐽

𝑑𝑖𝑠𝑗,𝑑𝑅 (embedded via 𝑝), so by factorization we have:

QCohp𝑋𝐼 ,C𝑋𝐼 q b
QCohp𝑋𝐼q

QCohpXq “ C𝑋𝐼 b
𝐷p𝑋𝐼q

QCohpXq » Cb𝐽 b QCohpXq.

This identification is compatible with the functors Loc in the following way. Let
𝑝
b : Cb𝐼 Ñ Cb𝐽

denote the map induced by the tensor structure on C. We then have a commutative diagram:

Cb𝐼
Loc

𝑋𝐼 //

𝑝
b
��

C𝑋𝐼
// QCohp𝑋𝐼 ,C𝑋𝐼 q

𝑖˚𝑝
��

Cb𝐽
idbOX // Cb𝐽 b QCohpXq.

by construction.
Since QCohpXq is compactly generated by objects of the form 𝑖˚𝑝pPq with P P QCohp𝑈p𝑝qq perfect

(and with set-theoretic support in 𝑋𝐽
𝑑𝑖𝑠𝑗), we reduce to the following:

Each F P Cb𝐽 compact then defines a continuous functor 𝐹F : Cb𝐽 b QCohpXq Ñ QCohpXq, and
our claim amounts to showing that an object in Cb𝐽 bQCohpXq is zero if and only if each functor
𝐹F annihilates it, but this is obvious e.g. from the theory of dualizable categories.

�

6.18. Dualizability. Next, we record the following technical result.

Lemma 6.18.1. For every D P 𝐷p𝑋𝐼q–mod, the canonical map:

C𝑋𝐼 b
𝐷p𝑋𝐼q

D “ lim
p𝐼

𝑝
�𝐽

𝑞
�𝐾qPS𝐼

´

Cb𝐾 b𝐷p𝑈p𝑝qq
¯

b
𝐷p𝑋𝐼q

DÑ lim
p𝐼

𝑝
�𝐽

𝑞
�𝐾qPS𝐼

´

Cb𝐾 b𝐷p𝑈p𝑝qq b
𝐷p𝑋𝐼q

D
¯

is an equivalence.



CHIRAL PRINCIPAL SERIES CATEGORIES I: FINITE DIMENSIONAL CALCULATIONS 45

This proof is digressive, so we postpone the proof to Appendix A, assuming it for the remainder
of this section.

We obtain the following consequence.32

Corollary 6.18.2. C𝑋𝐼 is dualizable and self-dual as a 𝐷p𝑋𝐼q-module category.

Remark 6.18.3. In fact, one can avoid the full strength of Lemma 6.18.1 for our purposes: we include
it because it gives an aesthetically nicer treatment, and because it appears to be an important
technical result that should be included for the sake of completeness.

With that said, we apply it below only for D “ Sph𝐺,𝑋𝐼 , and here it is easier: it follows from the

dualizability of Sph𝐺,𝑋𝐼 as a 𝐷p𝑋𝐼q-module category, which is much more straightforward.

6.19. Let 𝛤 be an affine algebraic group. We now specialize the above to the case C “ Repp𝛤 q.

6.20. Induction. Our main tool in treating Repp𝛤 q𝑋𝐼 is the good behavior of the induction functor
Av𝑤𝑋𝐼 ,˚ : 𝐷p𝑋𝐼q Ñ Repp𝛤 q𝑋𝐼 introduced below.

6.21. The symmetric monoidal forgetful functor Oblv : Repp𝛤 q Ñ Vect induces a conservative
functor Oblv𝑋𝐼 : Repp𝛤 q𝑋𝐼 Ñ 𝐷p𝑋𝐼q compatible with 𝐷p𝑋𝐼q-linear symmetric monoidal struc-
tures.

We abuse notation in also letting Oblv𝑋𝐼 denote the QCohp𝑋𝐼q-linear functor:

Oblv𝑋𝐼 : QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q Ñ QCohp𝑋𝐼q

promising the reader to always take caution to make clear which functor we mean in the sequel.

6.22. Applying the discussion of S6.14, we obtain O𝛤,𝑋𝐼 P Repp𝛤 q𝑋𝐼 factorizable corresponding to
the regular representation O𝛤 P Repp𝛤 q of 𝛤 (so we are not distinguishing between the sheaf O𝛤
and its global sections in this notation).33

Proposition 6.22.1. (1) The functor Oblv𝑋𝐼 : Repp𝛤 q𝑋𝐼 Ñ 𝐷p𝑋𝐼q admits a 𝐷p𝑋𝐼q-linear
right adjoint34 Av𝑤𝑋𝐼 ,˚ : 𝐷p𝑋𝐼q Ñ Repp𝛤 q𝑋𝐼 compatible with factorization.35

(2) The functor Av𝑤𝑋𝐼 ,˚ maps 𝜔𝑋𝐼 to the factorization algebra O𝛤,𝑋𝐼 introduced above.

Proof. By Proposition B.7.1 and Theorem 6.17.1, it suffices to show that Oblv𝑋𝐼 maps the ULA
generators Loc𝑋𝐼 p𝑉 q of Repp𝛤 q𝑋𝐼 to ULA objects of 𝐷p𝑋𝐼q, which is obvious.

For the second part, note that the counit map O𝛤 Ñ 𝑘 P ComAlgpVectq induces a map Oblv𝑋𝐼 O𝛤,𝑋𝐼 Ñ

𝜔𝑋𝐼 P 𝐷p𝑋𝐼q factorizably, and therefore induces factorizable maps:

O𝛤,𝑋𝐼 Ñ Av𝑤𝑋𝐼 ,˚p𝜔𝑋𝐼 q.

By factorization, it is enough to show that this map is an equivalence for 𝐼 “ ˚, where it is clear.
�

32We remark that this result is strictly weaker than the above, and more direct to prove.
33The 𝐷-module Oblv𝑋𝐼 pO𝛤,𝑋𝐼 q P 𝐷p𝑋𝐼

q (or its shift cohomologically up by |𝐼|, depending on one’s conventions)

appears in [BD] as factorization algebra associated with the the constant 𝐷𝑋 -scheme 𝛤 ˆ𝑋𝐼
Ñ 𝑋𝐼 .

34The superscript 𝑤 stands for “weak,” and is included for compatibility with [FG2] S20.
35More generally, the proof below shows that the analogous statement holds more generally for any symmetric
monoidal functor 𝐹 : C Ñ D P DGCat𝑐𝑜𝑛𝑡 with C rigid, where this is generalizing the forgetful functor Oblv :
Repp𝛤 q Ñ Vect.
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6.23. Coalgebras. We now realize the categories Repp𝛤 q𝑋𝐼 in more explicit terms.

Lemma 6.23.1. The functor Oblv𝑋𝐼 is comonadic, i.e., satisfies the conditions of the comonadic
Barr-Beck theorem.

In fact, we will prove the following strengthening:

Lemma 6.23.2. For any D P 𝐷p𝑋𝐼q–mod, the forgetful functor:

Oblv𝑋𝐼 b idD : Repp𝛤 q𝑋𝐼 b
𝐷p𝑋𝐼q

DÑ D

is comonadic.

Proof. Using Lemma 6.18.1, we deduce that Oblv𝑋𝐼 b idD arises by passage to the limit over S𝐼
from the compatible system of functors:

Repp𝛤 qb𝐾 b𝐷p𝑈p𝑝qq b
𝐷p𝑋𝐼q

DÑ 𝐷p𝑈p𝑝qq b
𝐷p𝑋𝐼q

D.

Therefore, it suffices to show that each of these functors is conservative and commutes with Oblv-
split totalizations.

But by [Gai4] Theorem 2.2.2 and Lemma 5.5.4, the functor Repp𝛤𝑛q b E Ñ E is comonadic for
any E P DGCat𝑐𝑜𝑛𝑡. This obviously gives the claim.

�

6.24. 𝑡-structures. It turns out that the categories Repp𝛤 q𝑋𝐼 admit particularly favorable 𝑡-
structures.

Proposition 6.24.1. There is a unique 𝑡-structure on Repp𝛤 q𝑋𝐼 (resp. QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q) such
that Oblv𝑋𝐼 is 𝑡-exact. This 𝑡-structure is left and right complete.

Proof. We first treat the quasi-coherent case.

For every p𝐼
𝑝
� 𝐽

𝑞
� 𝐾q P S𝐼 , the category:

Repp𝛤 qb𝐽 b QCohp𝑈p𝑝qq “ QCohpB𝛤 𝐽 ˆ 𝑈p𝑝qq
admits a canonical 𝑡-structure, since it is quasi-coherent sheaves on an algebraic stack. This 𝑡-
structure is left and right exact, and the forgetful functor to QCohp𝑈p𝑝qq is obviously 𝑡-exact.
Moreover, the structure functors corresponding to maps in S𝐼 are 𝑡-exact, and therefore we obtain
a 𝑡-structure with the desired properties on the limit, which is QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q.

We now deduce the 𝐷-module version. We have the adjoint functors:36

QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q
Ind // Repp𝛤 q𝑋𝐼 .
Oblv
oo

Since the monad Oblv Ind is 𝑡-exact on QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q and since Oblv is conservative, it
follows that Repp𝛤 q𝑋𝐼 admits a unique 𝑡-structure such that the functor37 Oblvrdimp𝑋𝐼qs “

Oblvr|𝐼|s : Repp𝛤 q𝑋𝐼 Ñ QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q is 𝑡-exact. Since this functor is continuous and com-
mutes with limits (being a right adjoint), this 𝑡-structure on Repp𝛤 q𝑋𝐼 is left and right complete.

36Apologies are due to the reader for using the different functors Oblv and Oblv𝑋𝐼 in almost the same breath.
37We use a cohomological shift here since for 𝑆 smooth, Oblv : 𝐷p𝑆q Ñ QCohp𝑆q only 𝑡-exact up to shift by the
dimension, since Oblvp𝜔𝑆q “ O𝑆 . This is because we are working with the so-called left forgetful functor, not the
right one.
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It remains to see that Oblv𝑋𝐼 : Repp𝛤 q𝑋𝐼 Ñ 𝐷p𝑋𝐼q is 𝑡-exact. This is immediate: we see that

the 𝑡-structure we have constructed is the unique one for which the composition Repp𝛤 q𝑋𝐼
Oblvr|𝐼|s
ÝÝÝÝÝÑ

QCohpRepp𝛤 q𝑋𝐼 q
Oblv

𝑋𝐼
ÝÝÝÝÝÑ QCohp𝑋𝐼q is 𝑡-exact, and this composition coincides with Repp𝛤 q𝑋𝐼

Oblv
𝑋𝐼

ÝÝÝÝÝÑ

𝐷p𝑋𝐼q
Oblvr|𝐼|s
ÝÝÝÝÝÑ QCohp𝑋𝐼q. We obtain the claim, since the standard 𝑡-structure on 𝐷p𝑋𝐼q is the

unique one for which Oblv𝑋𝐼 r|𝐼|s : 𝐷p𝑋𝐼q Ñ QCohp𝑋𝐼q is 𝑡-exact.
�

Proposition 6.24.2. The functor Av𝑤𝑋𝐼 ,˚ : 𝐷p𝑋𝐼q Ñ Repp𝛤 q𝑋𝐼 is 𝑡-exact for the 𝑡-structure

of Proposition 6.24.1, and similarly for the corresponding quasi-coherent functor QCohp𝑋𝐼q Ñ

QCohp𝑋𝐼 ,Repp𝛤 q𝑋𝐼 q.

We will use the following result of [BD]. We include a proof for completeness.

Lemma 6.24.3. Let 𝐴 P Vect♡ be a classical (unital) commutative algebra and let 𝐼 ÞÑ 𝐴𝑋𝐼 P

𝐷p𝑋𝐼q be the corresponding factorization algebra. Then 𝐴𝑋𝐼 r´|𝐼|s P 𝐷p𝑋𝐼q♡.

Proof. We can assume |𝐼| ą 1, since otherwise the result is clear.
Choose 𝑖, 𝑗 P 𝐼 distinct. Let 𝐼 � 𝐼 be the set obtained by contracting 𝑖 and 𝑗 onto a single

element (so |𝐼| “ |𝐼| ´ 1).

The map 𝐼 � 𝐼 defines a diagonal closed embedding ∆ : 𝑋𝐼 Ñ 𝑋𝐼 . Let 𝑗 : 𝑈 ãÑ 𝑋𝐼 denote the
complement, which here is affine.

Since ∆!p𝐴𝑋𝐼 q “ 𝐴
𝑋𝐼 , the result follows inductively if we show that the map 𝑗˚,𝑑𝑅𝑗

!p𝐴𝑋𝐼 q Ñ

∆˚,𝑑𝑅∆!p𝐴𝑋𝐼 qr1s is surjective after taking cohomology in degree ´|𝐼|.

Writing 𝐼 “ t𝑖u
š

𝐼 using the evident splitting, we obtain the following commutative diagram
from unitality of 𝐴 and from the commutative factorization structure:

𝜔𝑋 b𝐴
𝑋𝐼

��

// 𝑗˚,𝑑𝑅𝑗
!p𝜔𝑋 b𝐴

𝑋𝐼 q //

��

∆˚,𝑑𝑅p𝐴𝑋𝐼 qr1s

»

��

𝐴𝑋 b𝐴
𝑋𝐼

��

𝑗˚,𝑑𝑅𝑗
!p𝐴𝑋 b𝐴

𝑋𝐼 q

��
𝐴𝑋𝐼

// 𝑗˚,𝑑𝑅𝑗
!p𝐴𝑋𝐼 q // ∆˚,𝑑𝑅∆!p𝐴𝑋𝐼 qr1s

The top line is obviously (by induction) a short exact sequence in the |𝐼|-shifted heart of the
𝑡-structure. Since the right vertical map is an isomorphism, this implies the claim.

�

Proof of Proposition 6.24.2. E.g., in the quasi-coherent setting: it suffices to show that Av𝑤𝑋𝐼 ,˚ ˝Oblv𝑋𝐼

is 𝑡-exact. This composition is given by tensoring with O𝛤,𝑋𝐼 P 𝐷p𝑋𝐼q by construction, which we

have just seen is in the heart of the 𝑡-structure (since Oblv : 𝐷p𝑋𝐼q Ñ QCohp𝑋𝐼q is 𝑡-exact only
after a shift by |𝐼|).

It follows that this functor is right 𝑡-exact, since it is given by tensoring with something in the
heart. But it is also left 𝑡-exact, since it is right adjoint to the 𝑡-exact functor Oblv𝑋𝐼 .

�

Corollary 6.24.4. Repp𝛤 q𝑋𝐼 is the derived category of the heart of this 𝑡-structure.
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Proof. At the level of bounded below derived categories, this is a formal consequence of the corre-
sponding fact for 𝐷p𝑋𝐼q and the fact that Oblv𝑋𝐼 and Av𝑤𝑋𝐼 ,˚ are 𝑡-exact.

To treat unbounded derived categories, it suffices to show that the derived category of Repp𝛤 q♡
𝑋𝐼

is left complete, but this is clear: the category has finite homological dimension.
�

6.25. Constructibility. We now show how to recover Repp𝛤 q𝑋𝐼 from a holonomic version.
This material is not necessary for our purposes, but we include it for completeness. The reader

may safely skip straight to S6.28.

6.26. Let 𝐷ℎ𝑜𝑙p𝑋
𝐼q Ď 𝐷p𝑋𝐼q denote the ind-completion of the subcategory of 𝐷p𝑋𝐼q formed by

compact objects (i.e., coherent 𝐷-modules) that are holonomic in the usual sense. We emphasize
that we allow infinite direct sums of holonomic objects to be counted as such.

Definition 6.26.1. Define the holonomic subcategory Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 of Repp𝛤 q𝑋𝐼 to consist of those

objects that map into 𝐷ℎ𝑜𝑙p𝑋
𝐼q under the forgetful functor.

Remark 6.26.2. We have:

Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 » lim
p𝐼

𝑝
�𝐽

𝑞
�𝐾q

Repp𝛤 qb𝐾 b𝐷ℎ𝑜𝑙p𝑈p𝑝qq Ď

lim
p𝐼

𝑝
�𝐽

𝑞
�𝐾q

Repp𝛤 qb𝐾 b𝐷p𝑈p𝑝qq “: Repp𝛤 q𝑋𝐼 .
(6.26.1)

Indeed, the key point is that Repp𝛤 qb𝐾 b 𝐷ℎ𝑜𝑙p𝑈p𝑝qq Ñ Repp𝛤 qb𝐾 b 𝐷p𝑈p𝑝qq is actually fully-
faithful, and this follows from the general fact that tensoring a fully-faithful functor (here𝐷ℎ𝑜𝑙p𝑈p𝑝qq ãÑ
𝐷p𝑈p𝑝qq with a dualizable category (here Repp𝛤 qb𝐾) gives a fully-faithful functor.

Since e.g. for each 𝑝 : 𝐼 � 𝐽 , 𝐷ℎ𝑜𝑙p𝑋
𝐽q is dualizable as a 𝐷ℎ𝑜𝑙p𝑋

𝐼q-module category (for
the same reason as for the non-holonomic categories), we deduce that Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 satisfies the
same factorization patterns at Repp𝛤 q𝑋𝐼 , but with holonomic 𝐷-module categories being used
everywhere. Indeed, the arguments we gave were basically formal cofinality arguments, and therefore
apply verbatim.

6.27. We have the following technical result.

Proposition 6.27.1. The functor:

Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 b
𝐷ℎ𝑜𝑙p𝑋𝐼q

𝐷p𝑋𝐼q Ñ Repp𝛤 q𝑋𝐼

is an equivalence.

Remark 6.27.2. In light of (6.26.1), this amounts to commuting a limit with a tensor product.
However, we are not sure how to use this perspective to give a direct argument, since 𝐷p𝑋𝐼q is
(almost surely) not dualizable as a 𝐷ℎ𝑜𝑙p𝑋

𝐼q-module category.

Proof of Proposition 6.27.1. The idea is to appeal to use Proposition B.8.1.

Step 1. Let 𝑉 P Repp𝛤 qb𝐼 be given. We claim that Loc𝑋𝐼 p𝑉 q lies in Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 and that induced

object of Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 b
𝐷ℎ𝑜𝑙p𝑋𝐼q

𝐷p𝑋𝐼q is ULA in this category (considered as a 𝐷p𝑋𝐼q-module

category in the obvious way) if 𝑉 is compact.
Indeed, that Loc𝑋𝐼 p𝑉 q is holonomic follows since Oblv𝑋𝐼 p𝑉 q is lisse. The ULA condition then

follows from Proposition B.5.1 and Remark B.5.2.
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Step 2. Next, we claim that Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 is generated as a 𝐷ℎ𝑜𝑙p𝑋
𝐼q-module category by the

objects Loc𝑋𝐼 p𝑉 q, 𝑉 P Repp𝛤 qb𝐼 , i.e., the minimal 𝐷ℎ𝑜𝑙p𝑋
𝐼q-module subcategory of Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙

containing the Loc𝑋𝐼 p𝑉 q is the whole category.
Indeed, this follows as in the proof of Theorem 6.17.1.

Step 3. We now claim that Repp𝛤 q𝑋𝐼 ,ℎ𝑜𝑙 b
𝐷ℎ𝑜𝑙p𝑋𝐼q

𝐷p𝑋𝐼q is ULA as a 𝐷p𝑋𝐼q-module category.

We have to show that Repp𝛤 q𝑋𝐼 b
𝐷ℎ𝑜𝑙p𝑋𝐼q

QCohp𝑋𝐼q is generated as a QCohp𝑋𝐼q-module category

by objects coming from Loc𝑋𝐼 p𝑉 q. But this is clear from Step 2.

Step 4. Finally, we apply Proposition B.8.1 to obtain the result:
Our functor sends a set of ULA generators to ULA objects. And moreover, by Remark 6.26.2,

this functor is an equivalence after tensoring with 𝐷p𝑋𝐽
𝑑𝑖𝑠𝑗q for each 𝑝 : 𝐼 � 𝐽 , giving the result.

�

Remark 6.27.3. Taking (6.26.1) as a definition of C𝑋𝐼 ,ℎ𝑜𝑙 for general rigid C, the above argument
shows that the analogue of Proposition 6.27.1 is true in this generality.

6.28. The naive Satake functor. We now specialize the above to 𝛤 “ 𝐺̌.

6.29. Digression: more on twists. We will work with Grassmannians and loop groups twisted
by 𝒫𝑐𝑎𝑛

𝑇 as in S2.14.
To define Gr𝛤,𝑋𝐼 for 𝛤 P t𝑇,𝐵,𝑁´, 𝐺u, one exactly follows S2.14.

Similarly, we have a group scheme (resp. group indscheme) 𝛤 p𝑂q𝑋𝐼 (resp. 𝛤 p𝐾q𝑋𝐼 ) over 𝑋𝐼 for
𝛤 as above, where 𝛤 p𝐾q𝑋𝐼 acts on Gr𝐺,𝑋𝐼 . Trivializing 𝒫𝑐𝑎𝑛

𝑇 locally on 𝑋𝐼 , the picture becomes the
usual picture for factorizable versions of the arc and loop groups: c.f. [BD] and [KV] for example.

6.30. Let Sph𝐺,𝑋𝐼 denote the spherical Hecke category 𝐷pGr𝐺,𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼 . The assignment 𝐼 ÞÑ
Sph𝐺,𝑋𝐼 defines a factorization monoidal category.

Our goal for the remainder of this section is to construct and study certain monoidal functors:

Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 : Repp𝐺̌q𝑋𝐼 Ñ Sph𝐺,𝑋𝐼

compatible with factorization.

Remark 6.30.1. We follow Gaitsgory in calling this functor naive because it is an equivalence only
on the hearts of the 𝑡-structures (indeed, it is not an equivalence on Exts between unit objects,
since equivariant cohomology appears in the right hand side but not the left).

6.31. The following results provide toy models for constructing the functors Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 .

Lemma 6.31.1. For D P DGCat𝑐𝑜𝑛𝑡, the map:

t𝐹 : Repp𝛤 q Ñ D P DGCat𝑐𝑜𝑛𝑡u Ñ O𝛤 –comodpDq

𝐹 ÞÑ 𝐹 pO𝛤 q

is an equivalence.

Proof. Since Repp𝛤 q is self-dual and since Repp𝛤 q bD
Oblv
ÝÝÝÑ Vect bD “ D is comonadic (c.f. the

proof of Lemma 6.23.1), we obtain the claim.
�
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Lemma 6.31.2. For D P AlgpDGCat𝑐𝑜𝑛𝑡q a monoidal (in the cocomplete sense) DG category, the
map:

t𝐹 : Repp𝛤 q Ñ D continuous and lax monoidalu Ñ AlgpO𝛤 –comodpDqq

𝐹 ÞÑ 𝐹 pO𝛤 q

is an equivalence. Here O𝛤 –comodpDq is equipped with the obvious monoidal structure, induced from
that of D.

Remark 6.31.3. Here is a heuristic for Lemma 6.31.2:
Given 𝐴 P O𝛤 –comodpDq, the corresponding functor Repp𝛤 q Ñ D is given by the formula

𝑉 ÞÑ p𝑉 b𝐴q𝛤 (where the invariants here are of course derived). If 𝐴 is moreover equipped with a
𝛤 -equivariant algebra structure, we obtain the canonical maps:

p𝑉 b𝐴q𝛤 b p𝑊 b𝐴q𝛤 Ñ p𝑉 b𝐴b𝑊 b𝐴q𝛤 “ p𝑉 b𝑊 b𝐴b𝐴q𝛤 Ñ p𝑉 b𝑊 b𝐴q𝛤

as desired, where the last map comes from the multiplication on 𝐴.

Proof of Lemma 6.31.2. This follows e.g. from the identification of the monoidal structure of Repp𝛤 qb
D with the Day convolution structure on the functor category HomDGCat𝑐𝑜𝑛𝑡pRepp𝛤 q,Dq, identifying
the two via self-duality of Repp𝛤 q.

�

6.32. We will use the following more sophisticated version of the above lemmas.

Lemma 6.32.1. For D P 𝐷p𝑋𝐼q–mod, the functor:

t𝐹 : Repp𝛤 q𝑋𝐼 Ñ D P 𝐷p𝑋𝐼q–modu Ñ Repp𝛤 q𝑋𝐼 b
𝐷p𝑋𝐼q

D
Lem. 6.23.2

“ O𝛤,𝑋𝐼–comodpDq

𝐹 ÞÑ 𝐹 pO𝛤,𝑋𝐼 q

is an equivalence. Giving a lax monoidal structure in the left hand side amounts to giving an algebra
structure on the right hand side.

Proof. By Lemma 6.18.1, 𝐷p𝑋𝐼q-linear functors Repp𝛤 q𝑋𝐼 Ñ D are equivalent to objects of
Repp𝛤 q𝑋𝐼 b𝐷p𝑋𝐼q D.

The result then follows from Lemma 6.23.2 and Lemma 6.31.2.
�

6.33. Construction of the functor. By Lemma 6.32.1, to construct Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 as a lax monoidal

functor, we need to specify an object of Repp𝐺̌q𝑋𝐼 with an algebra structure.
Such objects ℋ𝑐ℎ

𝑋𝐼 P Repp𝐺̌q𝑋𝐼 b𝐷p𝑋𝐼q Sph𝐺,𝑋𝐼 are defined in a factorizable way in Appendix

B of [Gai1] (they go by the name chiral Hecke algebra and were probably first constructed by
Beilinson).38 For each 𝐼, ℋ𝑐ℎ

𝑋𝐼 is concentrated in cohomological degree ´|𝐼|.

Example 6.33.1. For 𝐼 “ ˚, ℋ𝑐ℎ
𝑋 comes from the regular representation of 𝐺̌ under geometric Satake.

Remark 6.33.2. We emphasize that the general construction (and the data required to define the
output) is purely abelian categorical, and comes from the usual construction of the geometric Satake
equivalence.

Lemma 6.33.3. The lax monoidal functors Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 are actually monoidal.

38In the notation of [Gai1], we have ℋ𝑐ℎ
𝑋𝑑 “ R𝑑

𝑋 r𝑑s “
𝑓R𝑑

𝑋 r𝑑s.
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Proof. We need to check that some maps between some objects of Sph𝐺,𝑋𝐼 are isomorphisms. It

suffices to do this after restriction to strata on 𝑋𝐼 , and by factorization, we reduce to the case 𝐼 “ ˚
where it follows from usual geometric Satake and the construction of the chiral Hecke algebra.

�

6.34. We have the following important fact:

Proposition 6.34.1. Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 is 𝑡-exact.

We begin with the following.

Lemma 6.34.2. The functor Sph𝐺,𝑋𝐼 Ñ Sph𝐺,𝑋𝐼 defined by convolution with ℋ𝑐ℎ
𝑋𝐼 is 𝑡-exact.

Proof. Recall that for each 𝐼 and 𝐽 , there is the exterior convolution functor:

Sph𝐺,𝑋𝐼 b Sph𝐺,𝑋𝐽 Ñ Sph𝐺,𝑋𝐼
š

𝐽

which is a morphism of 𝐷p𝑋𝐼
š

𝐽q-module categories.39 The relation to usual convolution is that
for 𝐽 “ 𝐼, convolution is obtained by applying exterior convolution and then !-restricting to the
diagonal.

The usual semi-smallness argument shows that exterior convolution is 𝑡-exact. Therefore, since
ℋ𝑐ℎ
𝑋𝐼 lies in degree ´|𝐼|, we deduce from the above that convolution with ℋ𝑐ℎ

𝑋𝐼 has cohomological
amplitude r´|𝐼|, 0s: in particular, it is right 𝑡-exact.

It remains to see that this convolution functor is left 𝑡-exact. For a given partition 𝑝 : 𝐼 � 𝐽 ,
let 𝑖𝑝 : 𝑋𝐽

𝑑𝑖𝑠𝑗 Ñ 𝑋𝐼 denote the embedding of the corresponding stratum of 𝑋𝐼 . The !-restriction

of ℋ𝑐ℎ
𝑋𝐼 to 𝑋𝐽

𝑑𝑖𝑠𝑗 is concentrated in cohomological degree ´|𝐽 |, and is the object corresponding to
the regular representation under geometric Satake. It follows that the functor of convolution with
𝑖𝑝,˚,𝑑𝑅𝑖

!
𝑝pℋ𝑐ℎ

𝑋𝐼 q is left 𝑡-exact from the exactness of convolution in the Satake category for a point.
We now obtain the claim by dévissage.

�

Proof of Proposition 6.34.1. First, we claim that our functor is left 𝑡-exact.
We can write Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 as a composition of tensoring F with the delta 𝐷-module on the unit of

Gr𝐺,𝑋𝐼 , convolving with ℋ𝑐ℎ
𝑋𝐼 , and then taking invariants with respect to the “diagonal” actions

for the 𝐺̌𝐽 . The first step is obviously 𝑡-exact, and the second step is 𝑡-exact by Lemma 6.34.2; the
third step is obviously left 𝑡-exact.

It remains to show that it is right 𝑡-exact.
First, let 𝑉 P Repp𝐺̌𝐼q♡ “ Repp𝐺̌qb𝐼,♡. We claim that convolution with Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq is

𝑡-exact (as an endofunctor of Sph𝐺,𝑋𝐼 ).

It suffices to show this for 𝑉 finite-dimensional, and then duality of 𝑉 and monoidality of Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼

reduces us to showing exactness in either direction: we show that this convolution functor is left
𝑡-exact. This then follows by the same stratification argument as in the proof of Lemma 6.34.2.

In particular, convolving with the unit, we see that Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq is concentrated in coho-

mological degree ´|𝐼|, and more generally, Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 ˝Loc𝑋𝐼 is 𝑡-exact up to this same cohomological
shift.

For simplicity, we localize on 𝑋 to assume 𝑋 is affine. Then by Theorem 6.17.1, Repp𝐺̌qď0
𝑋𝐼 is

generated under colimits by objects of the form Ind OblvpLoc𝑋𝐼 p𝑉 qq for 𝑉 P Repp𝛤 𝐼qď|𝐼|: indeed,
this follows from the observation that Ind Oblv is 𝑡-exact, which is true since after applying Oblv

39We emphasize that 𝐼 and 𝐽 play an asymmetric role in the definition, i.e., the definition depends on an ordered
pair of finite sets, not just a pair of finite sets.
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again, it is given by tensoring with the ind-vector bundle of differential operators on 𝑋𝐼 . The same
reasoning shows that Ind Oblv is 𝑡-exact on Sph𝐺,𝑋𝐼 , giving the result.

�

6.35. The naive Satake theorem. We will not need the following result, but include a proof for
completeness. Since we are not going to use it, we permit ourselves to provide substandard detail.

Theorem 6.35.1. The functor Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 induces an equivalence between the hearts of the 𝑡-structures:

Sat♡
𝑋𝐼 : Repp𝐺̌q♡

𝑋𝐼

»
ÝÑ Sph♡

𝐺,𝑋𝐼 .

We will give an argument in S6.37.

Remark 6.35.2. In the setting of perverse sheaves, Theorem 6.35.1 is proved in [Gai1] Appendix
B. We provide a different argument from loc. cit. that more easily deals with the problem of non-
holonomic 𝐷-modules.

6.36. Spherical Whittaker sheaves. Our argument for Satake will appeal to the following. Let

Whit𝑠𝑝ℎ
𝑋𝐼 denote the category of Whittaker𝐷-modules on Gr𝐺,𝑋𝐼 , i.e., 𝐷-modules equivariant against

𝑁´p𝐾q𝑋𝐼 equipped with its standard character (we use the 𝜌p𝜔𝑋q-twist here).

We have a canonical functor Sph𝐺,𝑋𝐼 Ñ Whit𝑠𝑝ℎ
𝑋𝐼 given by convolution with the unit object

unit
Whit𝑠𝑝ℎ

𝑋𝐼
P Whit𝑠𝑝ℎ

𝑋𝐼 , i.e., the canonical object cleanly extended from Gr𝑁´,𝑋𝐼 (i.e., the ˚ and

!-extensions coincide here).

Theorem 6.36.1 (Frenkel-Gaitsgory-Vilonen, Gaitsgory, Beraldo). The composite functor:

Repp𝐺̌q𝑋𝐼

Sat𝑛𝑎𝑖𝑣𝑒
𝑋𝐼

ÝÝÝÝÝÑ Sph𝐺,𝑋𝐼 ÑWhit𝑠𝑝ℎ
𝑋𝐼

is an equivalence.

Proof. We will appeal to Proposition B.8.1.

It is easy to see that the unit object of Whit𝑠𝑝ℎ
𝑋𝐼 is ULA: this follows from the usual cleanness

argument. We then formally deduce from dualizability of ULA objects in Repp𝐺̌q𝑋𝐼 and monoidality
of Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 that the above functor sends ULA objects to ULA objects.

Then since these sheaves of categories are locally constant along strata (by factorizability), we
obtain the claim by noting that this functor is an equivalence over a point, as follows from [FGV]
and the comparison of local and global40 definitions of spherical Whittaker categories, as has been
done e.g. in the unpublished work [Gai2].

�

We also use the following fact about Whittaker categories.

Lemma 6.36.2. The object Av𝐺p𝑂q
𝑋𝐼 ,˚punit

Whit𝑠𝑝ℎ
𝑋𝐼
q P Sph𝐺,𝑋𝐼 lies in cohomological degrees ě ´|𝐼|.

The adjunction map:

unitSph
𝐺,𝑋𝐼

Ñ Av𝐺p𝑂q
𝑋𝐼 ,˚punit

Whit𝑠𝑝ℎ
𝑋𝐼
q

is an equivalence on cohomology in degree ´|𝐼|. (Here unitSph
𝐺,𝑋𝐼

is the delta 𝐷-module on 𝑋𝐼

˚-pushed forward to Gr𝐺,𝑋𝐼 using the tautological section).

40I.e., using Drinfeld’s compactifications as in [FGV].
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Proof. The corresponding fact over a point is obvious: the fact that Sph𝐺,𝑥 Ñ Whit𝑠𝑝ℎ𝑥 is 𝑡-exact
on hearts of 𝑡-structures implies that its right adjoint left 𝑡-exact, so applying the above averaging
to the unit, one obtains an object in degrees ě 0. The adjunction map is an equivalence on 0th
cohomology because Sph𝐺,𝑥 ÑWhit𝑠𝑝ℎ𝑥 is an equivalence on hearts of 𝑡-structures.

We then deduce that from factorization that for each 𝑝 : 𝐼 � 𝐽 , the !-restriction of:

CokerpunitSph
𝐺,𝑋𝐼

Ñ Av𝐺p𝑂q
𝑋𝐼 ,˚punit

Whit𝑠𝑝ℎ
𝑋𝐼
qq

to the corresponding stratum 𝑋𝐽
𝑑𝑖𝑠𝑗 defined by 𝑝 is concentrated in cohomological degrees ą ´|𝐽 |,

which immediately gives the claim.
�

6.37. We now deduce factorizable Satake.

Proof of Theorem 6.35.1. We have an adjunction Sph𝐺,𝑋𝐼
// Whit𝑠𝑝ℎ

𝑋𝐼oo where the left adjoint is

convolution with the unit and the right adjoint is ˚-averaging with respect to 𝐺p𝑂q𝑋𝐼 .
From Theorem 6.36.1, we obtain the adjunction:

Sph𝐺,𝑋𝐼
// Repp𝐺̌q𝑋𝐼 .

Sat𝑛𝑎𝑖𝑣𝑒
𝑋𝐼

oo

Since Sat𝑛𝑎𝑖𝑣𝑒𝑋𝐼 is 𝑡-exact, we obtain a corresponding adjunction between the hearts of the 𝑡-structure.
Lemma 6.36.2 implies that the left adjoint is fully-faithful at the abelian categorical level, and the

right adjoint Sat𝑛𝑎𝑖𝑣𝑒,♡
𝑋𝐼 is conservative by Theorem 6.36.1, so we obtain the claim.

�

7. Hecke functors: Zastava with moving points

7.1. As in S5, the main result of this section, Theorem 7.9.1, will compare geometrically and
spectrally defined Chevalley functors. However, in this section, we work over powers of the curve:
we are giving a compatibility now between Theorem 4.6.1 and the factorizable Satake theorem of
S6.

7.2. Structure of this section. In S7.3-7.9, we give “moving points” analogues of the construc-
tions of S5 and formulate our main theorem.

The remainder of the section is dedicated to deducing this theorem from Theorem 7.9.1.
There are two main difficulties in proving the main theorem: working over powers of the curve

presents difficulties, and the fact that we are giving a combinatorial (i.e., involving Langlands
duality) comparison functors in the derived setting.

The former we treat by exploiting ULA objects: c.f. Appendix B and S6. These at once exhibit
good functoriality properties and provide a method for passing from information the disjoint locus
𝑋𝐼
𝑑𝑖𝑠𝑗 to the whole of 𝑋𝐼 .
We treat the homotopical difficulties by exploiting a useful 𝑡-structure on factorization Υň-

modules, c.f. Proposition 7.11.1.

7.3. Define the indscheme DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 over 𝑋𝐼 as parametrizing an 𝐼-tuple 𝑥 “ p𝑥𝑖q of points of

𝑋 and a Λ̌-valued divisor on 𝑋 that is Λ̌𝑝𝑜𝑠-valued on 𝑋zt𝑥𝑖u.

Warning 7.3.1. The notation 8 ¨ 𝑥 in the superscript belies that 𝑥 is a dynamic variable: it is used
to denote our 𝐼-tuple of points in 𝑋. We maintain this convention in what follows, keeping the
subscript 𝑋𝐼 to indicate that we work over powers of the curve now.
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Remark 7.3.2. We again have a degree map DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 Ñ Λ̌.

Let Υň–modfact𝑢𝑛,𝑋𝐼 denote the DG category of unital factorization modules for Υň on DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 .

The two functors we will compare will go from Repp𝐺̌q𝑋𝐼 to Υň–modfact𝑢𝑛,𝑋𝐼 .

7.4. Geometric Chevalley functor. To construct the geometric Chevalley functor, we imitate
much of the geometry that appeared in S5.2-5.14.

7.5. For starters, define Bun
8¨𝑥
𝑁´,𝑋𝐼 Ñ 𝑋𝐼 as parametrizing 𝑥 “ p𝑥𝑖q𝑖P𝐼 P 𝑋

𝐼 , a 𝐺-bundle 𝒫𝐺 on
𝑋, and non-zero maps:

Ω
bp𝜌,𝜆q
𝑋 Ñ 𝑉 𝜆

𝒫𝐺
p8 ¨ 𝑥q

defined for each dominant weight 𝜆 and satisfying the Plucker relations, in the notation of S5.2.
Here the notation of twisting by O𝑋p8 ¨ 𝑥q makes sense in 𝑆-points: for 𝑥 “ p𝑥𝑖q𝑖P𝐼 : 𝑆 Ñ 𝑋𝐼 , we
take the sum of the Cartier divisors on 𝑋 ˆ 𝑆 associated with the graphs of the maps 𝑥𝑖 to define
O𝑋ˆ𝑆p𝑥q.

7.6. We can imitate the other constructions in the same fashion, giving the indscheme
𝑜
𝒵8¨𝑥
𝑋𝐼 (resp.

𝒵8¨𝑥) over 𝑋𝐼 and the map
𝑜
𝜋8¨𝑥
𝑋𝐼 :

𝑜
𝒵8¨𝑥
𝑋𝐼 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 (resp. 𝜋8¨𝑥
𝑋𝐼 : 𝒵8¨𝑥

𝑋𝐼 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 ).

Let 𝒴𝑋𝐼 be the inverse image of 𝑋𝐼 ˆ Bun𝑁´ Ď Bun
8¨𝑥
𝑁´,𝑋𝐼 . We have a distinguished object

𝜓𝒴
𝑋𝐼
P 𝐷p𝒴𝑋𝐼 q, obtained by !-pullback from 𝜔𝑋𝐼 bWℎ𝑖𝑡 P 𝐷p𝑋𝐼 ˆ Bun𝑁´q.

We also have a 𝐷p𝑋𝐼q-linear action of Sph𝐺,𝑋𝐼 on 𝐷p𝒵8¨𝑥
𝑋𝐼 q.

We obtain a 𝐷p𝑋𝐼q-linear functor:

Chevgeom
ň,𝑋𝐼 : Repp𝐺̌q𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼

imitating our earlier functor Chevgeom
ň,𝑥 . Indeed, we use the naive Satake functor, convolution with

(the ˚-pushforward of) 𝜓Y
𝑋𝐼

, !-restriction to
𝑜
𝒵8¨𝑥
𝑋𝐼 , and then ˚-pushforward to DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 , exactly

as in S5.

7.7. Spectral Chevalley functor. To construct Chevspec
ň,𝑋𝐼 , we will use the following.

Lemma 7.7.1. The category ň𝑋–mod𝑋𝐼 of Lie-˚ modules on 𝑋𝐼 for ň𝑋 P Repp𝑇 q𝑋 is canonically
identified with the category ň–modpRepp𝑇 qq𝑋𝐼 , i.e., the 𝐷p𝑋𝐼q-module category associated with the
symmetric monoidal DG category ň–modpRepp𝑇 qq by the procedure of S6.6.

Proof. Let Γ Ď 𝑋 ˆ 𝑋𝐼 be the union of the graphs of the projections 𝑋𝐼 Ñ 𝑋. Let 𝛼 (resp. 𝛽)
denote the projection from Γ to 𝑋 (resp. 𝑋𝐼).

Since 𝛽 is proper, one finds that:

𝛽˚,𝑑𝑅𝛼
! : 𝐷p𝑋q Ñ 𝐷p𝑋𝐼q

is colax symmetric monoidal, and in particular maps Lie coalgebras for p𝐷p𝑋q,
!
bq to Lie coalgebras

for p𝐷p𝑋𝐼q,
!
bq.

Moreover, if 𝐿 P 𝐷p𝑋q is a Lie-˚ algebra and compact as a 𝐷-module, then its Verdier dual

D𝑉 𝑒𝑟𝑑𝑖𝑒𝑟p𝐿q is a Lie coalgebra in p𝐷p𝑋q,
!
bq, and 𝐿-modules on𝑋𝐼 are equivalent to 𝛽˚,𝑑𝑅𝛼

!pD𝑉 𝑒𝑟𝑑𝑖𝑒𝑟p𝐿qq-
comodules. We have an obvious translation of this for the “graded” case, where e.g. 𝐷pGr𝑇,𝑋𝐼 q
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replaces 𝐷p𝑋𝐼q. (See [Roz] Proposition 4.5.2 for a non-derived version of this; essentially the same
argument works in general).

One then easily finds that for 𝑉 P Vect, one has:

𝛽˚,𝑑𝑅𝛼
!p𝑉 b 𝜔𝑋q lim

p𝐼�𝐽�𝐾qPS𝐼
𝑗𝑝,˚,𝑑𝑅p𝑉

‘𝐾 b 𝜔𝑈p𝑝qq

where the notation is as in S6. We remark that this limit is a “logarithm” of the one appearing in
(6.13.1): we use the addition maps 𝑉 ‘𝐾 Ñ 𝑉 ‘𝐾

1

for 𝐾 � 𝐾 1 to give the structure maps in the
limit, i.e., the canonical structure of commutative algebra on 𝑉 in pVect,‘q.

Moreover, this identification is compatible with Lie cobrackets, so that the Lie coalgebra pň_qb𝜔𝑋
maps to the Lie coalgebra:

𝛽˚,𝑑𝑅𝛼
!pň_ b 𝜔𝑋q lim

p𝐼�𝐽�𝐾qPS𝐼
𝑗𝑝,˚,𝑑𝑅ppň

_q‘𝐾 b 𝜔𝑈p𝑝qq.

This immediately gives the claim.
�

Remark 7.7.2. We identify ň𝑋–mod𝑋𝐼 and ň–modpRepp𝑇 qq𝑋𝐼 in what follows. We emphasize that
although the Λ̌-grading does not appear explicitly in the notation, it is implicit in the fact that ň𝑋
is always considered as Λ̌-graded.

We obtain the restriction functor:

Repp𝐵̌q𝑋𝐼 Ñ ň𝑋–mod𝑋𝐼 .

Using the chiral induction functor Ind𝑐ℎ : ň𝑋–mod𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼 and the restriction functor

from 𝐺̌ to 𝐵̌, we obtain:

Chevspec
ň,𝑋𝐼 : Repp𝐺̌q𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼

as desired.

7.8. For convenience, we record the following consequence of Lemma 7.7.1. The reader may skip
this section.

Recall from [Ras1] S6.12 and S8.14 that the external fusion construction defines a lax unital
factorization category structure on the assignment:

𝐼 ÞÑ Υň–modfact𝑢𝑛,𝑋𝐼 .

Corollary 7.8.1. The lax factorization structure is a true factorization structure. I.e., for every
𝐼, 𝐽 P Setă8, the external fusion functor:

rΥň–modfact𝑢𝑛,𝑋𝐼bΥň–modfact𝑢𝑛,𝑋𝐽 s b
𝐷p𝑋𝐼

š

𝐽 q

𝐷pr𝑋𝐼ˆ𝑋𝐽 s𝑑𝑖𝑠𝑗q Ñ rΥň–modfact
𝑢𝑛,𝑋𝐼

š

𝐽 b
𝐷p𝑋𝐼

š

𝐽 q

𝐷pr𝑋𝐼ˆ𝑋𝐽 s𝑑𝑖𝑠𝑗q

is an equivalence.

Proof. The corresponding result for Lie-˚ modules over ň𝑋 follows from Lemma 7.7.1. Using the
adjoint functors pInd𝑐ℎ,Oblv𝑐ℎq, we see that factorization modules for Υň are modules for a monad
on Lie-˚ modules, and the two monads obviously match up e.g. by the chiral PBW theorem.

�
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7.9. Formulation of the main theorem. Observe that formation of each of the functors Chevspec
ň,𝑋𝐼

and Chevgeom
ň,𝑋𝐼 are compatible with factorization as we vary the finite set 𝐼 (here we use the external

fusion construction Υň–modfact𝑢𝑛,𝑋𝐼 ).

Theorem 7.9.1. The factorization functors 𝐼 ÞÑ Chevspec
ň,𝑋𝐼 and 𝐼 ÞÑ Chevgeom

ň,𝑋𝐼 are canonically

isomorphic as factorization functors.

The proof of Theorem 7.9.1 will occupy the remainder of this section.

Remark 7.9.2. Here is the idea of the argument: since both functors factorize, we know the result
over strata of 𝑋𝐼 by Theorem 5.14.1. We glue these isomorphisms over all of 𝑋𝐼 by analyzing ULA
objects.

Remark 7.9.3. This theorem is somewhat loose as stated, as it does not specify how they are
isomorphic. This is because the construction of the isomorphism is somewhat difficult, due in part
to the difficulty of constructing anything at all in the higher categorical setting.

However, we remark that for 𝐺 simply-connected, we will see that such an isomorphism of
factorization functors is uniquely characterized as such. Similarly, for 𝐺 a torus, it is easy to write
down such an isomorphism by hand (just as it is easy to write down the (naive) geometric Satake
by hand in this case). This should be taken to indicate the existence of a canonical isomorphism in
general. We refer to Remark 7.10.2 and S7.22 for further discussion of this point.

7.10. First, we observe the following.

Lemma 7.10.1. Chevspec
ň,𝑋𝐼 and Chevgeom

ň,𝑋𝐼 are canonically isomorphic for 𝐼 “ ˚.

Proof. We are comparing two 𝐷p𝑋q-linear functors:

Repp𝐺̌q𝑋 “ Repp𝐺̌q b𝐷p𝑋q Ñ Υň–modfact𝑢𝑛,𝑋

or equivalently, two continuous functors:

Repp𝐺̌q Ñ Υň–modfact𝑢𝑛,𝑋 .

By lisseness along 𝑋, we obtain the result from Theorem 5.14.1 (alternatively: the methods of
Theorem 5.14.1 work when the point 𝑥 is allowed to vary, giving the result).

�

Remark 7.10.2. In what follows, we will see that the isomorphism of Theorem 7.9.1 is uniquely
pinned down by a choice of isomorphism over 𝑋, i.e., an isomorphism as in Lemma 7.10.1. In-
deed, this will follow from Proposition 7.18.2. Note that we have constructed such an isomorphism
explicitly in the proof of Theorem 5.14.1, and therefore this completely pins down Theorem 7.9.1.

7.11. Digression: a 𝑡-structure on factorization modules. We now digress to discussion the
following result.

Proposition 7.11.1. (1) There is a (necessarily unique) 𝑡-structure on Υň–modfact𝑢𝑛,𝑋𝐼 such that

the forgetful functor:

Oblvϒň : Υň–modfact𝑢𝑛,𝑋𝐼 Ñ 𝐷pDiv8¨𝑥eff,𝑋𝐼 q (7.11.1)

is 𝑡-exact.
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(2) With respect to this 𝑡-structure, the chiral induction functor:

Ind𝑐ℎ : ň𝑋–mod𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼

is 𝑡-exact with respect to the 𝑡-structure on the left hand side coming from Proposition 7.7.1.
(3) This 𝑡-structure is left and right complete.

Proof. Note that we have a commutative diagram:

Υň–modfact𝑢𝑛,𝑋𝐼
//

Oblvϒň
��

ň𝑋–mod𝑋𝐼

��
𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 q
𝑖! // 𝐷pGr𝑇,𝑋𝐼 q

(7.11.2)

where we use 𝑖 to denote the map Gr𝑇,𝑋𝐼 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 .

Define pΥň–modfact𝑢𝑛,𝑋𝐼 q
ď0 as the subcategory generated under colimits by ň𝑋–modď0

𝑋𝐼 by Ind𝑐ℎ.

This defines a 𝑡-structure in the usual way. Note that an object lies in pΥň–modfact𝑢𝑛,𝑋𝐼 q
ą0 if and only

if its image under Oblv𝑐ℎ lies in ň𝑋–modą0𝑋𝐼 .

The main observation is that the composition Oblvϒň ˝ Ind𝑐ℎ is 𝑡-exact:

The PBW theorem for factorization modules [Ras1] S7.19 says that for𝑀 P ň𝑋–mod𝑋𝐼 , Ind𝑐ℎp𝑀q

has a filtration as an object of 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 q with subquotients given by the ˚-pushforward of:

ň𝑋r1sb . . .b ň𝑋r1s
looooooooooomooooooooooon

𝑛 times

b𝑀 P 𝐷
`

pDivΛ̌𝑝𝑜𝑠

eff q𝑛 ˆGr𝑇,𝑋𝐼

˘

along the addition map to DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 . Formation of this exterior product is obviously 𝑡-exact, and

the ˚-pushforward operation is as well by finiteness, giving our claim.
Then from the commutative diagram (7.11.2), we see that Oblv𝑐ℎ ˝ Ind𝑐ℎ is left 𝑡-exact. This

immediately implies the 𝑡-exactness of Ind𝑐ℎ.
It remains to show that Oblvϒň is 𝑡-exact. By the above computation of Oblvϒň Ind𝑐ℎ, it is right

𝑡-exact.
Suppose 𝑀 P Υň–modfact𝑢𝑛,𝑋𝐼 with 𝑖! Oblvϒňp𝑀q P 𝐷pGr𝑇,𝑋𝐼 qą0. By factorization and since Υň P

𝐷pDivΛ̌𝑝𝑜𝑠

eff q♡, we deduce that Oblvϒňp𝑀q is in degree ą 0. By the commutative diagram (7.11.2),

this hypothesis is equivalent to assuming that 𝑀 P pΥň–modfact𝑢𝑛,𝑋𝐼 q
ą0, so we deduce our left 𝑡-

exactness.
Finally, that this 𝑡-structure is left and right complete follows immediately from (1).

�

Corollary 7.11.2. The functor Chevspec
ň,𝑋𝐼 : Repp𝐺̌q𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼 is 𝑡-exact.

7.12. ULA objects. Next, we discuss the behavior of ULA objects under the Chevalley functors.
In the discussion that follows, we use the term “ULA” as an abbreviation for “ULA over 𝑋𝐼 .”

7.13. We begin with a technical remark on the spectral side.

Proposition 7.13.1. (1) The functor Chevspec
ň,𝑋𝐼 maps ULA objects in Repp𝐺̌q𝑋𝐼 to ULA objects

in Υň–modfact𝑢𝑛,𝑋𝐼 .
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(2) For every 𝑉 P Repp𝐺̌qb𝐼 , the object Oblvϒň Chevspec
ň,𝑋𝐼 p𝑉 q P 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 q underlying

Chevspec
ň,𝑋𝐼 p𝑉 q is ind-ULA.

More precisely, if 𝑉 is compact, then for every 𝜆̌ P Λ̌, the restriction of this 𝐷-module to
the locus of divisors of total degree 𝜆̌ is ULA.41

Proof. The functor Repp𝐵̌q𝑋𝐼 Ñ ň𝑋–mod𝑋𝐼 preserves ULA objects by the same argument as in
Proposition 6.16.1, and then the first part follows from 𝐷p𝑋𝐼q-linearity of the adjoint functors

ň𝑋–mod𝑋𝐼

Ind𝑐ℎ// Υň–modfact𝑢𝑛,𝑋𝐼oo .

For the second part, we claim more generally that Oblvϒň Ind𝑐ℎ maps ULA objects in Repp𝐵̌q𝑋𝐼

to objects in 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 q whose restriction to each degree is ULA.

To this end, we immediately reduce to the case of one-dimensional representations of 𝐵̌𝐼 , since
every compact object of Repp𝐵̌qb𝐼 admits a finite filtration with such objects as the subquotients.

In the case of the trivial representation of 𝐵̌, the corresponding object is the vacuum repre-
sentation, which in this setting is obtained by ˚-pushforward from 𝜔𝑋𝐼 b Υň along the obvious
map:

𝑋𝐼 ˆDivΛ̌𝑝𝑜𝑠

eff Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 .

Since this map is a closed embedding, we obtain the claim since 𝜔𝑋𝐼 b Υň obviously has the
corresponding property.

The general case of a 1-dimensional representation differs from this situation by a translation on

DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 , giving the claim here as well.

�

7.14. Next, we make the following observation on the geometric side.

Proposition 7.14.1. (1) For every 𝑉 P Repp𝐺̌qb𝐼 , Oblvϒň Chevgeom
ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq P 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 q

is ind-ULA.
More precisely, for 𝑉 compact and 𝜆̌ P Λ̌, the restriction of Oblvϒň Chevgeom

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq

to the locus of divisors of total degree 𝜆̌ is ULA.
(2) For 𝑉 P Repp𝐺̌qb𝐼,♡, Chevgeom

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq P Υň–modfact𝑢𝑛,𝑋𝐼 lies in cohomological degree

´|𝐼|.

Proof. As in Proposition 7.13.1 suffices to show that for 𝑉 P Repp𝐺̌qb𝐼,♡ compact, then that

Chevgeom
ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq admits a filtration by Λ̌𝐼 with 𝜇̌-subquotient Ind𝑐ℎpℓ𝜇̌qb𝑉 p𝜇̌q, where 𝑉 p𝜇̌q is

the 𝜇̌-weight space of 𝑉 and ℓ𝜇̌ P Repp𝐵̌qb𝐼,♡ is the corresponding one dimensional representation.
This follows exactly as in Step 2 of the proof of Theorem 5.14.1: the weight space of 𝑉 P Repp𝐺̌qb𝐼

appears as a semi-infinite integral à la Mirkovic-Vilonen by the appropriate moving points version
of Lemma 5.15.1.

�

7.15. We now deduce the following key result, comparing Chevgeom
ň,𝑋𝐼 and Chevspec

ň,𝑋𝐼 on ULA objects.

Proposition 7.15.1. The two functors:

41Note that this claim is wrong if we do not restrict to components, since ULA objects are compact.
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Chevgeom
ň,𝑋𝐼 ˝Loc𝑋𝐼 : Repp𝐺̌qb𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼

Chevspec
ň,𝑋𝐼 ˝Loc𝑋𝐼 : Repp𝐺̌qb𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼

are isomorphic.
More precisely, there exists a unique such isomorphism extending the isomorphism between these

functors over 𝑋𝐼
𝑑𝑖𝑠𝑗 coming from Lemma 7.10.1 and factorization.

Proof. It suffices to produce an isomorphism between the restrictions of Chevgeom
ň,𝑋𝐼 and Chevspec

ň,𝑋𝐼 to

the category of compact objects in the heart of Repp𝐺̌qb𝐼,♡.
Suppose 𝑉 P Repp𝐺̌qb𝐼,♡ is compact. By [Rei] IV.2.8,42 ULAness of Chevgeom

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq and

perversity (up to shift) imply that as a 𝐷-module, Chevgeom
ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq is concentrated in one

degree, and as such, it is middle extended from this disjoint locus. The same conclusion holds for
Chevspec

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq for the same reason.

Since the isomorphism above over DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 ˆ𝑋𝐼𝑋𝐼

𝑑𝑖𝑠𝑗 is compatible with factorization mod-

ule structures, we deduce that the factorization module structures on Chevgeom
ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq and

Chevspec
ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq are compatible with the middle extension construction, and we obtain that

these two are isomorphic as factorization modules for Υň.
�

Corollary 7.15.2. The functor Chevgeom
ň,𝑋𝐼 is 𝑡-exact.

Proof. For simplicity, we localize to assume that 𝑋 is affine.
First, we claim that Chevgeom

ň,𝑋𝐼 is right 𝑡-exact.

Indeed, as in the proof of Proposition 6.34.1, Repp𝐺̌qď0
𝑋𝐼 is generated under colimits by objects

of the form Ind OblvpLoc𝑋𝐼 p𝑉 qq “ 𝐷𝑋𝐼

!
b Loc𝑋𝐼 p𝑉 q for 𝑉 P Repp𝐺̌𝐼qď|𝐼| “ Repp𝐺̌qb𝐼,ď|𝐼|.

The functor 𝐷𝑋𝐼

!
b ´ is 𝑡-exact on 𝐷pDivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼 q (since after applying forgetful functors, it is

given by tensoring with the ind-vector bundle that is the pullback of differential operators on 𝑋𝐼),
and since:

Chevgeom
ň,𝑋𝐼 p𝐷𝑋𝐼

!
b Loc𝑋𝐼 p𝑉 qq “ 𝐷𝑋𝐼

!
bChevgeom

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq
Prop. 7.15.1

“ 𝐷𝑋𝐼

!
bChevspec

ň,𝑋𝐼 pLoc𝑋𝐼 p𝑉 qq

we obtain the result from Corollary 7.11.2.
For left 𝑡-exactness: let 𝑝 : 𝐼 � 𝐽 be given, and let 𝑖𝑝 denote the corresponding locally closed em-

bedding 𝑋𝐽
𝑑𝑖𝑠𝑗 Ñ 𝑋𝐼 . Note that the functors 𝑖!𝑝 Chevgeom

ň,𝑋𝐼 are left 𝑡-exact by factorization. Therefore,

since Chevgeom
ň,𝑋𝐼 is filtered by the functors 𝑖𝑝,˚,𝑑𝑅𝑖

!
𝑝 Chevgeom

ň,𝑋𝐼 , we obtain the claim.

�

Warning 7.15.3. It is not clear at this point that the isomorphisms of Proposition 7.15.1 are
compatible with restrictions to diagonals. Here we note that, as in the proof of loc. cit., this question
reduces to the abelian category, and here it becomes a concrete, yes-or-no question. The problem
is that the isomorphism of Proposition 7.15.1 was based on middle extending from 𝑋𝐼

𝑑𝑖𝑠𝑗 Ď 𝑋𝐼 ,

42Note that loc. cit. only formulates its claim for complements to smooth Cartier divisors, since this reference only
defines the ULA condition in this case. However, the claim from loc. cit. is still true in this generality, as one sees by
combining Beilinson’s theory [Bei] and Corollary B.5.3.
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and for 𝑋𝐽 ãÑ 𝑋𝐼 , 𝑋𝐼
𝑑𝑖𝑠𝑗 and 𝑋𝐽

𝑑𝑖𝑠𝑗 do not speak to one another. We will deal with this problem in
S7.22.

7.16. Factoring through Repp𝐵̌q𝑋𝐼 . Next, we construct a functor:

1
Chevgeom

ň,𝑋𝐼 : Repp𝐺̌q𝑋𝐼 Ñ Repp𝐵̌q𝑋𝐼

so that the composition:

Repp𝐺̌q𝑋𝐼

1
Chevgeom

ň,𝑋𝐼

ÝÝÝÝÝÝÑ Repp𝐵̌q𝑋𝐼 Ñ ň𝑋–mod𝑋𝐼
Ind𝑐ℎ
ÝÝÝÑ Υň–modfact𝑢𝑛,𝑋𝐼

identifies with Chevgeom
ň,𝑋𝐼 .

Lemma 7.16.1. The 𝑡-exact functor:

Repp𝐵̌q𝑋𝐼 Ñ ň𝑋–mod𝑋𝐼
Ind𝑐ℎ
ÝÝÝÑ Υň–modfact𝑢𝑛,𝑋𝐼

is fully-faithful on the hearts of the 𝑡-structures.

Proof. The functor Repp𝐵̌q𝑋𝐼 Ñ ň𝑋–mod𝑋𝐼 is obviously fully-faithful (even at the derived level),
as is clear by writing both categories as limits and using the fully-faithfulness of the functors
Repp𝐵̌qb𝐽 Ñ ň–modpRepp𝑇 qb𝐽 .

So it remains to show that Ind𝑐ℎ : ň𝑋–mod𝑋𝐼 Ñ Υň–modfact𝑢𝑛,𝑋𝐼 is fully-faithful at the abelian

categorical level.
This follows from the chiral PBW theorem, as in the proof of Proposition 7.11.1:
Indeed, let Oblv𝑐ℎ denote the right adjoint to Ind𝑐ℎ. Then for 𝑀 P ň𝑋–mod♡

𝑋𝐼 , Oblv𝑐ℎ Ind𝑐ℎp𝑀q
is filtered as a 𝐷-module with associated graded terms:

𝑖! add𝑛,˚,𝑑𝑅

´

ň𝑋r1sb . . .b ň𝑋r1s
looooooooooomooooooooooon

𝑛 times

b 𝑖˚,𝑑𝑅p𝑀q
¯

P 𝐷pGr𝑇,𝑋𝐼 q (7.16.1)

where add𝑛 is the addition map:

pDivΛ̌𝑝𝑜𝑠

eff q𝑛 ˆDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 Ñ DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼

and 𝑖 is the embedding Gr𝑇,𝑋𝐼 ãÑ DivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼 . It suffices to show that 𝐻0 of this term vanishes for

𝑛 ‰ 0.
Observe that we have a fiber square:

Greff𝑇,𝑋𝐼 ˆ
𝑋𝐼
. . . ˆ

𝑋𝐼
Greff𝑇,𝑋𝐼

loooooooooooooomoooooooooooooon

𝑛 times

ˆ
𝑋𝐼

Gr𝑇,𝑋𝐼
//

��

pDivΛ̌𝑝𝑜𝑠

eff q𝑛 ˆDivΛ̌𝑝𝑜𝑠,8¨𝑥
eff,𝑋𝐼

add𝑛

��

Gr𝑇,𝑋𝐼
𝑖 // DivΛ̌𝑝𝑜𝑠,8¨𝑥

eff,𝑋𝐼

where Greff𝑇,𝑋𝐼 is the locus of points in 𝑋𝐼 ˆ Diveff of pairs pp𝑥𝑖q𝑖P𝐼 , 𝐷q so that 𝐷 is zero when

restricted to 𝑋zt𝑥𝑖u (so the reduced fiber of Greff𝑇,𝑋𝐼 over a point 𝑥 P 𝑋
Δ
ÝÑ 𝑋𝐼 is the discrete

scheme Λ̌𝑝𝑜𝑠).
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Let Γ Ď 𝑋 ˆ𝑋𝐼 be the incidence divisor, as in the proof of Lemma 7.7.1. For 𝜆̌ given, we have a

canonical map 𝛽𝜆̌ : Γ Ñ Greff𝑇,𝑋𝐼 over 𝑋𝐼 , sending p𝑥, p𝑥𝑖q
𝑛
𝑖“1q P Γ to the divisor 𝜆̌¨𝑥. More generally,

for every datum p𝜆̌𝑟q
𝑛
𝑟“1 with 𝜆̌𝑟 P Λ̌𝑝𝑜𝑠, we obtain a map:

𝛽p𝜆̌𝑟q
𝑛
𝑟“1 : Γ ˆ

𝑋𝐼
. . . ˆ

𝑋𝐼
Γ Ñ Greff𝑇,𝑋𝐼 ˆ

𝑋𝐼
. . . ˆ

𝑋𝐼
Greff𝑇,𝑋𝐼 .

By base-change, the !-restriction of ň𝑋r1sb. . .bň𝑋r1sb𝑖˚,𝑑𝑅p𝑀q to Greff𝑇,𝑋𝐼 ˆ
𝑋𝐼
. . .ˆ

𝑋𝐼
Greff𝑇,𝑋𝐼 ˆ

𝑋𝐼
Gr𝑇,𝑋𝐼

is the direct sum of terms:

𝛽
p𝛼̌𝑟q

𝑛
𝑟“1

˚,𝑑𝑅

´

𝑝!1𝜑
!pň𝛼̌1

!
b 𝑘𝑋r1sq

!
b . . .

!
b 𝑝!𝑛𝜑

!pň𝛼̌𝑛
!
b 𝑘𝑋r1sq

!
b 𝑝!𝑛`1p𝑀q

¯

.

where the 𝑝𝑖 are the projections and 𝜙 is the map Γ Ñ 𝑋, and where the sum runs over all 𝑛-tuples
p𝛼̌𝑟q

𝑛
𝑟“1 of positive coroots. Since 𝑘𝑋r1s “ 𝜔𝑋r´1s, these terms are concentrated in cohomological

degree ě 𝑛, which gives the claim.
�

Proposition 7.16.2. The functor Chevgeom
ň,𝑋𝐼 |Repp𝐺̌q♡

𝑋𝐼
factors through Repp𝐵̌q♡

𝑋𝐼 Ď Υň–modfact𝑢𝑛,𝑋𝐼 .

Proof. Since Repp𝐺̌qď0
𝑋𝐼 is generated under colimits by objects of the form Ind OblvpLoc𝑋𝐼 p𝑉 qq “

𝐷𝑋𝐼

!
bLoc𝑋𝐼 p𝑉 q for 𝑉 P Repp𝐺̌𝐼qď|𝐼| “ Repp𝐺̌qb𝐼,ď|𝐼|, Repp𝐺̌q♡

𝑋𝐼 is generated under (for emphasis:
possibly non-filtered) colimits by the top cohomologies of such objects, i.e., by objects of the form

𝐷𝑋𝐼

!
b Loc𝑋𝐼 p𝑉 q for 𝑉 P Repp𝐺̌qb𝐼 concentrated in degree |𝐼|.

But we have seen that such objects map into Repp𝐵̌q♡
𝑋𝐼 , giving the claim.

�

We now obtain the desired functor
1
Chevgeom

ň,𝑋𝐼 from Corollary 6.24.4, i.e., from the fact that

Repp𝐺̌q𝑋𝐼 is the derived category of its heart. These functors factorize as one varies 𝐼.

7.17. Kernels. By Lemma 6.32.1, the functor
1
Chevgeom

ň,𝑋𝐼 is defined by a kernel:

K
geom
𝑋𝐼 P Repp𝐺̌ˆ 𝐵̌q𝑋𝐼 .

Recall that the object of Repp𝐵̌q𝑋𝐼 underlying K
geom
𝑋𝐼 is

1
Chevgeom

ň,𝑋𝐼 pO𝐺̌,𝑋𝐼 q. Moreover, we recall that

one recovers the functor
1
Chevgeom

ň,𝑋𝐼 by noting that for F P Repp𝐺̌q𝑋𝐼 , F
!
bK𝑋𝐼 P Repp𝐺̌ˆ 𝐺̌ˆ 𝐵̌q𝑋𝐼 ,

and then we take invariants with respect to 𝐺̌𝐽 on each 𝑈p𝑝q (𝑝 : 𝐼 � 𝐽), where 𝐺̌𝐽 acts diagonally
through the embedding 𝐺̌ ãÑ 𝐺̌ˆ 𝐺̌).

Let Kspec
𝑋𝐼 P Repp𝐺̌ˆ 𝐵̌q𝑋𝐼 denote the kernel defining the tautological functor Repp𝐺̌q Ñ Repp𝐵̌q,

i.e., for each 𝑝 : 𝐼 � 𝐽 , K
spec
𝑋𝐼 |𝑈p𝑝q is given by the regular representation O𝐺̌𝐽 considered as a

p𝐺̌𝐽 , 𝐵̌𝐽q-bimodule by restriction from its p𝐺̌𝐽 , 𝐺̌𝐽q-bimodule structure (i.e., forgetting K
spec
𝑋𝐼 down

to Repp𝐺̌q𝑋𝐼 , we recover O𝐺̌,𝑋𝐼 from S6).

7.18. We have the following preliminary observations about these kernels.

Lemma 7.18.1. Kgeom
𝑋𝐼 and K

spec
𝑋𝐼 are concentrated in cohomological degree ´|𝐼| in Repp𝐺̌ˆ 𝐵̌q𝑋2.
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Proof. For K
spec
𝑋𝐼 , this follows from Lemma 6.24.3.

By construction, we recover K
geom
𝑋𝐼 as an object of Repp𝐵̌q𝑋𝐼 by evaluating

1
Chevgeom

ň,𝑋𝐼 on O𝐺̌,𝑋𝐼 .

Since this object is concentrated in degree ´|𝐼| by Lemma 6.24.3, we obtain the claim from 𝑡-
exactness of Chevgeom

ň,𝑋𝐼 .

�

Proposition 7.18.2. The group43 of automorphisms of Kspec
𝑋𝐼 restricting to the identity automor-

phism on 𝑋𝐼
𝑑𝑖𝑠𝑗 is trivial.

Proof. Note that the underlying object of Gpd underlying this group is a set by Lemma 7.18.1.
Then automorphisms of Kspec

𝑋𝐼 inject into automorphisms of O𝐺̌,𝑋𝐼 P Repp𝐺̌q𝑋𝐼 , so it suffices to
verify the claim here.

By adjunction, we have: 44

HomRepp𝐺̌q
𝑋𝐼
pO𝐺̌,𝑋𝐼 ,O𝐺̌,𝑋𝐼 q “ Hom𝐷p𝑋𝐼qpO𝐺̌,𝑋𝐼 , 𝜔𝑋𝐼 q.

Therefore, it suffices to show that:

Hom𝐷p𝑋𝐼qpO𝐺̌,𝑋𝐼 , 𝜔𝑋𝐼 q Ñ Hom𝐷p𝑋𝐼
𝑑𝑖𝑠𝑗q

p𝑗!pO𝐺̌,𝑋𝐼 q, 𝜔𝑋𝐼
𝑑𝑖𝑠𝑗
q (7.18.1)

is an injection, where 𝑗 denotes the open embedding 𝑋𝐼
𝑑𝑖𝑠𝑗 ãÑ 𝑋𝐼 .

Note that 𝑗!pO𝐺̌,𝑋𝐼 q » 𝑗!pLoc𝑋𝐼 pO𝐺̌qq is obviously ind-lisse, so 𝑗! is defined on it. Let 𝑖 denote

the closed embedding of the union of all diagonal divisors into 𝑋𝐼 , so 𝑗 is the complementary open
embedding. We then have the long exact sequence:

0 Ñ Homp𝑖˚,𝑑𝑅𝑖
˚,𝑑𝑅pO𝐺̌,𝑋𝐼 q, 𝜔𝑋𝐼 q Ñ HompO𝐺̌,𝑋𝐼 , 𝜔𝑋𝐼 q Ñ Homp𝑗!𝑗

!pO𝐺̌,𝑋𝐼 q, 𝜔𝑋𝐼 q “

Homp𝑗!pO𝐺̌,𝑋𝐼 q, 𝜔𝑋𝐼
𝑑𝑖𝑠𝑗
q Ñ . . . .

We can compute the first term as:

Homp𝑖˚,𝑑𝑅𝑖
˚,𝑑𝑅pO𝐺̌,𝑋𝐼 q, 𝜔𝑋𝐼 q “ Homp𝑖˚,𝑑𝑅pO𝐺̌,𝑋𝐼 q, 𝑖

!p𝜔𝑋𝐼 qq

which we then see vanishes, since 𝑖˚,𝑑𝑅pO𝐺̌,𝑋𝐼 q is obviously concentrated in cohomological degrees

ď ´|𝐼| (since O𝐺̌,𝑋𝐼 is in degree ´|𝐼|), while 𝑖!p𝜔𝑋𝐼 q is the dualizing sheaf of a variety of dimension

|𝐼| ´ 1, and therefore is concentrated in cohomological degrees ě ´|𝐼| ` 1.
�

Remark 7.18.3. Note that by factorization and by the |𝐼| “ 1 case, we have an isomorphism
between K

geom
𝑋𝐼 and K

spec
𝑋𝐼 over the disjoint locus. We deduce from Proposition 7.18.2 that there is

at most one isomorphism extending this given isomorphism, or equivalently, there is at most one
isomorphism between

1
Chevgeom

ň,𝑋𝐼 and the functor of restriction of representations that extends the

known isomorphism over the disjoint locus.

43Here by group, we mean a group object of Gpd.
44We emphasize here that Hom means the the groupoid of maps, not the whole chain complex of maps. In particular,
these Homs are actually sets, not more general groupoids.
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7.19. Commutative structure. The following discussion will play an important role in the sequel.
By factorization:

𝐼 ÞÑ K
geom
𝑋𝐼 :“

1
Chevgeom

ň,𝑋𝐼 pO𝐺̌,𝑋𝐼 q P Repp𝐺̌ˆ 𝐵̌q𝑋𝐼

is a factorization algebra in a commutative factorization category.

Lemma 7.19.1. 𝐼 ÞÑ K
geom
𝑋𝐼 is a commutative factorization algebra.

Remark 7.19.2. Since each term K
geom
𝑋𝐼 is concentrated in cohomological degree ´|𝐼|, this factor-

ization algebra is classical, i.e., of the kind considered in [BD]. In particular, its commutativity is
a property, not a structure.

Proof of Lemma 7.19.1. Let Ξ denote the functor:

Ξ : Repp𝐺̌ˆ 𝐵̌q𝑋 b Repp𝐺̌ˆ 𝐵̌q𝑋 Ñ Repp𝐺̌ˆ 𝐵̌q𝑋2 .

By [BD] S3.4, we only need to show that there is a map:

ΞpKgeom
𝑋 bK

geom
𝑋 q Ñ K

geom
𝑋2 P Repp𝐺̌ˆ Repp𝐵̌q𝑋2 (7.19.1)

extending the factorization isomorphism on 𝑋2z𝑋.
Let 𝑖 denote diagonal embedding 𝑋 ãÑ 𝑋2 and let 𝑗 denote the complementary open embedding

𝑋2
𝑑𝑖𝑠𝑗 ãÑ 𝑋2.

Since 𝑖!pKgeom
𝑋2 q “ K

geom
𝑋 is in cohomological degree ´1, we have a short exact sequence:

0 Ñ K
geom
𝑋2 Ñ 𝑗˚,𝑑𝑅𝑗

!pK
geom
𝑋2 q Ñ 𝑖˚,𝑑𝑅pK

geom
𝑋 qr1s Ñ 0

in the shifted heart of the 𝑡-structure.
Therefore, the obstruction to a map (7.19.1) is the existence of a non-zero map:

K
geom
𝑋 bK

geom
𝑋 Ñ 𝑖˚,𝑑𝑅pK

geom
𝑋 qr1s.

We know (from the 𝐼 “ ˚ case of S7.10) that K
geom
𝑋 “ Loc𝑋pO𝐺̌q, so K

geom
𝑋 b K𝑋 is similarly

localized. It follows that 𝑖˚,𝑑𝑅pKgeom
𝑋 b K

geom
𝑋 q is concentrated in cohomological degree ´3, while

K
geom
𝑋 r1s is concentrated in cohomological degeree ´2, giving the claim.

�

7.20. Lemma 7.19.1 endows K
geom
𝑋 with the structure of commutative algebra object of Repp𝐺̌ˆ

𝐵̌q𝑋 . Moreover, since K
geom
𝑋 is isomorphic to O𝐺̌,𝑋 , this object lies in the full subcategory:

Repp𝐺̌ˆ 𝐺̌q𝑋 Ď Repp𝐺̌ˆ 𝐵̌q𝑋 .

Moreover, the Beilinson-Drinfeld theory [BD] S3.4 then implies that Kgeom
𝑋𝐼 can be recovered from

K
geom
𝑋 equipped with its commutative algebra structure. For example, this observation already buys

us that for every 𝐼, K𝑋𝐼 P Repp𝐺̌ˆ 𝐺̌q𝑋𝐼 Ď Repp𝐺̌ˆ 𝐵̌q𝑋𝐼 , and that 𝐼 ÞÑ K𝑋𝐼 has a factorization
commutative algebra structure.

Using Lemma 6.32.1, it follows that the factorization functor
1
Chevgeom

ň is induced from a sym-

metric monoidal functor equivalence 𝐹 : Repp𝐺̌q
»
ÝÑ Repp𝐺̌q by composing 𝐹 with the restriction

functor to Repp𝐵̌q and applying the functoriality of the construction C ÞÑ p𝐼 ÞÑ C𝑋𝐼 q from S6.
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7.21. We claim that 𝐹 is equivalent as a symmetric monoidal functor to the identity functor.
Indeed, this follows from the next lemma.

Lemma 7.21.1. Let r𝐹 : Repp𝐺̌q Ñ Repp𝐺̌q be a symmetric monoidal equivalence such that for

every 𝜆̌ P Λ̌`, r𝐹 p𝑉 𝜆̌q is equivalent to 𝑉 𝜆̌ in Repp𝐺̌q. Then r𝐹 is equivalent (non-canonically) to the
identity functor as a symmetric monoidal functor.

Proof. By the Tannakian formalism, r𝐹 is given by restriction along an isomorphism 𝜙 : 𝐺̌
»
ÝÑ 𝐺̌.

We need to show that 𝜙 is an inner automorphism. We now obtain the result, since the outer
automorphism group of a reductive group is the automorphism group of its based root datum
and since our assumption implies that the corresponding isomorphism is the identity on Λ̌` and
therefore on all of Λ̌.

�

7.22. Trivializing the central gerbe. The above shows that there exists an isomorphism of the
factorization functors Chevgeom

ň and Chevspec
ň .

However, the above technique is not strong enough yet to produce a particular isomorphism.
Indeed, the isomorphism of Lemma 7.21.1 is non-canonical: the problem is that the identity functor
of Repp𝐺̌q admits generally admits automorphisms as a symmetric monoidal functor: this automor-
phism group is the canonical the set of 𝑘-points of the center 𝑍p𝐺̌q.

Unwinding the above constructions, we see that the data of a factorizable isomorphism Chevgeom
ň

and Chevspec
ň form a trivial 𝑍p𝐺̌q-gerbe.

In order to trivialize this gerbe, it suffices (by Proposition 7.18.2, c.f. Remark 7.18.3) to show
the following.

Proposition 7.22.1. There exists a (necessarily unique) isomorphism of factorization functors
Chevgeom

ň » Chevspec
ň whose restriction to 𝑋 is the one given by Lemma 7.10.1.

Remark 7.22.2. Even when 𝑍p𝐺̌q “ ˚, this assertion is not obvious: c.f. Warning 7.15.3. Essentially,
the difficulty is that the identity functor of Repp𝐺̌q admits many automorphisms that are not tensor
automorphisms.

7.23. We will deduce the above proposition using the following setup.

Lemma 7.23.1. Suppose that we are given a symmetric monoidal functor 𝐹 : Repp𝐺̌q Ñ Repp𝐺̌q
such that 𝐹 is (abstractly) isomorphic to the identity as a tensor functor, and such that we are
given a fixed isomorphism:

𝛼 : Res𝐺̌
𝑇
˝𝐹 » Res𝐺̌

𝑇

of symmetric monoidal functors Repp𝐺̌q Ñ Repp𝑇 q (Res indicates the restriction functor here).
Then there exists an isomorphism of symmetric monoidal functors between 𝐹 and the identity

functor on Repp𝐺̌q inducing 𝛼 if and only if, for every 𝑉 P Repp𝐺̌q♡ irreducible, there exists an

isomorphism 𝛽𝑉 : 𝐹 p𝑉 q
»
ÝÑ 𝑉 P Repp𝐺̌q inducing the map:

𝛼p𝑉 q : Res𝐺̌
𝑇
𝐹 p𝑉 q » Res𝐺̌

𝑇
p𝑉 q P Repp𝑇 q

upon application of Res𝐺̌
𝑇
.

Moreover, a symmetric monoidal isomorphism between 𝐹 and the identity compatible with 𝛼 is
unique if it exists. At the level of objects, it is given by the maps 𝛽𝑉 .
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Remark 7.23.2. In words: an isomorphism 𝛼 as above may not be compatible with any tensor
isomorphism between 𝐹 and the identity. Indeed, consider the case where 𝐺̌ is adjoint, so that a
tensor isomorphism between 𝐹 and the identity is unique if it exists, while there are many choices
for 𝛼 as above. However, if this isomorphism exists, it is unique. Moreover, there is an object-wise
criterion to test whether or not such an isomorphism exists.

Proof. Choose some isomorphism 𝛽 between 𝐹 and the identity functor (of symmetric monoidal

functors). From 𝛼, we obtain a symmetric monoidal automorphism of Res𝐺̌
𝑇

. By Tannakian theory,

this is given by the action of some 𝑡 P 𝑇 p𝑘q.
Since the symmetric monoidal automorphism group of the identity functor of Repp𝐺̌q is the center

of this group, it suffices to show that 𝑡 lies in the center of 𝐺̌. (Moreover, we immediately deduce
the uniqueness from this observation).

To this end, it suffices to show that 𝑡 acts by a scalar on every irreducible representation on 𝐺̌.
But by Schur’s lemma, this is follows from our hypothesis.

�

7.24. We now indicate how to apply Lemma 7.23.1 in our setup.

7.25. First, we give factorizable identifications of the composite functors:

Repp𝐺̌q𝑋𝐼

1
Chevgeom

ň,𝑋𝐼

ÝÝÝÝÝÝÑ Repp𝐵̌q𝑋𝐼 Ñ Repp𝑇 q𝑋𝐼

with the functors induced from Res𝐺̌
𝑇

.
Indeed, we have done this implicitly already in the proof of Proposition 7.14.1: one rewrites the

functors Chevgeom
ň,𝑋𝐼 using (the appropriate generalization of) Lemma 5.15.1, and then uses the (fac-

torizable45 of the) Mirkovic-Vilonen identification of restriction as cohomology along semi-infinite
orbits.

7.26. Now suppose that 𝑉 P Repp𝐺̌q♡ is irreducible.
Then for 𝑥 P 𝑋, Theorem 5.14.1 produces a certain isomorphism between Chevgeom

ň,𝑥 p𝑉 q and

Chevspec
ň,𝑥 p𝑉 q in Repp𝐵̌q♡ Ď Υň–modfact,♡𝑢𝑛,𝑥 .

To check that the conditions of Lemma 7.23.1 are satisfied, it suffices to show that this isomor-
phism induces the isomorphism of of S7.25 when we map to Repp𝑇 q.

Indeed, the isomorphism of Theorem 5.14.1 was constructed using a related isomorphism from
[BG2] Theorem 8.8. The isomorphism of [BG2] has the property above, as is noted in loc. cit.
Since the construction in Theorem 5.14.1 for reducing to the setting of [BG2] is compatible further
restriction to Repp𝑇 q, we obtain the claim.

Appendix A. Proof of Lemma 6.18.1

A.1. Suppose that we have a diagram 𝑖 ÞÑ C𝑖 P DGCat𝑐𝑜𝑛𝑡 of categories with each C𝑖 dualizable
with dual C_𝑖 in the sense of [Gai3].

In this case, we can form the dual diagram 𝑖 ÞÑ C_𝑖 .
We can ask: when is C :“ lim𝑖PI𝑜𝑝 C𝑖 dualizable with dual colim𝑖PI C

_
𝑖 ? More precisely, there is a

canonical Vect valued pairing between the limit and colimit here, and we can ask when it realizes
the two categories as mutually dual.

As in [Gai3], we recall that this occurs if and only if colim𝑖PI C
_
𝑖 is dualizable, which occurs if

and only if, for every D P DGCat𝑐𝑜𝑛𝑡, the canonical map:

45This generalization is straightforward given the Mirkovic-Vilonen theory and the methods of this section and S6.
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`

lim
𝑖PI𝑜𝑝

C𝑖
˘

bDÑ lim
𝑖PI𝑜𝑝

`

C𝑖 bD
˘

is an equivalence.
This section gives a criterion, Lemma A.2.1, in which this occurs, and which we will use to deduce

Lemma 6.18.1 in SA.3

A.2. A dualizability condition. Suppose we have a diagram:

C2

𝜓
��

C1
𝐹 // C3

of dualizable categories. Let C denote the fiber product of this diagram.
The main result of this section is the following.

Lemma A.2.1. Suppose that 𝜓 and 𝐹 have right adjoints 𝜙 and 𝐺 respectively. Suppose in addition
that 𝐺 is fully-faithful.

Then if each C𝑖 is dualizable, C is dualizable as well. Moreover, for each D P DGCat𝑐𝑜𝑛𝑡, the
canonical map:

CbDÑ C1 bD ˆ
C3bD

C2 bD (A.2.1)

is an equivalence.

The proof of this lemma is given in SA.7.

A.3. Proof of Lemma 6.18.1. We now explain how to deduce Lemma 6.18.1.

Proof that Lemma A.2.1 implies Lemma 6.18.1. Fix 𝐼 a finite set. We proceed by induction on |𝐼|,
the case |𝐼| “ 1 being obvious.

Recall that we have C P DGCat𝑐𝑜𝑛𝑡 rigid and symmetric monoidal, and 𝑋 a smooth curve.
By 1-affineness of 𝑋𝐼

𝑑𝑅 and 𝑋𝐼 (c.f. [Gai4]), we easily reduce to checking the corresponding

fact in the quasi-coherent setting. Note that by rigidity of QCohp𝑋𝐼q, dualizability questions in
QCohp𝑋𝐼q–mod are equivalent to dualizability questions in DGCat𝑐𝑜𝑛𝑡.

Let 𝑈 Ď 𝑋𝐼 be the complement of the diagonally embedded 𝑋 ãÑ 𝑋𝐼 . We can then express C𝑋𝐼

as a fiber product:

QCohp𝑋𝐼 ,C𝑋𝐼 q //

��

QCohp𝑋𝐼 ,C𝑋𝐼 q b
QCohp𝑋𝐼q

QCohp𝑈q

��
QCohp𝑋𝐼q b C // QCohp𝑈q b C.

The two structure functors involved in defining this pullback admit continuous right adjoints,
and the right adjoint to the bottom functor is fully-faithful. Moreover, the bottom two terms are
obviously dualizable. Therefore, by Lemma A.2.1, it suffices to see that formation of the limit
involved in defining the top right term commutes with tensor products over QCohp𝑈q.

Note that 𝑈 is covered by the open subsets 𝑈p𝑝q for 𝑝 : 𝐼 � 𝐽 with |𝐽 | ą 1. By Zariski descent
for sheaves of categories, it suffices to check the commutation of tensor products and limits after
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restriction to each 𝑈p𝑝q. But this follows from factorization and induction, using the same cofinality
result as in S6.10.

�

A.4. The remainder of this section is devoted to the proof of Lemma A.2.1.

A.5. Gluing. Define the glued category Glue to consist of the triples pF,G, 𝜂q where F P C1, G P C2,
and 𝜂 is a morphism 𝜂 : 𝜓pGq Ñ 𝐹 pFq P C3.

Note that the limit C :“ C1 ˆC3 C2 is a full subcategory of Glue.

Lemma A.5.1. The functor C ãÑ Glue admits a continuous right adjoint.

Proof. We construct this right adjoint explicitly:

For pF,G, 𝜂q as above, define rF P C1 as the fiber product:

rF //

��

𝐺𝜓pGq

𝐺p𝜂q

��
F // 𝐺𝐹 pFq.

Since 𝐺 is fully-faithful, the map 𝜀 : 𝐹 prFq Ñ 𝐹𝐺𝜓pGq » 𝜓pGq is an isomorphism, and therefore

prF,G, 𝜀q defines an object of C. It is easy to see that the resulting functor is the desired right adjoint.
�

A.6. Let D P DGCat𝑐𝑜𝑛𝑡 be given.
Define GlueD as with Glue, but instead use the diagram:

C2 bD

𝜓bidD
��

C1 bD
𝐹bidD// C3 bD

Lemma A.6.1. The canonical functor:

GluebDÑ GlueD

is an equivalence.

Proof. First, we give a description of functors GlueÑ E P DGCat𝑐𝑜𝑛𝑡 for a test object E:
We claim that such a functor is equivalent to the datum of a pair 𝜉0 : C1 Ñ E and 𝜉1 : C2 Ñ E

of continuous functors, plus a natural transformation:

𝜉1𝜙𝐹 Ñ 𝜉0

of functors C1 Ñ E.
Indeed, given a functor Ξ : Glue Ñ E as above, we obtain such a datum as follows: for F P C1,

we let 𝜉0pFq :“ ΞpFr´1s, 0, 0q, for G P C2 we let 𝜉1pGq :“ Ξp0,G, 0q (here we write objects of Glue
as triples as above). The natural transformation comes from the boundary morphism for the exact
triangle Glue:

pF, 0, 0q Ñ pF, 𝜙𝐹 pFq, 𝜂Fq Ñ p0, 𝜙𝐹 pFq, 0q
`1
ÝÝÑ
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where 𝜂F is the adjunction map 𝜓𝜙𝐹 pFq Ñ 𝐹 pFq. It is straightforward to see that this construction
is an equivalence.

This universal property then makes the above property clear.
�

A.7. We now deduce the lemma.

Proof of Lemma A.2.1. We need to see that for every D P DGCat𝑐𝑜𝑛𝑡, the map (A.2.1) is an equiv-
alence.

First, observe that each of these categories is a full subcategory of GlueD. Indeed, for the left
hand side of (A.2.1), this follows from Lemma A.5.1, and for the right hand side, this follows from
Lemma A.6.1. Moreover, this is compatible with the above functor by construction.

Let 𝐿 denote the right adjoint to 𝑖 : C ãÑ Glue, and let 𝐿D denote the right adjoint to the
embedding:

𝑖D : C1 bD ˆ
C3bD

C2 bD ãÑ GlueD.

We need to show that:

p𝑖 ˝ 𝐿q b idD “ 𝑖D ˝ 𝐿D

as endofunctors of GlueD, since the image of the left hand side is the left hand side of (A.2.1), and
the image of the right hand side is the right hand side of (A.2.1).

But writing GlueD as GluebD, this becomes clear.
�

Appendix B. Universal local acyclicity

B.1. Notation. Let 𝑆 be a scheme of finite type and let C be a 𝐷p𝑆q-module category in DGCat𝑐𝑜𝑛𝑡.
Let QCohp𝑆,Cq denote the category Cb𝐷p𝑆q QCohp𝑆q.

Remark B.1.1. Everything in this section works with 𝑆 a general DG scheme almost of finite type.
The reader comfortable with derived algbraic geometry may therefore happily understand “scheme”
in the derived sense everywhere here.

B.2. The adjoint functors:46

QCohp𝑆q
Ind // 𝐷p𝑆q
Oblv

oo

induce adjoint functors:

QCohp𝑆,Cq
Ind // C.
Oblv

oo

Lemma B.2.1. The functor Oblv : CÑ QCohp𝑆,Cq is conservative.

Proof. This is shown in [GR] in the case C “ 𝐷p𝑆q.
In the general case, it suffices to show that Ind : QCohp𝑆,Cq Ñ C generates the target under

colimits. It suffices to show that the functor:

46Throughout this section, we use only the “left” forgetful and induction functors from [GR].
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QCohp𝑆q b CÑ 𝐷p𝑆q b CÑ 𝐷p𝑆q b
𝐷p𝑆q

C

generates, as it factors through Ind. But the first term generates by the [GR] result, and the second
term obviously generates.

�

B.3. Universal local acyclicity. We have the following notion.

Definition B.3.1. F P C is universally locally acyclic (ULA) over 𝑆 if OblvpFq P QCohp𝑆,Cq is
compact.

Notation B.3.2. We let C𝑈𝐿𝐴 Ď C denote the full (non-cocomplete) subcategory of ULA objects.

B.4. We have the following basic consequences of the definition.

Proposition B.4.1. For every F P C𝑈𝐿𝐴 and for every compact G P 𝐷p𝑆q, G
!
bF is compact in C.

Proof. Since Ind : QCohp𝑆q Ñ 𝐷p𝑆q generates the target, objects of the form IndpPq P 𝐷p𝑆q for
P P QCohp𝑆q perfect generate the compact objects in the target under finite colimits and direct
summands.

Therefore, it suffices to see that IndpPq
!
b F is compact for every perfect P P QCohp𝑆q.

To this end, it suffices to show:

IndpPbOblvpFqq
»
ÝÑ IndpPq

!
b F (B.4.1)

since the left hand side is obviously compact by the ULA condition on F. We have an obvious map
from the left hand side to the right hand side. To show it is an isomorphism, we localize to assume
𝑆 is affine, and then by continuity this allows us to check the claim when P “ O𝑆 . Then the claim
follows because Ind and Oblv are 𝐷p𝑆q-linear functors.

�

Corollary B.4.2. Any F P C𝑈𝐿𝐴 is compact in C.

Example B.4.3. Suppose that 𝑆 is smooth and C “ 𝐷p𝑆q. Then F is ULA if and only if F is compact
with lisse cohomologies. Indeed, if F is ULA, the cohomologies of OblvpFq P QCohp𝑆q are coherent
sheaves and therefore the cohomologies of F are lisse.

Proposition B.4.4. Suppose that 𝐹 : C Ñ D is a morphism in 𝐷p𝑆q–mod with a 𝐷p𝑆q-linear
right adjoint 𝐺. Then 𝐹 maps ULA objects to ULA objects.

Proof. We have the commutative diagram:

C
𝐹 //

Oblv
��

D

Oblv
��

QCohp𝑆,Cq // QCohp𝑆,Dq

and the functor QCohp𝑆,Cq Ñ QCohp𝑆,Dq preserves compacts by assumption on 𝐹 .
�
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B.5. Reformulations. For F P C, let HomCpF,´q : CÑ 𝐷p𝑆q denote the (possibly non-continuous)
functor right adjoint to 𝐷p𝑆q Ñ C given by tensoring with F.

Proposition B.5.1. For F P C, the following conditions are equivalent.

(1) F is ULA.
(2) HomCpF,´q : CÑ 𝐷p𝑆q is continuous and 𝐷p𝑆q-linear.
(3) For every M P 𝐷p𝑆q–mod and every 𝑀 PM compact, the induced object:

F b
𝐷p𝑆q

𝑀 P C b
𝐷p𝑆q

M

is compact.

Proof. First, we show (1) implies (2).
Proposition B.4.1, the functor 𝐷p𝑆q Ñ C of tensoring with F sends compacts to compacts, so its

right adjoint is continuous. We need to show that HomCpF,´q is 𝐷p𝑆q-linear.
Observe first that Oblv HomCpF,´q computes47 HomQCohp𝑆,CqpOblvpFq,Oblvp´qq : CÑ QCohp𝑆q.

Indeed, both are right adjoints to p´
!
b Fq ˝ Ind “ Ind ˝p´ b OblvpFqq, where we have identified

these functors by (B.4.1).
Then observe that:

HomQCohp𝑆,CqpOblvpFq,´q : QCohp𝑆,Cq Ñ QCohp𝑆q

is a morphism of QCohp𝑆q-module categories: this follows from rigidity of QCohp𝑆q. This now easily
gives the claim since Oblv is conservative.

Next, we show that (2) implies (3).
Let M and 𝑀 PM be as given. The composite functor:

Vect
´b𝑀
ÝÝÝÑM “ 𝐷p𝑆q b

𝐷p𝑆q
M

p´
!
bFqbidM

ÝÝÝÝÝÝÝÑ C b
𝐷p𝑆q

M

obviously sends 𝑘 P Vect to F b
𝐷p𝑆q

M. But this composite functor also obviously admits a continuous

right adjoint: the first functor does because 𝑀 is compact, and the second functor does because
𝐷p𝑆q Ñ C admits a 𝐷p𝑆q-linear right adjoint by assumption.

It remains to show that (3) implies (1), but this is tautological: take M “ QCohp𝑆q.
�

Remark B.5.2. Note that conditions (2) and (3) make sense for any algebra A P DGCat𝑐𝑜𝑛𝑡 replacing
𝐷p𝑆q and any F P C a right A-module category in DGCat𝑐𝑜𝑛𝑡. That (2) implies (3) holds in this
generality follows by the same argument.

Here is a sample application of this perspective.

Corollary B.5.3. For G P 𝐷p𝑈q holonomic and F P C𝑈𝐿𝐴, 𝑗!pG
!
b 𝑗!pFqq P C is defined, and the

natural map:

𝑗!pG
!
b 𝑗!pFqq Ñ 𝑗!pGq

!
b F

is an isomorphism. In particular, 𝑗!pFq is defined.

47The notation indicates internal Hom for QCohp𝑆,Cq considered as a QCohp𝑆q-module category.
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Proof. We begin by showing that there is an isomorphism:

𝑗!pHomCpF,´qq » HomC𝑈
p𝑗!pFq, 𝑗!p´qq

as functors CÑ 𝐷p𝑈q. Indeed, we have:

𝑗˚,𝑑𝑅𝑗
!pHomCpF,´qq “ 𝑗˚,𝑑𝑅p𝜔𝑈 q

!
bHomCpF,´q “ HomCpF, 𝑗˚,𝑑𝑅p𝜔𝑈 q

!
b p´qq

and the right hand side obviously identifies with 𝑗˚,𝑑𝑅HomC𝑈
p𝑗!pFq, 𝑗!p´qq.

Now for any rF P C, we see:

HomCp𝑗!pGq
!
b F, rFq “ Hom𝐷p𝑆qp𝑗!pGq,HomCpF,

rFqq “ Hom𝐷p𝑈qpG, 𝑗
!HomCpF,

rFqq “

Hom𝐷p𝑈qpG,HomCp𝑗
!pFq, 𝑗!prFqqq “ HomC𝑈

pG
!
b 𝑗!pFq, 𝑗!prFqq

as desired.
�

B.6. We now discuss a ULA condition for 𝐷p𝑆q-module categories themselves.

Definition B.6.1. C as above is ULA over 𝑆 if QCohp𝑆,Cq is compactly generated by objects of the
form PbOblvpFq with F P C𝑈𝐿𝐴 and P P QCohp𝑆q perfect.

Example B.6.2. 𝐷p𝑆q is ULA. Indeed, 𝜔𝑆 is ULA with Oblvp𝜔𝑆q “ O𝑆 .

Lemma B.6.3. If C is ULA, then C is compactly generated.

Proof. Immediate from conservativity of Oblv.
�

B.7. In this setting, we have the following converse to Proposition B.4.4.

Proposition B.7.1. For C ULA, a 𝐷p𝑆q-linear functor 𝐹 : C Ñ D admits a 𝐷p𝑆q-linear right
adjoint if and only if 𝐹 preserves ULA objects.

Proof. We have already seen one direction in Proposition B.4.4. For the converse, suppose 𝐹 pre-
serves ULA objects.

Since C is compactly generated and 𝐹 preserves compact objects, 𝐹 admits a continuous right
adjoint 𝐺.

We will check linearity using Proposition B.5.1:
Suppose that F P 𝐷p𝑆q. We want to show that the natural transformation:

F
!
b𝐺p´q Ñ 𝐺pF

!
b´q

of functors DÑ C is an equivalence.
It is easy to see that it is enough to show that for any G P C𝑈𝐿𝐴, the natural transformation of

functors DÑ 𝐷p𝑆q induced by applying HomCpG,´q is an equivalence.
But this follows from the simple identity HomDp𝐹 pGq,´q “ HomCpG, 𝐺p´qq. Indeed, we see:

HomCpG,F
!
b𝐺p´qq “ F

!
bHomCpG, 𝐺p´qq “ F

!
bHomDp𝐹 pGq, p´qq “

HomDp𝐹 pGq,F
!
b p´qq “ HomD

`

G, 𝐺pF
!
b p´qq

˘

as desired.
�
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B.8. Suppose that 𝑖 : 𝑇 ãÑ 𝑆 is closed with complement 𝑗 : 𝑈 ãÑ 𝑆.

Proposition B.8.1. Suppose C is ULA as a 𝐷p𝑆q-module category. Then 𝐹 : CÑ D a morphism
in 𝐷p𝑆q–mod is an equivalence if and only if if preserves ULA objects and the functors:

𝐹𝑈 : C𝑈 :“ C b
𝐷p𝑆q

𝐷p𝑈q Ñ D𝑈 :“ D b
𝐷p𝑆q

𝐷p𝑈q

𝐹𝑇 : C𝑇 :“ C b
𝐷p𝑆q

𝐷p𝑇 q Ñ D𝑇 :“ D b
𝐷p𝑆q

𝐷p𝑇 q

are equivalences.

Remark B.8.2. Note that a result of this form is not true without ULA hypotheses: the restriction
functor 𝐷p𝑆q Ñ 𝐷p𝑈q ‘ 𝐷p𝑇 q is 𝐷p𝑆q-linear and an equivalence over 𝑇 and over 𝑈 , but not an
equivalence.

Proof of Proposition B.8.1. By Proposition B.7.1, the functor 𝐹 admits a 𝐷p𝑆q-linear right adjoint
𝐺. We need to check that the unit and counit of this adjunction are equivalences.

By the usual Cousin dévissage, we reduce to checking that the unit and counit are equivalences
for objects pushed forward from 𝑈 and 𝑇 . But by 𝐷p𝑆q-linearity of our functors, this follows from
our assumption.

�
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