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Abstract. Ambitious proposals of Beilinson-Drinfeld-Gaitsgory suggest that local geometric Lang-
lands should extend “factorizably” over the moduli of finite sets of points in a curve, which is known
as Ran space. This framework gives an incarnation of the adèles in geometric Langlands. Combined
with algebro-geometric methods, factorization methods are quite useful in both global and local
geometric Langlands.

This paper is a part of their proposal. We extend Arkhipov-Berzukavnikov’s results in local
geometric Langlands to the factorization setting. To allow factorization, we use a version of Feigin-
Frenkel’s semi-infinite flag variety in place of the usual affine flag variety. Using this geometry,
we give a new construction of the Arkhipov-Berzukavnikov functor (for some full subcategories
anyway), and compare it to theirs.
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1. Introduction

1.1. This paper is a continuation of [Ras2]. The main result, Theorem 5.7.1, gives a Langlands
dual description of a piece of the factorizable (unramified) principal series category. As such, it
extends an equivalence of Arkhipov-Bezrukavnikov [AB] over the Ran space.

1.2. We assume the reader is familiar with the introduction to [Ras2]. In particular, we assume
the reader has absorbed the motivation for some ideas from there already.
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1.3. Notation. We fix 𝑘 a field of characteristic 0 throughout this paper.
Let 𝐺 be a split reductive group over a field 𝑘 of characteristic 0. Let 𝐵 be a Borel subgroup,

let 𝐵´ be an opposed Borel, let 𝑇 “ 𝐵 X 𝐵´ be the corresponding Cartan, and let 𝑁 Ď 𝐵 and
𝑁´ Ď 𝐵´ be the unipotent radicals. We denote Lie algebras in the standard way. We denote the
Langlands dual group by 𝐺̌, and let 𝐵̌ denote the corresponding Borel, and so on.

Let 𝑋 be a smooth curve, let 𝑥 P 𝑋 be a 𝑘-point. Let 𝐾𝑥 be Laurent series based at 𝑥, and let
𝑂𝑥 be the subring of Taylor series. Let 𝐺p𝐾𝑥q denote the algebraic loop group and let 𝐺p𝑂𝑥q be
the subgroup scheme of maps from the formal disc to 𝐺.

1.4. 𝐷-modules in infinite type. We need much from this theory. (Indeed, [Ras3] was written
specifically to supplement S2 of the present paper.)

In [Ras3] (see also [Ber]), the theory of 𝐷-modules is extended to schemes and indschemes of
infinite type. In fact, there are two such extensions, denoted 𝐷!p𝑆q and 𝐷˚p𝑆q for an indscheme
𝑆. For placid indschemes equipped with a dimension theory (see [Ras3]), the two are naturally
identified. In particular, this applies for 𝑆 “ 𝐺p𝐾𝑥q. We refer to loc. cit. for more details here.

For 𝑆 of ind-finite type, the two are also canonically identified with the traditional DG category
of 𝐷-modules on an indscheme and so are denoted by 𝐷p𝑆q.

1.5. The principal series category. The main player in this paper is the (unramified) principal
series category, which is defined as 𝐷!p𝐺p𝐾𝑥qq𝑁p𝐾𝑥q𝑇 p𝑂𝑥q. Here the notation indicates coinvariants
for 𝑁p𝐾𝑥q𝑇 p𝑂𝑥q Ď 𝐺p𝐾𝑥q, as defined in [Ber]. This category is an analogue in geometric Langlands
of the universal1 unramified principal series representation of a 𝑝-adic reductive group. (We refer
to [Cas] for the classical theory.)

We interpret this category as 𝐷-modules on the Feigin-Frenkel semi-infinite flag variety Fl
8
2
𝑥 “

𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q, and denote it by 𝐷!pFl
8
2
𝑥 q. Note that Fl

8
2
𝑥 does not make sense as an ind-

scheme, since this is a quotient by a group indscheme. 2

Each of the above makes sense factorizably over the Ran space. We refer to [BD2] and [Ras1] for
what this means.

Remark 1.5.1. Our interest in this paper is specifically in the factorizable (or chiral) principal
series category. The reason is that Ran space techniques are well-known to be essential for local-to-
global techniques in geometric Langlands. In fact, the origin of this project was to prove Conjecture
6.6.2 of [Gai7], which can be done by combining the main theorem of this paper with Gaitsgory’s
(unpublished) factorizable derived Satake theorem.

Remark 1.5.2. The purpose of S2 is to give complete definitions of all the players in this paper,
and to provide careful constructions of factorization structures. Therefore, in the introduction, we
allow ourselves to be somewhat lax about this. In particular, we will often indicate a factorization
category by its fiber at the point 𝑥 P 𝑋.

1.6. In this paper, we study the Whittaker category of 𝐷!pFl
8
2
𝑥 q. By definition, this means we

take 𝑁´p𝐾𝑥q-invariants3 against a non-degenerate character 𝜓 : 𝑁´p𝐾𝑥q Ñ G𝑎. We denote the

resulting category by Whit
8
2
𝑥 .

1Unramified principal series means that one parabolically induces a representation from 𝑇 p𝐾𝑥q{𝑇 p𝑂𝑥q. Then
universal here means we take the regular representation.

2One can define quasi-maps versions of Fl
8
2
𝑥 in lieu of this (c.f. [FM]), but this defines a different category of

𝐷-modules that does not play the same fundamental role in local geometricLanglands.
3One can just as well take coinvariants: see [Ras5] Theorem 2.1.1. (Note that loc. cit. is not written factorizably,

but the method immediately adapts.
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Taking 𝜓 to have conductor zero and incorporating some twists by half-forms, the assignment

𝑥 ÞÑWhit
8
2
𝑥 extends to a factorization category over 𝑋. In particular, it extends over the Ran space.

1.7. The main conjecture of [Ras2] is about a Langlands dual spectral description of 𝑥 ÞÑWhit
8
2
𝑥 as

a factorization category. The main theorem of this paper, Theorem 5.7.1, proves this conjecture for

a certain full subcategory of Whit
8
2
𝑥 (compatible with factorization), which is denoted Whit

8
2
𝑎𝑐𝑐,𝑥 in

this paper. (The notation acc is an abbreviation for accessible, since this is the part of the category
semi-infinite Whittaker category that we can understand by the methods of this paper.)

More precisely, we have a functor Whit𝑠𝑝ℎ𝑥 :“Whitp𝐷pGr𝐺,𝑥qq ÑWhit
8
2
𝑥 given by pullback/pushforward

along the correspondence Gr𝐺,𝑥 Ð 𝐺p𝐾𝑥q{𝐵p𝑂𝑥q Ñ Fl
8
2
𝑥 , and Whit

8
2
𝑎𝑐𝑐,𝑥 is defined to be generated

under colimits by objects in the image of this functor and their translates under the natural action

of the lattice of coweights Λ̌ “ Gr𝑇,𝑥 “ 𝑇 p𝐾𝑥q{𝑇 p𝑂𝑥q on Fl
8
2
𝑥 (acting “on the right”).

1.8. As motivated in the introduction to [Ras2], the spectral side of our equivalence is expressed
as (unital) factorization modules for the (derived) factorization algebra Υň (see [Ras1]). We refer to
loc. cit. for a discussion of Υň, and simply remind that it is a factorizable version of the homological
Chevalley complex for ň; the notation is taken from [BG2]. (See also S4.3 below.) We realize Υň as
a factorization algebra in the factorization category of 𝐷-modules on the affine Grassmannian for
𝑇 : this encodes the 𝑇 on ň and its Chevalley complex.

More precisely, the DG category Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq of unital Λ̌-graded factorization modules
for Υň based at 𝑥 P 𝑋 can be expressed explicitly:

Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq » QCohpň^0 {𝐵̌
^

𝑇
q Ě QCohpň^0 {𝐵̌q.

Here the first equality is a special case of Theorem 8.22.1. The second inclusion follows from the
fact that 𝐵̌{𝑇 is an affine space, in particular contractible (c.f. Remark 5.7.2). (For 𝑍 Ď 𝑌 , 𝑌 ^𝑍
denotes the formal completion of 𝑌 along 𝑍.)

The spectral side of our equivalence corresponds to the (factorizable version of) the full subcat-

egory QCohpň^0 {𝐵̌q of Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq.

1.9. We remark that:

QCohpň{𝐵̌q » QCoh
´

LocSys𝐵̌p
𝑜
𝒟𝑥q ˆ

LocSys𝑇 p
𝑜
𝒟𝑥q

LocSys𝑇 p𝒟𝑥q

¯

(1.9.1)

to make contact with the conjecture from [Ras2]. The subcategory QCohpň^0 {𝐵̌q is then the full
subcategory of sheaves set-theoretically supported on LocSys𝐵̌p𝒟𝑥q.

Remark 1.9.1. As was explained in the introduction to [Ras2], as we work factorizably instead of
fixing 𝑥 P 𝑋, the factorization category of factorization modules for Υň should be understood in
terms of the right hand side of (1.9.1).

There is room for confusion here, since any symmetric monoidal category (such as QCohpň{𝐵̌q
gives rise to a factorization category: c.f. [Ras2] S6. The resulting factorization category in this case
is not compatible with Υň, i.e., there is not a natural functor (unlike for local systems, c.f. loc. cit.).
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1.10. What are the difficulties in proving this theorem? Langlands duality for reductive

groups has a fundamentally combinatorial nature. However, 𝐷!pFl
8
2
𝑥 q as defined above is not so

amenable to combinatorics: there is no theory of middle extensions and so on. Moreover, since we
take Whittaker equivariant 𝐷-modules, we are dealing with cosets for infinite-dimensional groups
on both sides, so closures of orbits and such standard geometry are not well-behaved.

We discuss the strategy for circumventing these issues, and thereby the contents of this paper,
in what follows. We separate the issues into two pieces: the construction of a comparison functor,
and the proof that it is an equivalence.

1.11. Construction of the functor. Note that there is a canonical forgetful functor:

Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq Ñ 𝐷pGr𝑇,𝑥q
`

“ Repp𝑇 q
˘

.

The starting point for our construction is that there is also a functor:4

𝑖
8
2
,!

𝑥 : 𝐷!pFl
8
2
𝑥 q Ñ 𝐷pGr𝑇,𝑥q

geometrically given by !-restriction along Gr𝑇,𝑥 “ 𝐵p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q ãÑ 𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q “

Fl
8
2
𝑥 . (More precisely, we consider !-restriction along 𝐵p𝐾𝑥q ãÑ 𝐺p𝐾𝑥q and apply 𝑁p𝐾𝑥q𝑇 p𝑂𝑥q-

coinvariants.)

1.12. The main observation is that 𝑖
8
2
,!

𝑥 factorizes, and that its source (and target) and unital

factorization categories. The functor 𝑖
8
2
,!

𝑥 even preserves unit objects. However, as we will discuss

further, its restriction to Whit
8
2
𝑥 “ WhitpFl

8
2
𝑥 q Ď 𝐷!pFl

8
2
𝑥 q does not preserve unit objects, as the

embedding WhitpFl
8
2
𝑥 q ãÑ 𝐷!pFl

8
2
𝑥 q does not.

1.13. Here is a toy model for how we will proceed. Suppose 𝐹 : C Ñ D is a lax unital (perhaps
lax) monoidal functor between monoidal categories. Recall that this means that there are natural
transformations:

1D Ñ 𝐹 p1Cq

𝐹 pFq b 𝐹 pGq Ñ 𝐹 pF b Gq

for 1´ denoting the unit object and b denoting monoidal products. Of course, these natural trans-
formations satisfy usual coherences.

In this case, 𝐹 preserves algebras, and in particular, 𝐹 p1Cq is a (unital) algebra in D. Moreover,
𝐹 upgrades to a lax monoidal functor 𝐹 𝑒𝑛ℎ : CÑ 𝐹 p1Cq–bimodpDq (where the target again consists
of unital bimodules).

Clearly the functor 𝐹 𝑒𝑛ℎ has a “better chance” of being an equivalence than the original functor
𝐹 .

4In fact, we are omitting some cohomological shifts here, which appear to arise only incidentally.

To obtain the functor denoted by 𝑖
8
2
,!

𝑥 in the paper, one should shift by p2𝜌, 𝜆̌q on the 𝜆̌-degree piece. We refer to
S2.25-2.26 for this material.
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1.14. As discussed in [Ras1], unital factorization categories are best understood asanalogous to
lax monoidal categories, and factorization functors are (necessarily) analogous to lax monoidal
functors.

A key part of the formalism from [Ras1] is that for a factorization functor 𝐹 : C Ñ D between

unital factorization categories, 𝐹 upgrades to a functor 𝐹 𝑒𝑛ℎ : CÑ 𝐹 punitCq–modfact𝑢𝑛 pDq compatible
with factorization.5

Then [Ras2] Theorem 4.6.1 allows us to compute that the unit object in Whit
8
2 goes to Υň under

the functor 𝑖
8
2
,!, and this identification is compatible with factorization structures. This calculation

is the subject of S4; a somewhat heuristic version appeared in [Ras2] S1.33.
The upshot is that we obtain the desired functor:

𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 : Whit
8
2
𝑥 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq.

1.15. A confusing point. The calculation of where the unit object goes is done by a reduction to
the finite-dimensional setting considered in [Ras2]. There a different kind of factorization algebra

was denoted by Υň; in this discussion, we denote the object from [Ras2] by Υ𝑓.𝑑.
ň .

The “true” factorization algebra Υň is given by a compatible system of 𝐷-modules on 𝐷pGr𝑇,𝑋𝐼 q

for all finite sets 𝐼; in particular, it defines an 𝐷-module on the Ran space version Gr𝑇,Ran𝑋 of the
affine Grassmannian for 𝑇 (and by pushforward, on Ran space itself).

The “not quite”6 factorization algebra Υ𝑓.𝑑.
ň is given by a compatible system of 𝐷-modules on

the scheme DivΛ̌𝑝𝑜𝑠

eff of Λ̌𝑝𝑜𝑠-valued divisors on 𝑋.
The two spaces are quite different: one can describe points of Gr𝑇,Ran𝑋 as a Λ̌-valued divisor 𝐷

on 𝑋, plus a finite set of points t𝑥1, . . . , 𝑥𝑛u Ď 𝑋, such that the divisor is supported on the union of
these points. This allows a great deal of redundancy on the Ran space side: we allow points where
the divisor is not supported as well.

Of course, Υň and Υ𝑓.𝑑.
ň satisfy a natural compatibility, formulated explicitly in S4. They can be

roughly be regarded as “the same,” which is why we allow ourselves the freedom to denote one by
Υň in [Ras2] and another by Υň in this paper.

But there is a fundamental difference: Υ𝑓.𝑑.
ň consists of 𝐷-modules in the heart of the 𝑡-structure

on DivΛ̌𝑝𝑜𝑠

eff , while Υň does not have any analogous property (as is easy to see explicitly using the
chiral PBW theorem). This fact about 𝑡-structures is used in a crucial way in [Ras2] (following
[BG2]) to connect the combinatorics of Langlands duality with this set of problems in geometric
representation theory.

So even though we eventually only care about the Ran space version of Υň, it is essential to

consider its cousin Υ𝑓.𝑑.
ň to make the link with Langlands duality.

1.16. Compatibility with Satake. We further use [Ras2] Theorem 7.9.1 to express a compati-
bility with geometric Satake (as expressed through the geometric Casselman-Shalika theorem, see
Theorem 4.14.1).

More precisely, loc. cit. readily implies that the composition:

Repp𝐺̌q
𝐶𝑎𝑠𝑠𝑒𝑙𝑚𝑎𝑛´𝑆ℎ𝑎𝑙𝑖𝑘𝑎

» Whitp𝐷pGr𝐺,𝑥qq ÑWhit
8
2

𝑖
8
2 ,!,𝑒𝑛ℎ
𝑥
ÝÝÝÝÝÑ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq

5Technically, the right hand side may only be a lax factorization category in the terminology of [Ras1]. In the
example considered in this paper, this is not actually an issue because of the nice finiteness properties of ϒň. See
[Ras2] Corollary 7.8.1.

6In [Ras2], we called this data a graded factorization algebra.
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is computed as a factorizable functor by the functor forming the Chevalley complex of an 𝐺̌-
representation with respect to the action of ň.

This compatibility plays a key role in the proof of the main theorem. Note that it is fundamentally
of higher categorical nature, and not only because (Ran space) Υň does not lie in the heart of a
𝑡-structure. But again, the fundamental issues arising here are dealt with using Theorem 7.9.1.

1.17. Proof of the main theorem. We now indicate the ideas that go into the proof of Theorem
5.7.1.

In S5, we use the theory of ULA objects (c.f. [Ras2] Appendix B to reduce to showing that the

functor 𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 |
Whit

8
2
𝑎𝑐𝑐,𝑥

is fully-faithful (with expected image) for our point 𝑥 P 𝑋. That is, we

reduce from working over powers of the curve to working at a single point.7,8 (The nice ULAness

properties here are fundamentally what make the subcategory Whit
8
2
𝑎𝑐𝑐 Ď Whit

8
2 more accessible

than the full category.)

1.18. We then prove the pointwise version by a comparison with Arkhipov-Bezrukavnikov theory
[AB]. (It would be wonderful to find an independent proof.)

In S6-7, we identify Whit
8
2
𝑥 with baby Whittaker 𝐷-modules on the affine flag variety Flaff𝐺,𝑥 :“

𝐺p𝐾𝑥q{𝐼 (for 𝐼 the Iwahori subgroup). (It is essential here to work at a single point, since Iwahori
does not behave well factorizably.) We highlight the key role played by these results: the category

𝐷!pFl
8
2
𝑥 q is outside of the usual domain of geometric representation theory because of its infinite-

dimensional nature, but we are able to import these techniques by our comparison with the ind-finite
dimensional affine flag variety.

The main theorem of [AB] shows that this category of baby Whittaker 𝐷-modules on the affine

flag variety is equivalent to QCohpň{𝐵̌q. Moreover, it follows from results in [FG2] that Whit
8
2
𝑎𝑐𝑐,𝑥

corresponds to the full subcategory of objects supported on B𝐵̌.

So it remains to show that our functor 𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 is equivalent to the identity functor:

QCohpň^0 {𝐵̌q
[AB]
» Whit

8
2
𝑎𝑐𝑐,𝑥 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq Ě QCohpň^0 {𝐵̌q.

1.19. To show this, we need to unwind the Arkhipov-Bezrukavnikov construction somewhat.
Recall that the main inputs for their construction are the natural Repp𝑇 q-action and the QCohpǧ{𝐺̌q-

action on QCohpň{𝐵̌q, coming from the structure maps B𝑇 Ð ň{𝐵̌ Ñ ǧ{𝐺̌. (There is also a basic
“Plücker” data relating the two, which plays a key role in their construction.)

1.20. We recall that Repp𝑇 q-action on QCohpň{𝐵̌q has to do with Mirkovic-Wakimoto sheaves on
the affine flag variety. Under the equivalence with the semi-infinite flag variety, this just translates

to the natural Gr𝑇,𝑥-action on Fl
8
2
𝑥 . It is formal that 𝑖

8
2
,!,𝑒𝑛ℎ

𝑥 is compatible with this action.

7Admittedly, the necessity for such a reduction is not emphasized in the notation from the introduction. But this
is a serious step.

8Preservation of ULA objects under a factorization functor is analogous to a lax monoidal functor being monoidal.
So this reduction is like saying a monoidal functor 𝐹 : C Ñ D is an equivalence of monoidal categories if it is an
equivalence of categories. This statement may sound stupid, but note that it fails if 𝐹 is merely assumed to be lax
monoidal.
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1.21. We treat the QCohpǧ{𝐺̌q-action using factorization methods. Namely, following a conjecture
of Gaitsgory, we show that QCohpǧ^0 {𝐺̌q-actions can be fully-faithfully encoded in factorization
module structures for the factorization category Repp𝐺̌q “ QCohpB𝐺̌q “ QCohpLocSys𝐺̌p𝒟qq.

This result is Theorem 9.13.1, and is a categorical version of the Beilinson-Drinfeld calculation
of chiral modules over a commutative chiral algebra, c.f. [BD2] S3.6.18. Unsurprisingly, it relies on
derived versions of their calculations: these appear as Theorems 8.13.1 and 8.22.1. The theory of
topological associative algebras used in [BD2] S3.6 is not well-adapted to derived categories, so we
need finiteness hypotheses in S8 that do not appear in [BD2] (and whose purpose is roughly to say
some topological associative algebras are discretely topologized).

1.22. The idea to encode the QCohpǧ{𝐺̌q in factorization terms is based on the original Gaitsgory
construction [Gai1] of central sheaves via nearby cycles, which is so essential to the Arkhipov-
Bezrkuavnikov construction.

However, the relationship between the theory of factorization module categories and the Gaits-
gory construction is not immediate. The relevant compatibility is established in S10.

1.23. Given the reasonably conceptual ideas mentioned above, the remainder of the argument
relies some explicit analysis related to the Arkhipov-Bezrukavnikov construction of Plücker data.

1.24. Structure of this paper. The purpose of S2 is to construct Whit
8
2 as a unital factorization

category. We include some detailed remarks on the structure of loop groups in the factorization
setting here; the arguments are standard, but I’m not sure about references in this generality.
This material relies essentially on ideas from [Ras3] and [Ras1], which are essentially extended
appendices to this paper. The proof of a certain technical lemma necessary for the construction of
units in factorizable Whittaker categories is postponed to S3.

In S4, we import the results from [Ras2] to the semi-infinite flag/Ran space framework introduced
in S2. In particular, we construct the functor to factorization Υň-modules in S4.12.

In S5, we define the accessible part subcategory of Whit
8
2 referenced above and formulate the

main theorem. We also analyze ULA objects here, and reduce the main theorem to verifying it over
a single point.

In S6, we construct the equivalence 𝐷!pFl
8
2
𝑥 q » 𝐷pFlaff𝐺 q. In S7, we further show that Whittaker

𝐷-modules here coincide with the baby Whittaker 𝐷-modules considered in [AB] (where it is used
as a trick to avoid considering infinite-dimensional orbits).

In S8, we calculate the DG categories of chiral modules over certain chiral algebras in “explicit”
terms, following Beilinson-Drinfeld. (In particular, the main result here gives the explicit description

of Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq as QCohpň^0 {𝐵̌𝑇 q.)

In S9, we show that QCohpǧ^0 {𝐺̌q-module structures can be recovered from a certain corresponding
factorization module category structure. In S10, we relate this construction to the Gaitsgory nearby
cycles construction [Gai1], which is one of the main inputs for [AB].

Finally, in S11, we prove the main result, Theorem 5.7.1.

1.25. Conventions. We follow [Ras2] in our use of (higher) categorical language and notation. We
refer to loc. cit. for more details on this.

In S2-7, the difference between classical and derived algebraic geometry is not relevant because
we deal with 𝐷-modules. However, beginning in S8, it is essential to use derived algebraic geometry.
We sometimes use the phrases “scheme” or “stack” sloppily, meaning the corresponding derived
notions, and use the phrase “classical scheme/stack” to emphasize that when we are working with
the more traditional notions.
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2. Dramatis personae

2.1. The goal for this section is to introduce the semi-infinite flag variety in the context of factor-
izable geometry, and its associated Whittaker 𝐷-modules.

A summary of what is achieved is given in S2.36, and may be motivating to read before the
remainder of the section.

2.2. A note on citations. This section makes many references to the theory of chiral categories
from [Ras1], and to the theory of 𝐷-modules in infinite type from [Ras3].

The references to [Ras1] primarily regard precise terminology and constructions, and can be
ignored by the reader who is comfortable with the basic ideas. But note that we will make the
following change for ease of notation: using the 1-affineness of 𝑋𝑑𝑅 [Gai6], we avoid the sheaves of
categories language and work 𝐷p𝑋𝐼q-module categories instead.

The references to [Ras3] are of two kinds. Some results are e.g. base change results of a general
nature, and the reader who can take on faith that such things hold in the infinite type setting may
skip past these results. The other kind of reference is to the constructions of various functors unique
to the setting of 𝐷-modules in infinite type. Unfortunately, there is no easy escape here, and we
only hope that having precise references will aid in learning the necessary material.

2.3. We fix a smooth affine curve 𝑋.

2.4. Let 𝐼 be a finite set. Let 𝑌 be some fixed affine scheme.
We recall in S2.5-2.7 the definition of the jet space 𝑌 p𝑂q𝑋𝐼 and the algebraic loop space (alias:

meromorphic jet space) 𝑌 p𝐾q𝑋𝐼 .

2.5. Jet spaces. Let 𝑛 P Zě0 be an integer.

For 𝑆 an affine test scheme, we define the 𝑛th jet space 𝑌 p𝑂q
p𝑛q

𝑋𝐼 to have 𝑆-points:

𝑌 p𝑂q
p𝑛q

𝑋𝐼 p𝑆q “
!

𝑥 “ p𝑥𝑖q𝑖P𝐼 : 𝑆 Ñ 𝑋𝐼 and 7 : Γp𝑛q𝑥 Ñ 𝑌
)

(2.5.1)

where Γ𝑥 Ď 𝑋 ˆ 𝑆 is the sum of the graphs Γ𝑥𝑖 Ď 𝑋 ˆ 𝑆 of the maps 𝑥𝑖 considered as relative

divisors,9 and Γ
p𝑛q
𝑥 is the 𝑛th infinitesimal neighborhood of Γ𝑥 in 𝑋 ˆ 𝑆. Note that 𝑌 p𝑂q

p𝑛q

𝑋𝐼 is

represented by a scheme of finite type over 𝑋𝐼 .

As 𝑛 varies, the spaces 𝑌 p𝑂q
p𝑛q

𝑋𝐼 form an inverse system under affine structure maps. We let
𝑌 p𝑂q𝑋𝐼 denote the projective limit.

The following is well-known: we include a proof for completeness.

9In other words, take the composition map 𝑆 Ñ 𝑋𝐼
Ñ Div|𝐼|𝑋, and note that Div|𝐼|𝑋 is the Hilbert scheme of

length |𝐼| subschemes of 𝑋.
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Lemma 2.5.1. Suppose 𝑌 a smooth scheme. Then for every pair 𝑚,𝑛 P Zě0, the scheme 𝑌 p𝑂q
p𝑛q

𝑋𝐼

is smooth, and the structure maps:

𝑌 p𝑂q
p𝑛`𝑚q

𝑋𝐼 Ñ 𝑌 p𝑂q
p𝑛q

𝑋𝐼

are smooth, affine and surjective on geometric points.

Proof. We have already noted that the map is affine. The surjectivity follows by formal smoothness
of 𝑌 .

Let 𝑆 be an 𝑋𝐼 -scheme that is affine, and let it be equipped with the structure map 𝑥 : 𝑆 Ñ 𝑋𝐼 .

A map 𝑆 Ñ 𝑌 p𝑂q
p𝑛q

𝑋𝐼 is equivalent to a map 7 : Γ
p𝑛q
𝑥 Ñ 𝑌 , so the cotangent complex Ω1

𝑌 p𝑂q
p𝑛q

𝑋𝐼
{𝑋𝐼

restricts to 𝑆 as 𝜋˚7˚pΩ1
𝑌 q, where 𝜋 “ 𝜋𝑛 is the composition Γ

p𝑛q
𝑥 ãÑ 𝑋 ˆ 𝑆 Ñ 𝑆.

Because 𝑌 is smooth, Ω1
𝑌 is a vector bundle concentrated in a single cohomological degree.

Therefore, the same is true for 7˚pΩ1
𝑌 q. Because 𝜋 is finite flat, 𝜋˚7˚pΩ1

𝑌 q is also a vector bundle

concentrated in exactly one degree. Therefore, we deduce smoothness of 𝑌 p𝑂q
p𝑛q

𝑋𝐼 from the fact that
the cotangent complex is a vector bundle.

It remains to show smoothness of the structure maps. We perform the relative tangent space

computation. For 7 : Γ
p𝑛`𝑚q
𝑥 Ñ 𝑌 , the relevant map is:

𝜋𝑛`𝑚,˚p7
˚p𝑇𝑌 qq Ñ 𝜋𝑛,˚p7

˚p𝑇𝑌 q|Γp𝑛q𝑥
q

where 𝑇𝑌 is the tangent complex (i.e., tangent sheaf) of 𝑌 . Since the maps 𝜋𝑖 are affine, it suffices

to show the surjectivity on Γ
p𝑛`𝑚q
𝑥 , before applying 𝜋𝑛`𝑚,˚. But this is obvious: we are dealing with

a restriction map for vector bundles on an affine scheme.
�

2.6. Discs. Let 𝑆 be an affine test scheme and let 𝑥 “ p𝑥𝑖q𝑖P𝐼 : 𝑆 Ñ 𝑋𝐼 be a map.

We define the formal disc p𝒟𝑥 at 𝑥 to be the formal completion of 𝑋 ˆ𝑆 along Γ𝑥. Note that p𝒟𝑥

is an ind-affine indscheme.
We define the adic disc 𝒟𝑥 P AffSch to be the value of the partially defined left adjoint of the

functor AffSch ãÑ PreStk evaluated on p𝒟𝑥. Note that ind-affineness of p𝒟𝑥 implies that this functor
is defined here: it is the spectrum of the limit of the corresponding commutative rings.

Observe that formation of p𝒟𝑥 is étale local on 𝑋 in the natural sense.
Note that 𝑌 p𝑂q𝑋𝐼 is equivalently described as the moduli of maps 𝑥 : 𝑆 Ñ 𝑋𝐼 plus a map

p𝒟𝑥 Ñ 𝑌 or 𝒟𝑥 Ñ 𝑌 .

We define the punctured disc
𝑜
𝒟𝑥 P Sch at 𝑥 as:

𝑜
𝒟𝑥 :“ 𝒟𝑥zΓ𝑥.

These constructions organize into the diagram:

Γ𝑥 // p𝒟𝑥
// 𝒟𝑥

��

𝑜
𝒟𝑥

oo

𝑋 ˆ 𝑆.
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2.7. Loop spaces. Finally, we define:

𝑌 p𝐾q𝑋𝐼 p𝑆q “
!

𝑥 : 𝑆 Ñ 𝑋𝐼 and 7 :
𝑜
𝒟𝑥 Ñ 𝑌.

)

(2.7.1)

As in [KV] Proposition 3.5.2, 𝑌 p𝐾q𝑋𝐼 is represented by an indscheme (of ind-infinite type), and
formation of 𝑌 p𝐾q𝑋𝐼 is étale local on 𝑋.

Remark 2.7.1. If 𝑍 is an affine 𝑋-scheme, then we have notions of “relative jets” and “relative
meromorphic jets” that generalizes the constructions above when 𝑍 “ 𝑋 ˆ 𝑌 .

This is actually the level of generality we will be using in practice, but we find it convenient to
write the material that follows in the product situation. See S2.11 and 2.16 for more discussion of
this point.

Note that representability questions in the relative case reduce to the product case treated in
[KV]: factor the map 𝑍 to 𝑋 through its graph, and then the relative (resp. meromorphic) jets
embed as a closed subscheme (resp. sub-indscheme) of the corresponding “absolute” jets.

2.8. Factorization of the disc. Let Setă8 denote the category of (possibly empty) finite sets
under (possibly non-surjective) maps.

Let 𝑓 : 𝐼 Ñ 𝐽 be a map in Setă8, let 𝑆 be an affine scheme and let 𝑥 “ p𝑥𝑗q𝑗P𝐽 : 𝑆 Ñ 𝑋𝐽 be a

map. Let 𝑥1 “ p𝑥1𝑖q “ p𝑥𝑓p𝑖qq : 𝑆 Ñ 𝑋𝐼 be the map induced by 𝑓 .

Note that Γ𝑟𝑒𝑑𝑥1 is a closed subscheme of Γ𝑟𝑒𝑑𝑥 , giving a canonical map 𝒟𝑥1 Ñ 𝒟𝑥. Therefore, we
obtain an op-correspondence:

𝒟𝑥zΓ𝑥1

𝑜
𝒟𝑥1 𝒟𝑥1zΓ𝑥1

::

𝒟𝑥zΓ𝑥

dd

𝑜
𝒟𝑥.

(2.8.1)

Remark 2.8.1. If 𝑓 is surjective then the reduced schemes underlying Γ𝑥 and Γ𝑥1 coincide. Therefore,
in this case the right map in (2.8.1) is an isomorphism.

2.9. Chiral categories. Varying 𝐼 P fSet, we obtain that the rules 𝐼 ÞÑ 𝑌 p𝑂q𝑋𝐼 and 𝐼 ÞÑ 𝑌 p𝐾q𝑋𝐼

factorize.
Applying [Ras3] Proposition 6.9.1, we obtain chiral categories on 𝑋𝑑𝑅:

´

𝐼 ÞÑ 𝐷!p𝑌 p𝑂q𝑋𝐼 q

¯

and
´

𝐼 ÞÑ 𝐷!p𝑌 p𝐾q𝑋𝐼 q

¯

.

Passing to the limit over 𝐼, we obtain the categories 𝐷!p𝑌 p𝑂qRan𝑋 q and 𝐷!p𝑌 p𝐾qRan𝑋 q P

DGCat𝑐𝑜𝑛𝑡.

Notation 2.9.1. We use the notation 𝐷!p𝑌 p𝑂qqfact, 𝐷!p𝑌 p𝐾qqfact P FactCatp𝑋𝑑𝑅q to denote the
corresponding factorization categories.

2.10. Unital structures. Suppose 𝑌 is an affine scheme of finite type.
Let 𝑓 : 𝐼 Ñ 𝐽 be a map in Setă8. Using the notation of S2.8, let ℋ𝑌,𝑓 denote the moduli of

maps 𝑥 : 𝑆 Ñ 𝑋𝐽 plus a map p𝒟𝑥zΓ𝑥1q Ñ 𝑌 , defined formally as in (2.7.1).
Applying (2.8.1), we obtain a correspondence:
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ℋ𝑌,𝑓

𝛽𝑌,𝑓

%%

𝛼𝑌,𝑓

zz
𝑌 p𝐾q𝑋𝐼 𝑌 p𝐾q𝑋𝐽 .

(2.10.1)

For 𝑓 the identity, this correspondence is the identity correspondence. For 𝑓 : 𝐼 Ñ 𝐽 and 𝑔 : 𝐽 Ñ 𝐾,
we obtain a canonical diagram:

ℋ𝑌,𝑔˝𝑓

$$zz
ℋ𝑌,𝑓

zz $$

ℋ𝑌,𝑔

zz $$
𝑌 p𝐾q𝑋𝐼 𝑌 p𝐾q𝑋𝐽 𝑌 p𝐾q𝑋𝐾

where the middle diamond is Cartesian.
In other words, we obtain a functor Setă8 Ñ IndSch𝑐𝑜𝑟𝑟 sending 𝐼 to 𝑌 p𝐾q𝑋𝐼 . This functor is

compatible with factorization in the natural sense.
Moreover, for 𝑓 as above, one sees that the map:

𝛽𝑌,𝑓 : ℋ𝑌,𝑓 Ñ 𝑌 p𝐾q𝑋𝐽

is finitely presented. Therefore, by [Ras3] S6.3, we obtain that:

𝐼 ÞÑ 𝐷!
´

𝑌 p𝐾q𝑋𝐼

¯

defines a unital factorization category on 𝑋𝑑𝑅:

𝐷!p𝑌 p𝐾qqfact P FactCat𝑢𝑛p𝑋𝑑𝑅q

refining our earlier non-unital factorization category.

Warning 2.10.1. We are abusing notation here in also letting 𝐷!p𝑌 p𝐾qqfact denote the unital version
of the factorization category. We will use this abuse throughout.

Remark 2.10.2. For a morphism 𝑓 : 𝐼 Ñ 𝐽 P Setă8, the corresponding map 𝐷!p𝑌 p𝐾q𝑋𝐼 q Ñ

𝐷!p𝑌 p𝐾q𝑋𝐽 q is the computed by the functor 𝛽𝑌,𝑓,˚,!´𝑑𝑅𝛼
!
𝑌,𝑓 . We recall that the functor 𝛽𝑌,𝑓,˚,!´𝑑𝑅

of !-dR ˚-pushforward is defined for any finitely presented morphism and is the functor of [Ras3]
S6.3.

Remark 2.10.3. The unit object in 𝐷!p𝑌 p𝐾qRan𝑋 q is obtained by !-dR ˚-pushforward of 𝜔𝑌 p𝑂qRan𝑋
.

Here, the symbol 𝜔𝑌 p𝑂qRan𝑋
refers to the compatible system of objects p𝐼 ÞÑ 𝜔𝑌 p𝑂q

𝑋𝐼
q and the term

“!-dR ˚-pushforward” refers to the appropriate compatible system of such functors.

Remark 2.10.4. For a morphism 𝑌1 Ñ 𝑌2 of schemes of finite type, we obtain canonical maps
𝑌1p𝐾q𝑋𝐼 Ñ 𝑌2p𝐾q𝑋𝐼 . These maps are obviously compatible with the correspondences above and
therefore define a canonical strictly unital morphism:

𝐷!p𝑌2p𝐾qq
fact Ñ 𝐷!p𝑌1p𝐾qq

fact P FactCat𝑢𝑛p𝑋𝑑𝑅q

computed as !-pullback over each 𝑋𝐼 .
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Notation 2.10.5. For 𝐼 and 𝐽 two finite sets, we will sometimes use the notation ℋ𝑌,𝐼,𝐽 in place of
ℋ𝑌,𝑓 with 𝑓 the tautological embedding 𝐼 ãÑ 𝐼

š

𝐽 .

2.11. Forms of algebraic groups. We will be working with group schemes 𝒢 over 𝑋 that are
forms of affine algebraic groups. See S2.16 to see the examples we will use.

We will say that two group schemes over 𝑋 are forms of each other if they are isomorphic as
group schemes étale10 locally on 𝑋.

Therefore, being a form of an affine algebraic group means that the group scheme 𝒢 is a smooth,
affine group scheme that is a form of 𝒢0 ˆ 𝑋 for 𝒢0 an affine algebraic group. In this case, we
abbreviate the situation in saying that 𝒢 is a form of 𝒢0.

For the remainder of this section, we fix 𝒢 an affine group scheme over 𝑋 of the type above.

Example 2.11.1. Every reductive group scheme over 𝑋 is a form of the associated split reductive
group.

2.12. In applying the Beauville-Laszlo principle [BL],11 it is convenient to have the following well-
known technical result. We include a proof for completeness.

Lemma 2.12.1. Let 𝑥 : 𝑆 Ñ 𝑋𝐼 be a map from an affine scheme 𝑆. Let 𝒢 be a form of an algebraic
group over 𝑋. Then the restriction map:

t𝒢–bundles on 𝒟𝑥u Ñ t𝒢–bundles on p𝒟𝑥u

is an equivalence of groupoids.

Proof. First, we claim that O𝒢 , considered as a representation of 𝒢 over 𝑋, is a union of subrepre-
sentations that are finite rank vector bundles on 𝑋. Indeed, it is always true that comodules for an
𝐴-coalgebra 𝐵 are a union of 𝐴-finitely generated submodules, and because 𝑋 is a smooth curve,
submodules of O𝒢 (which is flat) are necessarily flat.

Pulling 𝒢 back to 𝒟𝑥, we see that there are again “enough” vector bundle representations.
Therefore, using the Tannakian formalism, we reduce to treating the case 𝒢 “ 𝐺𝐿𝑟,𝑋 .

Let 𝑆 “ Specp𝐴q, and let 𝐴𝑛 denote the commutative algebra of functions on the (affine) scheme

Γ
p𝑛q
𝑥 (so 𝐴0 “ 𝐴). Let 𝐵 “ lim𝑛𝐴𝑛, so Specp𝐵q “ 𝒟𝑥. Let 𝐼𝑛 Ď 𝐵 denote the kernel of the

(surjective) map 𝐵 Ñ 𝐴𝑛.
Let E be a finitely generated projective 𝐵-module of rank 𝑟. Because E is a direct summand of

a finite rank free 𝐵-module, E
»
ÝÑ lim𝑛 E{𝐼𝑛. This proves fully-faithfulness.

It remains to show essential surjectivity. Here we need to show that the limit E :“ lim𝑛 E𝑛
of a compatible system tE𝑛u of rank 𝑟 projective 𝐴𝑛-modules is a finitely generated projective
𝐵-module.

We can write E0 ‘ E10
»
ÝÑ 𝐴

‘p𝑟`𝑠q
0 for E10 a rank 𝑠 vector bundle on Specp𝐴q.

Therefore, by formal smoothness of 𝐺𝐿𝑟`𝑠{𝐺𝐿𝑟 ˆ𝐺𝐿𝑠, we can lift the compatible system tE𝑛u

to a compatible system pE𝑛,E
1
𝑛,E𝑛‘E1𝑛

»
ÝÑ 𝐴

‘p𝑟`𝑠q
𝑛 q such that the 𝑛 “ 0 case is given by our earlier

choice. But this obviously realizes E itself as a direct summand of a finite free module.
�

10A warning: There is a risk that taking étale forms means that e.g. the associated affine Grassmannian will be
an ind-algebraic space, not an indscheme, which is somewhat problematic since [Ras3] is written for indschemes.
However, we note that 1) the forms we will take are Zariski locally trivial (c.f. S2.16), removing the problem for us
in practice, and 2) the material in loc. cit. extends to the setting of algebraic spaces using [Ryd] and an appropriate
generalization of the relevant material of [GR2]. For these reasons, we will ignore the issue in what follows and deal
with 𝐷-modules on our indschemes without further mention.

11Which is necessarily about 𝒟 — not p𝒟 — since it involves the punctured disc.
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In particular, we obtain the following corollary from formal smoothness of the map 𝑋 Ñ 𝑋{𝒢.

Corollary 2.12.2. In the notation above, a 𝒢-bundle on 𝒟𝑥 is trivial if and only if its restriction
to 𝑆 is.

2.13. The affine Grassmannian. We will specialize the above material to the case of (relative)
jets into 𝒢, considered as in Remark 2.7.1.

Fix a finite set 𝐼.
In this case, 𝒢p𝑂q𝑋𝐼 is a group scheme over 𝑋𝐼 Moreover, since each 𝒢p𝑂qp𝑛q

𝑋𝐼 is a smooth group

scheme over 𝑋𝐼 , 𝒢p𝑂q𝑋𝐼 satisfies the hypotheses of [Ras3] Example 4.2.3 as a group scheme over
𝑋𝐼 .

We also have the Beilinson-Drinfeld affine Grassmannian Gr𝒢,𝑋𝐼 with the usual 𝒢p𝐾q𝑋𝐼 -equivariant
(relative to the left action on the source) map 𝜋𝒢,𝑋𝐼 : 𝒢p𝐾q𝑋𝐼 Ñ Gr𝒢,𝑋𝐼 .

We recall that Gr𝒢,𝑋𝐼 parametrizes points p𝑥𝑖q𝑖P𝐼 of 𝑋, a 𝒢-bundle 𝒫𝒢 on 𝑋, and a trivialization
𝜏 of 𝒫𝒢 defined on 𝑋zt𝑥𝑖u𝑖P𝐼 . This is understood in families in the usual way.

We have the following well-known result (proved by reduction12 to 𝐺 “ 𝐺𝐿𝑛):

Lemma 2.13.1. The space Gr𝒢,𝑋𝐼 is an ind-algebraic space of ind-finite type. If 𝒢 is reductive, then

Gr𝒢,𝑋𝐼 is ind-proper over 𝑋𝐼 . If 𝒢 is Zariski-locally constant,13 then then Gr𝒢,𝑋𝐼 is an indscheme
of ind-finite type.

We deduce:

Proposition 2.13.2. The map 𝜋𝒢,𝑋𝐼 : 𝒢p𝐾q𝑋𝐼 Ñ Gr𝒢,𝑋𝐼 realizes 𝒢p𝐾q𝑋𝐼 as an étale-locally

trivial 𝒢p𝑂q𝑋𝐼 -torsor over Gr𝒢,𝑋𝐼 .14

Proof. We follow [BD1] Theorem 4.5.1, where this is proved over a point.
After Zariski localization, we can assume that 𝑋 admits an étale map to A1, and after étale

localization, that 𝒢 is constant (in particular, pulled back from A1), and therefore we reduce to the
case 𝑋 “ A1. We abuse notation in also denoting by 𝒢 the corresponding affine algebraic group.

We embed 𝑋 “ A1 into its compactification P1 with 8 denoting the point complementary to
A1.

In this case we will show that 𝒢p𝐾q𝑋𝐼 Ñ Gr𝒢,𝑋𝐼 admits a section Zariski-locally on the target.
Because 𝒢p𝐾q𝑋𝐼 acts transitively on geometric points of Gr𝒢,𝑋𝐼 , it suffices to show that there is a

Zariski neighborhood of the unit 𝑋𝐼 Ď Gr𝒢,𝑋𝐼 that admits a section.
Form the fiber product:

𝒰 :“ Gr𝒢,𝑋𝐼 ˆ
Bun𝒢pP1q

B𝒢

where B𝒢 Ñ Bun𝒢pP1q is the map defined by the trivial bundle. Note that B𝒢 Ñ Bun𝒢pP1q is an
open embedding (specifically because we deal with P1) and therefore the map 𝒰 Ñ Gr𝒢,𝑋𝐼 is an

open embedding. Of course, the map 𝑋𝐼 Ñ Gr𝒢,𝑋𝐼 factors through 𝒰 .
The composition:

B𝒢 ãÑ Bun𝒢pP1q
ev8
ÝÝÑ B𝒢

12This reduction step is justified as in the proof of Lemma 2.12.1.
13I.e., Zariski-locally of the form 𝒢0 ˆ𝑋 for 𝒢0 an affine algebraic group.
14In fact, Zariski-locally trivial if 𝒢 is a Zariski form.
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is the identity. Therefore, one obtains that 𝒰 is the moduli of p𝑥𝑖q𝑖P𝐼 in 𝑋 “ A1 and a map
P1ztp𝑥𝑖q𝑖P𝐼u Ñ 𝒢 sending 8 to 1 P 𝒢. We obtain a map 𝒰 Ñ 𝒢p𝐾q𝑋𝐼 given by taking Laurent
expansions, giving the desired section.

�

Convention 2.13.3. For the ease of exposition, we systematically ignore the differences between
schemes and algebraic spaces for the remainder of the section (since the forms we will use are
Zariski-locally trivial).

The following now results from [Ras3] Example 6.8.4 and Lemma 2.5.1, since Gr𝒢,𝑋𝐼 is an
indscheme of ind-finite type.

Corollary 2.13.4. 𝒢p𝐾q𝑋𝐼 is a placid indscheme.

We obtain the following from Construction 6.12.6 of [Ras3] S6.12.

Corollary 2.13.5. The indscheme 𝒢p𝐾q𝑋𝐼 carries a canonical dimension theory 𝜏𝒢 such that for
any finite type subscheme 𝑇 Ď Gr𝒢,𝑋𝐼 we have:

𝜏𝒢
`

𝜋´1𝒢,𝑋𝐼 p𝑇 q
˘

“ 𝜋˚𝒢,𝑋𝐼 pdim𝑇 q.

2.14. Note that 𝐼 ÞÑ Gr𝒢,𝑋𝐼 defines a unital factorization indscheme, i.e., for every 𝑓 : 𝐼 Ñ 𝐽 we
have correspondences:

Gr𝒢,𝑋𝐼 ˆ
𝑋𝐼
𝑋𝐽

xx &&
Gr𝒢,𝑋𝐼 Gr𝒢,𝑋𝐽

where the left map is obvious and the right map is given by sending:

´

p𝑥𝑗q𝑗P𝐽 ,𝒫𝒢 , 𝜏 a trivialization of 𝒫𝒢 |𝑋zt𝑥𝑓p𝑖qu𝑖P𝐼

¯

P Gr𝒢,𝑋𝐽

to the point:

´

p𝑥𝑗q𝑗P𝐽 ,𝒫𝒢 , 𝜏 |𝑋zt𝑥𝑗u𝑗P𝐽

¯

.

Here we note that 𝑋zt𝑥𝑗u𝑗P𝐽 Ď 𝑋zt𝑥𝑓p𝑖qu𝑖P𝐼 , so that this restriction makes sense.

Therefore, 𝐼 ÞÑ 𝐷pGr𝒢,𝑋𝐼 q defines a unital factorization category 𝐷pGr𝒢q
fact P FactCat𝑢𝑛p𝑋𝑑𝑅q.

Remark 2.14.1. The natural maps 𝜋𝒢,𝑋𝐼 : 𝒢p𝐾q𝑋𝐼 Ñ Gr𝒢,𝑋𝐼 are compatible with the correspon-
dences (2.10.1) for 𝒢p𝐾q. Moreover, for every 𝑓 : 𝐼 Ñ 𝐽 , the square:

ℋ𝒢,𝑓

�� &&
Gr𝒢,𝑋𝐼 ˆ

𝑋𝐼
𝑋𝐽

&&

𝒢p𝐾q𝑋𝐽

��
Gr𝒢,𝑋𝐽
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is Cartesian. Therefore, the functors 𝜋!𝒢,𝑋𝐼 define a strictly unital factorization functor:

𝜋!𝒢 : 𝐷pGr𝐺q Ñ 𝐷!p𝒢p𝐾qq. (2.14.1)

Remark 2.14.2. Formation of the unital factorization indscheme 𝐼 ÞÑ Gr𝒢,𝑋𝐼 is obviously functorial
in 𝒢: given a morphism 𝒢1 Ñ 𝒢2 we obtain morphisms Gr𝒢1,𝑋𝐼 Ñ Gr𝒢2,𝑋𝐼 compatible with the
unital factorization structures. Moreover, for every 𝐼 Ñ 𝐽 , the square:

Gr𝒢1,𝑋𝐼 ˆ
𝑋𝐼
𝑋𝐽

��yy
Gr𝒢1,𝑋𝐼

��

Gr𝒢1,𝑋𝐼 ˆ
𝑋𝐼
𝑋𝐽

xx
Gr𝒢2,𝑋𝐼

is (obviously) Cartesian.
Therefore, we obtain a strictly unital chiral functor:

𝐷pGr𝒢1q Ñ 𝐷pGr𝒢2q

given by de Rham pushforwards (which is well-behaved because all the indschemes present are
ind-finite type).

2.15. Pure inner forms. Let 𝒢1 and 𝒢2 be two smooth group schemes over 𝑋. Recall that they
are said to be pure inner forms of each other if there is a specified bitorsor for these groups: a
𝒢1-torsor 𝒫 on 𝑋 with a commuting 𝒢2-action realizing 𝒫 as a 𝒢2-torsor as well.

In this case, we have a canonical isomorphism of stacks:

𝑋{𝒢1
»
ÝÑ 𝑋{𝒢2.

For example, the map 𝑋{𝒢1 Ñ 𝑋{𝒢2 is defined by the 𝒢2-torsor 𝒫{𝒢1 on 𝑋{𝒢1 (note that we can
speak about 𝒢2-torsors on 𝑋{𝒢1 because we have a canonical map 𝑋{𝒢1 Ñ 𝑋).

In particular, if 𝑋 is proper, we can identify the algebraic stacks:

Bun𝒢1

»
ÝÑ Bun𝒢2 . (2.15.1)

If 𝒫 is a bitorsor for 𝒢1 and 𝒢2, observe 𝒢2 is the group scheme of 𝒢1-automorphisms of 𝒫: this
follows by considering the local case where 𝒫 is trivialized as a 𝒢1-torsor. Therefore, given any group
scheme 𝒢1 with a torsor 𝒫 we canonically obtain a pure inner form 𝒢2 of 𝒢1 as the group scheme
of automorphisms. Moreover, we see that pure inner forms of 𝒢 “ 𝒢1 are classified by 𝒢1-torsors.

To summarize, for any 𝒢 with torsor 𝒫, we obtain a form 𝒢1 :“ Aut𝒢p𝒫q.

2.16. Let 𝒫𝑐𝑎𝑛
𝑇 be the 𝑇 -torsor 𝜌pΩ𝑋q :“ 2𝜌pΩ

1
2
𝑋q for Ω

1
2
𝑋 our choice of square root of the canonical

bundle. For 𝛤 “ 𝐵,𝐵´, 𝐺, let 𝒫𝑐𝑎𝑛
𝛤 denote the induced 𝛤 -torsor via the embedding 𝑇 ãÑ 𝛤 .

Let 𝐺𝑐𝑎𝑛, 𝐵𝑐𝑎𝑛, and 𝐵´,𝑐𝑎𝑛 denote the corresponding pure inner forms of 𝐺,𝐵 and 𝐵´ respec-
tively. Note that commutativity of 𝑇 means that 𝑇 𝑐𝑎𝑛 is a constant group scheme.

Let 𝑁´,𝑐𝑎𝑛 denote the form of 𝑁´ obtained by twisting 𝒫𝑐𝑎𝑛
𝐵´ by the adjoint action of 𝐵´ on

𝑁´. Note that 𝑁´,𝑐𝑎𝑛 is not an inner form of 𝑁´. We treat 𝑁 𝑐𝑎𝑛 similarly.
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Example 2.16.1. Suppose that 𝐺 “ 𝐺𝐿2. Then 𝐺𝑐𝑎𝑛 is the group scheme whose sections are matri-
ces:

ˆ

𝑓 𝜙
𝜔 𝑔

˙

with 𝑓, 𝑔 P O𝑋 , 𝜔 P Ω𝑋 , and 𝜙 P Ω´1𝑋 , and with determinant 𝑓𝑔´𝜙b𝜔 P O𝑋 everywhere non-zero.

Convention 2.16.2. To avoid including twists in the notation everywhere, we will write e.g. 𝐺p𝐾q𝑋𝐼

for the relative jets into 𝐺𝑐𝑎𝑛 (in the sense of Remark 2.7.1). The same goes for loop spaces, jet
spaces, and affine Grassmannians for 𝐺 and our other groups.

The truth is that these twists do not play a role at all until we discuss Whittaker invariants, and
we could work just as well with any other twists of our groups until then (including the constant
one). However, for reasons of notation, we choose to make the official policy that these twists are
included at every step.

Remark 2.16.3. By (2.15.1), this twist gives rise to the same automorphic forms as the split form
of 𝐺.

Notation 2.16.4. We will use the notation p𝑙𝑜𝑐
𝑋𝐼 and q𝑙𝑜𝑐

𝑋𝐼 for the maps:

Gr𝐵,𝑋𝐼

p𝑙𝑜𝑐
𝑋𝐼

yy

q𝑙𝑜𝑐
𝑋𝐼

%%
Gr𝐺,𝑋𝐼 Gr𝑇,𝑋𝐼 .

(Here the notation 𝑙𝑜𝑐 indicates that these are “local” counterparts to the maps p : Bun𝐵 Ñ Bun𝐺
and q : Bun𝐵 Ñ Bun𝑇 from [BG1]).

By the above, p𝑙𝑜𝑐˚,𝑑𝑅 and q𝑙𝑜𝑐˚,𝑑𝑅 have canonical structures of (strictly) unital chiral functors.

2.17. Group actions on categories. It will be convenient to have the basic aspects of the theory
of group action on categories available to us.

Remark 2.17.1. Because we need to work in a relative framework, it is not sufficient for us to appeal
to [Ber].

Let 𝑆 be a base scheme of finite type and let HÑ 𝑆 be a group indscheme over 𝑆 that is placid
as a mere indscheme.

By [Ras3] Proposition 6.9.1, the category 𝐷!pHq obtains the structure of coalgebra in the sym-
metric monoidal category 𝐷p𝑆q–mod » ShvCat{𝑆𝑑𝑅 .

Definition 2.17.2. A category (!–)acted on by H (over 𝑆) is a left comodule for 𝐷!pHq in ShvCat{𝑆𝑑𝑅 .
We denote the corresponding category by H–mod.

Example 2.17.3. If 𝑇 is an indscheme over 𝑆 with an action of H, then by [Ras3] Proposition 6.9.1,
H acts on 𝐷!p𝑇 q.

Remark 2.17.4. The “Hopf algebra” structure on H implies that H–mod admits a symmetric
monoidal structure with symmetric monoidal forgetful functor H–mod Ñ ShvCat{𝑆𝑑𝑅 . For C,D P
H–mod, the coaction map on C b

𝐷p𝑆q
D is induced in the obvious way from the coaction for C

and D separately, and the !-restriction functor 𝐷!pH ˆ𝑆 Hq Ñ 𝐷!pHq induced by the diagonal
HÑ H ˆ𝑆 H.
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Remark 2.17.5. The forgetful functor H–mod Ñ ShvCat{𝑆𝑑𝑅 admits a right adjoint C ÞÑ C b𝐷p𝑆q
𝐷!pHq.

Moreover, we claim that H–mod Ñ ShvCat{𝑆𝑑𝑅 commutes with limits. Note that 𝐷!pHq is du-

alizable as an object of ShvCat{𝑆𝑑𝑅 by placidity. Therefore, tensoring in ShvCat{𝑆𝑑𝑅 with 𝐷!pHq

commutes with limits, so the result is proved as [Lur] Corollary 4.2.3.5.
In particular, we see that every C P H–mod admits a bar resolution:

C “ lim
Δ

´

C b
𝐷p𝑆q

𝐷!pHq //// C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

𝐷!pHq
////// . . .

¯

Given C acted on by H, we define the category CH of invariants C as the limit of the bar
construction:

CH :“ lim
r𝑛sPΔ

´

C // // 𝐷!pHq b
𝐷p𝑆q

C
////// . . .

¯

There is a tautological functor:

Oblv : CH Ñ C.

Example 2.17.6. The category 𝐷!pHq acts on itself, and we have 𝐷p𝑆q
»
ÝÑ 𝐷!pHqH by splitting

the relevant cosimplicial object. Here the corresponding functor 𝐷p𝑆q
»
ÝÑ 𝐷!pHqH

Oblv
ÝÝÝÑ 𝐷!pHq is

!-pullback.

Remark 2.17.7. Suppose that H “ Y𝑖H𝑖 is an ind-group scheme. Then for every C acted on by H,
we have:

CH »
ÝÑ lim

𝑖
CH𝑖 .

Indeed, this follows by commuting limits with limits.

We recall that 𝐷!pHq is dualizable as a 𝐷p𝑆q-module category with dual 𝐷˚pHq because H is
assumed placid. Under this duality, the coalgebra structure on 𝐷!pHq transfers to the canonical
algebra structure on 𝐷˚pHq P ShvCat{𝑆𝑑𝑅 induced by the multiplication on H.15

We therefore obtain:

Proposition 2.17.8. Under the above hypotheses on H, categories acted on by H are canonically
equivalent to left 𝐷˚pHq-modules in ShvCat{𝑆𝑑𝑅 .

For C acted on by H, we refer to the corresponding 𝐷˚pHq-action as convolution.
For the remainder of this discussion, we suppose that H is a group scheme over 𝑆, and moreover

that H satisfies the hypotheses of [Ras3] Example 4.2.3, i.e., H is a filtered limit of smooth affine
𝑆-group schemes under smooth surjective homomorphisms.

By [Ras3] Proposition 4.11.1, the pullback 𝐷p𝑆q Ñ 𝐷!pHq then admits a right adjoint in
ShvCat{𝑆𝑑𝑅 of renormalized de Rham pushforward functor of [Ras3] S4.9.

We refer to [Lur] Theorem 6.2.4.2 and [Gai4] S4.4.7 for an introduction to the Beck-Chevalley
formalism used below.

Proposition 2.17.9. Under the above hypotheses on H, the cosimplicial object defining CH satisfies
the Beck-Chevalley conditions.

15Here we are repeatedly using the canonical identification from [GR2] of p𝑓 !
q
_, the functor dual to 𝑓 !, with 𝑓˚,𝑑𝑅

for a morphism 𝑓 of finite type schemes.
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Corollary 2.17.10. The functor Oblv : CH Ñ C admits a right adjoint AvH,C,˚ “ AvH,˚ “ Av˚
in 𝐷p𝑆q. In particular, formation of Av˚ commutes with base-change of the (finite type) scheme 𝑆.

Moreover, for a morphism CÑ D of categories acted on by H, the diagram:

C //

Av˚
��

D

Av˚
��

CH // DH

commutes (i.e., the relevant natural transformation is a natural isomorphism). More precisely, Av˚
is given by convolution with 𝜔𝑟𝑒𝑛H , this object being defined by the dimension theory on H obtained
by pullback from the standard dimension theory on 𝑆.

We we will use the following in the proof of Proposition 2.17.9.

Lemma 2.17.11. For C acted on by H, let

C b
𝐷p𝑆q

𝐷!pHq Ñ C b
𝐷p𝑆q

𝐷!pHq

be the endofunctor induced by the coaction map:

CÑ C b
𝐷p𝑆q

𝐷!pHq

and considering the right hand side as a p𝐷!pHq,
!
bq-module.

Then this endofunctor is an equivalence.

Proof. Recall that 𝐷!pHq is dualizable as a 𝐷p𝑆q-module category. Therefore, by Remark 2.17.5
we reduce to the case where C “ Db𝐷p𝑆q 𝐷

!pHq for D P ShvCat{𝑆𝑑𝑅 . Here the result is obvious.
�

Proof of Proposition 2.17.9. For every integer 𝑛, the functor:

C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

𝑛 times

Ñ C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

p𝑛`1q times

coming from tensoring on the right with the pullback 𝐷p𝑆q Ñ 𝐷!pHq admits a right adjoint, as
noted before. Moreover, we claim that for every morphism r𝑛s Ñ r𝑚s P Δ, we need to show that
the following diagram commutes (i.e., the base-change map should be an equivalence):

C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

p𝑛`1q times

//

��

C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

𝑛 times

��
C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

p𝑚`1q times

// C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

. . . b
𝐷p𝑆q

𝐷!pHq

loooooooooooooooomoooooooooooooooon

𝑚 times

where horizontal arrows are these left adjoints and vertical arrows are the structure maps, r𝑛`1s Ñ
r𝑚` 1s being induced from r𝑛s Ñ r𝑚s by adjoining a new infimum.
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Rather than get bogged down in notation, we prove this instead for “representative” morphisms
r𝑛s Ñ r𝑚s, the general argument being the same.

Namely, suppose that 𝑛 “ 0 and 𝑚 “ 1. If 0 ÞÑ 1, the commutativity is tautological. Therefore,
suppose that 0 ÞÑ 0. Then the corresponding map CÑ Cb𝐷p𝑆q𝐷

!pHq is the coaction map, and we
should prove that the diagram:

C b
𝐷p𝑆q

𝐷!pHq

coactb id

��

// C

coact

��
C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

𝐷!pHq // C b
𝐷p𝑆q

𝐷!pHq

commutes, where the horizontal arrows are given by taking renormalized de Rham cohomology in
the last variable.

Intertwining the lower two terms using Lemma 2.17.11, we see that this diagram is isomorphic
to:

C b
𝐷p𝑆q

𝐷!pHq

��

// C

��
C b
𝐷p𝑆q

𝐷!pHq b
𝐷p𝑆q

𝐷!pHq // C b
𝐷p𝑆q

𝐷!pHq

(2.17.1)

where now the two vertical arrows are induced by tensoring appropriately with the pullback 𝐷p𝑆q Ñ
𝐷!pHq.

To see that the diagram (2.17.1) commutes, it suffices to show that in the diagram:

H ˆ
𝑆
H

𝑝1 //

𝑝2

��

H

𝜋

��
H

𝜋 // 𝑆

the natural transformation 𝑝!2𝜋˚,𝑟𝑒𝑛 Ñ 𝑝1,˚,𝑟𝑒𝑛𝜋
! arising from adjunction is an equivalence. To this

end, we extend the diagram to:

H ˆ
𝑆
H //

𝑝2

��

H ˆH

idH ˆ𝜋

��

𝑝1 // H

𝜋

��
H

Γ𝜋 // H ˆ 𝑆
𝑝2 // 𝑆

where Γ𝜋 indicates the graph of the map 𝜋. Now base-change is obvious for the right square, and
for the left square it follows from [Ras3] Proposition 4.11.1.

�

2.18. The unipotent case. Let 𝑆 be a finite type base scheme again.

Definition 2.18.1. A unipotent 𝑆-group scheme is a smooth 𝑆-group scheme that has a central
filtration by smooth 𝑆-group schemes with subquotients forms (in the sense of 2.11) of G𝑎 ˆ 𝑆.
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A prounipotent group 𝑆-scheme is a group 𝑆-scheme that is a projective limit of unipotent
𝑆-group schemes under smooth surjective group homomorphisms.

A unipotent group indscheme over 𝑆 is a group indscheme over 𝑆 that is a union of closed
subgroup schemes each of which is prounipotent.

Example 2.18.2. Any form H of a unipotent group H0 over Specp𝑘q is unipotent: indeed, this
follows from comparing the lower central series of H with that of H0. The group scheme 𝑁p𝑂q𝑋𝐼

is prounipotent. For any form 𝒢 of an algebraic group, Ker
`

𝒢p𝑂q𝑋𝐼 Ñ 𝒢
˘

is prounipotent. The

group indscheme 𝑁p𝐾q𝑋𝐼 is a unipotent group indscheme over 𝑋𝐼 .

Remark 2.18.3. Obviously unipotent group indschemes are placid.

Let H be a unipotent group indscheme over 𝑆 for the remainder of this section.
The key feature for our purposes is the following:

Proposition 2.18.4. For every C acted on by H, the functor:

Oblv : CH Ñ C

is fully-faithful in ShvCat{𝑆𝑑𝑅 .

Proof. By Remark 2.17.7 and [Ras1] Corollary A.4.5, we reduce to proving this in the case when
H is a prounipotent group scheme over 𝑆.

In this case, note that 𝐷p𝑆q Ñ 𝐷!pHq is fully-faithful and admits a fully-faithful right adjoint in
ShvCat{𝑆𝑑𝑅 . Indeed, under the identification 𝐷! » 𝐷˚, 𝑓 ! identifies with 𝑓˚,𝑑𝑅 by [Ras3] Proposition
4.11.1, so the result follows from the contractibility of affine space.

Therefore, for any D P ShvCat{𝑆𝑑𝑅 , the induced functor:

DÑ D b
𝐷p𝑆q

𝐷!pHq

is fully-faithful.
By Lemma 2.17.11, we see that each morphism in the semicosimplicial diagram (underlying

the cosimplicial diagram) defining CH is fully-faithful. By contractibility of the category of the
semisimplex category (i.e., finite totally ordered sets under injections preserving the orders), we
deduce the result from [Ras1] Corollary A.4.5.

�

2.19. Borel notation. Let 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 denote the “connected component of the identity” in
𝐵p𝐾q,16 i.e., the group indscheme over 𝑋𝐼 :

𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 :“ 𝐵p𝐾q𝑋𝐼 ˆ
𝑇 p𝐾q

𝑋𝐼

𝑇 p𝑂q𝑋𝐼 .

Remark 2.19.1. Note that 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 is an ind-group scheme: indeed, choose a coordinate 𝑡
on 𝑋 and then 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 is the union of the subgroups Ad´𝜆̌p𝑡qp𝐵p𝑂q𝑋𝐼 q for 𝜆̌ a dominant

coweight, and one readily checks that these subgroups do not depend on the choice of coordinate.

Remark 2.19.2. Varying the finite set 𝐼, one sees that 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 is another factorization group
scheme. It has a unital structure under correspondences induced by that of 𝐵p𝐾q𝑋𝐼 .

16We remark that this is poor terminology scheme-theoretically: for example, 𝑇 p𝑂q is not the connected component
of the identity of 𝑇 p𝐾q due to the existence of nilpotents.
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2.20. Semi-infinite flag variety. In this section, we consider 𝐺p𝐾q𝑋𝐼 acting on itself through
the right action.

We define 𝐷!pFl
8
2

𝑋𝐼 q as the 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 -coinvariants category of 𝐷!p𝐺p𝐾q𝑋𝐼 q.
We have a tautological functor:

p
8
2
𝐼,˚,𝑟𝑒𝑛 : 𝐷!p𝐺p𝐾q𝑋𝐼 q Ñ 𝐷!pFl

8
2

𝑋𝐼 q.

These categories are compatible with restrictions between 𝑋𝐼 as 𝐼 P fSet varies by [Ras3]
Proposition 6.9.1 and by the base-change results of [Ras3] S6.3. Therefore, we obtain the category

𝐷!pFl
8
2
Ran𝑋

q, which arises as the global sections on an underlying sheaf of categories 𝐷!pFl
8
2 qfact on

Ran𝑋𝑑𝑅 , equipped with the tautological functor:

p
8
2
Ran𝑋 ,˚,𝑟𝑒𝑛

: 𝐷!p𝐺p𝐾qRan𝑋 q Ñ 𝐷!pFl
8
2
Ran𝑋

q.

There is an evident structure of factorization category on 𝐷!pFl
8
2 qfact (which we will upgrade to

unital factorization category in what follows), equipped with the functor p
8
2
˚,𝑟𝑒𝑛 : 𝐷!p𝐺p𝐾qqfact Ñ

𝐷!pFl
8
2 qfact.

Remark 2.20.1. While the semi-infinite flag variety Fl
8
2

𝑋𝐼 does not exist as an indscheme, the notation

follows the standard convention in the literature to pretend that it does. Then p
8
2
𝐼 would be map

𝐺p𝐾q𝑋𝐼 Ñ Fl
8
2

𝑋𝐼 .

Remark 2.20.2. The choice to work with coinvariants here instead of invariants is more natural for
the purposes of S4.

2.21. Intermediate Grassmannian. We will need the following intermediate space between the

semi-infinite flag variety Fl
8
2

𝑋𝐼 and Gr𝐺,𝑋𝐼 .
For each finite set 𝐼, let Gr𝐺,𝐵,𝑋𝐼 be the intermediate Grassmannian parametrizing a point

𝑥 “ p𝑥𝑖q𝑖P𝐼 P 𝑋
𝐼 , a 𝐺𝑐𝑎𝑛-bundle 𝒫 on 𝑋 with a trivialization on 𝑋z𝑥 “ 𝑋zt𝑥𝑖u𝑖P𝐼 and a reduction

to 𝐵𝑐𝑎𝑛 on p𝒟𝑥 (this is understood in families in the usual manner).

Remark 2.21.1. For a closed point 𝑥 P 𝑋 with a trivialization of Ω
1{2
𝑋 |𝒟𝑥 (to eliminate the twist

of S2.16), the fiber of Gr𝐺,𝐵,𝑋 over a closed point 𝑥 P 𝑋 is the indscheme (of ind-infinite type)
𝐺p𝐾𝑥q{𝐵p𝑂𝑥q.

We have obvious maps Gr𝐺,𝐵,𝑋𝐼 Ñ Gr𝐺,𝑋𝐼 , and by Proposition 2.13.2, Gr𝐺,𝐵,𝑋𝐼 is a placid
indscheme. Clearly 𝐼 ÞÑ Gr𝐺,𝐵,𝑋𝐼 factorizes.

Moreover, the unital structure (in the sense of correspondences) on p𝐼 ÞÑ 𝐺p𝐾q𝑋𝐼 q defines a unital
structure on p𝐼 ÞÑ Gr𝐺,𝐵,𝑋𝐼 q. For example, the unit map over 𝑋𝐼 is given by the correspondence:

𝐺p𝑂q𝑋𝐼 {𝐵p𝑂q𝑋𝐼

xx ((
𝑋𝐼 Gr𝐺,𝐵,𝑋𝐼 .

(2.21.1)

Therefore, the assignment:

𝐼 ÞÑ 𝐷!pGr𝐺,𝐵,𝑋𝐼 q

defines a unital factorization category 𝐷!pGr𝐺,𝐵q
fact P FactCat𝑢𝑛p𝑋𝑑𝑅q on 𝑋𝑑𝑅.
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2.22. We can more explicitly express the category 𝐷!pFl
8
2

𝑋𝐼 q by realizing it as a localization of

𝐷!pGr𝐺,𝐵,𝑋𝐼 q as follows.
We have a canonical functor:

p
8
2
,𝑖𝑛𝑡

𝑋𝐼 ,˚,𝑟𝑒𝑛
: 𝐷!pGr𝐺,𝐵,𝑋𝐼 q Ñ 𝐷!pFl

8
2

𝑋𝐼 q

obtained by writing 𝐷!pGr𝐺,𝐵,𝑋𝐼 q as the 𝐵p𝑂q𝑋𝐼 -coinvariants of 𝐷!p𝐺p𝐾q𝑋𝐼 q via [Ras3] Proposi-
tion 6.7.1.

This is a functor of 𝐷p𝑋𝐼q-module categories (i.e., sheaves of categories on 𝑋𝐼
𝑑𝑅), and we will

show in S2.23 that it is a localization functor as such.

2.23. As in Remark 2.19.1, we can write 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 as a filtered union of subgroup schemes 𝒦𝛼

beginning with 𝐵p𝑂q𝑋𝐼 and such that the subquotients are locally finite-dimensional affine spaces
over 𝑋𝐼 .

It follows tautologically that:

𝐷!pFl
8
2

𝑋𝐼 q » colim
𝛼

𝐷!p𝐺p𝐾q𝑋𝐼 q𝒦𝛼

with the coinvariant category on the right defined as the colimit of the appropriate bar construction.
By [Ras3] Proposition 6.7.1, we have a canonical identification:

𝐷!p𝐺p𝐾q𝑋𝐼 q𝐵p𝑂q
𝑋𝐼
» 𝐷!pGr𝐺,𝐵,𝑋𝐼 q

with the equivalence induced by the functor of renormalized de Rham pushforward along𝐺p𝐾q𝑋𝐼 Ñ

Gr𝐺,𝐵,𝑋𝐼 .
We claim that for each of our distinguished subgroups 𝒦𝛼, the functor:

𝐷!pGr𝐺,𝐵,𝑋𝐼 q » 𝐷!p𝐺p𝐾q𝑋𝐼 q𝐵p𝑂q
𝑋𝐼
Ñ 𝐷!p𝐺p𝐾q𝑋𝐼 q𝒦𝛼 (2.23.1)

admits a fully-faithful left adjoint.
Indeed, there is a canonical indscheme (of ind-infinite type):

𝐺p𝐾q𝑋𝐼 {𝒦𝛼

so that 𝐺p𝐾q𝑋𝐼 Ñ 𝐺p𝐾q𝑋𝐼 {𝒦𝛼 is a 𝒦𝛼-torsor (for 𝒦𝛼 “ 𝐵p𝑂q𝑋𝐼 , we obtain Gr𝐺,𝐵,𝑋𝐼 ).
By [Ras3] Proposition 6.7.1, we have:

𝐷!p𝐺p𝐾q𝑋𝐼 q𝒦𝛼 » 𝐷!p𝐺p𝐾q𝑋𝐼 {𝒦𝛼q

so that the functor (2.23.1) corresponds to the renormalized pushforward:

𝐷!pGr𝐺,𝐵,𝑋𝐼 q Ñ 𝐷!p𝐺p𝐾q𝑋𝐼 {𝒦𝛼q.

Then the existence of the left adjoint follows from [Ras3] Proposition 6.18.1: it is computed as
the upper-! functor under this dictionary. Moreover, the fact that the fibers of our map are affine
spaces implies the fully-faithfulness of this left adjoint.

Passing to the colimit over the groups 𝒦𝛼 and applying [Ras1] Proposition A.7.3, we obtain that

the functor p
8
2
,𝑖𝑛𝑡

𝑋𝐼 ,˚,𝑟𝑒𝑛
is a localization functor as desired.

Remark 2.23.1. Note that 𝐷!pFl
8
2

𝑋𝐼 q is not a localization of 𝐷!p𝐺p𝐾q𝑋𝐼 q: the problem is that 𝐵p𝑂q
admits the non-trivial reductive quotient 𝑇 .
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2.24. Unitality of the semi-infinite flag variety. For every finite set 𝐼, let K𝐼 denote the kernel

of the functor p
8
2
,𝑖𝑛𝑡

𝑋𝐼 ,˚,𝑟𝑒𝑛
.

For 𝐼 and 𝐽 two finite sets, let:

ℋ𝐺,𝐵,𝐼,𝐽 :“ ℋ𝐺,𝐵,𝑓

𝛼𝐺,𝐵

uu

𝛽𝐺,𝐵

((
𝑋𝐼 ˆGr𝐺,𝐵,𝑋𝐽 Gr𝐺,𝐵,𝑋𝐼

š

𝐽

(2.24.1)

denote the associated unit correspondence, where 𝑓 : 𝐼 ãÑ 𝐼
š

𝐽 is the tautological inclusion.

Lemma 2.24.1. The unit functor 𝛽𝐺,𝐵,˚,!´𝑑𝑅𝛼
!
𝐺,𝐵 maps 𝐷p𝑋𝐼q bK𝐽 to K𝐼

š

𝐽 .

Proof. Suppose that F P 𝐷p𝑋𝐼q bK𝐽 . We need to show that:

p
8
2
,𝑖𝑛𝑡

𝑋𝐼
š

𝐽 ,˚,𝑟𝑒𝑛
𝛽𝐺,𝐵,˚,!´𝑑𝑅𝛼

!
𝐺,𝐵pFq “ 0.

Step 1. First, let us show that the left hand side is zero when restricted to r𝑋𝐼
š

𝑋𝐽 s𝑑𝑖𝑠𝑗 , the locus
where the corresponding point in Ran𝑋 ˆRan𝑋 lies in rRan𝑋 ˆRan𝑋s𝑑𝑖𝑠𝑗 .

Each of our functors is intertwined by this restriction to this open: indeed, this is obvious for

𝛽𝐺,𝐵,˚,!´𝑑𝑅 and 𝛼!
𝐺,𝐵, and for p

8
2
,𝑖𝑛𝑡

𝑋𝐼
š

𝐽 ,˚,𝑟𝑒𝑛
this follows by combining the analysis of S2.23 with [Ras3]

Proposition 6.18.1.
Then the claim follows because our correspondence restricts to the obvious correspondence:

r𝐺p𝑂q𝑋𝐼 {𝐵p𝑂q𝑋𝐼 ˆGr𝐺,𝐵,𝑋𝐽 s

tt ++
r𝑋𝐼 ˆGr𝐺,𝐵,𝑋𝐽 s𝑑𝑖𝑠𝑗 rGr𝐺,𝐵,𝑋𝐼 ˆGr𝐺,𝐵,𝑋𝐽 s𝑑𝑖𝑠𝑗

Here the notation r´s𝑑𝑖𝑠𝑗 everywhere indicates that we restrict to r𝑋𝐼 ˆ 𝑋𝐽 s𝑑𝑖𝑠𝑗 . Moreover, the

map p
8
2
,𝑖𝑛𝑡

𝑋𝐼
š

𝐽 ,˚,𝑟𝑒𝑛
restricts to this locus as p

8
2
,𝑖𝑛𝑡

𝑋𝐼 ,˚,𝑟𝑒𝑛
b p

8
2
,𝑖𝑛𝑡

𝑋𝐽 ,˚,𝑟𝑒𝑛
. From here, the claim is obvious.

Step 2. To complete the above analysis, we need the following digression.
Suppose that we are given 𝐼 “ 𝐼1

š

𝐼2 and a map 𝜀 : 𝐼2 Ñ 𝐽 .
We associate to this datum a locally closed subscheme 𝑍 ãÑ 𝑋𝐼 ˆ 𝑋𝐽 , defined as the locus

of points
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽q
˘

such that, for every 𝑖 P 𝐼1, 𝑗 P 𝐽 , we have 𝑥𝑖 ‰ 𝑥𝑗 , and for every
𝑖 P 𝐼2 we have 𝑥𝑖 “ 𝑥𝜀p𝑖q. (The scheme-theoretic meaning of 𝑥𝑖 ‰ 𝑥𝑗 for 𝑆-points is that the map
p𝑥𝑖, 𝑥𝑗q : 𝑆 Ñ 𝑋 ˆ𝑋 factors through the complement to the diagonal).

For example, if 𝐼1 “ 𝐼, 𝐼2 “ H, then 𝑍 “ r𝑋𝐼 ˆ 𝑋𝐽 s𝑑𝑖𝑠𝑗 . In general, 𝑍 is isomorphic to

r𝑋𝐼1 ˆ𝑋𝐽 s𝑑𝑖𝑠𝑗 , and the map 𝑍 Ñ 𝑋𝐼 ˆ𝑋𝐽 factors as:

𝑍 “ r𝑋𝐼1 ˆ𝑋𝐽 s𝑑𝑖𝑠𝑗 ãÑ r𝑋𝐼1 ˆ p𝑋𝐼2
š

𝐽qs𝑑𝑖𝑠𝑗 ãÑ 𝑋𝐼 ˆ𝑋𝐽 (2.24.2)

where the first map is the diagonal embedding defined by the surjection 𝐼2
š

𝐽
𝜀ˆid𝐽
� 𝐽 .

Note that as the data p𝐼 “ 𝐼1
š

𝐼2, 𝜀 : 𝐼2 Ñ 𝐽q vary, the associated locally closed subschemes
cover 𝑋𝐼 ˆ𝑋𝐽 . Indeed, given a geometric point

`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽q
˘

P 𝑋𝐼 ˆ𝑋𝐽 , let 𝐼1 be the set of
𝑖 such that 𝑥𝑖 ‰ 𝑥𝑗 for all 𝑗 P 𝐽 , let 𝐼2 be its complement, and define 𝜀 : 𝐼2 Ñ 𝐽 by choosing for
each 𝑖 P 𝐼2 some 𝑗 P 𝐽 such that 𝑥𝑖 “ 𝑥𝑗 .
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We remark that this construction does not form a partition: there is some redundancy.

Step 3. Let 𝐼 “ 𝐼1
š

𝐼2, 𝜀 : 𝐼2 Ñ 𝐽 and 𝑍 be as above.
Using factorization and the composition (2.24.2), we see that the restriction of (2.24.1) to 𝑍 is

isomorphic to:

𝐺p𝑂q𝑋𝐼1 {𝐵p𝑂q𝑋𝐼1 ˆ𝑋
𝐼2 ˆGr𝐺,𝐵,𝑋𝐽

tt ++
𝑋𝐼 ˆGr𝐺,𝐵,𝑋𝐽 Gr𝐺,𝐵,𝑋𝐼1 ˆ𝑋

𝐼2 ˆGr𝐺,𝐵,𝑋𝐽 .

The same argument as in Step 1 implies that our functors are intertwined by !-restriction to 𝑍 in

the obvious way. Therefore, we see that p
8
2
,𝑖𝑛𝑡

𝑋𝐼
š

𝐽 ,˚,𝑟𝑒𝑛
𝛽𝐺,𝐵,˚,!´𝑑𝑅𝛼

!
𝐺,𝐵pFq has vanishing !-restriction

to the locus:

Gr𝐺,𝐵,𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽
𝑍.

But this suffices, since varying our choice of 𝐼 “ 𝐼1
š

𝐼2 and 𝜀 : 𝐼2 Ñ 𝐽 we obtain a cover of
𝑋𝐼 ˆ𝑋𝐽 by locally closed subschemes.

�

Therefore, varying 𝐼 and 𝐽 , we see that 𝐷!pFl
8
2 qfact has a canonical structure of unital sheaf of

categories. We will denote the corresponding object of ShvCat{Ran𝑢𝑛𝑋𝑑𝑅
by the same notation.

Lemma 2.24.2. Let 𝑓 : 𝐼 Ñ 𝐽 be a surjection of finite sets. Then the functor:

K𝐼 b
𝐷p𝑋𝐼q

𝐷p𝑋𝐽q Ñ K𝐽

induced by !-restriction is an equivalence.

Proof. Let 𝒦𝑋𝐼 ,𝛼 Ď 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 be a subgroup scheme as in S2.23 (there denoted 𝒦𝛼, where
there was only one finite set at play). Let 𝒦𝑋𝐽 ,𝛼 denote the restriction of 𝒦𝑋𝐼 ,𝛼 along the closed
embedding:

Gr𝐺,𝐵,𝑋𝐽 “ Gr𝐺,𝐵,𝑋𝐼 ˆ
𝑋𝐼
𝑋𝐽 ãÑ Gr𝐺,𝐵,𝑋𝐼 . (2.24.3)

Note that 𝒦𝑋𝐽 ,𝛼 Ď 𝑁p𝐾q𝑇 p𝑂q𝑋𝐽 is a subgroup scheme of the same type as considered in S2.23.
Define K𝐼,𝛼 and K𝐽,𝛼 respectively as the kernels of the renormalized pushforward functors:

𝐷!pGr𝐺,𝐵,𝑋𝐼 q Ñ 𝐷!p𝐺p𝐾q𝑋𝐼 {𝒦𝑋𝐼 ,𝛼q

resp. 𝐷!pGr𝐺,𝐵,𝑋𝐽 q Ñ 𝐷!p𝐺p𝐾q𝑋𝐽 {𝒦𝑋𝐽 ,𝛼q.

Because these pushforward functors admit fully-faithful left adjoints, the corresponding functors:

K𝑋𝐼 ,𝛼 ãÑ 𝐷!pGr𝐺,𝐵,𝑋𝐼 q

K𝑋𝐽 ,𝛼 ãÑ 𝐷!pGr𝐺,𝐵,𝑋𝐽 q

do as well. Moreover, they are 𝐷p𝑋𝐼q-equivariant. Applying this to 𝐼, we see that the functor:
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K𝐼,𝛼 b
𝐷p𝑋𝐼q

𝐷p𝑋𝐽q Ñ 𝐷!pGr𝐺,𝐵,𝑋𝐼 q b
𝐷p𝑋𝐼q

𝐷p𝑋𝐽q

is fully-faithful as well. By [Ras3] Proposition 6.9.1, the functor:

𝐷!pGr𝐺,𝐵,𝑋𝐼 q b
𝐷p𝑋𝐼q

𝐷p𝑋𝐽q Ñ 𝐷!pGr𝐺,𝐵,𝑋𝐽 q

is an equivalence, so we see that:

K𝐼,𝛼 b
𝐷p𝑋𝐼q

𝐷p𝑋𝐽q Ñ K𝐽,𝛼 (2.24.4)

is fully-faithful.
Now observe that (2.24.3) is a finitely presented closed embedding (having been obtained by

base-change from 𝑋𝐽 ãÑ 𝑋𝐼), and therefore the !-restriction functor admits a fully-faithful left
adjoint of !-dR ˚-pushforward. This left adjoint is a morphism of 𝐷p𝑋𝐼q-module categories by
[Ras3] Remark 3.9.5. Moreover, by [Ras3] Proposition 4.12.1, we see that this !-dR ˚-pushforward
functor coincides with renormalized pushforward up to cohomological shift, and therefore it maps
K𝐽,𝛼 to K𝐼,𝛼.

Therefore, we see that (2.24.4) is essentially surjective and therefore an equivalence.
The proof of [Ras1] Proposition A.7.3 shows that the colimit colim𝛼K𝐼,𝛼 considered as a subcat-

egory of 𝐷!pGr𝐺,𝐵,𝑋𝐼 q coincides with K𝐼 ; comparing with the same expression for K𝐽 , we obtain
the result.

�

Therefore, we see that the conditions of [Ras1] S6.5 are satisfied, so that 𝐷!pFl
8
2 qfact obtains

a canonical structure of unital chiral category. As such, it is equipped with the canonical strictly
unital functor:

p
8
2
,𝑖𝑛𝑡,fact

˚,𝑟𝑒𝑛 : 𝐷!pGr𝐺,𝐵q
fact Ñ 𝐷!pFl

8
2 qfact P FactCat𝑢𝑛p𝑋𝑑𝑅q.

2.25. Semi-infinite restriction functor (preliminary). Fix a finite set 𝐼. Let r𝑖𝑋𝐼 : Gr𝐵,𝑋𝐼 Ñ

Gr𝐺,𝐵,𝑋𝐼 denote the canonical map induced by the embedding 𝐵 ãÑ 𝐺. As in Remark 2.10.4, these
maps give a canonical strictly unital chiral functor:

r𝑖! : 𝐷!pGr𝐺,𝐵q
fact Ñ 𝐷pGr𝐵q

fact.

Proposition 2.25.1. There is a unique unital chiral functor:

r𝑖
8
2
,!,fact : 𝐷!pFl

8
2 qfact Ñ 𝐷pGr𝑇 q

fact P FactCat𝑢𝑛p𝑋𝑑𝑅q. (2.25.1)

with an isomorphism:

r𝑖
8
2
,! ˝ p

8
2
,𝑖𝑛𝑡

˚,𝑟𝑒𝑛 » q𝑙𝑜𝑐˚,𝑑𝑅 ˝r𝑖
! : 𝐷!pGr𝐺,𝐵q

fact Ñ 𝐷pGr𝑇 q
fact P FactCat𝑢𝑛p𝑋𝑑𝑅q.

The unital functor r𝑖
8
2
,! is strictly unital.

Proof. By construction of the factorization structure on 𝐷!pFl
8
2 qfact, it suffices to show that for

every finite set 𝐼, the kernel of the functor

p
8
2
,𝑖𝑛𝑡

𝑋𝐼 ,˚,𝑟𝑒𝑛
: 𝐷!pGr𝐺,𝐵,𝑋𝐼 q Ñ 𝐷!pFl

8
2

𝑋𝐼 q
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is annihilated by the functor q𝑙𝑜𝑐
𝑋𝐼 ,˚,𝑑𝑅

˝r𝑖!
𝑋𝐼 . Here 𝑖𝑋𝐼 : Gr𝐵,𝑋𝐼 Ñ Gr𝐺,𝐵,𝑋𝐼 is the obvious map.

Let 𝒦𝛼 be a subgroup scheme of 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 as in S2.23. It suffices to show that r𝑖!
𝑋𝐼 maps

the kernel of the functor (2.23.1) into the kernel of the pushforward functor q𝑙𝑜𝑐
𝑋𝐼 ,˚,𝑑𝑅

for the map

q𝑙𝑜𝑐
𝑋𝐼 : Gr𝐵,𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 .

As in loc. cit., (2.23.1) may be realized as the renormalized pushforward along the placid mor-
phism:

Gr𝐺,𝐵,𝑋𝐼 Ñ 𝐺p𝐾q𝑋𝐼 {𝒦𝛼.

Therefore, the result follows by the base-change property of [Ras3] Proposition 6.18.1, as applied
to the (Cartesian) square in the diagram:

Gr𝐵,𝑋𝐼
//

𝑖
𝑋𝐼

��

𝐵p𝐾q𝑋𝐼 {𝒦𝛼
//

��

Gr𝑇,𝑋𝐼

Gr𝐺,𝐵,𝑋𝐼
// 𝐺p𝐾q𝑋𝐼 {𝒦𝛼.

�

Remark 2.25.2. As in Remark 2.20.1, the notation r𝑖
8
2 refers to the would-be embedding:

Gr𝑇 “ 𝐵p𝐾q{𝑁p𝐾q𝑇 p𝑂q ãÑ Fl
8
2 .

2.26. Semi-infinite restriction functor (redux). We will actually use a variant of the above
functor, using a small correction by some cohomological shifts.

Note that Gr𝑇,𝑋𝐼 has a canonical degree map deg : Gr𝑇,𝑋𝐼 Ñ Λ̌ where Λ̌ is considered as a
discrete indscheme (i.e., an infinite union of points). Indeed, thinking of Gr𝑇,𝑋𝐼 as the data of a

point p𝑥𝑖q𝑖P𝐼 and a Λ̌-valued divisor on 𝑋 supported on (the formal completion of) the union of
the points p𝑥𝑖q, we take the degree of the corresponding divisor.

This map is compatible with factorization in the sense that for 𝐼 “ 𝐼1
š

𝐼2, the restriction of
deg to:

Gr𝑇,𝑋𝐼 ˆ
𝑋𝐼
r𝑋𝐼1 ˆ𝑋𝐼2s𝑑𝑖𝑠𝑗 »

`

Gr𝑇,𝑋𝐼1 ˆGr𝑇,𝑋𝐼2

˘

ˆ
𝑋𝐼
r𝑋𝐼1 ˆ𝑋𝐼2s𝑑𝑖𝑠𝑗

coincides with the restriction of the map:

Gr𝑇,𝑋𝐼1 ˆGr𝑇,𝑋𝐼2

degˆdeg
ÝÝÝÝÝÝÑ Λ̌ˆ Λ̌

sum
ÝÝÑ Λ̌.

It now follows that 𝐷pGr𝑇 q
fact carries a factorizable automorphism, which on each Gr𝑇,𝑋𝐼 is the

functor:

F ÞÑ Frp´2𝜌,degqs.

I.e., on the preimage deg´1p𝜆̌q, we take a cohomological shift by p´2𝜌, 𝜆̌q.
Finally, we define functors:

𝑖
8
2
,!

𝑋𝐼 : 𝐷pFl
8
2

𝑋𝐼 q Ñ 𝐷pGr𝑇 q

𝑖
8
2
,!

𝑋𝐼 pFq :“ r𝑖
8
2
,!

𝑋𝐼 rp´2𝜌, degqs

which together define a factorizable functor.
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We have similar factorizable functor 𝑖! : 𝐷pGr𝑖𝑛𝑡𝐺,𝐵q
fact Ñ 𝐷pGr𝐵q

fact, where we apply similar
cohomological shifts on connected components of the Gr𝐵,𝑋𝐼 in the exact same way at for Gr𝑇,𝑋𝐼 .

We have the following variant of Proposition 2.25.1.

Proposition 2.26.1. There is a unique unital chiral functor:

𝑖
8
2
,!,fact : 𝐷!pFl

8
2 qfact Ñ 𝐷pGr𝑇 q

fact P FactCat𝑢𝑛p𝑋𝑑𝑅q. (2.26.1)

with an isomorphism:

𝑖
8
2
,! ˝ p

8
2
,𝑖𝑛𝑡

˚,𝑟𝑒𝑛 » q𝑙𝑜𝑐˚,𝑑𝑅 ˝ 𝑖
! : 𝐷!pGr𝐺,𝐵q

fact Ñ 𝐷pGr𝑇 q
fact P FactCat𝑢𝑛p𝑋𝑑𝑅q.

The unital functor 𝑖
8
2
,! is strictly unital.

2.27. Whittaker conditions. The remainder of this section is devoted to imposing the Whit-

taker condition on 𝐷!pFl
8
2 qfact, and especially to establishing its structure as a unital factorization

category.

2.28. Whittaker character. Observe that we have a canonical homomorphism:

𝑁´p𝐾q𝑋𝐼 Ñ p𝑁´{r𝑁´, 𝑁´sqp𝐾q𝑋𝐼 “
ź

𝑖Pℐ𝐺

Tot.Sp.pΩ1
𝑋qp𝐾q𝑋𝐼

ś

𝑖Pℐ𝐺
Res

ÝÑ
ź

𝑖Pℐ𝐺

G𝑎
sum
Ñ G𝑎

where Tot. Sp.pΩ1
𝑋q indicates the total space of the bundle Ω1

𝑋 , Tot. Sp.pΩ1
𝑋qp𝐾q𝑋𝐼 denotes the

corresponding meromorphic jet space, and Res denotes the residue map.
We then let 𝜓𝑋𝐼 P 𝐷!p𝑁´p𝐾q𝑋𝐼 q denote the induced character 𝐷-module on 𝑁´p𝐾q𝑋𝐼 given

by !-pulling back the character 𝐷-module 𝜓 P 𝐷pG𝑎q. Note that 𝜓𝑋𝐼 canonically descends to an
object:

r𝜓𝑋𝐼 P 𝐷pGr𝑁´,𝑋𝐼 q.

Let 𝐷p𝑋𝐼q𝜓 denote the category 𝐷p𝑋𝐼q considered as a category acted on by 𝑁´p𝐾q𝑋𝐼 q via the
character 𝐷-module 𝜓𝑙𝑜𝑐. Let 𝐷p𝑋𝐼q´𝜓 denote the same, but with the character 𝐷-module 𝜓𝑋𝐼

replaced by its pullback under the inversion map on 𝑁´p𝐾q𝑋𝐼 .

2.29. For any category C acted on by𝑁´p𝐾q𝑋𝐼 , we let Whit𝑋𝐼 pCq “WhitpCq denote the (!–)Whittaker
category :

pC b
𝐷p𝑋𝐼q

𝐷p𝑋𝐼q´𝜓q𝑁
´p𝐾q

𝑋𝐼 .

By unipotence, the functor:

WhitpCq Ñ C

is locally fully-faithful.

Example 2.29.1. We have r𝜓𝑋𝐼 P WhitpGr𝑁´,𝑋𝐼 q. In fact, the functor 𝐷p𝑋𝐼q Ñ WhitpGr𝑁´,𝑋𝐼 q

given by tensoring with r𝜓𝑋𝐼 is an equivalence.

Remark 2.29.2. The category constructed above is sometimes called the !-Whittaker category. It
plays the role of Whittaker invariants. There is a dual construction of Whittaker coinvariants
sometimes called the *-Whittaker category.

For further discussion of these points, see [Gai3] and [Ber].
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2.30. For each finite set 𝐼, define Whit𝑎𝑏𝑠𝑋𝐼 the absolute Whittaker category over 𝑋𝐼 as Whit𝑋𝐼

`

𝐷!p𝐺p𝐾q𝑋𝐼 q
˘

.
Varying 𝐼, we obtain a factorization category:

𝐼 ÞÑWhit𝑎𝑏𝑠𝑋𝐼 :“Whit𝑋𝐼

`

𝐷!p𝐺p𝐾q𝑋𝐼 q
˘

Similarly, we obtain the chiral categories:

𝐼 ÞÑWhit𝑠𝑝ℎ
𝑋𝐼 :“Whit𝑋𝐼

`

𝐷!pGr𝐺,𝑋𝐼 q
˘

𝐼 ÞÑWhit𝑖𝑛𝑡𝑋𝐼 :“Whit𝑋𝐼

`

𝐷!pGr𝐺,𝐵,𝑋𝐼 q
˘

.

2.31. Unital structures on Whittaker categories. We now describe the construction of unital
factorization category structures on Whittaker categories.

Our key technical tool for this is the following lemma.

Lemma 2.31.1. Let 𝑍 be one of the factorization spaces 𝐺p𝐾q, Gr𝐺, or Gr𝐺,𝐵. Then for each
pair 𝐼, 𝐽 of finite sets, we have:

(1) The unit functor:

𝐷p𝑋𝐼q b𝐷!p𝑍𝑋𝐽 q Ñ 𝐷!p𝑍𝑋𝐼
š

𝐽 q

admits a 𝐷p𝑋𝐼q b𝐷p𝑋𝐽q-linear right adjoint.
(2) This right adjoint:

𝐷!p𝑍𝑋𝐼
š

𝐽 q Ñ 𝐷p𝑋𝐼q b𝐷!p𝑍𝑋𝐽 q

preserves the Whittaker subcategories.
(3) The induced functor:

Whitp𝐷!p𝑍𝑋𝐼
š

𝐽 qq Ñ 𝐷p𝑋𝐼q bWhitp𝐷!p𝑍𝑋𝐽 qq

admits a 𝐷p𝑋𝐼q b𝐷p𝑋𝐽q-linear left adjoint.

We will prove (1) and (2) in S2.32-2.33. The proof of (3) requires the introduction of some new
ideas that are orthogonal to our current purposes, so we will delay this part of the argument to S3.

Corollary 2.31.2. The factorization category Whit𝑎𝑏𝑠,fact admits a unique structure of unital fac-
torization category such that Whit𝑎𝑏𝑠,fact Ñ 𝐷!p𝐺p𝐾qqfact upgrades to a unital chiral functor.

For 𝐼 and 𝐽 two finite sets, the corresponding unit functor:

𝐷p𝑋𝐼q bWhit𝑎𝑏𝑠𝑋𝐽 ÑWhit𝑎𝑏𝑠
𝑋𝐼

š

𝐽

is the left adjoint of Lemma 2.31.1 (3).

The same results hold with 𝐺p𝐾q replaced by Gr𝐺 (resp. Gr𝐺,𝐵) and Whit𝑎𝑏𝑠,fact replaced by

Whit𝑠𝑝ℎ,fact (resp. Whit𝑖𝑛𝑡).

Remark 2.31.3. We emphasize that in Corollary 2.31.2, e.g. the inclusion functor Whit𝑎𝑏𝑠,fact Ñ
𝐷!p𝐺p𝐾qqfact is lax unital, not strictly unital.

Proof that Lemma 2.31.1 implies Corollary 2.31.2. Lemma 2.31.1 exactly implies that the hypothe-
ses of [Ras1] Proposition 6.4.2 are satisfied, and therefore loc. cit. implies the result.

�
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2.32. Let 𝒢 be as in S2.11 and fix finite sets 𝐼 and 𝐽 .
We claim that the corresponding unit map:

𝐷p𝑋𝐼q b𝐷!p𝒢p𝐾q𝑋𝐽 q Ñ 𝐷!p𝒢p𝐾q𝑋𝐼
š

𝐽 q

admits a continuous right adjoint, and we claim that this functor is a morphism of 𝐷p𝑋𝐼 ˆ𝑋𝐽q-
module categories.

Indeed, form the correspondence, using Notation 2.10.5:

ℋ𝒢,𝐼,𝐽
𝛽𝒢“𝛽

&&

𝛼“𝛼𝒢

xx
𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽 𝒢p𝐾q𝑋𝐼

š

𝐽

(2.32.1)

with 𝑓 : 𝐼 ãÑ 𝐼
š

𝐽 the tautological embedding. Then the unit map is computed as 𝛽˚,!´𝑑𝑅 ˝ 𝛼
!.

Note that ℋ𝒢,𝐼,𝐽 is placid because ℋ𝒢,𝐼,𝐽 Ñ 𝒢p𝐾q𝑋𝐼
š

𝐽 is a finitely presented closed embedding.
We record for future use the observation that ℋ𝒢,𝐼,𝐽 therefore inherits a dimension theory from
[Ras3] S6.13.

We immediately see from [Ras3] S6.5 that 𝛽˚,!´𝑑𝑅 has right adjoint 𝛽!.

Lemma 2.32.1. The map:

𝛼 : ℋ𝒢,𝐼,𝐽 Ñ 𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽

is a placid morphism.17

Proof. We will prove this by an explicit construction.
Let 𝑛,𝑚 ě ´1 be two fixed integers. Define the indscheme ℋ𝑛,𝑚

𝒢,𝐼,𝐽 parametrizing:

# 𝑥𝐼 “ p𝑥𝑖q𝑖P𝐼 P 𝑋
𝐼 , 𝑥𝐽 “ p𝑥𝑗q𝑗P𝐽 P 𝑋

𝐽 , 𝒫𝒢 a 𝒢-bundle on 𝑋,
𝜏 a trivialization of 𝒫𝒢 |𝑋zt𝑥𝑗u𝑗P𝐽 ,

𝜎 a trivialization of 𝒫𝒢 on Γ
p𝑛q
𝑥𝐼 Y Γ

p𝑚q
𝑥𝐽 .

+

Here, we use the natural convention that Γ
p´1q
𝑥 “ H for any 𝑥 : 𝑆 Ñ 𝑋𝐾 . We emphasize that the

symbol Y here indicates sum of effective divisors.
As in Lemma 2.5.1, as 𝑛 and 𝑚 vary, we obtain a projective system under maps that are affine

smooth covers. Since for 𝑛 “ 𝑚 “ ´1, we obtain 𝑋𝐼 ˆGr𝒢,𝑋𝐽 , we see that the ℋ𝑛,𝑚
𝒢,𝐼,𝐽 actually are

indschemes.
By Lemma 2.12.1, we have:

lim
𝑛,𝑚

ℋ𝑛,𝑚
𝒢,𝐼,𝐽 “ ℋ𝒢,𝐼,𝐽

lim
𝑚

ℋ´1,𝑚𝒢,𝐼,𝐽 “ 𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽 .

Therefore, taking for I the filtered category Zě´1ˆZě´1 (with Zě´1 considered as a category by
its ordering), we see that the map 𝛼 can be written as obtained from the compatible affine smooth
covering maps:

17This subsection requires the most subtle use of the notion of placid morphism, so we recall that the notion of
placid morphism is introduced in loc. cit. S4.10 and S6.17, and is something like a pro-smooth morphism. The key
point is [Ras3] Proposition 6.18.1, which roughly says that placid morphisms behave like smooth morphisms in this
setting, and the implicit dimension shifts in the infinite-dimensional 𝐷-module theory make 𝛼! behave like 𝛼˚,𝑑𝑅.
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lim
𝑛,𝑚

ℋ𝑛,𝑚
𝒢,𝐼,𝐽 Ñ lim

𝑚
ℋ´1,𝑚𝒢,𝐼,𝐽

giving the result.
�

One easily shows that the dimension theories on ℋ𝒢,𝐼,𝐽 coming from 𝛼 and 𝛽 respectively coincide.

Therefore, by [Ras3] Proposition 6.18.1, 𝛼! admits the right adjoint 𝛼˚,𝑟𝑒𝑛.
We record the following feature of 𝛼˚,𝑟𝑒𝑛 for future use.

Lemma 2.32.2. Suppose that 𝒢 is a form of a unipotent algebraic group. Then the functor 𝛼! is
fully-faithful, i.e., the counit for the adjunction p𝛼!, 𝛼˚,𝑟𝑒𝑛q is an equivalence.

Proof. We use the same notation as in Lemma 2.32.1.
Unipotence implies that the pullback functors for each of the maps:

ℋ𝑛,𝑚
𝒢,𝐼,𝐽 Ñ ℋ𝑛1,𝑚1

𝒢,𝐼,𝐽

are fully-faithful, since the fibers are fibrations with affine space fibers.
The argument easily follows from here — we form the commutative square:

ℋ𝒢
𝛼 //

��

𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽

��

ℋ𝑛,𝑚
𝒢,𝐼,𝐽

// ℋ´1,𝑚𝒢,𝐼,𝐽 .

and note that, by definition, it suffices to check that the counit is an equivalence after pushing
forward to ℋ´1,𝑚𝒢,𝐼,𝐽 for every 𝑚. Moreover, we can check this after applying the counit to objects

pulled back from ℋ´1,𝑚𝒢,𝐼,𝐽 (by smoothness of these structure maps). From here the claim is obvious.
�

Variant 2.32.3. We use the notation of (2.24.1) for the unit correspondence for Gr𝐺,𝐵,𝑋𝐽 . Note
that in general we have:

ℋ𝐺,𝐵,𝐼,𝐽 “ ℋ𝐺,𝐼,𝐽{𝐵p𝑂q𝑋𝐼
š

𝐽 .

As above, the unit functor 𝛽𝐺,𝐵,˚,!´𝑑𝑅 ˝ 𝛼
!
𝐺,𝐵 admits the right adjoint 𝛼𝐺,𝐵,˚,𝑟𝑒𝑛 ˝ 𝛽

!
𝐺,𝐵.

We also note that the corresponding statement for Gr𝐺 is true and vacuous.

2.33. In the setting of S2.32 with 𝒢 our twisted form of 𝐺, we claim that the functor 𝛼𝐺,˚,𝑟𝑒𝑛𝛽
!
𝐺

preserves the corresponding Whittaker equivariant subcategories on each side.
In the diagram:

ℋ𝑁´,𝐼,𝐽 :“ ℋ𝑁´,𝑓

𝛽𝑁´

((

𝛼𝑁´

uu
𝑋𝐼 ˆ𝑁´p𝐾q𝑋𝐽 𝑁´p𝐾q𝑋𝐼

š

𝐽

the two corresponding character 𝐷-modules on ℋ𝑁´,𝐼,𝐽 obtained by pullback from 𝛼 or 𝛽 obviously
coincide.
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Therefore, we can make sense of the Whittaker category of 𝐷!pℋ𝐺,𝐼,𝐽q. Moreover, 𝛽!𝐺 obviously
preserve Whittaker categories. Therefore, it suffices to show that 𝛼˚,𝑟𝑒𝑛 preserves these Whittaker
equivariant categories.

We begin by showing that 𝛼𝐺,˚,𝑟𝑒𝑛 maps the 𝑁´p𝑂q𝑋𝐼
š

𝐽 -equivariant category of 𝐷!pℋ𝑁´,𝐼,𝐽q

to the 𝑁´p𝑂q𝑋𝐽 -equivariant (i.e., 𝑋𝐼 ˆ𝑁´p𝑂q𝑋𝐽 -equivariant) category of 𝐷!p𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽 q.
We have the diagram:

𝑁´p𝑂q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼ˆ𝑋𝐽

ℋ𝐺,𝐼,𝐽
act //

𝛼1𝐺

��

ℋ𝐺,𝐼,𝐽

𝛼𝐺

��
𝑋𝐼 ˆ𝑁´p𝑂q𝑋𝐽 ˆ

𝑋𝐼ˆ𝑋𝐽
𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽

act // 𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽 .

(2.33.1)

Noting that the horizontal maps are placid, we claim:

Lemma 2.33.1. The base-change map:

act! 𝛼𝐺,˚,𝑟𝑒𝑛 Ñ 𝛼1𝐺,˚,𝑟𝑒𝑛 act!

is an equivalence.

Proof. The diagram (2.33.1) is isomorphic in the usual way to:

𝑁´p𝑂q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼ˆ𝑋𝐽

ℋ𝐺,𝐼,𝐽
𝑝2 //

𝛼1𝐺

��

ℋ𝐺,𝐼,𝐽

𝛼𝐺

��
𝑋𝐼 ˆ𝑁´p𝑂q𝑋𝐽 ˆ

𝑋𝐼ˆ𝑋𝐽
𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽

𝑝2 // 𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽 .

Therefore, it suffices to see that the base-change map is an isomorphism for this diagram.
We enlarge this diagram to:

𝑁´p𝑂q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼ˆ𝑋𝐽

ℋ𝐺,𝐼,𝐽
Δ //

𝛼1

��

𝑁´p𝑂q𝑋𝐼
š

𝐽ˆℋ𝐺,𝐼,𝐽
𝑝2 //

𝛼𝑁´ˆ𝛼𝐺

��

ℋ𝐺,𝐼,𝐽

𝛼𝐺

��
𝑋𝐼 ˆ𝑁´p𝑂q𝑋𝐽 ˆ

𝑋𝐼ˆ𝑋𝐽
𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽

Δ // 𝑋𝐼 ˆ𝑁´p𝑂q𝑋𝐽 ˆ𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽

𝑝2 // 𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽 .

where we have abused notation in several ways, not least of all that 𝛼𝑁´ denotes the restriction
of 𝛼𝑁´ to 𝑁´p𝑂q𝑋𝐼

š

𝐽 . It suffices to show the base-change property for each of these squares
separately.

For the left square above, note that this square is Cartesian, and that the maps ∆ are finitely
presented because 𝑋𝐼 ˆ 𝑋𝐽 is finite type. Therefore, [Ras3] Proposition 6.18.1 implies the base-
change property.

For the right square, the result follows immediately from Lemma 2.32.2.
�
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From the lemma and Lemma 2.32.2, it is obvious that 𝛼𝐺,˚,𝑟𝑒𝑛 maps the 𝑁´p𝑂q𝑋𝐼
š

𝐽 -equivariant

category of 𝐷!pℋ𝑁´,𝐼,𝐽q to the 𝑁´p𝑂q𝑋𝐽 -equivariant (i.e., 𝑋𝐼 ˆ 𝑁´p𝑂q𝑋𝐽 -equivariant) category

of 𝐷!p𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽 q.
The same argument as above applies verbatim to larger congruence subgroups with (or just as

well, without) the twist by the Whittaker character (which restricts to 𝑁´p𝑂q𝑋𝐼
š

𝐽 as the trivial
character). Exhausting 𝑁´p𝐾q𝑋𝐼

š

𝐽 by these compact open subgroups, we obtain the result.

Variant 2.33.2. As in Variant 2.32.3, the right adjoints to the unit functors for Gr𝐺,𝐵 and Gr𝐺 also
preserve the Whittaker subcategories.

2.34. As was mentioned in S2.31, we now postpone the proof of the third condition from loc. cit.
to S3, assuming it (and therefore Corollary 2.31.2) for the remainder of this section.

2.35. Let 𝐼 be a finite set. Define Whit
8
2

𝑋𝐼 P ShvCat{𝑋𝐼
𝑑𝑅

as the 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 -coinvariants of

Whit𝑎𝑏𝑠𝑋𝐼 . Varying 𝐼, we obtain a factorization category Whit
8
2
,fact P FactCatp𝑋𝑑𝑅q.

18

The lemmas of S2.24 apply verbatim, and therefore Whit
8
2
,fact inherits a unital factorization

category structure. The tautological functor:

p
8
2
,𝑖𝑛𝑡

˚,𝑟𝑒𝑛 : Whit𝑖𝑛𝑡 ÑWhit
8
2
,fact

is again strictly unital.
Moreover, we have an obvious lax unital chiral functor:

Whit
8
2
,fact Ñ 𝐷!pFl

8
2 qfact. (2.35.1)

2.36. The results of this section may be summarized as follows:
We have a diagram:

Gr𝐺 𝐺p𝐾q //oo Gr𝑖𝑛𝑡𝐺,𝐵
// Fl

8
2

where subscripts have been removed and the right map is a fiction in the style of Remark 2.20.1.
This induces a diagram:

Whit𝑠𝑝ℎ,fact

��

// Whit𝑎𝑏𝑠,fact

��

// Whit𝑖𝑛𝑡

��

// Whit
8
2
,fact

��

𝐷pGr𝐺q // 𝐷!p𝐺p𝐾qqfact // 𝐷!pGr𝑖𝑛𝑡𝐺,𝐵q
// 𝐷!pFl

8
2 qfact

of unital chiral categories. Here all functors are (lax) unital chiral functors defined appropriately as
!-pullback or renormalized pushforward, and the the two horizontal lines consist of strictly unital
chiral functors.

3. Fusion with the Whittaker sheaf (a technical point)

3.1. This purpose of this section is to the complete the proof of Lemma 2.31.1 by proving (3)
of loc. cit. The proof of the proposition is given by combining a fusion construction with some
well-known facts about Drinfeld’s compactification of Gr𝑁´ .

18It is natural to ask if formation of these coinvariants commute with the formation of the Whittaker invariants.
In fact, this is the case: it follows from Theorem 2.1.1 of [Ras5], or rather, its (straightforward) generalization to
the factorization setting: this result identifies Whittaker invariants and coinvariants canonically, and coinvariants
commute with coinvariants. (For 𝐺 “ 𝐺𝐿𝑛, one can use [Ber], or again, its factorizable generalization, instead.)
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3.2. Before proceeding, we begin with a somewhat informal description of the method in the case
when 𝐼 and 𝐽 are singleton sets, and say for definiteness that 𝑍 “ 𝐺p𝐾q. We will use e.g. the
notation:

𝐺p𝐾q ˆ𝐺p𝐾qù 𝐺p𝐾q

for the space 𝐺p𝐾q𝑋2 , where this should be read as describing a factorization space that is 𝐺p𝐾𝑥qˆ

𝐺p𝐾𝑦q away from the diagonal specializing to 𝐺p𝐾𝑥q over the diagonal.

Suppose that F PWhit𝑎𝑏𝑠𝑋 :“Whitp𝐺p𝐾q𝑋q. We are supposed to show e.g. that we can !-average
the induced object:

𝛿𝐺p𝑂q𝑋 b F ù F

with respect to the Whittaker character (here 𝛿𝐺p𝑂q𝑋 is the 𝛿 D-module on meromorphic jets

supported on regular jets).19

We construct a space:

Gr𝑁´ ˆ𝐺p𝐾qù 𝐺p𝐾q

encoding the action of 𝑁´p𝐾q on 𝐺p𝐾q. Moreover, we show that given F PWhitp𝐺p𝐾q𝑋q, we can
form an object:

𝜓𝑋 b F ù F (3.2.1)

encoding the Whittaker equivariance of F. These constructions we refer to as fusion.
We moreover have a space:

Gr𝐺ˆ𝐺p𝐾qù 𝐺p𝐾q

encoding the action of 𝐺p𝐾q on itself. Moreover, the ˚-extension of (3.2.1) to this locus coincides
with the !-extension. Indeed, it suffices to see this over the closure of

`

pGr𝑁´ ˆ𝐺p𝐾q ù 𝐺p𝐾q
˘

,
and here it follows from the usual considerations of the Whittaker character of 𝑁´p𝐾q.

We then show that the pullback to
`

𝐺p𝐾q ˆ 𝐺p𝐾q ù 𝐺p𝐾q
˘

of this 𝐷-module computes the
desired left adjoint.

3.3. We begin by studying the semi-infinite orbits of Gr𝐺 in the factorization setting. Fix a finite
set 𝐼 and 𝜆̌ “ p𝜆̌𝑖q a collection of coweights for 𝐺 defined for each 𝑖 P 𝐼.

Observe that there is a canonical section:

𝑋𝐼 Ñ Gr𝑇,𝑋𝐼

associated to 𝜆̌. Indeed, it suffices to define a relative Cartier divisor valued in Λ̌ on the relative
curve 𝑋 ˆ𝑋𝐼 Ñ 𝑋𝐼 , and we take

ř

𝑖 𝜆̌𝑖 ¨ r𝑥𝑖s, where 𝑥𝑖0 : 𝑋𝐼 Ñ 𝑋 ˆ𝑋𝐼 is the section defined by:

p𝑥𝑖q𝑖P𝐼 ÞÑ
´

𝑥𝑖0 , p𝑥𝑖q𝑖P𝐼

¯

and r𝑥𝑖s is the associated effective Cartier divisor.
Note that every geometric point of Gr𝑇,𝑋𝐼 is in the image of one of these sections for appropriate

choice of 𝜆̌.

19We note that the required task appears completely obvious in the given notation, due to the holonomicity
of 𝛿𝐺p𝑂q𝑋 . However, this ignores the important “interaction” occurring over the diagonal, preventing such a naive
argument from going through.
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3.4. We define Gr𝜆̌𝐵,𝑋𝐼 as the fiber product:

Gr𝜆̌𝐵,𝑋𝐼 :“ Gr𝐵,𝑋𝐼 ˆ
Gr

𝑇,𝑋𝐼

𝑋𝐼

where the map 𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 is the section defined by 𝜆̌.

Example 3.4.1. Suppose that 𝐼 “ t1, 2u. Then the fiber of Gr𝐵,𝑋2 over p𝑥, 𝑦q P 𝑋2 is Gr𝜆̌1𝐵,𝑥ˆGr𝜆̌2𝐵,𝑦

for 𝑥 ‰ 𝑦, and is Gr𝜆̌1`𝜆̌2𝐵,𝑥 for 𝑥 “ 𝑦.

3.5. We give a variant of Gr𝜆̌𝐵 with Gr𝐵 replacing Gr𝐵.
First, note that we can define Gr𝐵,𝑋𝐼 to parametrize points 𝑥 “ p𝑥𝑖q𝑖P𝐼 in 𝑋𝐼 , a 𝐺-bundle on 𝑋

with a Drinfeld reduction to 𝐵, and a trivialization of this data away from t𝑥𝑖u𝑖P𝐼 , incorporating
twists by 𝒫𝑐𝑎𝑛

𝑇 in the obvious way.

Remark 3.5.1. One easily finds that Gr𝐵,𝑋𝐼 Ñ Gr𝐵,𝑋𝐼 is a Zariski open embedding (in particular,
schematic).

It is easy to see that the morphism:

Gr𝐵,𝑋𝐼 Ñ Gr𝐺,𝑋𝐼 ˆ
𝑋𝐼

Gr𝑇,𝑋𝐼

is an ind-closed embedding, and in particular, that Gr𝐵,𝑋𝐼 is an ind-proper indscheme.

We then define Gr
𝜆̌
𝐵,𝑋𝐼 using the map Gr𝐵,𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 , as with Gr𝜆̌𝐵,𝑋𝐼 . Note that Gr

𝜆̌
𝐵,𝑋𝐼 Ñ

Gr𝐺,𝑋𝐼 is an ind-closed embedding.

In the special case 𝜆̌ “ 0 (i.e., each 𝜆̌𝑖 “ 0), we use the notation Gr𝑁,𝑋𝐼 for Gr
0
𝐵,𝑋𝐼 .

3.6. We have similarly spaces Gr𝜆̌𝐵´,𝑋𝐼 , Gr
𝜆̌
𝐵´,𝑋𝐼 , and Gr𝑁´,𝑋𝐼 defined again as fiber products

with the section 𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 defined by 𝜆̌, via the natural map e.g. Gr𝐵´,𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 .

Observe that 𝑁´p𝐾q𝑋𝐼 acts on Gr𝜆̌𝐵´,𝑋𝐼 and Gr
𝜆̌
𝐵´,𝑋𝐼 for each 𝜆̌.

By the usual conductor considerations, one finds:

Whitp𝐷pGr𝜆̌𝐵´,𝑋𝐼 qq “ 0

when ´𝜆̌ is not a dominant coweight.
Let 𝚥𝑁´,𝑋𝐼 denote the open embedding Gr𝑁´,𝑋𝐼 ãÑ Gr𝑁´,𝑋𝐼 . As in Example 2.29.1, we have:

𝚥𝑁´,𝑋𝐼 ,˚,𝑑𝑅p
r𝜓𝑋𝐼 q PWhitp𝐷pGr𝑁´,𝑋𝐼 qq

and the above remarks imply that the induced functor:

𝐷p𝑋𝐼q ÑWhitp𝐷pGr𝑁´,𝑋𝐼 qq (3.6.1)

given by tensoring with this object is an equivalence.

Variant 3.6.1. The above considerations also apply to describe the Whittaker coinvariants of
𝐷pGr𝑁´,𝑋𝐼 q. Here one finds that the functor:

𝐷pGr𝑁´,𝑋𝐼 q Ñ 𝐷p𝑋𝐼q
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given by !-restriction to Gr𝑁´,𝑋𝐼 followed by twisting by the character r𝜓𝑋𝐼 and then applying

de Rham pushforward to 𝑋𝐼 is an equivalence after applying Whittaker coinvariants. Indeed, this
again follows by analysis of strata.

3.7. From actions to fusion. Fix 𝒢 over 𝑋 a form of an affine algebraic group and 𝐼 and 𝐽 two
finite sets. Suppose that 𝑍 is an indscheme over 𝑋𝐽 with an action of 𝒢p𝐾q𝑋𝐽 .

Under certain hypotheses, we will construct a new indscheme Fus𝒢𝐼,𝐽p𝑍q that lives over 𝑋𝐼
š

𝐽 ,
and that over the disjoint locus of the base is isomorphic to the restriction of Gr𝒢,𝑋𝐼 ˆ𝑍. The
construction is inspired by [Gai1].

Recall the space ℋ𝒢,𝐼,𝐽 from S2.10 (see Notation 2.10.5 in particular). We have a morphisms:

ℋ𝒢,𝐼,𝐽

yy &&
𝒢p𝐾q𝑋𝐼

š

𝐽 𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽

(3.7.1)

between placid group indschemes over 𝑋𝐼
š

𝐽 . In particular, ℋ𝒢,𝐼,𝐽 acts on 𝑋𝐼ˆ𝑍, using the action
of 𝒢p𝐾q𝑋𝐽 on 𝑍 and the right leg of (3.7.1). We consider ℋ𝒢,𝐼,𝐽 acting on the right on 𝒢p𝐾q𝑋𝐼

š

𝐽

via the left leg of (3.7.1). We obtain the diagonal action of ℋ𝒢,𝐼,𝐽 on:

𝒢p𝐾q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍. (3.7.2)

Definition 3.7.1. We say that the action of 𝒢p𝐾q𝑋𝐽 on 𝑍 is fusive if the quotient of (3.7.2) by the
action of ℋ𝒢,𝐼,𝐽 exists as an indscheme for each 𝐼.

When the action is fusive, we let Fus𝒢𝐼,𝐽p𝑍q denote the corresponding quotient; see Remark 3.7.5
for a description of what the resulting space looks like.

Note that there is a canonical action of 𝒢p𝐾q𝑋𝐼
š

𝐽 on Fus𝒢𝐼,𝐽p𝑍q arising from the action of

𝒢p𝐾q𝑋𝐼
š

𝐽 on (3.7.2) through its action of the left on the first factor of loc. cit.

Example 3.7.2. Suppose that 𝑍 “ Gr𝒢,𝑋𝐽 , equipped with the usual action. This action is fusive:
one easily finds that the desired quotient is Gr𝒢,𝑋𝐼

š

𝐽 , where the structure map:

𝒢p𝐾q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽
p𝑋𝐼 ˆGr𝒢,𝑋𝐽 q Ñ Gr𝒢,𝑋𝐼

š

𝐽

is defined by the action of 𝒢p𝐾q𝑋𝐼
š

𝐽 on Gr𝒢,𝑋𝐼
š

𝐽 and the unit map 𝑋𝐼
š

Gr𝒢,𝑋𝐽 Ñ Gr𝒢,𝑋𝐼
š

𝐽 .

Counterexample 3.7.3. The trivial action of 𝒢 (i.e., its action as a group scheme over 𝑋 on 𝑋 itself)
is not fusive.

Example 3.7.4. Suppose that 𝑍 “ 𝒢p𝐾q𝑋𝐽 , equipped with the left action. This action is again fusive:

in this case, the desired quotient Fus𝒢𝐼,𝐽p𝒢p𝐾q𝑋𝐽 q is the moduli of points
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

P 𝑋𝐼
š

𝐽 ,

a 𝒢-bundle 𝒫𝒢 on 𝑋 trivialized away from the points
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

, and with an additional
trivialization on the formal neighborhood of the points p𝑥𝑗q𝑗P𝐽 . One shows that this moduli is a
placid indscheme in the usual way, using the increasing infinitesimal neighborhoods of the points
𝑥𝑗 .

We have an obvious map 𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽 Ñ Fus𝒢𝐼,𝐽p𝒢p𝐾q𝑋𝐽 q, realizing the latter as the locus

where the 𝒢-bundle 𝒫𝒢 is instead trivialized on the complement to the points p𝑥𝑗q𝑗P𝐽 . There is also

an obvious action of 𝒢p𝐾q𝑋𝐼
š

𝐽 on Fus𝒢𝐼,𝐽p𝒢p𝐾q𝑋𝐽 q, essentially coming from the action of jets on
the affine Grassmannian. Therefore, as in Example 3.7.2, we obtain the structure map:
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𝒢p𝐾q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽
p𝑋𝐼 ˆ 𝒢p𝐾q𝑋𝐽 q Ñ Fus𝒢𝐼,𝐽p𝒢p𝐾q𝑋𝐽 q

by combining these two observations.

Remark 3.7.5. It is instructive to analyze the space Fus𝒢𝐼,𝐽p𝑍q in the combinatorially simplest case,

in which 𝐼 “ 𝐽 “ ˚. In this case, away from the diagonal of 𝑋2, we have ℋ𝒢,𝐼,𝐽 » 𝒢p𝑂q𝑋 ˆ𝒢p𝐾q𝑋 ,
while over the diagonal it is isomorphic to 𝒢p𝐾q𝑋 . Therefore, we have:

Fus𝒢˚,˚p𝑍q|𝑋2zΔ » 𝒢p𝐾q𝑋 ˆ 𝒢p𝐾q𝑋
𝒢p𝑂q𝑋ˆ𝒢p𝐾q𝑋

ˆ
𝑋2

𝑍|𝑋2zΔ
𝑝1ˆact
» Gr𝐺,𝑋 ˆ𝑍|𝑋2zΔ

Fus𝒢˚,˚p𝑍q|Δ » 𝒢p𝐾q𝑋
𝒢p𝐾q𝑋
ˆ
𝑋

𝑍
act
» 𝑍.

Here the superscript of a group over a Cartesian product indicates that we take the quotient by
the appropriate diagonal action.

3.8. Fusion of sheaves. Suppose in the setting of S3.7 that 𝒢p𝐾q𝑋𝐽 acts fusively on 𝑍 Ñ 𝑋𝐽 .
Suppose moreover that F is a 𝒢p𝐾q𝑋𝐽 -equivariant 𝐷-module on 𝑍, i.e., F is an object of the
equivariant category:

𝐷!p𝑍q𝒢p𝐾q𝑋𝐽 .

We obtain a new 𝐷-module:

Fus𝒢𝐼,𝐽pFq P 𝐷
!pFus𝒢𝐼,𝐽p𝑍qq

𝒢p𝐾q
𝑋𝐼

š

𝐽 (3.8.1)

by the following construction:
Note that:

𝜔𝑋𝐼 b F P 𝐷!p𝑋𝐼 ˆ 𝑍q (3.8.2)

is 𝑋𝐼ˆ𝒢p𝐾q𝑋𝐽 -equivariant (i.e., equipped with an equivariant structure), and therefore equivariant
for ℋ𝒢,𝐼,𝐽 acting through the right leg of (3.7.1). Pulling back (3.8.2) along the map:

𝒢p𝐾q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽

`

𝑋𝐼 ˆ 𝑍
˘

Ñ 𝑋𝐼 ˆ 𝑍

we obtain a 𝐷-module equivariant for the diagonal action of ℋ𝒢,𝐼,𝐽 considered in S3.7, and for the
left action of 𝒢p𝐾q𝑋𝐼

š

𝐽 on the first factor of this space.

Descending to Fus𝒢𝐼,𝐽p𝑍q via the first of these equivariance observations, and appealing to the

second, we obtain (3.8.1) as desired.

Example 3.8.1. In the setting of Remark 3.7.5, the 𝐷-module Fus𝒢𝐼,𝐽pFq is isomorphic to 𝜔Gr𝒢,𝑋 bF

away from the diagonal, and isomorphic to F over the diagonal.

Variant 3.8.2. Given rF P 𝐷p𝑋𝐼q b𝐷!p𝑍q𝒢p𝐾q𝑋𝐽 , we claim that we can generalize the above con-
struction to produce:

Fus𝒢𝐼,𝐽p
rFq P 𝐷!pFus𝒢𝐼,𝐽p𝑍qq

𝒢p𝐾q
𝑋𝐼

š

𝐽 .

in such a way in the case rF “ 𝜔𝑋𝐼 b F, we recover our earlier construction of Fus𝒢𝐼,𝐽pFq.

Indeed, we simply replace 𝜔𝑋𝐼 b F in (3.8.2) by rF.
Observe that this new construction is 𝐷p𝑋𝐼q b𝐷p𝑋𝐽q-linear.
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Remark 3.8.3. We can reformulate this construction in the following way. The map:

𝑋𝐼 ˆ 𝑍 Ñ Fus𝒢𝐼,𝐽p𝑍q

induces a restriction functor:

𝐷!pFus𝒢𝐼,𝐽p𝑍qq
𝒢p𝐾q

𝑋𝐼
š

𝐽 Ñ 𝐷!p𝑋𝐼 ˆ 𝑍qℋ𝒢,𝐼,𝐽

that is an equivalence (c.f. [Ras3] Proposition 6.7.1) with inverse Fus.

Remark 3.8.4. The above construction can be performed more generally on any sheaf of categories
on 𝑋𝐽

𝑑𝑅 acted on by 𝒢p𝐾q𝑋𝐽 .

3.9. Compactification. Suppose now that 𝒢 is our preferred form of our reductive group 𝐺 and
that 𝑍 Ñ 𝑋𝐽 is acted on fusively by 𝐺.

We have a canonical map:

Fus𝑁
´

𝐼,𝐽 p𝑍q ãÑ Fus𝐺𝐼,𝐽p𝑍q.

We will presently use Drinfeld’s method to construct Fus
𝑁´

𝐼,𝐽 p𝑍q, a “compactification” of this map.

Example 3.9.1. We begin by explicitly treating the case of 𝑍 “ Gr𝐺,𝑋𝐽 from Example 3.7.2.

In this case, we define Fus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q as the moduli of
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

P 𝑋𝐼
š

𝐽 , a 𝐺-bundle

𝒫 on 𝑋 with a polar Drinfeld reduction to 𝑁´ (in the 𝒫𝑐𝑎𝑛
𝑇 -twisted sense), the poles being at the

points 𝑥𝑗 , and a trivialization of this datum on 𝑋zt𝑥𝑖, 𝑥𝑗u𝑖P𝐼,𝑗P𝐽 . Here a polar Drinfeld reduction of
the specified type means that we give a Drinfeld reduction defined on the complement to the union
of the graphs of the points 𝑥𝑗 .

Remark 3.9.2. As in Remark 3.7.5, it is instructive to see what happens when 𝐼 “ 𝐽 “ ˚. In this
case, one easily finds:

Fus𝑁
´

˚,˚ pGr𝐺,𝑋q|𝑋2zΔ » Gr𝑁´,𝑋 ˆGr𝐺,𝑋 |𝑋2zΔ

Fus𝑁
´

˚,˚ pGr𝐺,𝑋q|Δ » Gr𝐺,𝑋

It is easy to see that the tautological map Fus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q Ñ Gr𝐺,𝑋𝐼
š

𝐽 is an ind-closed embed-
ding, and the natural map:

Fus𝑁
´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q Ñ Fus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q

is an ind-open embedding.

Remark 3.9.3. Recall from [FGV] that for 𝑋 a proper curve, the moduli space of a point of 𝑥 “
p𝑥𝑗q P 𝑋

𝐽 and 𝐺-bundle on 𝑋 with a polar Drinfeld reduction to 𝑁´ defined away from the points

𝑥𝑗 is an ind-algebraic stack Bun
𝑝𝑜𝑙
𝑁´,𝑋𝐽 locally of finite type (proof: bound the order of the poles

allowed). Then Fus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q may be computed as the fiber product:

Fus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 q //

��

Gr𝐺,𝑋𝐼
š

𝐽

��

𝑋𝐼 ˆ Bun𝑝𝑜𝑙
𝑁´,𝑋𝐽

// Bun𝑝𝑜𝑙
𝑁´,𝑋𝐼

š

𝐽 .
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Before giving Fus
𝑁´

in the general case, we need to observe the existence of a certain group
action.

Construction 3.9.4. Recall from S2.13 that 𝜋𝐺,𝑋𝐼
š

𝐽 denotes the structure map 𝐺p𝐾q𝑋𝐼
š

𝐽 Ñ

Gr𝐺,𝑋𝐼
š

𝐽 . We will construct an action of ℋ𝐺,𝐼,𝐽 on 𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq (the action is on the

right, so to speak).
Indeed, we have:

𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq “

$

’

’

’

’

&

’

’

’

’

%

𝑥 “
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

P 𝑋𝐼
š

𝐽 ,
a 𝐺-bundle 𝒫𝐺 on 𝑋 with a

𝒫𝑐𝑎𝑛
𝑇 -twisted Drinfeld reduction to 𝑁´ on 𝑋zt𝑥𝑗u,

a trivialization of this datum on 𝑋zt𝑥𝑖, 𝑥𝑗u𝑖P𝐼,𝑗P𝐽 ,

and a trivialization of 𝒫𝐺 on p𝒟𝑥.

,

/

/

/

/

.

/

/

/

/

-

and Beauville-Laszlo allows us to rewrite this as:

#

𝑥 “
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

P 𝑋𝐼
š

𝐽 ,

a 𝒫𝑐𝑎𝑛
𝑇 -twisted map 𝛿 : 𝒟𝑥z

´

Y𝑗P𝐽 Γ𝑥𝑗

¯

Ñ 𝐺{𝑁 ,

and a lift of 𝛿| 𝑜
𝒟𝑥

to a map
𝑜
𝒟𝑥 Ñ 𝐺.

+

.

The action of:

ℋ𝐺,𝐼,𝐽 “ t𝑥 “
`

p𝑥𝑖q𝑖P𝐼 , p𝑥𝑗q𝑗P𝐽
˘

P 𝑋𝐼
š

𝐽 ,𝒟𝑥z

´

Y𝑗P𝐽 Γ𝑥𝑗

¯

Ñ 𝐺u

on this space is now clear: it arises from the 𝐺-equivariant map 𝐺Ñ 𝐺{𝑁{𝑇 .

Construction 3.9.5. We are now equipped to define Fus
𝑁´

𝐼,𝐽 p𝑍q.
We take it to be the quotient of:

𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍. (3.9.1)

by the diagonal action of ℋ𝐺,𝐼,𝐽 . Note that 𝑁´p𝐾q𝑋𝐼
š

𝐽 acts Fus
𝑁´

𝐼,𝐽 p𝑍q through its left action on

𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq.

Remark 3.9.6. The quotient of:

𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus𝑁
´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍

by ℋ𝐺,𝐼,𝐽 is obviously isomorphic to the quotient of:

𝑁´p𝐾q𝑋𝐼
š

𝐽 ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍

by ℋ𝑁´,𝐼,𝐽 .

Lemma 3.9.7. The restriction functor:

Whit𝑋𝐼
š

𝐽 pFus
𝑁´

𝐼,𝐽 p𝑍qq ÑWhit𝑋𝐼
š

𝐽 pFus𝑁
´

𝐼,𝐽 p𝑍qq (3.9.2)

is an equivalence.
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Proof. Note that the map:

𝜋´1
𝐺,𝑋𝐼

š

𝐽 pFus𝑁
´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍 ãÑ 𝜋´1

𝐺,𝑋𝐼
š

𝐽 pFus
𝑁´

𝐼,𝐽 pGr𝐺,𝑋𝐽 qq ˆ
𝑋𝐼

š

𝐽
𝑋𝐼 ˆ 𝑍

is an open embedding of ind-finite type.
Therefore, the functor (3.9.2) admits a right adjoint in ShvCat

{𝑋
𝐼
š

𝐽
𝑑𝑅

given by p˚, 𝑑𝑅q-extension.

It suffices to check that the unit of the adjunction is an equivalence, and we can check this after
restriction using a covering of 𝑋𝐼 ˆ 𝑋𝐽 as in the proof of Lemma 2.24.1. Now the result follows
because (3.6.1) is an equivalence.

�

3.10. Suppose that 𝑍 is an indscheme over 𝑋𝐽 acted on fusively by 𝐺p𝐾q𝑋𝐽 , and let rF be an
object of 𝐷p𝑋𝐼q bWhitp𝐷!p𝑍qq. Twisting and untwisting by the character 𝜓 and applying Variant

3.8.2, we form ĄFus
𝑁´

𝐼,𝐽 p
rFq PWhit𝑋𝐼

š

𝐽 p𝐷!pFus𝒢𝐼,𝐽p𝑍qqq. By Lemma 3.9.7, this object canonically lifts
to an object:

Fus
𝑁´

𝐼,𝐽 p
rFq PWhit𝑋𝐼

š

𝐽 pFus
𝑁´

𝐼,𝐽 p𝑍qq.

Moreover, the assignment rF ÞÑ Fus
𝑁´

𝐼,𝐽 p
rFq is obviously 𝐷p𝑋𝐼q b𝐷p𝑋𝐽q-linear.

We claim that the functor:

Whit𝑋𝐼
š

𝐽 pFus
𝑁´

𝐼,𝐽 p𝑍qq Ñ 𝐷p𝑋𝐼q bWhit𝑋𝐽 p𝑍q (3.10.1)

induced by restriction along the map:

𝑋𝐼 ˆ 𝑍 Ñ Fus
𝑁´

𝐼,𝐽 p𝑍q

is an equivalence, with inverse provided by Fus
𝑁´

𝐼,𝐽 . Indeed, this follows by combining Remark 3.8.3
with Lemma 3.9.7, and the observation that the functor:

𝐷!p𝑋𝐼 ˆ 𝑍qℋ𝑁´,𝐼,𝐽 ,𝜓 Ñ 𝐷!p𝑋𝐼q bWhitp𝐷!p𝑍qq

is an equivalence, where the superscript 𝜓 indicates that we take invariants twisted with respect
to the character of 𝑁´p𝐾q𝑋𝐼

š

𝐽 . We note that the last observation is trivial: the functor is fully-
faithful since both are subcategories of 𝐷!p𝑋𝐼 ˆ 𝑍q, and is then an equivalence since ℋ𝑁´ acts on
𝑋𝐼 ˆ 𝑍 through 𝑋𝐼 ˆ𝑁´p𝐾q𝑋𝐽 .

3.11. We now obtain that the !-restriction functor:

Whitp𝐷!pFus𝐺𝐼,𝐽p𝑍qqq Ñ 𝐷p𝑋𝐼q bWhit𝑋𝐽 p𝐷!p𝑍qq

admits a left adjoint. Indeed, from the equivalence (3.10.1), we need to show that the functor:

Whitp𝐷!pFus𝐺𝐼,𝐽p𝑍qqq ÑWhitp𝐷!pFus
𝑁´

𝐼,𝐽 p𝑍qqq

admits a left adjoint. But the map Fus
𝑁´

𝐼,𝐽 p𝑍q ãÑ Fus𝐺𝐼,𝐽p𝑍q is a finitely presented closed embedding,
so the functor of !-dR *-pushforward provides the desired left adjoint.
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3.12. We now establish the third point of Lemma 2.31.1. First, we specialize to the case 𝑍 “

𝐺p𝐾q𝑋𝐼 .

Recall that e.g. Whit𝑎𝑏𝑠𝑋𝐼 denotes the category of Whittaker 𝐷-modules on 𝐺p𝐾q𝑋𝐼 .
We have the Cartesian diagram:

ℋ𝐺,𝐼,𝐽
𝛽𝐺 //

𝛼𝐺
��

𝐺p𝐾q𝑋𝐼
š

𝐽

��
𝑋𝐼 ˆ𝐺p𝐾q𝑋𝐽

// Fus𝐺𝐼,𝐽p𝐺p𝐾q𝑋𝐽 q.

(3.12.1)

We are supposed to show that the functor:

𝛼𝐺,˚,𝑟𝑒𝑛𝛽
!
𝐺 : Whit𝑎𝑏𝑠

𝑋𝐼
š

𝐽 Ñ 𝐷p𝑋𝐼q bWhit𝑎𝑏𝑠𝑋𝐽

admits a left adjoint.
As in Lemma 2.32.1, the right and left vertical maps in (3.12.1) are placid. Therefore, by [Ras3]

Proposition 6.18.1 we may compute 𝛼𝐺,˚,𝑟𝑒𝑛𝛽
!
𝐺 by base-change. Then the existence of the left

adjoint follows from placidity of the right vertical map, [Ras3] Proposition 6.18.1, and S3.11.

The other cases for 𝑍 work similarly, since in each case the corresponding indscheme over 𝑋𝐼
š

𝐽

maps placidly to Fus𝐺𝐼,𝐽p𝑍𝑋𝐽 q.

4. Semi-infinite restriction and Zastava spaces

4.1. In this section, we use the results of [Ras2] to relate the functor 𝑖
8
2
,! with Langlands duality.

The main results of this section are Theorems 4.4.1 and 4.15.1. We remark from the onset that
these results are essentially reformulations of Theorems 4.6.1 and 7.9.1 from [Ras2].

4.2. Because 𝑖
8
2
,! is a (lax) unital functor of unital factorization categories, the formalism of

chiral categories [Ras1] provides 𝑖
8
2
,!punit

Whit
8
2
q P 𝐷pGr𝑇 q

fact with a canonical structure of unital

factorization algebra.
The first goal for this section to to compute this unital factorization algebra in Langlands dual

terms.

4.3. Construction of Υň. By commutativity of 𝑇 , 𝐷pGr𝑇 q
fact is a commutative unital factoriza-

tion category. In fact, it is canonically identified (in the obvious way) with the commutative unital
factorization category Repp𝑇 qfact. associated Repp𝑇 q.

We can view ň as a Lie algebra object in the symmetric monoidal category Repp𝑇 q, or equivalently,
as a Λ̌-graded Lie algebra.

We obtain a Lie-˚ algebra ň𝑋 in 𝐷pGr𝑇 q
fact. Define Υň P Algfact𝑢𝑛 p𝐷pGr𝑇 q

factq as its chiral en-
veloping algebra:

Υň :“ 𝑈 𝑐ℎpň𝑋q P Alg
fact
𝑢𝑛 p𝐷pGr𝑇 q

factq.

4.4. The first main result of this section is the following.

Theorem 4.4.1. There is a canonical isomorphism:

𝑖
8
2
,!punit

Whit
8
2
q » Υň P Alg

fact
𝑢𝑛 p𝐷pGr𝑇 q

factq.

The proof of this theorem is given in S4.11 below after some preliminary constructions.
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Remark 4.4.2. The word canonical is here (as always, perhaps) a bit ambiguous. Ultimately, this
isomorphism is characterized via (the proof of) Proposition-Construction 4.10.1, and the isomor-
phism of Theorem 4.6.1 from [Ras2], which is (readily) characterized uniquely.

4.5. The most confusing part. As mentioned, Theorem 4.4.1 is essentially a reformulation of
a result from [Ras2]. However, loc. cit. only dealt with configuration spaces of divisors on curves,
whereas now we are treating Ran space.

We presently compare these two settings in S4.5-4.10.

4.6. Recall the space DivΛ̌𝑝𝑜𝑠

eff from [Ras2] S2.11: by definition, it parametrizes Λ̌𝑝𝑜𝑠-valued divisors

on 𝑋. Note that DivΛ̌𝑝𝑜𝑠

eff is a union of components Div𝜆̌eff indexed by 𝜆̌ P Λ̌𝑝𝑜𝑠, with each of these
components a product over ℐ𝐺 of appropriate symmetric powers of the curve.

For the Ran space version: for each finite set 𝐼, define

DivΛ̌𝑝𝑜𝑠

eff,𝑋𝐼 Ď DivΛ̌𝑝𝑜𝑠

eff ˆ𝑋𝐼

as the incidence locus, i.e., the locus of points where the divisor is supported on the given 𝐼-tuple
of points (in the sense that its restriction to the complement of these points is zero).

These spaces have obvious structure maps between them for surjections 𝐼 � 𝐽 , and we obtain
Diveff,Ran𝑋 by passing to the colimit.

4.7. Ranification. Note that DivΛ̌𝑝𝑜𝑠

eff,𝑋𝐼 embeds as a closed subscheme of Gr𝑇,𝑋𝐼 .

Define the Ranification functor ℒRan
𝑋𝐼 : 𝐷pDivΛ̌𝑝𝑜𝑠

eff q Ñ 𝐷pGr𝑇,𝑋𝐼 q as via pullback pushforward
along the diagram:

DivΛ̌𝑝𝑜𝑠

eff,𝑋𝐼
//

��

Gr𝑇,𝑋𝐼

DivΛ̌𝑝𝑜𝑠

eff .

The functors ℒRan
𝑋𝐼 are compatible under surjections 𝐼 � 𝐽 , and therefore we obtain:

ℒRan : 𝐷pDivΛ̌𝑝𝑜𝑠

eff q Ñ 𝐷pGr𝑇,Ran𝑋 q.

Below, we will study the basic stability properties of the Ranification functor.

4.8. Recall that there is a chiral tensor product
𝑐ℎ
b on 𝐷pDivΛ̌𝑝𝑜𝑠

eff q. It is defined by !-pullback and
˚-pushforward via the diagram:

rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗

uu

add

((
DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff DivΛ̌𝑝𝑜𝑠

eff

where this is the locus of pairs of (colored) divisors with disjoint supports mapping by inclusion
and by addition of divisors.

We also have a ‹-tensor product, which is just computed as F
‹

b G :“ add˚,𝑑𝑅pF b Gq.
This allows us to imitate the usual algebra of factorization algebras on these configuration spaces

instead of on Ran space.
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In particular, we can speak about factorization algebras, Lie-˚ algebras, and chiral envelopes in

𝐷pDivΛ̌𝑝𝑜𝑠

eff q.

Remark 4.8.1. We emphasize the following point. Just as usual Lie-˚ algebras are supported on

𝑋 Ď Ran𝑋 , the analogue of Lie-˚ algebras on DivΛ̌𝑝𝑜𝑠

eff is supported on the locus of divisors supported
on a single point, i.e., the union:

ž

0‰𝜆̌PΛ̌𝑝𝑜𝑠

𝑋 ãÑ DivΛ̌𝑝𝑜𝑠

eff

corresponding to the maps 𝑋
𝑥ÞÑ𝜆̌¨𝑥
ãÑ DivΛ̌𝑝𝑜𝑠

eff . We emphasize that 𝜆̌ “ 0 is not allowed (since that
would correspond to divisors supported at no points). In particular, in the degenerate case where

𝐺 “ 𝑇 there are no non-zero Lie-˚ algebras on DivΛ̌𝑝𝑜𝑠

eff (since Λ̌𝑝𝑜𝑠 “ 0 and DivΛ̌𝑝𝑜𝑠

eff “ Specp𝑘q).

4.9. The basic compatibility between ‹-tensor products is given by the following.

Lemma 4.9.1. The functor ℒRan is canonically lax symmetric monoidal with respect to the ‹-tensor
structures on the source and target.

Proof. This follows from the pseudo-properness20 of the canonical map:

DivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
ˆDivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
Ñ

`

DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff

˘

ˆ
DivΛ̌

𝑝𝑜𝑠
eff

DivΛ̌𝑝𝑜𝑠,Ran𝑋
eff

where we use the addition map DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff Ñ DivΛ̌𝑝𝑜𝑠

eff to form the fiber product on the right.
�

Similarly, we have the following.

Lemma 4.9.2. The functor ℒRan is canonically colax symmetric monoidal with respect to the
𝑐ℎ
b-tensor structures.

Proof. Up to pushforward to Gr𝑇,Ran𝑋 , we compute ℒRanp´
𝑐ℎ
b´q using the diagram:

rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗

uu ((

DivΛ̌𝑝𝑜𝑠

eff,Ran𝑋

yy

DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff DivΛ̌𝑝𝑜𝑠

eff

Similarly, we compute ℒRanp´q
𝑐ℎ
b ℒRanp´q using the diagram:

rDivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
ˆDivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
s𝑑𝑖𝑠𝑗

tt ))
DivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff DivΛ̌𝑝𝑜𝑠

eff,Ran𝑋

Now the result follows from the fact that the canonical map:

20Recall that this condition ensures the existence of a left adjoint to the !-pullback functor.
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rDivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
ˆDivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
s𝑑𝑖𝑠𝑗 Ñ rDivΛ̌𝑝𝑜𝑠

eff ˆDivΛ̌𝑝𝑜𝑠

eff s𝑑𝑖𝑠𝑗 ˆ
DivΛ̌

𝑝𝑜𝑠
eff

DivΛ̌𝑝𝑜𝑠

eff,Ran𝑋

is étale (in particular, schematic) and quasi-compact: c.f. [Ras1] Lemma 6.18.1.
�

Finally, we have the following compatibility between Lemmas 4.9.1 and 4.9.2. Recall that (in
either the divisor or the Ran setting) there are maps:

´
‹

b´ Ñ ´
𝑐ℎ
b´ (4.9.1)

plus higher versions encoding homotopy associativity and commutativity of these tensor products.

Lemma 4.9.3. For every F,G P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q, the diagram:

ℒRanpFq
‹

b ℒRanpGq

(4.9.1)
��

𝐿𝑒𝑚.4.9.1 // ℒRanpF
‹

b Gq

(4.9.1)
��

ℒRanpFq
𝑐ℎ
b ℒRanpGq ℒRanpF

𝑐ℎ
b Gq

𝐿𝑒𝑚.4.9.2oo

commutes. More precisely, the higher version of this statement encoding compatibility with symmet-
ric monoidal structures holds.

Proof. This is a direct verification from the constructions.
�

4.10. Comparison of chiral enveloping algebras. Let 𝐿 P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q be a Lie-˚ algebra. By

Lemma 4.9.1, ℒRanp𝐿q is Lie algebra object of 𝐷pGr𝑇,Ran𝑋 q with respect to its
‹

b-tensor structure.21

It follows formally that for 𝜄 : Gr𝑇,𝑋 Ñ Gr𝑇,Ran𝑋 the canonical embedding, 𝜄˚,𝑑𝑅𝜄
!pℒRanp𝐿qq is a

Lie-˚ algebra on 𝐷pGr𝑇,Ran𝑋 q.

In what follows, we let 𝑈 𝑐ℎ,factp𝐿q P 𝐷pDivΛ̌𝑝𝑜𝑠

eff q denote the factorization algebra associated
with the chiral enveloping algebra of the Lie-˚ algebra 𝐿, and similarly on Ran space. Recall that

𝑈 𝑐ℎ,factp𝐿q is the homological Chevalley complex of 𝐿 (with respect to the
‹

b-tensor structure).

Proposition-Construction 4.10.1. There is a canonical isomorphism of factorization algebras
between 𝑈 𝑐ℎ,factp𝜄˚,𝑑𝑅𝜄

!ℒRanp𝐿qq and ℒRanp𝑈 𝑐ℎ,factp𝐿qq.

Proof. First, we construct a map comparing the two.
We have a canonical map:

𝑈 𝑐ℎ,factpℒRanp𝐿qq Ñ ℒRanp𝑈 𝑐ℎ,factp𝐿qq P 𝐷pGr𝑇,Ran𝑋 q. (4.10.1)

Indeed, this is evident from lax symmetric monoidality of ℒRan since 𝑈 𝑐ℎ,fact is computed as a
homological Chevalley complex, i.e., up to a cohomological shift it computes the abelianization of
these Lie algebra objects.

Moreover, observe that both sides of (4.10.1) are cocommutative coalgebras with respect to
𝑐ℎ
b: for the left hand side this follows from the canonical map (4.9.1), while for the right hand
side it follows from Lemma 4.9.2. By Lemma 4.9.3 (and by unwinding the construction of the

21We emphasize that this object is a generalized Lie-˚ algebra: a true Lie-˚ algebra is supported on 𝑋.
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cocommutative coalgebra structure on the homological Chevalley complex), the map (4.10.1) is a
morphism of such cocommutative coalgebras.

Now using the canonical morphism 𝜄˚,𝑑𝑅𝜄
!ℒRanp𝐿q Ñ ℒRanp𝐿q of Lie algebra objects of p𝐷pGr𝑇,Ran𝑋 q,

‹

bq,
we obtain the desired morphism:

𝑈 𝑐ℎ,factp𝜄˚,𝑑𝑅𝜄
!ℒRanp𝐿qq Ñ ℒRanp𝑈 𝑐ℎ,factp𝐿qq P 𝐷pGr𝑇,Ran𝑋 q. (4.10.2)

We now deduce that (4.10.2) is an isomorphism by using the chiral PBW theorem.
By construction, (4.10.2) is compatible with chiral PBW filtrations. Therefore, it suffices to check

that the map is an isomorphism on the associated graded. For simplicity, we observe further that
both sides of (4.10.2) factorize, and therefore we can check this over 𝑋 Ď Ran𝑋 .

The associated graded of the left hand side is then:

Symp𝜄!ℒRanp𝐿qr1sq

while the associated graded of the right hand side is:

𝜄!pℒRanpSymp𝐿r1sqqq

where Sym is computed using the usual
!
b structures. Since ℒRan is obviously symmetric monoidal22

with respect to
!
b.

This immediately implies that the associated graded terms are isomorphic. Moreover, by con-
struction, the map (4.10.2) is our given isomorphism on the first associated graded term. Finally,
since the associated graded of the PBW filtration is naturally a commutative algebra, and a sym-
metric algebra at that, this suffices to see the claim.

�

4.11. We now apply Proposition 4.10.1 to deduce the desired result.

Proof of Theorem 4.4.1. Fix a finite set 𝐼.
By S2.36, we have strictly unital chiral functors:

Whit𝑠𝑝ℎ,fact ÑWhit𝑖𝑛𝑡,fact
p
8
2 ,𝑖𝑛𝑡

˚,𝑟𝑒𝑛
ÝÝÝÝÑWhit

8
2
,fact.

Therefore, we need to compute the result of applying (renormalized) ˚-pushforwards and !-pullbacks
of the Whittaker sheaf on Gr𝑁´ along the diagram:

Gr𝑁´,𝑋𝐼 Ñ Gr𝐺,𝑋𝐼 Ð Gr𝑖𝑛𝑡𝐺,𝐵,𝑋𝐼

p
8
2 ,𝑖𝑛𝑡

𝑋𝐼
ÝÝÝÝÑ Fl

8
2

𝑋𝐼

𝑖
8
2
𝑋𝐼
ÐÝ Gr𝑇,𝑋𝐼 .

Of course, the latter two maps are not meaningful, since Fl
8
2

𝑋𝐼 itself is not meaningful, but we do
know the corresponding categories of 𝐷-modules and the corresponding functors.

Naively ignoring this same non-existence of Fl
8
2

𝑋𝐼 , we have a commutative diagram:

22Really, it is non-unitally symmetric monoidal, but this is only because we choose to further pushforward to

Gr𝑇,Ran𝑋 instead of contenting ourselves with DivΛ̌𝑝𝑜𝑠

eff,Ran𝑋
.
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Gr𝑁´,𝑋𝐼 ˆ
Gr

𝐺,𝑋𝐼

Gr𝐵,𝑋𝐼

��

// Gr𝐵,𝑋𝐼

��

Gr𝐵,𝑋𝐼
//

��

Gr𝑇,𝑋𝐼

𝑖
8
2
𝑋𝐼��

Gr𝑁´,𝑋𝐼
// Gr𝐺,𝑋𝐼 Gr𝑖𝑛𝑡𝐺,𝐵,𝑋𝐼

oo // Fl
8
2

𝑋𝐼

with left and right squares Cartesian. Heuristically, this means we simply need to compute !-pullback
and ˚-pushforward of the Whittaker sheaf on Gr𝑁´,𝑋𝐼 along the correspondence:

Gr𝑁´,𝑋𝐼 ˆ
Gr

𝐺,𝑋𝐼

Gr𝐵,𝑋𝐼

vv ((
𝐺𝑟𝑁´,𝑋𝐼 Gr𝑇,𝑋𝐼 .

Recalling that Fl
8
2

𝑋𝐼 does not actually exist, this manipulation is actually justified by Proposition
2.26.1. Note that these base-change computations are obviously compatible with factorization.

Next, recall the (open) Zastava space
𝑜
𝒵 “

š

𝜆̌PΛ̌𝑝𝑜𝑠

𝑜
𝒵 𝜆̌, c.f. [Ras2] S2. Recall also that the

map Gr𝑁´,𝑋𝐼 ˆ
Gr

𝐺,𝑋𝐼

Gr𝐵,𝑋𝐼 Ñ Gr𝑇,𝑋𝐼 factors through DivΛ̌𝑝𝑜𝑠

eff,𝑋𝐼 . We have a tautological Cartesian

diagram:

Gr𝑁´,𝑋𝐼 ˆ
Gr

𝐺,𝑋𝐼

Gr𝐵,𝑋𝐼

��

//
𝑜
𝒵Λ̌𝑝𝑜𝑠

��

DivΛ̌𝑝𝑜𝑠

eff,𝑋𝐼
// DivΛ̌𝑝𝑜𝑠

eff .

Moreover, this diagram is compatible with factorization.
We now obtain the claim by base-change from Theorem 4.6.1 of [Ras2]. Note that the cohomo-

logical shifts of S2.26 occur because of the appearance of the IC sheaf of
𝑜
𝒵 in the statement of

Theorem 4.6.1 of [Ras2], and the fact that
𝑜
𝒵 𝜆̌ is smooth of dimension p2𝜌, 𝜆̌q.

�

4.12. Construction of the functor. A priori, the assignment:

𝐼 ÞÑ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑋𝐼 qq

defines a lax unital factorization category (c.f. [Ras1] S6.12 and S8.14). However, as in [Ras2]
Corollary 7.8.1, this lax unital structure is actually strict, i.e., the above assignment is an honest
unital factorization category.

From [Ras1] Proposition 8.14.1 and Theorem 4.4.1, we now obtain a functor:

𝑖
8
2
,!,𝑒𝑛ℎ : Whit

8
2
,fact Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q

factq

of unital factorization categories.

4.13. Compatibility with Casselman-Shalika. Below, we formulate Theorem 4.15.1, which is a

kind of compatibility between 𝑖
8
2
,!,𝑒𝑛ℎ and the factorizable (non-derived) geometric Satake theorem.
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4.14. The following appears as Theorem 6.36.1 of [Ras2].

Theorem 4.14.1 (Geometric Casselman-Shalika theorem). There is a canonical equivalence of
unital factorization categories:

CS : Whit𝑠𝑝ℎ,fact
»
ÝÑ Repp𝐺̌qfact.

We recall that this equivalence is constructed using the geometric Satake theorem.

4.15. Define the geometric Chevalley functor:

Chevgeom
ň : Whit𝑠𝑝ℎ,fact Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q

factq P FactCat𝑢𝑛p𝑋𝑑𝑅q

as the composition:

Whit𝑠𝑝ℎ,fact ÑWhit𝑖𝑛𝑡,fact ÑWhit
8
2
,fact 𝑖

8
2 ,!,𝑒𝑛ℎ

ÝÝÝÝÝÑ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q
factq.

Define the spectral Chevalley functor:

Chevspec
ň : Repp𝐺̌qfact Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q

factq P FactCat𝑢𝑛p𝑋𝑑𝑅q

as the composition:

Repp𝐺̌qfact
restriction
ÝÝÝÝÝÝÑ Repp𝐵̌qfact » ň𝑋–mod

Ind𝑐ℎ
ÝÝÝÑ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q

factq

where ň𝑋–mod is the factorization category of Lie-˚ modules for ň𝑋 in 𝐷pGr𝑇 q
fact, and where Ind𝑐ℎ

is the chiral induction functor for Lie-˚ modules.
We now have the following compatibility:

Theorem 4.15.1. The following diagram of unital factorization categories canonically commutes:

Repp𝐺̌qfact

Chevspecň

))

CS
» // Whit𝑠𝑝ℎ,fact

Chevgeomň

uu
Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q

factq

This is deduced from [Ras2] Theorem 7.9.1 by the same method by which we deduced Theorem
4.4.1 from [Ras2] Theorem 4.6.1.

5. Formulation of the main theorem and local acyclicity in Whit
8
2

5.1. The full category Whit
8
2

𝑋𝐼 is technically quite difficult to work with: applying co/invariants
on both sides with respect to an infinite-dimensional group is technically challenging.

In this section, we define the accessible subcategory Whit
8
2

𝑋𝐼 ,𝑎𝑐𝑐
of Whit

8
2

𝑋𝐼 , whose origins are of

more finite-dimensional origins.
We then formulate the main theorem of this paper, Theorem 5.7.1, which is a Langlands duality

duality theorem for Whit
8
2

𝑋𝐼 ,𝑎𝑐𝑐
.

Finally, we will show in Theorem 5.10.1 that the categories Whit
8
2

𝑋𝐼 ,𝑎𝑐𝑐
have some remarkable

technical properties which make them easier to work with: namely, we show that they are ULA
over 𝑋𝐼 in the sense of [Ras2] Appendix B. This result will ultimately allow us to prove Theorem
5.7.1, which is about factorizable categories, to its corresponding version over a point.
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5.2. We need to recall two standard ideas before proceeding: the notion of monodromic object,
and the fact that 𝐺p𝑂q-monodomic objects can be !-averaged against the Whittaker character.

5.3. Review of monodromicity. We need the following brief interlude.
Suppose that 𝒢 is a group scheme acting on a category C P DGCat𝑐𝑜𝑛𝑡. Recall that the monodromic

subcategory C𝒢–mon Ď C is the cocomplete subcategory generated under colimits by the image of
the functor Oblv : C𝒢 Ñ C.

Since Oblv admits the continuous right adjoint Av˚, the embedding C𝒢–mon ãÑ C admits a
continuous right adjoint as well. Moreover, we deduce that:

C𝒢–mon “ 𝐷˚p𝒢q𝒢–mon b
𝐷˚p𝒢q

C. (5.3.1)

Note here that 𝐷˚p𝒢q𝒢–mon is the full subcategory of 𝐷˚p𝒢q generated by 𝑘𝒢 “ 𝜔𝑟𝑒𝑛𝒢 .

Finally, note that the above makes sense if 𝒢 is a placid group scheme over 𝑋𝐼 (or any other
base). Then as usual, C is a priori assumed to have a 𝐷p𝑋𝐼q-module category structure. It follows

from the above that the adjoint functors C𝒢–mon // Coo are 𝐷p𝑋𝐼q-linear. In particular, it follows

that the embedding C𝒢–mon ãÑ C preserves objects ULA23 over 𝑋𝐼 .

5.4. !-averaging. We have the following toy model for constructing Whittaker equivariant objects.
For the moment, we fix a point in our curve and let e.g. 𝐺p𝐾q denote the loop group based at that
point.

Proposition 5.4.1. Let C be a category acted on by 𝐺p𝐾q (i.e., a 𝐷˚p𝐺p𝐾qq-module category).

The left adjoint Av𝜓! to the forgetful functor WhitpCq Ñ C is defined on the subcategory C𝐺p𝑂q Ď C.

Proof. By definition, it suffices to show that the functor WhitpCq Ñ C𝐺p𝑂q given by forgetting and
then ˚-averaging admits a left adjoint.

We have a functor C𝐺p𝑂q ÑWhitpCq defined by convolution with the unit object in Whitp𝐷pGr𝐺qq,
i.e., the cleanly extended Whittaker sheaf on Gr𝑁´ . It is then straightforward to construct the unit
and counit maps for the adjunction by working directly with the corresponding 𝐷-modules on Gr𝐺:
we remark that ind-properness of Gr𝐺 plays a crucial role in this verification.

�

It follows formally that if F P C𝐺p𝑂q–mon is compact, then Av𝜓! pFq is compact as an object of
WhitpCq.

Remark 5.4.2. The same construction works over 𝑋𝐼
𝑑𝑅. That is, if C P 𝐷p𝑋𝐼q–mod is equipped

with a 𝐷˚p𝐺p𝐾q𝑋𝐼 q-module structure, then the corresponding functor Av𝜓! : C𝐺p𝑂q𝑋𝐼 Ñ WhitpCq

is defined and 𝐷p𝑋𝐼q-linear, and it sends objects F P C𝐺p𝑂q𝑋𝐼 –mon ULA (over 𝑋𝐼) to a ULA object
of WhitpCq.

5.5. Definition of Whit
8
2

𝑋𝐼 ,𝑎𝑐𝑐
. Define Whit

8
2

𝑋𝐼 ,𝑎𝑐𝑐
to be generated under colimits by objects in the

image of the functor:

Av𝜓! : 𝐷!pFl
8
2

𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon ÑWhit

8
2

𝑋𝐼 .

23Recall that ULA means that the corresponding object of Cb𝐷p𝑋𝐼 q QCohp𝑋𝐼
q is compact.



48 SAM RASKIN

5.6. It is immediate to verify that:

𝐼 ÞÑWhit
8
2

𝑋𝐼 ,𝑎𝑐𝑐

is a full factorization subcategory of 𝐼 ÞÑWhit
8
2

𝑋𝐼 .

Moreover, the construction of the unit maps for Whit
8
2 implies that the unit maps:

𝐷p𝑋𝐼q bWhit
8
2

𝑋𝐽 ÑWhit
8
2

𝑋𝐼
š

𝐽

map 𝐷p𝑋𝐼q bWhit
8
2

𝑋𝐽 ,𝑎𝑐𝑐
to Whit

8
2

𝑋𝐼
š

𝐽 ,𝑎𝑐𝑐
. Indeed, this functor is 𝐷p𝑋𝐼

š

𝐽q-linear, so it suffices to

see that it sends objects of the form 𝜔𝑋𝐼 b F with F P Whit
8
2

𝑋𝐽 ,𝑎𝑐𝑐
to objects in Whit

8
2

𝑋𝐼
š

𝐽 ,𝑎𝑐𝑐
. We

can then work over strata of 𝑋𝐼
š

𝐽 and apply factorization, and then the claim follows from the

fact that the unit object of Whit
8
2

𝑋𝐾 lies in Whit
8
2

𝑋𝐾 ,𝑎𝑐𝑐
for every finite set 𝐾.

In this way, we obtain the full unital factorization subcategory Whit
8
2
,fact

𝑎𝑐𝑐 of Whit
8
2
,fact.

5.7. Formulation of the main theorem. We now give the main theorem of this paper.

Theorem 5.7.1. The functor 𝑖
8
2
,!,𝑒𝑛ℎ is a fully-faithful functor of unital factorization categories:

Whit
8
2
,fact

𝑎𝑐𝑐 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇 q
factq.

Remark 5.7.2. As follows from Theorem 8.22.1 and Koszul duality, the fiber of the righthand side
at a point is equivalent to QCohpň^0 {𝐵̌

^

𝑇
q. Here 𝐵̌^

𝑇
is the formal completion of 𝐵̌ along 𝑇 . On the

other hand, Arkhipov-Berzukavnikov (combined with the comparisons of Theorems 6.2.1 and 7.3.1)
implies that the left hand side is equivalent to QCohpň^0 {𝐵̌q.

To understand the difference, let us consider instead the simpler problem of comparing B𝑁̌^𝑒 with
B𝑁̌ . Quasi-coherent sheaves on the former is ň–mod, while the latter gives Repp𝑁̌q. By unipotence,
Repp𝑁̌q is a full subcategory of ň–mod. A similar argument implies the fully-faithfulness of the
functor above. (Moreover, one can e.g. use this and factorization to obtain a complete, explicit

description of the image of the functor 𝑖
8
2
,!,𝑒𝑛ℎ.)

Equivalently, this result means that for each finite set 𝐼, the functor Whit
8
2

𝑎𝑐𝑐,𝑋𝐼 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑋𝐼 qq

is fully-faithful.
The remainder of this text is devoted to proving this result.

5.8. ULAness. We now collect one technical result which we will need in the sequel. The reader
may prefer to skip this material for now, and return to it as needed.

5.9. At this point, we assume the reader is familiar with the contents of [Ras2] Appendix B
regarding ULA objects and ULA categories.

5.10. The main technical result we will need is the following one.

Theorem 5.10.1. For every finite set 𝐼, Whit
8
2

𝑎𝑐𝑐,𝑋𝐼 is ULA as a 𝐷p𝑋𝐼q-module category, with the

unit object unit
Whit

8
2
𝑋𝐼

being a ULA.
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5.11. The following result will be key to verifying Theorem 5.10.1.

Proposition 5.11.1. The unit object unit
𝐷!pFl

8
2
𝑋𝐼
q
P 𝐷!pFl

8
2

𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon is ULA.

The proof of Proposition 5.11.1 will be given in S5.12-5.14 below.

Remark 5.11.2. By Remark 5.4.2, Proposition 5.11.1 implies that the unit object of Whit
8
2

𝑋𝐼 is ULA.

5.12. Let 𝜆̌ “ p𝜆̌𝑖q𝑖P𝐼 P Λ̌𝐼 be a vector of coweights. This defines an open 𝑈 𝜆̌
𝑋𝐼 Ď 𝐺p𝐾q𝑋𝐼 as the

inverse image of the complement to Gr
𝜆̌
𝐵,𝑋𝐼 Ď Gr𝐺,𝑋𝐼 . Note that 𝑁p𝐾q𝑋𝐼 acts on the left on 𝑈 𝜆̌

𝑋𝐼 .

Lemma 5.12.1. The map:

colim
𝜆̌PΛ̌𝐼

𝐷!p𝑈 𝜆̌𝑋𝐼 q Ñ 𝐷!p𝐺p𝐾qq𝑋𝐼 P 𝐷p𝑋𝐼q–mod

is an equivalence. Here all functors are de Rham pushforward functors (along quasi-compact open
embeddings), and we are letting 𝜆̌ limit to ´8.

Proof. Since 𝐷!p𝐺p𝐾q𝑋𝐼 q is the colimit of 𝐷! of its reasonable subschemes (under pushforwards),
it suffices to verify this upon intersecting with the inverse image of a finite type subscheme in the

Grassmannian. But such a subscheme is contained in a cofinal set of 𝑈 𝜆̌
𝑋𝐼 , giving the claim.

�

By Corollary 6.5.3, Proposition 5.11.1 follows from the next result.

Lemma 5.12.2. For every 𝜆̌ P p´Λ̌𝑝𝑜𝑠q𝐼 , the projection of 𝜔𝐺p𝑂q
𝑋𝐼

pushforward
P 𝐷!p𝑈 𝜆̌

𝑋𝐼 q to 𝐷
!p𝑈 𝜆̌

𝑋𝐼 q𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼

is ULA.

We will prove this lemma below.

5.13. We now have the following result for invariant categories.

Lemma 5.13.1. The partially-defined left adjoint Av
8
2
! to the forgetful functor 𝐷!p𝑈 𝜆̌

𝑋𝐼 q
𝑁p𝐾q𝑇 p𝑂q Ñ

𝐷!p𝑈𝑋𝐼 q is defined on the full subcategory 𝐷!p𝑈𝑋𝐼 q
𝐵p𝑂q

𝑋𝐼
ˆ
𝑋𝐼
𝐺p𝑂q

𝑋𝐼
–mon

.

We emphasize again that the 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 -action and the 𝐺p𝑂q𝑋𝐼 -action occur on different
sides; the notation indicates that we are taking objects that are monodromic for the 𝐵p𝑂q𝑋𝐼 -action
on the left and the 𝐺p𝑂q𝑋𝐼 -action on the right.

Proof of Lemma 5.13.1. We will prove this using Braden’s theorem, c.f. [Bra] and [DG].

Let 𝑉 𝜆̌
𝑋𝐼 Ď Gr𝐺,𝑋𝐼 be the complement of Gr

𝜆̌
𝐵,𝑋𝐼 , so 𝑈 𝜆̌

𝑋𝐼 Ñ 𝑉 𝜆̌
𝑋𝐼 is 𝐺p𝑂q𝑋𝐼 -torsor. Since this map

is placid and therefore pullback is a left adjoint. Since the pullback 𝐷p𝑉 𝜆̌
𝑋𝐼 q

𝐵p𝑂q
𝑋𝐼

–mon Ñ 𝐷p𝑈 𝜆̌
𝑋𝐼 q

generates 𝐷p𝑈 𝜆̌
𝑋𝐼 q

𝐵p𝑂q
𝑋𝐼

ˆ
𝑋𝐼
𝐺p𝑂q

𝑋𝐼
–mon

under colimits, it suffices to see that we can !-average objects

of 𝐷p𝑉 𝜆̌
𝑋𝐼 q

𝐵p𝑂q
𝑋𝐼

–mon.

Note that 𝐷p𝑉 𝜆̌
𝑋𝐼 q

𝐵p𝑂q
𝑋𝐼

–mon is generated under colimits by objects supported on the union
of finitely many 𝑁p𝐾q𝑋𝐼 -orbits (equivalently: 𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 -orbits). Therefore, it suffices to show
that such objects can be !-averaged.

We claim now that it suffices to see that the operation of taking ˚-restriction to an orbit Gr𝜇̌
𝐵,𝑋𝐼 Ď

𝑉 𝜆̌
𝑋𝐼 and then !-pushforward to 𝑋𝐼 is defined (i.e., the left adjoint to the relevant functor 𝐷p𝑋𝐼q Ñ

𝐷p𝑉 𝜆̌
𝑋𝐼 q).
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Indeed, this immediately implies that ˚-restriction to an orbit:

𝐷p𝑉 𝜆̌
𝑋𝐼 q

𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼

–mon Ñ 𝐷pGr𝜇̌𝐵q
𝑁p𝐾q𝑇 p𝑂q

𝑋𝐼
–mon » 𝐷p𝑋𝐼q

is defined, which by a Cousin argument implies that !-extension from such an orbit is also defined.24

We then see that the operation of ˚-restricting to an orbit, !-averaging, and then !-extending from
the orbit is defined, so another Cousin argument does the trick.

That this functor is defined is now immediate from Braden’s theorem and the usual realization
of semi-infinite orbits as the attracting locus for an appropriate G𝑚-action: c.f. [MV] S3. We remark
that there are no issues in applying Braden’s theorem to an indscheme of ind-finite type here, since
Gr𝐺,𝑋𝐼 is a union of finite type 𝐵p𝑂q𝑋𝐼 -stable subschemes. Similarly, the generalization to the
factorization setting here is immediate (and standard).

�

5.14. We have the following application of the above result.

Corollary 5.14.1. The category 𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼

–mon

𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼

is dualizable as a 𝐷p𝑋𝐼q-module category,

and is canonically25 dual to 𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼

–mon,𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼 .

Remark 5.14.2. A similar statement holds for 𝐷!pFl
8
2

𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon, as can be shown using the

results here. Perhaps it is reasonable to expect it to hold for 𝐷!pFl
8
2

𝑋𝐼 q itself.

Proof of Corollary 5.14.1. First, note that 𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼

–mon itself is dualizable over 𝑋𝐼 . Indeed,

this category is a 𝐷p𝑋𝐼q-linear retract of 𝐷!p𝐺p𝐾q𝑋𝐼 q (since monodromic categories always are,
and since we have adjoint push and pull functors from this open) which is dualizable over 𝑋𝐼 .

By a standard argument (c.f. [Gai5]), it suffices to show that for every D P 𝐷p𝑋𝐼q–mod, the
functor:

𝐷!p𝑈 𝜆̌𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon,𝑁p𝐾q𝑇 p𝑂q

𝑋𝐼 b
𝐷p𝑋𝐼q

DÑ
`

𝐷!p𝑈 𝜆̌𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon b

𝐷p𝑋𝐼q

D
˘𝑁p𝐾q𝑇 p𝑂q

𝑋𝐼

is an equivalence.
We see that the right hand side is a full subcategory of:

`

𝐷!p𝑈 𝜆̌𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon b

𝐷p𝑋𝐼q

D
˘𝐵p𝑂q

𝑋𝐼 .

We claim that the left hand side is also. Indeed, the functor:

𝐷!p𝑈 𝜆̌𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon,𝑁p𝐾q𝑇 p𝑂q

𝑋𝐼 Ñ 𝐷!p𝑈 𝜆̌𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon,𝐵p𝑂q

𝑋𝐼

admits a 𝐷p𝑋𝐼q-linear left adjoint by Lemma 5.13.1, and therefore remains fully-faithful after
tensoring with any 𝐷p𝑋𝐼q-module category. Moreover, because 𝐵p𝑂q𝑋𝐼 -invariants coincide with
coinvariants, we can pull the invariants out of the tensor product here, giving the claim.

�

We now deduce Lemma 5.12.2, completing the proof of Proposition 5.11.1.

24Note that this conclusion would not be valid if we had not removed the closure of an orbit: it is important for
this point that there should be only finitely many orbits in the closure.

25Note that everywhere here we are using the dimension theory on 𝑈 𝜆̌𝑋𝐼 to identify 𝐷! with 𝐷˚.
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Proof of Lemma 5.12.2. The embedding 𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼

–mon Ñ 𝐷!p𝑈 𝜆̌
𝑋𝐼 q admits a 𝐷p𝑋𝐼q-linear

right adjoint, and therefore it suffices to see that the “unit” object in this subcategory is ULA.
This unit object is obtained by ˚-pushforward from the object of 𝐷!p𝑁p𝐾q𝑋𝐼 q𝑁p𝐾q

𝑋𝐼
“ 𝐷p𝑋𝐼q

corresponding to 𝜔𝑋𝐼 . This object is obviously ULA over 𝑋𝐼 .
Recall the following paradigm. Let 𝐺 : CÑ D P DGCat𝑐𝑜𝑛𝑡 be a functor of dualizable categories.

Then for F P C compact, 𝐺pFq is compact if and only the left adjoint to 𝐺_ : D_ Ñ C_ is defined on
DpFq P C_ (where DpFq is the object defined by the functor HomCpF,´q P HompC,Vectq “ C_). By
rigiditiy of QCohp𝑋𝐼q, one immediately obtains a similar statement for 𝐷p𝑋𝐼q-module categories,
where compact is replaced by ULA and functors are 𝐷p𝑋𝐼q-linear throughout.

Therefore, by Corollary 5.14.1, to see that the unit in 𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼

–mon is ULA, it suffices to see

that the left adjoint to the !-restriction functor𝐷!p𝑈 𝜆̌
𝑋𝐼 q

𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼 Ñ 𝐷!p𝑁p𝐾q𝑇 p𝑂q𝑋𝐼 q

𝑁p𝐾q𝑇 p𝑂q
𝑋𝐼

is defined and 𝐷p𝑋𝐼q-linear. But we have seen this already in the course of the proof of Lemma
5.13.1.

�

5.15. We now have the following result, which tautologically implies what remains of Theorem
5.10.1:

Proposition 5.15.1. 𝐷!pFl
8
2

𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon is ULA as a 𝐷p𝑋𝐼q-module category.

Proof. For 𝜆̌ “ p𝜆̌𝑖q𝑖P𝐼 P Λ̌𝐼 , let unit𝜆̌
𝐷!pFl

8
2
𝑋𝐼
q
P 𝐷!pFl

8
2

𝑋𝐼 q
𝐺p𝑂q

𝑋𝐼
–mon denote object obtained by

translating the unit object via the Gr𝑇,𝑋𝐼 action on Fl
8
2

𝑋𝐼 . By Proposition 5.11.1, unit𝜆̌
𝐷!pFl

8
2
𝑋𝐼
q

is ULA. Therefore, it suffices to show that these objects generate 𝐷!pFl
8
2

𝑋𝐼 q as a 𝐷p𝑋𝐼q-module
category.

By Lemma 5.12.1, it suffices to show that the objects unit𝜆̌
𝐷!pFl

8
2
𝑋𝐼
q

generate 𝐷!p𝑈 𝜇̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼 for

every vector of coweights 𝜇̌ whenever 𝜆̌ ranges over those vectors of coweights for which unit𝜆̌
𝐷!pFl

8
2
𝑋𝐼
q

lies in 𝐷!p𝑈 𝜇̌
𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼 Ď 𝐷!p𝐺p𝐾q𝑋𝐼 q

𝐺p𝑂q
𝑋𝐼 .

But this is a statement about the union of strata in Gr𝐺,𝑋𝐼 , and therefore usual (ind-)finite type
geometry allows us to apply a Cousin argument to reduce to the case of a single stratum, and here
the result is clear.

�

6. Iwahori vs. semi-infinite flags

6.1. Let 𝑥 P 𝑋 be a closed point. Let Whit
8
2
𝑥 be the fiber of Whit

8
2
𝑋 at this point, i.e., 𝑁p𝐾𝑥q𝑇 p𝑂𝑥q-

coinvariants of the Whittaker invariants of 𝐷!p𝐺p𝐾𝑥qq.
Let 𝐼 Ď 𝐺p𝑂q be the Iwahori subgroup, i.e., the inverse image of 𝐵 under the projection 𝐺p𝑂q Ñ

𝐺. Let
𝑜
𝐼 denote its prounipotent radical, i.e., the inverse image of 𝑁 . We let

𝑜
𝐼´ be defined similarly

but using 𝑁´ instead.

The purpose of S6-7 is to show that Whit
8
2
𝑥 coincides with the category 𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ considered
in [AB].

There are two comparisons to be made: in the present section, we treat the 𝑁p𝐾𝑥q𝑇 p𝑂𝑥q side,
and in S7, we treat the Whittaker side.
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6.2. The main result of this section is the following.

Theorem 6.2.1. Let C be a category acted on by 𝐺p𝐾𝑥q.
26 Then the functor:

C𝐼
Nm
ÝÝÑ C𝐵p𝑂𝑥q Ñ C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q

is an equivalence. Here Nm is the norm map, which by definition corresponds to Oblv under the
equivalences C𝐼 » C𝐼 and C𝐵p𝑂𝑥q » C𝐵p𝑂𝑥q.

Remark 6.2.2. Note that this result is borrowed from the theory of reductive 𝑝-adic groups: c.f.
[Cas] Proposition 2.4.

Corollary 6.2.3. For C as above, the functor C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q
Oblv
ÝÝÝÑ C𝐵p𝑂𝑥q

Av˚
ÝÝÑ C𝐼 is an equivalence.

Proof that Theorem 6.2.1 implies Corollary 6.2.3. We have:

Hom𝐷˚p𝐺p𝐾𝑥qq–modp𝐷
˚p𝐺p𝐾𝑥qq𝑁p𝐾𝑥q𝑇 p𝑂𝑥q,Cq » C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q

and similarly for Iwahori invariants. Therefore, we deduce the result from Theorem 6.2.1 applied
to the regular representation.

�

6.3. For every 𝜆̌ P Λ̌, we use the notation:

𝐼 𝜆̌ :“ Ad´𝜆̌p𝑡qp𝐼q Ď 𝐺p𝐾𝑥q

𝐵p𝑂𝑥q
𝜆̌ :“ Ad´𝜆̌p𝑡qp𝐵p𝑂𝑥qq Ď 𝐺p𝐾𝑥q

where 𝑡 P 𝐾𝑥 is a uniformizer.

Remark 6.3.1. The normalization with ´𝜆̌p𝑡q is so we can work with 𝜆̌ P Λ̌` instead of ´Λ̌`.

6.4. The key fact we will use is the following one.

Lemma 6.4.1. For C acted on by 𝐺p𝐾𝑥q and 𝜆̌, 𝜂 coweights, the functor:

Av𝐼
𝜇̌

˚ : C𝐼
𝜆̌
Ñ C𝐼

𝜇̌

(given by forgetting to 𝐼 𝜆̌ X 𝐼 𝜇̌ and then averaging) is an equivalence.

Proof. Up to translations, this follows from the invertibility of Mirkovic-Wakimoto sheaves in the
Iwahori-Hecke algebra (see [AB] Lemma 8).

�

Remark 6.4.2. We denote the inverse functor by Av𝐼
𝜆̌

! , since it is evidently given by (forgetting

down to 𝐼 𝜆̌ X 𝐼 𝜇̌ and then) applying such a !-averaging.

26I.e., a 𝐷!
p𝐺p𝐾𝑥qq-comodule category in DGCat𝑐𝑜𝑛𝑡, or equivalently, a 𝐷

˚
p𝐺p𝐾𝑥qq-module category.
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6.5. Before preceding, we record a technical general lemma we will need. The reader may prefer
to skip this section and refer back to it as necessary.

Suppose that I is a filtered category, and suppose we are given diagrams:

𝑖 ÞÑ C𝑖 P DGCat𝑐𝑜𝑛𝑡

𝑖 ÞÑ D𝑖 P DGCat𝑐𝑜𝑛𝑡.

Let C (resp. D) denote the colimit category in DGCat𝑐𝑜𝑛𝑡. For 𝛼 : 𝑖 Ñ 𝑗 P I, let 𝜓𝛼 (resp. 𝜙𝛼)
denote the structure functor C𝑖 Ñ C𝑗 (resp. D𝑖 Ñ D𝑗). We let 𝜓𝑖 : C𝑖 Ñ C and 𝜙𝑖 : D𝑖 Ñ D denote
the structure functors.

Suppose we are given compatible functors 𝐹𝑖 : C𝑖 Ñ D𝑖, and suppose that each functor 𝐹𝑖 admits
a continuous right adjoint 𝐺𝑖. We do not assume that the functors 𝐺𝑖 are compatible with the
structure maps (though they are automatically lax compatible).

Let 𝐹 denote the induced functor 𝐹 : CÑ D.

Construction 6.5.1. For every 𝑖, define the continuous functor “𝐺𝜙𝑖” : D𝑖 Ñ C by the formula:27

“𝐺𝜙𝑖” :“ colim
𝛼:𝑖Ñ𝑗

𝜓𝑗𝐺𝑗𝜙𝛼.

For 𝛽 : 𝑘 Ñ 𝑖, observe that we have:

“𝐺𝜙𝑖” ˝ 𝜙𝛽 “ colim
𝛼:𝑖Ñ𝑗

𝜓𝑗𝐺𝑗𝜙𝛼𝜙𝛽 “ colim
7:𝑘Ñ𝑗

𝜓𝑗𝐺𝑗𝜙7 “ “𝐺𝜙𝑘”

where we use filteredness to deduce the second equality. There, we have a functor 𝐺 : D Ñ C

characterized by the identities 𝐺𝜙𝑖 » “𝐺𝜙𝑖.”

Lemma 6.5.2. The functor 𝐺 is the right adjoint to the functor 𝐹 .

Proof. We construct the unit and counit of the adjunction explicitly.
Let 𝑖 be a fixed index. We have:

𝐹𝐺𝜙𝑖 “ colim
𝛼:𝑖Ñ𝑗

𝐹𝜓𝑗𝐺𝑗𝜙𝛼 “ colim
𝛼:𝑖Ñ𝑗

𝜙𝑗𝐹𝑗𝐺𝑗𝜙𝛼 Ñ colim
𝛼:𝑖Ñ𝑗

𝜙𝑗𝜙𝛼 “ 𝜙𝑖.

These functors are compatible as we vary 𝑖, and therefore define a natural transformation:

𝐹𝐺Ñ idD .

Fixing 𝑖 again, we similarly obtain:

𝜓𝑖 “ colim
𝛼:𝑖Ñ𝑗

𝜓𝑗𝜓𝛼 Ñ colim
𝛼:𝑖Ñ𝑗

𝜓𝑗𝐺𝑗𝐹𝑗𝜓𝛼 “ colim
𝛼:𝑖Ñ𝑗

𝜓𝑗𝐺𝑗𝜙𝛼𝐹𝑖 “ 𝐺𝜙𝑖𝐹𝑖 “ 𝐺𝐹𝜓𝑖

and then by passing to the limit, we obtain the natural transformation:

idC Ñ 𝐺𝐹.

One easily finds that these natural transformations define the counit and unit of an adjunction.
�

27Note that for maps 𝑖
𝛼
ÝÑ 𝑗

𝛽
ÝÑ 𝑘 of indices, we have the map 𝜓𝑗𝐺𝑗𝜙𝛼 “ 𝜓𝑘𝜓𝛽𝐺𝑗𝜙𝛼 Ñ 𝜓𝑘𝐺𝑘𝜙𝛽𝛼 “ 𝜓𝑘𝐺𝑘𝜙𝛽 ˝ 𝜙𝛼

given by the base-change map 𝜓𝛽𝐺𝑗 Ñ 𝐺𝑘𝜙𝛽 , meaning that the arrows go in the correct direction in our colimit
diagram.
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Corollary 6.5.3. Suppose that I is a filtered as above and 𝑖 ÞÑ D𝑖 P DGCat𝑐𝑜𝑛𝑡 is a diagram with
structure maps denoted by 𝜙 as above.

Suppose 𝑖0 is a fixed index in I and we are given F𝑖0 P D𝑖0 such that, for every 𝛼 : 𝑖0 Ñ 𝑗, the
functor D𝑖0 Ñ D𝑗 sends F𝑖0 to a compact object 𝜙𝛼pF𝑖0q in D𝑗.

Then 𝜙𝑖0pFq is compact in D “ colim𝑖 D𝑖. Moreover, for every 𝛼 : 𝑖0 Ñ 𝑗, the resulting contin-
uous functor:

D𝑗 Ñ D
HomDp𝜙𝑖0 pFq,´q
ÝÝÝÝÝÝÝÝÝÝÑ Vect

is computed explicitly by the formula:

G ÞÑ colim
𝛽:𝑗Ñ𝑘

HomD𝑘
p𝜙𝛽𝛼pF𝑖0q, 𝜙𝛽pGqq.

Proof. First, replacing I by I𝑖0{ by filteredness, we may assume 𝑖0 is initial in I. Then for any 𝑗 P I,
let F𝑗 P D𝑗 obtained from functoriality from F𝑖0 using the structure functor D𝑖0 Ñ D𝑗 . Let F P D

denote the object 𝜙𝑖0pF𝑖0q.
Then we apply Lemma 6.5.2 with C𝑗 “ Vect for every 𝑗, with the compatible functors VectÑ D𝑗

given by 𝑘 ÞÑ 𝜙𝛼𝑗 pF𝑖0q. Note that the corresponding functor Vect Ñ D sends the trivial vector
space 𝑘 to F.

The lemma applies because each of these functors admits the continuous right adjoint HomD𝑗
pF𝑗 ,´q.

Then Lemma 6.5.2 ensures that the functor VectÑ D, 𝑘 ÞÑ F, admits a continuous right adjoint
HomDpF,´q, and therefore F is compact. Then the explicit formula for the right adjoint given in
Lemma 6.5.2 translates to the stated formula for HomDpF,´q.

�

6.6. We now give the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. For every 𝜆̌ P Λ̌, let p𝜆̌ denote the projection functor C𝐵p𝑂𝑥q
𝜆̌
» C𝐵p𝑂𝑥q𝜆̌ Ñ

C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q. For 𝜆̌ “ 0, we use the notation p instead.

Step 1. First, we show that C𝐼 Ñ C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q generates the target under colimits.
Certainly C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q is generated under colimits by the image of the functor p.
Note that:

colim
𝜆̌PΛ̌`

𝛿𝐼𝜆̌X𝐼 » 𝛿𝐵p𝑂𝑥q.

Therefore, for F P C𝐵p𝑂𝑥q, we have:

F » colim
𝜆̌PΛ̌`

Av𝐼
𝜆̌X𝐼
˚ pFq

and therefore C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q is generated under colimits by the images of the functors C𝐼
𝜆̌X𝐼 ãÑ

C𝐵p𝑂𝑥q
p
ÝÑ C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q as 𝜆̌ ranges over Λ̌`.

Now observe that for any F P C𝐵p𝑂𝑥q, we have:

ppAv
𝐵p𝑂𝑥q𝜆̌

˚ pFqq
»
ÝÑ ppFq

by definition of the coinvariants. For F P C𝐼
𝜆̌X𝐼 , we then see that Av

𝐵p𝑂𝑥q𝜆̌

˚ pFq is 𝐼 𝜆̌-equivariant, so
that, by Lemma 6.4.1, we have:



CHIRAL PRINCIPAL SERIES CATEGORIES II: THE FACTORIZABLE WHITTAKER CATEGORY 55

Av
𝐵p𝑂𝑥q𝜆̌

˚ pFq
»
ÝÑ Av

𝐵p𝑂𝑥q𝜆̌

˚ Av𝐼! Av
𝐵p𝑂𝑥q𝜆̌

˚ pFq

and therefore:

ppAv𝐼! Av
𝐵p𝑂𝑥q𝜆̌

˚ pFqq “ p𝜆̌pAv
𝐵p𝑂𝑥q𝜆̌

˚ Av𝐼! Av
𝐵p𝑂𝑥q𝜆̌

˚ pFqq » p𝜆̌pAv
𝐵p𝑂𝑥q𝜆̌

˚ pFqq “ ppFq.

Therefore, since the former term is p applied to an Iwahori-equivariant object, we obtain the claim.

Step 2. Next, suppose that F P C𝐼 is compact.

From Lemma 6.4.1, we find that Av𝐼
𝜆̌

˚ pFq is compact in C𝐼
𝜆̌

and therefore compact in C𝐵p𝑂𝑥q
𝜆̌
.

For 𝜆̌ P Λ̌`, we have Av𝐼
𝜆̌

˚ pFq “ Av
𝐵p𝑂𝑥q𝜆̌

˚ pFq, so, we conclude that Av
𝐵p𝑂𝑥q𝜆̌

˚ pFq is compact for
every 𝜆̌ P Λ̌`.

Now observe that for any G P C𝐼 , the map:

HomC𝐼 pF,Gq Ñ Hom
C𝐵p𝑂𝑥q

𝜆̌ pAv
𝐵p𝑂𝑥q𝜆̌

˚ pFq,Av
𝐵p𝑂𝑥q𝜆̌

˚ pGqq

is an isomorphism, since we can compute these averages as Av𝐼
𝜆̌

˚ .
Therefore, Corollary 6.5.3 implies that:

HomC𝐼 pF,Gq Ñ HomC𝑁p𝐾𝑥q𝑇 p𝑂𝑥q
pppFq, ppGqq

is an equivalence for every G.

Step 3. Combining Steps 1 and 2, we obtain that our functor is an equivalence whenever C𝐼 is
compactly generated.

In particular, this applies to C “ 𝐷˚p𝐺p𝐾𝑥qq, since 𝐷˚p𝐺p𝐾𝑥qq𝐼 » 𝐷pFlaff𝐺,𝑥q is compactly gen-
erated.

To treat the case of general C, we use the same method as Corollary 6.2.3:

C𝐼 » C b
𝐷˚p𝐺p𝐾𝑥qq

𝐷˚p𝐺p𝐾𝑥qq𝐼 » C b
𝐷˚p𝐺p𝐾𝑥qq

𝐷˚p𝐺p𝐾𝑥qq𝑁p𝐾𝑥q𝑇 p𝑂𝑥q » C𝑁p𝐾𝑥q𝑇 p𝑂𝑥q.

�

7. Comparison of baby and big Whittaker categories

7.1. To complete the task set in S6.1, this section will compare the baby Whittaker category

𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ considered in [AB] to Whitp𝐷pFlaff𝐺,𝑥qq, which by Theorem 6.2.1 is equivalent to

Whitp𝐷!pFl
8
2
𝑥 qq, the main category considered in this paper.

Our main result is Theorem 7.3.1, showing that these two categories are equivalent.

7.2. Shifted Whittaker objects. For C a category acted on by 𝐺p𝐾𝑥q, we let Whit1pCq denote
the shifted Whittaker category, where we use the character 𝑁´p𝐾𝑥q Ñ G𝑎 given by the composition

𝑁´p𝐾𝑥q
Ad ˇ́𝜌p𝑡qp´q

ÝÝÝÝÝÝÝÑ 𝑁´p𝐾𝑥q Ñ G𝑎 with the second map the standard (conductor zero) character.
We use the notation 𝜓1 for the corresponding character sheaf on 𝑁´p𝐾𝑥q.

Remark 7.2.1. For 𝐺 with connected center, Whit1pCq is canonically equivalent to WhitpCq for any
C acted on by 𝐺p𝐾q: the equivalence is effected by the action of 𝜌p𝑡q P 𝐺p𝐾q.
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Note that the resulting character is non-trivial on elements of the form expp𝑓𝑖q, instead of the

usual expp𝑓𝑖𝑡 q. The point of it is that there is a canonical “non-degenerate”28 character 𝜓𝑜
𝐼´

of
𝑜
𝐼´

which coincides with the above character on the intersection. This character is the one used in [AB],
and corresponding equivariant categories are called “baby Whittaker.”

7.3. We have a functor Whit1p𝐷pFlaff𝐺,𝑥qq Ñ 𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ given by forgetting the Whittaker

condition and then ˚-averaging against
𝑜
𝐼´, 𝜓𝑜

𝐼´
. We denote this functor by Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ .

It is easy to see that this functor admits a left adjoint, since every object in the right hand side

is (ind-)holonomic and because
𝑜
𝐼´ X𝑁´p𝐾𝑥q Ď 𝑁´p𝐾𝑥q is a compact open subgroup: one applies

[Ras3] Proposition 6.19.2. We denote this left adjoint by AvWhit1

! .

Theorem 7.3.1. The adjoint functors:

𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´

AvWhit1

! // Whit1p𝐷pFlaff𝐺,𝑥qq

Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚

oo

are mutually inverse equivalences.

Remark 7.3.2. In [Ras5], we suggest a systematic framework for when baby Whittaker should co-
incide with the full Whittaker category: the corresponding Whittaker category, which conjecturally

decomposes over LocSys𝐺̌p
𝑜
𝒟𝑥q, should lie over the locus of local systems with regular singularities.

We refer to loc. cit. for evidence for this conjecture and for higher slope generalizations.

7.4. Let 1Flaff𝐺,𝑥
denote the canonical point of Fl𝐺aff .

7.5. Relevant orbits. We begin by analyzing which orbits admit baby and shifted Whittaker
sheaves on Flaff𝐺,𝑥.

Let 𝑊 aff,ext denote the extended affine Weyl group 𝑊 ˙ Λ̌. Let 𝑊 aff be the non-extended affine
Weyl group given as the semidirect product of 𝑊 and the Z-span of the coroots.

Remark 7.5.1. After a choice of Borel in 𝐺, one knows that 𝑊 aff picks up a canonical structure of
Coxeter group, i.e., the corresponding simple reflections are determined. We use the Borel 𝐵´ in

making these conventions. This choice reflects the fact that we are using
𝑜
𝐼´ and 𝑁´p𝐾𝑥q for our

characters. (But we continue to reference positive and dominant co/weights for 𝐺 using 𝐵 to define
positivity).

We alert the reader that the same convention is implicitly used in [AB].

Remark 7.5.2. Recall that the length function on 𝑊 aff extends in a standard way to one on 𝑊 aff,ext.
This will be recalled explicitly in the proof of Proposition 7.5.9.

Notation 7.5.3. In the affine Weyl group, we use the notation 𝑤𝜆̌ to denote the product of the
elements 𝑤 and 𝜆̌. This should not be confused with 𝑤p𝜆̌q, the result of letting the Weyl group act
on Λ̌.

28We use scare quotes here because an expert in Kac-Moody representations would not call it non-degenerate: it
vanishes on the affine root space spanned by 𝑡𝑒𝛼𝑚𝑎𝑥 .
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The map 𝑊 aff,ext Ñ Flaff𝐺,𝑥 given by 𝜆̌𝑤 ÞÑ 𝜆̌p𝑡q𝑤1Flaff𝐺,𝑥
(we choose representatives in 𝐺 for

elements of the Weyl group) gives a set of points indexing both the
𝑜
𝐼´ orbits and the 𝑁´p𝐾𝑥q

orbits on Flaff𝐺,𝑥.

Remark 7.5.4. The closure relations among the former are given by the Bruhat ordering on the
extended affine Weyl group, while closure relations among the latter are given by the semi-infinite
Bruhat ordering, c.f. [FFKM] S5. However, we will not explicitly need either of these facts in what
follows.

For 𝑔 P 𝐺p𝐾𝑥q with 𝑔 the induced point 𝑔 ¨1Flaff𝐺,𝑥
in Flaff𝐺,𝑥, note that the orbit 𝑁´p𝐾𝑥q𝑔 supports

a shifted Whittaker sheaf29 if and only if:

n´p𝐾𝑥q XAd𝑔pLiep𝐼qq Ď Kerp𝜓1𝑁´p𝐾𝑥qq (7.5.1)

and similarly, the orbit supports a baby Whittaker sheaf if and only if:

Liep
𝑜
𝐼´q XAd𝑔 Liep𝐼q Ď Kerp𝜓𝑜

𝐼´
q. (7.5.2)

For our explicit orbit representatives, we easily find:

Proposition 7.5.5. For 𝜆̌𝑤 P 𝑊 aff,ext, the corresponding 𝑁´p𝐾𝑥q-orbit (resp.
𝑜
𝐼´-orbit) supports

a Whittaker sheaf if and only if:

#

p𝜆̌, 𝛼𝑖q ď 0 if 𝑤´1p𝛼𝑖q ą 0

p𝜆̌, 𝛼𝑖q ă 0 if 𝑤´1p𝛼𝑖q ă 0
(7.5.3)

for every 𝑖 P ℐ𝐺.

Definition 7.5.6. We say that 𝜆̌𝑤 P𝑊 aff,ext (or the corresponding 𝑁´p𝐾𝑥q or
𝑜
𝐼´ orbit) is relevant

if (7.5.3) is satisfied.

Remark 7.5.7. As we will see in the proof of Proposition 7.5.9, the inequalities (7.5.3) force the
generalization where we allow general positive roots 𝛼 in place of the simple roots 𝛼𝑖.

Remark 7.5.8. If 𝜆̌𝑤 P𝑊 aff,ext is relevant, then 𝐵p𝑂𝑥q ¨ 𝜆̌𝑤 “ 𝜆̌𝑤 P Flaff𝐺,𝑥. It follows that:

𝑜
𝐼´ ¨ 𝜆̌𝑤 Ď 𝑁´p𝐾𝑥q ¨ 𝜆̌𝑤.

To compare with [AB], we include the following computation, well-known and implicit in loc. cit.,
but for which we are not sure of a good reference and therefore include for the reader’s convenience.
The reader may safely skip this material.

Proposition 7.5.9. 𝜆̌𝑤 P 𝑊 aff,ext is relevant if and only if 𝜆̌𝑤 is the unique element of minimal
length in 𝑊 ¨ 𝜇̌ for some 𝜇̌ P Λ̌.

Proof. The existence of a unique minimal length element in this coset follows from the fact that 𝑊
is a parabolic subgroup (in the sense of Coxeter groups) in the affine Weyl group 𝑊 aff .

Recall that we can compute the length of an element 𝜆̌𝑤 P𝑊 aff,ext by the formula:30

29I.e. Whit1 of the corresponding orbit is non-zero.
30This formula relies on the convention of Remark 7.5.1. One usually finds this formula written relative to the

positive Borel, in which case the formula would have last term |p𝜆̌, 𝛼q ´ 1|, but switching 𝛼 with ´𝛼 everywhere, we
obviously recover the formula in its given form.



58 SAM RASKIN

ℓp𝜆̌𝑤q “
ÿ

𝛼ą0 a root
𝑤´1p𝛼qą0

|p𝜆̌, 𝛼q| `
ÿ

𝛼ą0 a root
𝑤´1p𝛼qă0

|p𝜆̌, 𝛼q ` 1|.

For 𝜆̌ “ 𝑤p𝜇̌q, so that 𝜆̌𝑤 “ 𝑤𝜇̌, we find:

ℓp𝑤𝜇̌q “
ÿ

𝛼ą0 a root
𝑤´1p𝛼qą0

|p𝑤p𝜇̌q, 𝛼q| `
ÿ

𝛼ą0 a root
𝑤´1p𝛼qă0

|p𝑤p𝜇̌q, 𝛼q ` 1| “

ÿ

𝛼ą0 a root
𝑤´1p𝛼qą0

|p𝜇̌, 𝑤´1p𝛼qq| `
ÿ

𝛼ą0 a root
𝑤´1p𝛼qă0

|p𝜇̌, 𝑤´1p𝛼qq ` 1|.
(7.5.4)

Let 𝑤𝜇̌ be the minimal length element of 𝑊 such that 𝑤𝜇̌p´𝜇̌q lies in the dominant chamber: the
uniqueness of a minimal length such element is again guaranteed by the fact that the appropriate
stabilizer group is a parabolic subgroup of 𝑊 .

We claim that 𝑤𝜇̌ is characterized in 𝑊 by the identities:

#

p𝑤𝜇̌p𝜇̌q, 𝛼q ď 0 for 𝛼 ą 0 with 𝑤´1𝜇̌ p𝛼q ą 0

p𝑤𝜇̌p𝜇̌q, 𝛼q ă 0 for 𝛼 ą 0 with 𝑤´1𝜇̌ p𝛼q ă 0.
(7.5.5)

Indeed, we have p𝑤𝜇̌p𝜇̌q, 𝛼q ď 0 for all 𝛼 ą 0 by dominance of ´𝑤𝜇̌p𝜇̌q. Then recall that for 𝛼 ą 0,

𝑤´1p𝛼q ă 0 is equivalent to ℓp𝑠𝛼𝑤q ă ℓp𝑤q.31 Therefore, if we had 𝑤´1𝜇̌ p𝛼q ă 0 and p𝑤𝜇̌p𝜇̌q, 𝛼q “ 0,
this would force:

ℓp𝑠𝛼𝑤𝜇̌q ă ℓp𝑤𝜇̌q

𝑠𝛼𝑤𝜇̌p𝜇̌q “ 𝑤𝜇̌p𝜇̌q ´ p𝑤𝜇̌p𝜇̌q, 𝛼q𝛼 “ 𝑤𝜇̌p𝜇̌q

contradicting the minimality of 𝑤𝜇̌.
We see from this argument that it is enough to verify (7.5.5) in the case that 𝛼 is a simple root.
Next, we claim that 𝑤𝜇̌ minimizes (7.5.4).
Indeed, let 𝑤 P 𝑊 other than 𝑤𝜇̌. Since we noted that 𝑤𝜇̌ is characterized by the identities

(7.5.5) for 𝛼 a simple root, we see that 𝑤 ‰ 𝑤𝜇̌ implies that either there exists a simple root 𝛼𝑖
with 𝑤´1p𝛼𝑖q ą 0 and 𝑤p𝜇̌, 𝛼𝑖q ą 0, or else there exists 𝛼𝑖 with 𝑤´1p𝛼𝑖q ă 0 and p𝑤p𝜇̌q, 𝛼𝑖q ě 0.

In the former case, using the fact that 𝑠𝑖 permutes the non-𝛼𝑖 positive roots, one finds:

ℓp𝑠𝑖𝑤𝜇̌q ´ ℓp𝑤𝜇̌q “ |p𝑠𝑖𝑤p𝜇̌q, 𝛼𝑖q ` 1| ´ |p𝑤p𝜇̌q, 𝛼𝑖q| “ | ´ p𝑤p𝜇̌q, 𝛼𝑖q ` 1| ´ |p𝑤p𝜇̌q, 𝛼𝑖q| “ ´1

and in the latter case, one similarly finds:

ℓp𝑠𝑖𝑤𝜇̌q ´ ℓp𝑤𝜇̌q “ |p𝑠𝑖𝑤p𝜇̌q, 𝛼𝑖q| ´ |p𝑤p𝜇̌q, 𝛼𝑖q ` 1| “ |p𝑤p𝜇̌q, 𝛼𝑖q| ´ |p𝑤p𝜇̌q, 𝛼𝑖q ` 1| “ ´1.

Either way, ℓp𝑠𝑖𝑤𝜇̌q ă ℓp𝑤𝜇̌q, meaning that 𝑤𝜇̌ was not of minimal length.
Finally, one immediately sees that in terms of 𝜆̌ “ 𝑤𝜇̌p𝜇̌q, (7.5.5) exactly translates into (7.5.3),

as desired (appealing to the fact that it is enough to verify (7.5.5) for simple roots.)

31This fact is completely standard for 𝛼 a simple root, but perhaps warrants a proof for general 𝛼 ą 0 since e.g.
it does not appear in [Hum] Chapter 1. We prove the claim by induction on ℓp𝑤q, the case ℓp𝑤q “ 0 being obvious.
Choose 𝑖 P ℐ𝐺 with 𝑤p𝛼𝑖q ă 0; let 𝑠𝑖 denote the corresponding simple reflection. If 𝑤p𝛼𝑖q ‰ ´𝛼, then ℓp𝑤𝑠𝑖q ă ℓp𝑤q
and p𝑤𝑠𝑖q

´1
p𝛼q ă 0, so by induction, ℓp𝑠𝛼𝑤𝑠𝑖q ă ℓp𝑤𝑠𝑖q “ ℓp𝑤q ´ 1, but ℓp𝑠𝛼𝑤𝑠𝑖q ě ℓp𝑠𝛼𝑤q ´ 1, giving the claim in

this case. Otherwise, 𝑤𝑠𝑖p𝛼𝑖q “ 𝛼. Then p𝑤𝑠𝑖q
´1𝑠𝛼𝑤𝑠𝑖 “ 𝑠𝑖, since this this is a reflection swapping the sign of 𝛼𝑖. We

obtain 𝑠𝛼𝑤 “ 𝑤𝑠𝑖, but 𝑤p𝛼𝑖q ă 0 implies that ℓp𝑠𝛼𝑤q “ ℓp𝑤𝑠𝑖q ă ℓp𝑤q.
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�

7.6. Minimal orbits. We introduce two parallel pictures for
𝑜
𝐼´ and 𝑁´p𝐾𝑥q orbits on Flaff𝐺,𝑥.

We define the minimal 𝑁´p𝐾𝑥q-orbit (resp.
𝑜
𝐼´) orbit to be the orbit through 1Flaff𝐺,𝑥

.

We define 𝑗min,Whit1

! P Whit1p𝐷pFlaff𝐺,𝑥qq and 𝑗min,baby
! P 𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ be the !-extensions of the

relevant character sheaves supported on these orbits.32

7.7. Cleanness. The main point in proving Theorem 7.3.1 are the following two cleanness results.

Remark 7.7.1. Suppose that 𝑗 : 𝑈 ãÑ 𝑍 is a locally closed embedding of schemes of finite type. Recall
that F P 𝐷p𝑍q is said to be cleanly extended from 𝑈 if the maps 𝑗!𝑗

!pFq Ñ F Ñ 𝑗˚,𝑑𝑅𝑗
˚,𝑑𝑅pFq are

isomorphisms. This definition extends to the setting of ind-schemes of ind-finite type in the obvious
way.

Proposition 7.7.2. The object 𝑗min,baby
! is cleanly extended from the orbit

𝑜
𝐼´ ¨ 1Flaff𝐺,𝑥

.

Proposition 7.7.3. The object 𝑗min,Whit1

! is cleanly extended from the orbit 𝑁´p𝐾𝑥q ¨ 1Flaff𝐺,𝑥
.

Each of these results follows easily from the closure relations noted above, but we give complete
proofs below.

Proof of Proposition 7.7.2. We have:

𝑜
𝐼´ ¨ 1Flaff𝐺,𝑥

“ 𝑁´ ¨ 1Flaff𝐺,𝑥

open
Ď 𝐺{𝐵

closed
Ď Flaff𝐺,𝑥 .

On 𝑁´, our sheaf is a non-degenerate character sheaf, and this obviously extends cleanly to 𝐺{𝐵.
�

Proof of Proposition 7.7.3. We use the techniques of S3 freely here.
Let 𝑍 Ď Flaff𝐺,𝑥 be the pullback of Gr𝑁´ Ď Gr𝐺. Then 𝑍 is ind-closed in Flaff𝐺,𝑥 and contains the

orbit 𝑁´p𝐾𝑥q ¨ 1Flaff𝐺,𝑥
as an ind-open subscheme.

Clearly the only 𝑁´p𝐾𝑥q-orbits in 𝑍 pass through points 𝜆̌𝑤 with 𝜆̌ P Λ̌𝑝𝑜𝑠.
We claim that the only such 𝜆̌𝑤 supporting a Whittaker sheaf is 𝜆̌ “ 0, 𝑤 “ 1. Indeed, as in the

proof of Proposition 7.5.9, the inequalities (7.5.3) force the same inequalities for a general positive
root, not merely a simple root. Then we see 𝜆̌ P Λ̌𝑝𝑜𝑠 forces:

0 ď p𝜆̌, 𝜌qp𝜆̌,
1

2

ÿ

𝛼ą0

𝛼q “
1

2

ÿ

𝛼ą0

p𝜆̌, 𝛼q ď 0

so we must have equality, forcing 𝜆̌ “ 0, and then we further see from (7.5.3) that we must have
𝑤 “ 1 as well.

This now gives the cleanness result.
�

32To see that 𝑗min,Whit1

! actually lies in the shifted Whittaker subcategory, exhaust 𝑁´p𝐾𝑥q by compact open
subgroups and exploit placidity of these subgroups.
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Corollary 7.7.4. The unit and counit maps:

𝑗min,baby
! Ñ Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ AvWhit1

! p𝑗min,baby
! q

AvWhit1

! Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ p𝑗min,Whit1

! q Ñ 𝑗min,Whit1

!

are isomorphisms.

Proof. By Remark 7.5.8, we obtain that:

AvWhit1

! p𝑗min,baby
! q » 𝑗min,Whit1

! .

Note that Remark 7.5.8 implies that the only relevant
𝑜
𝐼´-orbit intersecting 𝑁´p𝐾𝑥q ¨ 1Flaff𝐺,𝑥

is
𝑜
𝐼´ ¨ 1Flaff𝐺,𝑥

.

Therefore, applying cleanness of the 𝑗min,Whit1

! , we obtain that Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ p𝑗min,Whit1

! q is the ˚-

extension of our character sheaf from
𝑜
𝐼´ ¨ 1Flaff𝐺,𝑥

. Moreover, applying cleanness of the latter, we

obtain:

Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ p𝑗min,Whit1

! q » 𝑗min,Whit1

!

as desired.
�

7.8. Compatibility with the affine Hecke algebra. Both categories𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ and Whit1p𝐷pFlaff𝐺,𝑥qq

are acted on by the geometric affine Hecke algebra 𝐻aff :“ 𝐷pFlaff𝐺,𝑥q
𝐼 by the convolution action of

𝐻aff on 𝐷pFlaff𝐺,𝑥q.

Moreover, the functor Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ is given by a convolution, and therefore commutes with 𝐻aff -

actions.
One can further see that AvWhit1

! commutes with the 𝐻aff -actions by exploiting the ind-properness

of Flaff𝐺,𝑥. Alternatively: we don’t actually need this fact; we will only need that AvWhit1

! commutes
with convolution with Mirkovic-Wakimoto sheaves, and this follows formally from their invertibility

and the fact that Av

𝑜
𝐼´,𝜓𝑜

𝐼´
˚ commutes with such convolutions.

7.9. We now prove Theorem 7.3.1.

Proof of Theorem 7.3.1. The category 𝐷pFlaff𝐺,𝑥q

𝑜
𝐼´,𝜓𝑜

𝐼´ is compactly generated by objects !-extended

from relevant orbits, and similarly for Whit1p𝐷pFlaff𝐺,𝑥qq. For 𝜆̌𝑤 P𝑊 aff,ext relevant, let 𝑗𝜆̌𝑤,baby! and

𝑗𝜆̌𝑤,Whit1

! denote the corresponding objects.

As in [AB] Lemma 4, the object 𝑗𝜆̌𝑤,baby! is obtained from 𝑗min,baby
! by convolving with an

appropriate invertible object of 𝐻aff .

Therefore, by Corollary 7.7.4 and S7.8, the unit map of the adjunction applied to 𝑗𝜆̌𝑤,baby! is an
equivalence.

Moreover, we claim that:
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AvWhit1

! p𝑗𝜆̌𝑤,baby! q
»
ÝÑ 𝑗𝜆̌𝑤,Whit1

! .

Indeed, this is immediate from Remark 7.5.8. Therefore, 𝑗𝜆̌𝑤,Whit1

! is similarly obtained from 𝑗min,baby
!

by convolving with the appropriate invertible object of 𝐻𝑎𝑓𝑓 . Therefore, as for the baby Whittaker

category, we see that the counit for 𝑗𝜆̌𝑤,Whit1

! is an equivalence.
By compact generation, we now obtain the result.

�

8. Modules over some factorization algebras

8.1. In [BD2], the abelian category of factorization modules for classical factorization algebras are
expressed in more familiar linear algebra terms, e.g., modules over associative algebras. The goal
for this section is to prove a technical result, Theorem 8.13.1, which is a derived version of the ideas
from [BD2], and will play an important role in S9.

However, the techniques from [BD2] are truly specific to the abelian categorical framework, and
we accordingly obtain results only for much more restrictive classes of factorization algebras.

Remark 8.1.1. In fact, one can show that the results analogous to those of [BD2] are false in general
(at least in their naive formulations): as is now a standard pattern in homological algebra, it appears
that the problem occurs “in cohomological degree ´8.” It remains an interesting problem how to
properly understand the relationship between factorization modules in the DG setting and the
punctured disc in less restrictive settings than that treated below.

8.2. We fix a smooth curve 𝑋 in this section and a closed point 𝑥 P 𝑋.
Let 𝑈 Ď 𝑋 be the complement to 𝑋, and let:

𝑥
𝑖
ãÑ 𝑋

𝑗
Ðâ 𝑈

denote the embeddings.

8.3. Modifications. Let 𝐼 ÞÑ C𝑋𝐼
𝑑𝑅
P 𝐷p𝑋𝐼q–mod be a unital commutative factorization category

on 𝑋𝑑𝑅.
Let:

𝐼 ÞÑ A𝑈𝐼 P C𝑈𝐼 :“ C𝑋𝐼
𝑑𝑅

b
𝐷p𝑋𝐼q

𝐷p𝑈 𝐼q

be a unital commutative factorization algebra in C|𝑈𝑑𝑅 . We denote the datum of this factorization
algebra by A.

Definition 8.3.1. A modification of A is a unital commutative factorization algebra A1 P C with an
isomorphism of A1|𝑈𝑑𝑅 » A (as commutative factorization algebras).

8.4. We continue to let A P ComAlgfact𝑢𝑛 pC|𝑈𝑑𝑅q be a unital commutative factorization algebra.

Definition 8.4.1. We say that A admits a universal modification if the left adjoint to the restriction
functor ComAlgfact𝑢𝑛 pCq Ñ ComAlgfact𝑢𝑛 pC|𝑈𝑑𝑅q is defined on A.

In this case, we let A𝑢𝑛𝑖𝑣 P ComAlgfactpCq denote the corresponding extension of A.

Remark 8.4.2. One can see that the restriction functor above admits a right adjoint: this right
adjoint sends A to the (unital, commutative) factorization algebra defined by the assignment:

𝐼 ÞÑ 𝑗𝐼,˚,𝑑𝑅pA𝑈𝐼 q (8.4.1)
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where 𝑗𝐼 : 𝑈 𝐼 ãÑ 𝑋𝐼 is the embedding.

Remark 8.4.3. Using the right adjoint (8.4.1), one easily sees that the tautological map A Ñ

A𝑢𝑛𝑖𝑣|𝑈𝑑𝑅 is an isomorphism, meaning that A𝑢𝑛𝑖𝑣 is a modification of A and justifying the termi-
nology. Of course, A𝑢𝑛𝑖𝑣 is initial among all modifications of A.

Remark 8.4.4. Suppose that A admits a universal modification Auniv. Let C𝑥 denote the fiber of C
at 𝑥 P 𝑋. Following [BD1] S2.6 and [BD2] S2.4, we use the notation:

𝐻∇p
𝑜
𝒟𝑥,Aq :“ 𝑖!pAuniv

𝑋𝑑𝑅
q P ComAlgpC𝑥q

for this fiber, and refer to this commutative algebra as the local conformal blocks of A along
𝑜
𝒟𝑥.

If A is a unital commutative factorization algebra on 𝑋𝑑𝑅 (not just 𝑈𝑑𝑅), we use the same
notation for the local conformal blocks of A|𝑈𝑑𝑅 .

8.5. For any unital commutative factorization algebra A P ComAlgfact𝑢𝑛 pCq, there is a canonical
functor:

𝑖!pA𝑋𝑑𝑅q–modpC𝑥q Ñ A–modfact𝑢𝑛,𝑥pCq.

Since the right hand side depends only on A|𝑈𝑑𝑅 , we can replace A by any modification.
In particular, we obtain a functor:

𝐻∇p
𝑜
𝒟𝑥,Aq–modpC𝑥q Ñ A–modfact𝑢𝑛,𝑥pCq. (8.5.1)

8.6. With these constructions in hand, we can now ask the motivating questions of this section:

‚ When do universal modifications exist?
‚ If a universal modification of A exists, is the functor (8.5.1) an equivalence?

Remark 8.6.1. In the non-derived setting of [BD2], it is shown that the (classical) pro-commutative
algebra associated with the cofiltered diagram of modifications of a (classical) commutative factor-
ization algebra governs the abelian category of modules for this algebra.

Our takeaway from this is that universal modifications do not typically exist, but that when they
do, we can at least be optimistic that the answer to the second question will be affirmative.

8.7. In what follows, we will give a setting in which universal modifications exist and the functor
(8.5.1) is an equivalence.

For example, for the factorization category 𝐼 ÞÑ 𝐷p𝑋𝐼q, we will see that constant commutative
factorization algebra, i.e., those whose commutative 𝐷𝑋 -algebra is of the form 𝐴 b 𝜔𝑋 for 𝐴 P

ComAlg, demonstrate such nice behavior.

8.8. Recall from [Ras1] S7 (c.f. also [Ras2] S6) that for C P ComAlgpDGCat𝑐𝑜𝑛𝑡q, there is a canonical
unital commutative factorization category:33

𝐼 ÞÑ C𝑋𝐼
𝑑𝑅
P 𝐷p𝑋𝐼q–mod.

We let Cfact refer to the corresponding unital commutative factorization category.
Moreover, for every 𝐴 P ComAlgpCq, there is an accompanying (commutative) unital factorization

algebra:

33In [Ras2], it was denoted 𝐼 ÞÑ C𝑋𝐼 instead. Hopefully this will not cause too much confusion.
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𝐼 ÞÑ 𝐴fact
𝑋𝐼
𝑑𝑅
P C𝑋𝐼

𝑑𝑅
.

We let 𝐴fact P ComAlgfact𝑢𝑛 pCq denote the corresponding factorization algebra. We refer to 𝐴fact as
a constant (commutative) factorization algebra in Cfact, and use this notation 𝐴fact to indicate the
existence of 𝐴 P ComAlgpCq giving rise to 𝐴.

Warning 8.8.1. For clarity, we note that for constant factorization algebras as above, only 𝐴𝑋𝑑𝑅 is
actually constant in any sense: for general C, asking if 𝐴𝑋2

𝑑𝑅
is constant does not make sense, and

even for C “ Vect, 𝐴𝑋2
𝑑𝑅

is not typically constant.

8.9. We have the following result on the existence of universal modifications.

Proposition 8.9.1. For 𝐴fact P ComAlgfact𝑢𝑛 pC
factq a constant factorization algebra, the universal

modification of 𝐴fact|𝑈𝑑𝑅 exists.

The proof will be given in S8.12 after some preliminary constructions.

8.10. We recall the following result, valid for any commutative factorization category:

Lemma 8.10.1. The restriction functor:

ComAlgfact𝑢𝑛 pC
factq Ñ ComAlgpC𝑋𝑑𝑅q

is an equivalence.

Proof (sketch). This result is well-known in the classical setting and not difficult in the derived
setting, so we do not give a proof here. However, justc to convince the reader that the result holds
for general commutative factorization categories, we indicate how to recover A𝑋2

𝑑𝑅
P C𝑋2

𝑑𝑅
from the

commutative algebra structure on A𝑋𝑑𝑅 .
Let 𝜅 denote the functor:

𝜅 : C𝑋𝑑𝑅 b C𝑋𝑑𝑅 Ñ C𝑋2
𝑑𝑅
P 𝐷p𝑋2q–mod

encoding the commutative factorization category structure on Cfact. Let ´
!
b ´ :“ ∆!p𝜅p´ b ´qq

denote the induced binary operation on C𝑋𝑑𝑅 .
Then A𝑋2

𝑑𝑅
is the pushout:

∆˚,𝑑𝑅pA𝑋𝑑𝑅

!
bA𝑋𝑑𝑅q

��

// A𝑋𝑑𝑅 bA𝑋𝑑𝑅

��
∆˚,𝑑𝑅pA𝑋𝑑𝑅q

// A𝑋2
𝑑𝑅
.

�

8.11. A special case. Suppose that 𝑉 P C is given. Let 𝐴 “ Symp𝑉 q. We will explicitly construct
the universal modification of 𝐴fact in this case.

First, note that 𝑗!p𝑉 b 𝜔𝑈 q P C𝑋𝑑𝑅 “ Cb𝐷p𝑋q is defined.
We then claim that 𝐴fact,univ is the unital commutative factorization algebra associated with

Symp𝑗!p𝑉 b 𝜔𝑈 qq P ComAlgpC𝑋𝑑𝑅q via Lemma 8.10.1.
Indeed, for any modification A1 Ñ 𝐴fact, we have the canonical map:
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𝑉 b 𝜔𝑈 Ñ A1|𝑈𝑑𝑅 » 𝐴fact|𝑈𝑑𝑅 “ Symp𝑉 b 𝜔𝑈 q.

This gives the desired map:

Symp𝑗!p𝑉 b 𝜔𝑈 qq Ñ A1 P ComAlgpC𝑋𝑑𝑅q

by adjunction.

8.12. We now deduce the proposition.

Proof of Proposition 8.9.1. The class of unital commutative factorization algebras admitting uni-
versal modifications is closed under colimits, since the universal modification is a partially-defined
left adjoint.

Moreover, the assignment 𝐴 ÞÑ 𝐴fact obviously commutes with sifted colimits. Since every 𝐴 P
ComAlgpCq is a geometric realization of commutative algebras of the form Symp𝑉 q for 𝑉 P C (by
the Barr-Beck theorem, say), we obtain the result from S8.11.

�

8.13. We now formulate the main result of this section.

Theorem 8.13.1. Suppose that C is compactly generated and rigid symmetric monoidal in the
sense of [Gai5] (i.e., every compact object admits a dual).

Then for 𝐴fact P ComAlgfact𝑢𝑛 pC
factq a constant factorization algebra, the functor:

𝐻∇p
𝑜
𝒟𝑥, 𝐴

factq–modpCq Ñ 𝐴fact–modfact𝑢𝑛,𝑥pC
factq.

of (8.5.1) is an equivalence.

The remainder of this section is devoted to the proof of this theorem. Its proof can be found in
S8.23.

8.14. Lie-˚ algebras. We will deduce Theorem 8.13.1 from a similar result, Theorem 8.22.1, which
works instead for factorization algebras associated with Lie-˚ algebras.

Therefore, we hope that the reader will excuse the extended digression that follows.

8.15. Suppose as above that C is a commutative factorization category on 𝑋𝑑𝑅.
Let 𝐿 P C𝑋𝑑𝑅 be a Lie-˚ algebra. Recall that we have the associated chiral Lie algebra 𝑈 𝑐ℎp𝐿q P

C𝑋𝑑𝑅 : this is the (unital version of the) chiral envelope of 𝐿. Let 𝐶𝑐ℎ‚ p𝐿q P AlgfactpCq denote
theassociated factorization algebra.

Recall that we have the DG categories 𝐿–mod𝑥of Lie-˚ modules for 𝐿 at 𝑥, and 𝑈 𝑐ℎp𝐿q–mod𝑥 of
(unital) chiral modules for 𝑈 𝑐ℎp𝐿q at 𝑥. These categories are related by adjoint functors:

𝐿–mod
Ind𝑐ℎ // 𝑈 𝑐ℎp𝐿q–mod𝑥
Oblv

oo » // 𝐶𝑐ℎ‚ p𝐿q–modfact𝑢𝑛,𝑥.

8.16. For 𝐿 as above, note that 𝑗˚,𝑑𝑅𝑗
!p𝐿q admits a canonical Lie-˚ structure.

Lemma 8.16.1. Suppose that 𝐿
»
ÝÑ 𝑗˚,𝑑𝑅𝑗

!p𝐿q. Then Ind𝑐ℎ and Oblv are mutually inverse equiva-
lences.

Proof. As in [BD2] S3.7.16-18, fully-faithfulness of Ind𝑐ℎ follows from the chiral PBW theorem for
modules (see [Ras1] S7.19 for a version for this derived context). Since Oblv is conservative, this
gives the result.

�
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8.17. Rigidity assumption. For the remainder of S8, we impose the assumption that C is com-
pactly generated and rigid symmetric monoidal.

8.18. Nice Lie-˚ algebras. Let 𝐿 P C𝑋𝑑𝑅 be a Lie-˚ algebra. Below, we introduce a condition of
niceness for 𝐿, which plays a similar role that the existence of universal modifications played in
the commutative setting.

At first pass, the reader should take the following definition to simply mean that the ˚-fiber
𝐿𝑥 “ 𝑖˚,𝑑𝑅p𝐿q P C of 𝐿 at 𝑥 is defined.34

However, for technical reasons, we need the following strengthening of this condition.

Definition 8.18.1. 𝐿 is nice (at 𝑥 P 𝑋) if for every 𝑀 P C𝑋𝑑𝑅 , the left adjoint to the functor:

Cb C𝑋𝑑𝑅 “
´

Cb Vect
¯

b C𝑋𝑑𝑅

pidCb𝑖˚,𝑑𝑅qbidC𝑋𝑑𝑅
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

´

Cb𝐷p𝑋q
¯

b C𝑋𝑑𝑅 “ C𝑋𝑑𝑅 b C𝑋𝑑𝑅

is defined on 𝐿 b𝑀 P C𝑋𝑑𝑅 b C𝑋𝑑𝑅 , and is computed by 𝐿𝑥 b𝑀 (i.e., the relevant natural map
from this restriction to 𝐿𝑥 b𝑀 is an isomorphism).

Remark 8.18.2. We remark that the above definition makes sense for arbitrary objects of C𝑋𝑑𝑅 ,
i.e., it does not make reference to the Lie-˚ algebra structure on 𝐿.

8.19. Here is the first key feature of nice Lie-˚ algebras.

Proposition-Construction 8.19.1. For 𝐿 P C𝑋𝑑𝑅 a nice Lie-˚ algebra, the ˚-fiber 𝐿𝑥 P C of 𝐿
inherits a canonical structure of Lie algebra in C.

To construct this structure, we use the following lemma.

Lemma 8.19.2. For nice 𝐿 as above and for every integer 𝑛, the ˚-restriction of:

𝐿b𝑛 P Cb𝑛𝑋𝑑𝑅 “ Cb𝑛 b𝐷p𝑋𝑛q

to the point p𝑥, . . . , 𝑥q P 𝑋𝑛 is defined, i.e., if the left adjoint to the pushforward functor:

Cb𝑛 “ Cb𝑛 b Vect
idbp𝑖ˆ𝑛q˚,𝑑𝑅
ÝÝÝÝÝÝÝÝÑ Cb𝑛 b𝐷p𝑋𝑛q “ Cb𝑛𝑋𝑑𝑅

is defined on this exterior product. Moreover, the resulting fiber is canonically isomorphic to 𝐿𝑥 b
. . .b 𝐿𝑥 P C

b𝑛.

Proof. Immediate from the definition of niceness.
�

Proof of Proposition-Construction 8.19.1. Let 𝑛 be a given integer. Let 𝜅𝑛 denote the functor:

𝜅𝑛 : C𝑋𝑑𝑅 b . . .b C𝑋𝑑𝑅 Ñ C𝑋𝑛

encoding the commutative factorization category structure. By rigidity of C, 𝜅𝑛 admits a 𝐷p𝑋𝑛q-
linear right adjoint: indeed, this follows from [Ras2] Propositions B.7.1 and 6.16.1.

Suppose we are given an 𝑛-ary operation in the Lie operad. The Lie-˚ structure on 𝐿 provides
an associated map:

𝜅𝑛p𝐿b . . .b 𝐿q Ñ ∆˚,𝑑𝑅p𝐿q (8.19.1)

where ∆ : 𝑋 Ñ 𝑋𝑛 is the diagonal map.

34That is, that the left adjoint to the functor: C “ Cb Vect
idC b𝑖˚,𝑑𝑅
ÝÝÝÝÝÝÝÑ Cb𝐷p𝑋q “ C𝑋𝑑𝑅 is defined on 𝐿.
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Let 𝑖𝑛 “ 𝑖 ˝∆ denote the embedding of p𝑥, . . . , 𝑥q into 𝑋𝑛. Since 𝜅𝑛 admits a 𝐷p𝑋𝐼q-linear right
adjoint, it commutes with forming 𝑖𝑛,˚,𝑑𝑅.

Therefore, applying 𝑖𝑛,˚,𝑑𝑅 to (8.19.1) and computing the left hand side via Lemma 8.19.2, we
obtain a map:

𝐿𝑥 b . . .b 𝐿𝑥 Ñ 𝐿𝑥 P C.

We emphasize that the tensor product appearing here is with respect to the symmetric monoidal
structure on C.

�

8.20. Similarly, we obtain the following result.

Proposition 8.20.1. For 𝐿 P C𝑋𝑑𝑅 a nice Lie-˚ algebra, one has a canonical isomorphism:

𝐿–mod𝑥
»
ÝÑ 𝐿𝑥–modpCq

where in the right hand side, 𝐿𝑥 has been equipped with the Lie algebra structure constructed above.

Proof. The proof is as above: e.g., the action map of 𝐿 on 𝑀 is encoded by a map:

𝜅p𝐿b 𝑖˚,𝑑𝑅p𝑀qq Ñ p∆ ˝ 𝑖q˚,𝑑𝑅p𝑀q P C𝑋2
𝑑𝑅
.

As before, rigidity of C and niceness of 𝐿 mean that this is equivalent to a map:

𝐿𝑥 b𝑀 Ñ𝑀 P C.

�

8.21. We now show that some particular Lie-˚ algebras are nice.

Proposition 8.21.1. Suppose that l is a Lie algebra in C. Then 𝐿 :“ l b 𝑘𝑋 P C b 𝐷p𝑋q and
𝑗˚,𝑑𝑅𝑗

!p𝐿q “ lb 𝑗˚,𝑑𝑅p𝑘𝑈 q are nice Lie-˚ algebras.

Since the definition of niceness does not refer to the Lie-˚ algebra structure of an object of C𝑋𝑑𝑅 ,
this follows from rigidity and compact generation of C via the following lemma.

Lemma 8.21.2. Suppose 𝐺 : D2 Ñ D1 P DGCat𝑐𝑜𝑛𝑡 is given. Suppose that F P D1 is compact such
that the partially-defined left adjoint 𝐹 to 𝐺 is defined on F.

Then for every compactly generated category E P DGCat𝑐𝑜𝑛𝑡 and every G P E, the partially-defined
left adjoint to 𝐺b idE : D2 b EÑ D1 b E is defined on F b G and is computed by 𝐹 pFqb G.

Proof. We reduce at once to assuming G is compact.
The composite functor:

D2
𝐺
ÝÑ D1

HomD1
pF,´q

ÝÝÝÝÝÝÝÝÑ Vect P DGCat𝑐𝑜𝑛𝑡

admits a left adjoint sending 𝑘 to 𝐹 pFq.
It follows that the composite functor:

D2 b E
𝐺bidE
ÝÝÝÝÑ D1 b E

HomD1
pF,´qbidE

ÝÝÝÝÝÝÝÝÝÝÝÑ E
HomEpG,´q
ÝÝÝÝÝÝÝÑ Vect

admits a left adjoint sending 𝑘 to 𝐹 pFqb G, which is what we needed to show.
�
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8.22. We now deduce the following result from Lemma 8.16.1 and the preceding.

Theorem 8.22.1. For l P LieAlgpCq, there is a canonical isomorphism:

𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅plb 𝑘𝑈 q–modpCq » 𝐶‚plb 𝑘𝑋q–modfact𝑢𝑛,𝑥

8.23. Back to the commutative case. We now return to the commutative setting to prove
Theorem 8.13.1.

Proof of Theorem 8.13.1. Recall that we are supposed to show that:

𝐻∇p
𝑜
𝒟𝑥, 𝐴

factq–modpCq Ñ 𝐴fact–modfact𝑢𝑛,𝑥pC
factq (8.23.1)

is an equivalence for 𝐴 P ComAlgpCq.
It is easy to see that both sides commute with sifted colimits in the variable 𝐴. Therefore, we

reduce to the case where 𝐴 “ Symp𝑉 q for 𝑉 P C.
Recall from S8.11 that in this case 𝐴fact,univ is Symp𝑗!p𝑉 b 𝜔𝑈 qq. Observe that this factorization

algebra is the chiral envelope of the abelian Lie-˚ algebra 𝑗!p𝑉 b 𝜔𝑈 qr´1s (the cohomological shift
occurs because the passage from Lie-˚ algebras to factorization algebras is given by a Chevalley
complex construction).

By Theorem 8.22.1, we can therefore compute:

𝐴fact–modfact𝑢𝑛,𝑥pC
factq » Symp𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅p𝑉 b 𝜔𝑈 r´1sqq–modpCq.

Note that there is a canonical isomorphism 𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅p𝑉 b𝜔𝑈 r´1sq » 𝑖!𝑗!p𝑉 b𝜔𝑈 q P C: this comes

from applying 𝑖! to the boundary morphism in the triangle:

𝑗!p𝑉 b 𝜔𝑈 q Ñ 𝑗˚,𝑑𝑅p𝑉 b 𝜔𝑈 q Ñ 𝑖˚,𝑑𝑅𝑖
˚,𝑑𝑅𝑗˚,𝑑𝑅p𝑉 b 𝜔𝑈 q

`1
ÝÝÑ .

Therefore, we obtain an equivalence:

𝐻∇p
𝑜
𝒟𝑥, 𝐴

factq–modpCq “ Symp𝑖!𝑗!p𝑉 b 𝜔𝑈 qq–modpCq » 𝐴fact–modfact𝑢𝑛,𝑥pC
factq.

Tracing the above constructions, one readily finds that this equivalence is induced by the functor
(8.23.1), giving the result.

�

8.24. Variant: coefficients in a module category. We now discuss a more general set-up in
which the above computations hold, in which we take modules with coefficients in a general C-
module category. (For S8.24, we can briefly relax the assumption that C is a rigid monoidal category).

Suppose that M P C–mod. A variant of the construction 𝐼 ÞÑ C𝑋𝐼 defines a structure of unital
factorization module category at 𝑥 for Cfact on M.

More precisely, recall that a factorization module category is an assignment to each pointed finite

set ˚ P 𝐼 of an object M𝑋𝐼
𝑑𝑅,𝑥

P 𝐷p𝑋
𝑜
𝐼 ˆ t𝑥uq–mod where

𝑜
𝐼 :“ 𝐼z˚. For the above construction, one

then has:

M𝑋𝐼
𝑑𝑅,𝑥

“ lim
𝐼
𝑝
�𝐽

𝑞
�𝐾

𝐷p𝑉 p𝑝qq b Cb
𝑜
𝐾 bM

where the indexing category is a twisted arrow category as in [Ras2] S6, and where 𝑉 p𝑝q Ď 𝑋
𝑜
𝐼ˆt𝑥u

is the subset of points p𝑥𝑖q𝑖P𝐼 P 𝑋
𝐼 with 𝑥˚ “ 𝑥 and 𝑥𝑖 ‰ 𝑥𝑗 for 𝑝p𝑖q ‰ 𝑝p𝑗q.

We record the following result for later use in S9; the reader may safely skip it for now.
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Proposition 8.24.1. (1) If C P DGCat𝑐𝑜𝑛𝑡 is dualizable, then the assignment:

M ÞÑM𝑋𝐼
𝑑𝑅,𝑥

commutes with limits.
(2) Moreover, if C is rigid symmetric monoidal, then the assignment:

M ÞÑM𝑋𝐼
𝑑𝑅,𝑥

commutes with colimits.

Proof. The first part is easy: the point is that dualizability of C implies that each term:

M ÞÑ 𝐷p𝑉 p𝑝qq b Cb
𝑜
𝐾 bM

commutes with limits.
For the second part: first, observe that the diagram defining M𝑋𝐼

𝑑𝑅,𝑥
can be understood as a

diagram in C–mod, letting C act on the M term in each expression.
Consider now the case that M “ C. Then each term in the diagram defining C𝑋𝐼

𝑑𝑅,𝑥
admits a

dual, and by [Ras2] Corollary 6.18.2, the colimit of the dual diagram is dualizable. It follows that
formation of this limit commutes with tensor products over C.

Applying this to the tensor product with M, we obtain:

C𝑋𝐼
𝑑𝑅,𝑥

b
C
M “

`

lim
𝐼
𝑝
�𝐽

𝑞
�𝐾

𝐷p𝑉 p𝑝qq b Cb𝐾
˘

b
C
M “ lim

𝐼
𝑝
�𝐽

𝑞
�𝐾

`

𝐷p𝑉 p𝑝qq b Cb𝐾 b
C
M
˘

“: M𝑋𝐼
𝑑𝑅,𝑥

.

But the left hand side obviously commutes with colimits in M, giving the claim.
�

8.25. Now in the setting of S8.5, we obtain a functor:

𝐻∇p
𝑜
𝒟𝑥, 𝐴

factq–modpMq Ñ 𝐴fact–modfact𝑢𝑛,𝑥pMq (8.25.1)

generalizing (8.5.1). Here the right hand side should be understood as factorization modules in the
factorization module category constructed above.

We have the following result, generalizing Theorem 8.13.1.

Theorem 8.25.1. For C rigid and compactly generated, the functor (8.25.1) is an equivalence.

The proof is exactly the same as for Theorem 8.13.1: one gives a version for Lie-˚ algebras and
deduces it formally from there.

9. Fusion: generalities

9.1. Let 𝛤 be an affine algebraic group and let 𝑥 P 𝑋 be a closed point.
Following ideas from [BD2] and [Gai1], Gaitsgory has suggested the following conjecture.

Conjecture. There is a fully-faithful functor:

ShvCat
{LocSys𝛤 p

𝑜
𝒟𝑥q

Ñ FactModCat𝑢𝑛,𝑥pRepp𝛤 q
factq

from sheaves of categories over LocSys𝛤 p
𝑜
𝒟𝑥q to chiral module categories a 𝑥 for the commutative

factorization category Repp𝛤 qfact associated with the symmetric monoidal DG category Repp𝛤 q.
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Moreover, Gaitsgory suggests how the construction of this functor should go: this is essentially
given in S9.7 below.

Remark 9.1.1. We refer to [Ras4] for further discussion of the notion of sheaf of categories over

LocSys𝛤 p
𝑜
𝒟q (especially for 𝛤 reductive).

9.2. The purpose of this section is to prove the above conjecture in a formal neighborhood of the

trivial local system in LocSys𝛤 p
𝑜
𝒟𝑥q: see Theorem 9.13.1 below.

9.3. Regular local systems factorizably. We now define LocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅

a prestack 𝑋𝐼
𝑑𝑅 en-

coding a factorizable version of the space of local systems of the disc at a point 𝑦 P 𝑋.35

Since local systems on the disc at a point is just B𝛤 , we can define this space as the jet space
into B𝛤 considered as a constant stack over 𝑋𝑑𝑅.

More precisely, we make the following definitions. For convenience,36 we work with prestacks (not
with stacks), and let B𝑛𝑎𝑖𝑣𝑒𝛤 denote the prestack 𝑆 ÞÑ B

`

𝛤 p𝑆q
˘

(as opposed to its sheafification
for some topology). Define LocSys𝛤 p𝒟q𝑋𝐼

𝑑𝑅
as the prestack:

𝑆 ÞÑ
!

𝑦 “ p𝑦𝑖q : 𝑆𝑟𝑒𝑑 Ñ 𝑋𝐼 ,Γ𝑦,𝑑𝑅 ˆ
𝑆𝑑𝑅

𝑆 Ñ B𝑛𝑎𝑖𝑣𝑒𝐺
)

where as usual Γ𝑦 Ď 𝑋 ˆ 𝑆𝑟𝑒𝑑 is the union of the graphs of the maps 𝑦𝑖.

9.4. Expressing LocSys via gauge forms. We now express LocSys𝛤 p𝒟q as a quotient of regular
1-forms on the disc by the gauge action.

Let Ω1
𝑋p𝑂q𝑋𝐼

𝑑𝑅
Ñ 𝑋𝐼

𝑑𝑅 be the affine 𝐷𝑋𝐼 -scheme37 of regular jets into the total space of the line

bundle Ω1
𝑋 . I.e., it is the prestack whose 𝑆-points (for 𝑆 P AffSch) are:

𝑆 ÞÑ
!

𝑦 “ p𝑦𝑖q𝑖P𝐼 : 𝑆𝑟𝑒𝑑 Ñ 𝑋𝐼 , 𝜔 P Ω8
`

Γp p𝒟𝑦,Ω
1
𝑋 b𝒪𝑆 |

p𝒟𝑦

˘˘

)

Here p𝒟𝑦 is the formal completion in 𝑋 ˆ 𝑆 (not in 𝑋 ˆ 𝑆𝑟𝑒𝑑!) of the union of the Γ𝑦𝑖 .

Remark 9.4.1. The reader should think of this space as the factorization version of the scheme of
1-forms on the formal disc.

Let Liep𝛤 q b Ω1
𝑋p𝑂q𝑋𝐼

𝑑𝑅
Ñ 𝑋𝐼

𝑑𝑅 denote the analogue where we take Liep𝛤 q-valued 1-forms.

Similarly, we have an affine group 𝐷𝑋𝐼 -scheme 𝐺p𝑂q𝑋𝐼
𝑑𝑅
Ñ 𝑋𝐼

𝑑𝑅, whose pullback along 𝑋𝐼 Ñ

𝑋𝐼
𝑑𝑅 recovers 𝐺p𝑂q𝑋𝐼 .
Each of these 𝐷𝑋𝐼 -schemes is classical, and therefore we have can define the gauge action of

𝛤 p𝑂q𝑋𝐼
𝑑𝑅

on Liep𝛤 q b Ω1
𝑋p𝑂q𝑋𝐼

𝑑𝑅
by the usual formula.

We have a canonical map:

´

Liep𝛤 q b Ω1
𝑋p𝑂q𝑋𝐼

𝑑𝑅

¯

{𝐺p𝑂q𝑋𝐼
𝑑𝑅
Ñ LocSys𝛤 p p𝒟q𝑋𝐼

𝑑𝑅

35The space defined below could just as well be called local systems on the formal disc, as opposed to the adic
disc: we use the adic notation just for consistency when we move to punctured discs.

36This is a mild thing to do, because ultimately we only care about sheaves and not about the spaces themselves.
For a more serious geometric study of spaces of local systems, of course one should sheafify for an appropriate topology.
We would rather not bother here with the irrelevant (for us) question of which topology, and therefore choose none
at all.

37Recall that these words mean the structure map to 𝑋𝐼
𝑑𝑅 is (representable and) affine.
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where the left hand side is the prestack (i.e., non-sheafified) quotient (formed relative to 𝑋𝐼
𝑑𝑅).

Indeed, it is well-known that the classical prestack underlying the right hand side is the left hand
side. This map is readily seen to be an isomorphism (so the right hand side is classical too), as one
readily sees by computing cotangent complexes and noting that both sides are convergent prestacks
(in the sense of derived algebraic geometry).

9.5. Local systems on the punctured disc. Recall that we have fixed 𝑥 P 𝑋.
Let Ω1

𝑜
𝒟𝑥

denote the (classical) indscheme of 1-forms on the punctured disc. I.e., this is the

meromorphic jet space at 𝑥 of the total space of the bundle Ω1
𝑜
𝒟𝑥

. Let Liep𝛤 q b Ω1
𝑜
𝒟𝑥

denote the

version for Liep𝛤 q-valued 1-forms.

We again have a gauge action of 𝐺p𝐾𝑥q on Liep𝛤 q b Ω1
𝑜
𝒟𝑥

. Let LocSysp
𝑜
𝒟𝑥q denote the prestack

quotient of Liep𝛤 q b Ω1
𝑜
𝒟𝑥

by 𝐺p𝐾𝑥q.

9.6. Factorization module structures. Next, observe that LocSys𝛤 p
𝑜
𝒟𝑥q is naturally a unital

factorization module space (we spell out in Remark 9.6.2 below what this means explicitly) for the
factorization space over 𝑋𝑑𝑅:

𝐼 ÞÑ LocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅
.

Indeed, the corresponding structures on gauge forms and on the gauge group are obtained by
restriction from the constructions of S2, and we can pass to the quotient to obtain the claim.

For every set 𝐼, let38 𝑝𝐼 : Z𝐼 Ñ 𝑋𝐼
𝑑𝑅 ˆ t𝑥u denote the corresponding space encoding the factor-

ization module structure.

Remark 9.6.1. The space Z𝐼 should be understood as parametrizing an 𝐼-tuple 𝑦 “ p𝑦𝑖q𝑖P𝐼 of points
on 𝑋 (more precisely, on 𝑋𝑑𝑅), and a local system on p𝒟𝑦 Y 𝒟𝑥qz𝑥, i.e., the union of the discs at
the points 𝑦𝑖 with the disc at 𝑥 punctured at the point 𝑥. The only technical issue is to say these
words correctly, and gauge forms provide a convenient method.

Remark 9.6.2. Suppose we have a pair of finite sets 𝐼 and 𝐽 . Let r𝑋𝐼 ˆ p𝑋𝐽 ˆ t𝑥uqs𝑑𝑖𝑠𝑗 denote the
locus of points where pp𝑦𝑖q𝑖P𝐼 , p𝑦𝑗q𝑗P𝐽 , 𝑥q where 𝑦𝑖 ‰ 𝑦𝑗 for all 𝑖 P 𝐼, 𝑗 P 𝐽 and 𝑦𝑖 ‰ 𝑥 for all 𝑖 P 𝐼.
We use the similar notation for de Rham spaces.

At first order, the factorization module structure provides an isomorphism:

Z𝐼
š

𝐽 ˆ

𝑋
𝐼
š

𝐽
𝑑𝑅 ˆt𝑥u

r𝑋𝐼
𝑑𝑅 ˆ p𝑋

𝐽
𝑑𝑅 ˆ t𝑥uqs𝑑𝑖𝑠𝑗 »

`

LocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅
ˆ Z𝐽

˘

ˆ
𝑋𝐼
𝑑𝑅ˆ𝑋

𝐽
𝑑𝑅ˆt𝑥u

r𝑋𝐼
𝑑𝑅 ˆ p𝑋

𝐽
𝑑𝑅 ˆ t𝑥uqs𝑑𝑖𝑠𝑗

Example 9.6.3. For 𝐼 “ H, we have ZH “ LocSys𝛤 p
𝑜
𝒟𝑥q, and for 𝐼 “ t˚u, we have Z˚ is a

degeneration along 𝑋𝑑𝑅 ˆ t𝑥u:

LocSys𝛤 p𝒟𝑦q ˆ LocSys𝛤 p
𝑜
𝒟𝑥qù LocSys𝛤 p

𝑜
𝒟𝑥q.

38The factor t𝑥u is included for two reasons: first, if 𝑥 is not a 𝑘-point, we are effecting the appropriate (finite) ex-
tension of fields; moreover, it serves as a convenient placeholder for remembering how factorization module structures
work.
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Note that for every 𝐼, there is a canonical projection map:

𝑞𝐼 : Z𝐼 Ñ LocSys𝛤 p
𝑜
𝒟𝑥q.

9.7. Construction of the functor. We now construct a functor:

ShvCat
{LocSys𝛤 p

𝑜
𝒟q
Ñ FactModCat𝑢𝑛,𝑥pRepp𝐺̌qq.

Essentially, this functor is:

𝑝𝐼,˚𝑞
˚
𝐼 : ShvCat

{LocSys𝛤 p
𝑜
𝒟q
Ñ ShvCat{𝑋𝐼

𝑑𝑅ˆt𝑥u
.

To see that this defines a functor of the desired type, we need two technical results.
Recall from [Gai6] (see also [Ras1] Appendix A) that pushforwards for sheaves of categories

satisfy arbitrary base-change. However, in order for the geometry above to linearize to factorization
module structures, we still need to check that certain Künneth type results hold. That is, a priori,
𝐼 ÞÑ QCohpLocSys𝛤 p𝒟q𝑋𝐼

𝑑𝑅
q P 𝐷p𝑋𝐼q–mod » ShvCat{𝑋𝐼

𝑑𝑅
is only a lax factorization category, and

we only have a lax factorization module structure.
Second, we need to check that the unital (a priori, lax) factorization category 𝐼 ÞÑ QCohpLocSys𝛤 p𝒟q𝑋𝐼

𝑑𝑅
q

identifies canonically with the unital factorization category Repp𝛤 qfact.
These results are presented in S9.8-9.9. Note that for the logical flow, we present them with the

order reversed from the above.

9.8. LocSys𝛤 p𝒟q and Repp𝛤 q. We postpone the proof of the following result, which is a bit digres-
sive, to Appendix A.

Lemma 9.8.1. For every finite set 𝐼, the canonical functor:

QCohpLocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅
q Ñ Repp𝛤 q𝑋𝐼

𝑑𝑅
P 𝐷p𝑋𝐼q–mod

is an equivalence.
Here Repp𝛤 q𝑋𝐼

𝑑𝑅
is the (𝑋𝐼

𝑑𝑅-term) of the factorization category associated with Repp𝛤 q P ComAlgpDGCat𝑐𝑜𝑛𝑡q,

c.f. [Ras2] S6. This canonical functor comes from construction of Repp𝛤 q𝑋𝐼
𝑑𝑅

as a limit as in loc.

cit., and from the tautological identification:

LocSys𝛤 p𝒟q𝑋𝑑𝑅 » 𝑋𝑑𝑅 ˆ B𝑛𝑎𝑖𝑣𝑒𝛤.

9.9. Künneth results. Recall the problem as stated in S9.7: we need to check that certain push-
forwards of certain sheaves of categories can be computed as tensor products.

For example, for 𝐼, 𝐽 two finite sets, we need to check that the natural map:39

Repp𝛤 q𝑋𝐼
𝑑𝑅
b 𝑝𝐽,˚𝑞

˚
𝐽p´q|r𝑋𝐼

𝑑𝑅ˆp𝑋
𝐽
𝑑𝑅ˆt𝑥uqs𝑑𝑖𝑠𝑗

Ñ 𝑝𝐼
š

𝐽,˚𝑞
˚
𝐼
š

𝐽p´q|r𝑋𝐼
𝑑𝑅ˆp𝑋

𝐽
𝑑𝑅ˆt𝑥uqs𝑑𝑖𝑠𝑗

is an equivalence, where this map arises from factorization and Lemma 9.8.1 (note that the variable

entry p´q here takes values from sheaves of categories over LocSys𝛤 p
𝑜
𝒟𝑥q).

This result follows from Lemma 9.9.2 below combined with the following result.

39Note that we are not distinguishing between thinking about Repp𝛤 q𝑋𝐼
𝑑𝑅

as a 𝐷p𝑋𝐼
q-module category and as a

sheaf of categories on 𝑋𝐼
𝑑𝑅. Of course, this is not an outrageous sin because of the 1-affineness of 𝑋𝐼

𝑑𝑅.
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Lemma 9.9.1. Let 𝒴 be a 1-affine prestack. Then for any prestack 𝒵 and any sheaf of categories
C on 𝒵, the canonical map:

QCohp𝒴q b Γp𝒵,Cq Ñ Γp𝒴 ˆ 𝒵, 𝑝˚2pCqq

is an equivalence.

Proof. By base-change for pushforwards for sheaves of categories, we have:

Γp𝒴 ˆ 𝒵, 𝑝˚2pCqq “ Γp𝒴, 𝜋˚𝒴Γp𝒵,Cqq

for 𝜋𝒴 : 𝒴 Ñ Specp𝑘q the structure map. But the right hand side is QCohp𝒴q b Γp𝒵,Cq by 1-
affineness of 𝒴.

�

In Appendix A, we will also prove the following result, which is needed to apply the above in
our situation.

Lemma 9.9.2. The prestacks LocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅

and LocSys𝛤 p𝒟q𝑋𝐼 are 1-affine.

9.10. Example: the unramified case. We claim that the functor:

Repp𝛤 q–mod » ShvCat{LocSys𝛤 p𝒟𝑥q
pushforward
ÝÝÝÝÝÝÝÑ ShvCat

{LocSys𝛤 p
𝑜
𝒟𝑥q

Ñ FactModCat𝑢𝑛,𝑥pRepp𝛤 q
factq

(9.10.1)
identifies canonically with the functor of S8.24.

Indeed, as in Lemma 9.8.1, there is a canonical map comparing these two functors. One checks
that it’s an equivalence by first noting that both sides commute with colimits —for (9.10.1) this
follows from Lemma 9.9.2, and for the functor of S8.24, this is Proposition 8.24.1 —thereby reducing
to checking this on the single object Repp𝛤 q, where it follows from Lemma 9.8.1.

9.11. The formal completion. Let LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q

denote the formal completion of

LocSys𝛤 p
𝑜
𝒟𝑥q along LocSys𝛤 p𝒟𝑥q. I.e., this is the prestack with 𝑆-points being the groupoid of

maps 𝑆 Ñ LocSys𝛤 p
𝑜
𝒟𝑥q with a lift to LocSys𝛤 p𝒟𝑥q on 𝑆𝑟𝑒𝑑.

9.12. First, note that because LocSys𝛤 p𝒟𝑥q Ñ LocSys𝛤 p
𝑜
𝒟𝑥q is ind-locally closed, we have:

LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q ˆ

LocSys𝛤 p
𝑜
𝒟𝑥q

LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q “ LocSys𝛤 p

𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q.

In particular, since pushforward for sheaves of categories satisfies arbitrary base-change, we have
a fully-faithful embedding:

ShvCat
{LocSys𝛤 p

𝑜
𝒟𝑥q^LocSys𝛤 p𝒟𝑥q

Ď ShvCat
{LocSys𝛤 p

𝑜
𝒟𝑥q

defined by pushforward.
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9.13. We can now formulate the main result of this section.

Theorem 9.13.1. The composite functor:

Φ : ShvCat
{LocSys𝛤 p

𝑜
𝒟𝑥q^LocSys𝛤 p𝒟𝑥q

Ñ ShvCat
{LocSys𝛤 p

𝑜
𝒟𝑥q

Ñ FactModCat𝑢𝑛,𝑥pRepp𝛤 q
factq

is fully-faithful.

The remainder of this section is devoted to the proof of this result. We will proceed as follows:

First, in S9.14, we give a more explicit description of LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q

in terms of usual

finite type geometry, which allows us to apply known results from [Gai6] to it. Then in S9.16-9.19
we give a dévissage argument to reduce the computation to a more manageable one. Finally, in
S9.20, we provide the main non-formal computation, which is an application of Theorem 8.13.1.

9.14. Log connections. First, we give a more explicit description LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q

.

Let 𝑡 be a coordinate at 𝑥. We have a map:

Liep𝛤 q{𝐺Ñ LocSys𝛤 p
𝑜
𝒟𝑥q

𝜉 ÞÑ 𝑑` 𝜉 ¨
𝑑𝑡

𝑡

(9.14.1)

which one can easily see does not depend on the choice of coordinate 𝑡.
Let Liep𝛤 q^0 denote the formal completion of Liep𝛤 q at 0.

Lemma 9.14.1. The induced map:

Liep𝛤 q^0 {𝛤 Ñ LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q

is an isomorphism.

Proof. A cotangent complex computation shows that Liep𝛤 q^0 {𝛤 Ñ LocSys𝛤 p
𝑜
𝒟𝑥q is formally étale.

It follows that Liep𝛤 q^0 {𝛤 Ñ LocSys𝛤 p
𝑜
𝒟𝑥q

^
LocSys𝛤 p𝒟𝑥q

is formally étale as well, so that to check that

it is an isomorphism, it suffices to do it at the reduced level, where it is clear.
�

9.15. In what follows, we will use S9.14 and 1-affineness of Liep𝛤 q^0 {𝛤 (c.f. [Gai6]) to identify Φ
with the corresponding functor:

QCohpLiep𝛤 q^0 {𝛤 q–modÑ FactModCat𝑢𝑛,𝑥pRepp𝛤 q
factq.

9.16. Reductions. First, we claim that Φ commutes with limits and colimits.
For limits, the result follows from the observation that pullback of sheaves of categories commutes

with limits (and certainly pushforward does).
However, for colimits this claim is less obvious. If we knew that the formal completion of the

space Z𝐼 from S9.6 along LocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅ˆt𝑥u

were 1-affine, we would be okay. However, without

this, it is not a priori clear that the pushforward of sheaves of categories in the definition of Φ
commutes with colimits.

Rather than proving this 1-affineness, we directly show the following, which will be sufficient for
our purposes:
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Lemma 9.16.1. The functor Φ commutes with colimits, and is a functor of categories tensored
over DGCat𝑐𝑜𝑛𝑡.

Proof. By proper descent for IndCoh and formal smoothness of Liep𝛤 q^0 {𝛤 , we have:

QCohpLiep𝛤 q^0 {𝛤 q » IndCohpLiep𝛤 q^0 {𝛤 q » lim
r𝑛sPΔ

IndCohpB𝛤 ˆ
Liep𝛤 q{𝛤

. . . ˆ
Liep𝛤 q{𝛤

B𝛤
loooooooooooooooomoooooooooooooooon

𝑛 times

q (9.16.1)

Moreover, note that each of the functors in this limit is QCohpLiep𝛤 q^0 {𝛤 q-linear and admits a
QCohpLiep𝛤 q^0 {𝛤 q-linear left adjoint.

Therefore, for every C P QCohpLiep𝛤 q^0 {𝛤 q–mod, we have:

C » lim
r𝑛sPΔ

C b
QCohpLiep𝛤 q^0 {𝛤 q–mod

IndCohpB𝛤 ˆ
Liep𝛤 q{𝛤

. . . ˆ
Liep𝛤 q{𝛤

B𝛤
loooooooooooooooomoooooooooooooooon

𝑛 times

q

Since Φ preserves limits, we get a similar expression for ΦpCq. Moreover, since each structure map
in resulting limit still admits a left adjoint, we obtain the expression:

ΦpCq » colim
r𝑛sPΔ𝑜𝑝

Φ
`

C b
QCohpLiep𝛤 q^0 {𝛤 q–mod

IndCohpB𝛤 ˆ
Liep𝛤 q{𝛤

. . . ˆ
Liep𝛤 q{𝛤

B𝛤
loooooooooooooooomoooooooooooooooon

𝑛 times

˘

.

Now observe that each term in this colimit is obtained by pushforward from B𝛤 Ñ Liep𝛤 q^0 {𝛤 .
Therefore, each term:

C b
QCohpLiep𝛤 q^0 {𝛤 q–mod

IndCohpB𝛤 ˆ
Liep𝛤 q{𝛤

. . . ˆ
Liep𝛤 q{𝛤

B𝛤
loooooooooooooooomoooooooooooooooon

𝑛 times

q

commutes with colimits in C (since the functor (9.10.1) commutes with colimits: recall that the
point here was the 1-affineness of LocSys𝛤 p𝒟q𝑋𝐼

𝑑𝑅
).

These observations give the claim.
�

9.17. In what follows, Hom will indicate the corresponding DGCat𝑐𝑜𝑛𝑡-valued Hom functors.
We need to show that for C,D P QCohpLiep𝛤 q^0 {𝛤 q–mod, the map:

HomQCohpLiep𝛤 q^0 {𝛤 q–modpC,Dq Ñ HomFactModCat𝑢𝑛,𝑥pRepp𝛤 qfactqpΦpCq,ΦpDqq

is an equivalence.
In S9.18, we reduce to checking this in the case when C “ Repp𝛤 q “ QCohpB𝛤 q.40 In S9.19, we

reduce to checking this in the case when D is pushed forward from B𝛤 . Finally, we check the result
in this particular case in S9.20.

40Of course, the relevant module structure here is defined by pullback along B𝛤 “ t0u{𝛤 ãÑ Liep𝛤 q^0 {𝛤 .
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9.18. Reduction to the case C “ Repp𝛤 q. First, observe that Repp𝛤 q is dualizable as an object
of QCohpLiep𝛤 q^0 {𝛤 q–mod. Indeed, this is a formal consequence of the 1-affineness of Liep𝛤 q^0 {𝛤
and of the morphism B𝛤 Ñ Liep𝛤 q^0 {𝛤 .

Moreover, by descent for IndCoh (c.f. (9.16.1)), QCohpLiep𝛤 q^0 {𝛤 q can be written as a colimit in
QCohpLiep𝛤 q^0 {𝛤 q–mod of terms of the form:

Repp𝛤 q b
QCohpLiep𝛤 q^0 {𝛤 q

C0, C0 P QCohpLiep𝛤 q^0 {𝛤 q–mod.

From these two observations, it follows formally that objects of the form C “ Repp𝛤 q b C0 for
C0 P DGCat𝑐𝑜𝑛𝑡 generate QCohpLiep𝛤 q^0 {𝛤 q–mod under colimits.

Moreover, we can then rewrite:

HomQCohpLiep𝛤 q^0 {𝛤 q–modpRepp𝛤 q b C0,Dq “ HomDGCat𝑐𝑜𝑛𝑡pC0,HomQCohpLiep𝛤 q^0 {𝛤 q–modpRepp𝛤 q,Dqq.

Since Φ is DGCat𝑐𝑜𝑛𝑡-linear, and since we can perform the same manipulation in FactModCat𝑢𝑛,𝑥pRepp𝛤 q
factq,

we reduce to the case C0 “ Vect as desired.

9.19. Reduction to the case that D is monodromy-free. Next, we reduce to the case that D

is obtained by pushforward from B𝛤 . Note that the pushforward (i.e., restriction) functor:

Repp𝛤 q–modÑ QCohpLiep𝛤 q^0 {𝛤 q–mod

generates the target under limits. Indeed, applying proper descent for IndCoh again, we can express
QCohpLiep𝛤 q^0 {𝛤 q as a limit of terms in the image of this functor, and moreover, formation of
this limit commutes with tensoring over QCohpLiep𝛤 q^0 {𝛤 q since all the structure functors admit
continuous QCohpLiep𝛤 q^0 {𝛤 q-linear left adjoints.

The argument now follows, since we have already observed that Φ commutes with arbitrary
limits.

9.20. Computation via factorization modules. We now explicitly perform the computation in
the above case, i.e., we wish to show that:

HomQCohpLiep𝛤 q^0 {𝛤 q–modpRepp𝛤 q,Dq
»
ÝÑ HomFactModCat𝑢𝑛,𝑥pRepp𝛤 qfactqpRepp𝛤 q,ΦpDqq (9.20.1)

where D is a Repp𝛤 q-module category (being considered as a QCohpLiep𝛤 q^0 {𝛤 q-module category
by restriction).

9.21. The left hand side. First, we see from self-duality of Repp𝛤 q (as a QCohpLiep𝛤 q^0 {𝛤 q-
module category) that:

HomQCohpLiep𝛤 q^0 {𝛤 q–modpRepp𝛤 q,Dq » Repp𝛤 q b
QCohpLiep𝛤 q^0 {𝛤 q

D “

Repp𝛤 q b
QCohpLiep𝛤 q^0 {𝛤 q

Repp𝛤 q b
Repp𝛤 q

D “ QCohpB𝛤 ˆ
Liep𝛤 q^0 {𝛤

B𝛤 q b
Repp𝛤 q

D “

𝜋2,˚pOB𝛤 ˆ
Liep𝛤 q^0 {𝛤

B𝛤 q–modpDq.

(9.21.1)

Here at the end we are considering 𝜋2,˚pOB𝛤 ˆ
Liep𝛤 q^0 {𝛤

B𝛤 q as a commutative algebra in Repp𝛤 q, and

taking modules in D with respect to its Repp𝛤 q-module structure.
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9.22. The right hand side. Next, we compute HomFactModCat𝑢𝑛,𝑥pRepp𝛤 qfactqpΦpCq,ΦpDqq.
We proceed in two steps: first, we express this category as factorization modules for a factorization

algebra, and then we compute the relevant category of factorization modules.
The first step is carried out in S9.23-9.24, and the second step is carried out in the remainder of

this section.

9.23. Let ˚ P 𝐼 be a pointed finite set, and let
𝑜
𝐼 denote the complement of ˚ in 𝐼. Let:

ΦpDq𝑋𝐼
𝑑𝑅,𝑥

,Repp𝛤 q𝑋𝐼
𝑑𝑅,𝑥

P 𝐷p𝑋
𝑜
𝐼 ˆ t𝑥uq

denote the relevant objects corresponding to the factorization module category structures.
A morphism of factorization module Repp𝛤 q Ñ ΦpDq is equivalent to the data of functors:

𝐹𝐼,𝑥 : Repp𝛤 q𝑋𝐼
𝑑𝑅,𝑥

Ñ ΦpDq𝑋𝐼
𝑑𝑅,𝑥

P 𝐷p𝑋
𝑜
𝐼 ˆ t𝑥uq

compatible with factorization module structures.
By self-duality of Repp𝛤 q𝑋𝐼

𝑑𝑅,𝑥
, this is the same as the specification of objects:

K𝐼,𝑥 P Repp𝛤 q𝑋𝐼
𝑑𝑅,𝑥

b
𝐷p𝑋𝐼ˆt𝑥uq

ΦpDq𝑋𝐼
𝑑𝑅,𝑥

.

satisfying some compatibilities.

9.24. What do the compatibilities of the functors 𝐹𝐼,𝑥 translate to in terms of the kernels K𝐼,𝑥?
A typical compatibility for the functors is that each time we write 𝐼 “ 𝐼1

š

𝐼2 with ˚ P 𝐼2, the
induced functor:

rRepp𝛤 q
𝑋
𝐼1
𝑑𝑅

b Repp𝛤 q
𝑋
𝐼2
𝑑𝑅,𝑥

s b
𝐷p𝑋𝐼ˆt𝑥uq

𝐷pr𝑋𝐼1 ˆ p𝑋
𝑜
𝐼2 ˆ t𝑥uqs𝑑𝑖𝑠𝑗q »

Repp𝛤 q𝑋𝐼
𝑑𝑅,𝑥

b
𝐷p𝑋𝐼ˆt𝑥uq

𝐷pr𝑋𝐼1 ˆ p𝑋
𝑜
𝐼2 ˆ t𝑥uqs𝑑𝑖𝑠𝑗q Ñ

D𝑋𝐼
𝑑𝑅,𝑥

b
𝐷p𝑋𝐼ˆt𝑥uq

𝐷pr𝑋𝐼1 ˆ p𝑋
𝑜
𝐼2 ˆ t𝑥uqs𝑑𝑖𝑠𝑗q »

rRepp𝛤 q
𝑋
𝐼1
𝑑𝑅

bD
𝑋
𝐼2
𝑑𝑅,𝑥

s b
𝐷p𝑋𝐼ˆt𝑥uq

𝐷pr𝑋𝐼1 ˆ p𝑋
𝑜
𝐼2 ˆ t𝑥uqs𝑑𝑖𝑠𝑗q

be the restriction of the functor:

idRepp𝛤 q
𝑋
𝐼1
𝑑𝑅

b𝐹𝐼2,𝑥.

In terms of kernels, this says K𝐼,𝑥 restricted to this disjoint locus is isomorphic to the restriction
of ∆˚pO𝛤 q𝑋𝐼1

𝑑𝑅

b K𝐼2,𝑥. Here ∆˚pO𝛤 q P Repp𝛤 ˆ 𝛤 q is the regular representation considered as a

commutative algebra among 𝛤 -bimodules, and:

∆˚pO𝛤 q𝑋𝐼1
𝑑𝑅

P Repp𝛤 q
𝑋
𝐼1
𝑑𝑅

b
𝐷p𝑋𝐼1 q

Repp𝛤 q
𝑋
𝐼1
𝑑𝑅

“ Repp𝛤 ˆ 𝛤 q
𝑋
𝐼1
𝑑𝑅

is the corresponding part of the associated factorization algebra.
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Extending this reasoning further, we find that a morphism of factorization module categories as
above is exactly the same data as a factorization module in Repp𝛤 qbD for the commutative factor-
ization algebra defined by the regular representation ∆˚pO𝛤 q. Here we are considering Repp𝛤 q bD

as a Repp𝛤 q b Repp𝛤 q-module category in the obvious way.

9.25. Computation of the local conformal blocks. From Theorem 8.25.1, we obtain that:

HomFactModCat𝑢𝑛,𝑥pRepp𝛤 qfactqpRepp𝛤 q,ΦpDqq

is modules over the local conformal blocks 𝐻∇p
𝑜
𝒟𝑥,∆˚pO𝛤 q

factq, where our ambient factorization
category is Repp𝛤 ˆ 𝛤 qfact.

We will now compute these conformal blocks more explicitly.

Construction 9.25.1. Define a prestack 𝒴 Ñ 𝑋 as parametrizing 𝑦 P 𝑋, a pair 𝜎1, 𝜎2 of 𝛤 -local
systems on 𝒟𝑦, and an isomorphism 𝜎1 » 𝜎2 on 𝒟𝑦zt𝑥u: the 𝑆-families definition is given as above
using gauge forms.

Note that 𝒴 naturally descends to 𝒴𝑋𝑑𝑅 Ñ 𝑋𝑑𝑅 and has a natural map 𝒴𝑋𝑑𝑅 Ñ B𝛤 ˆB𝛤 ˆ𝑋𝑑𝑅

encoding the pair of local systems. Moreover, this latter map is affine.
It follows that 𝒴 defines a modification of ∆˚pO𝛤 q as a 𝐷-algebra in Repp𝛤 q b Repp𝛤 q b𝐷p𝑋q,

and the definition of 𝒴 makes it clear that this is the universal modification.

9.26. Therefore, the local conformal blocks of ∆˚pO𝛤 q at 𝑥 is computed as the fiber of 𝒴.

This fiber parametrizes a pair of 𝛤 -local systems on 𝒟𝑥 identified on
𝑜
𝒟𝑥. By formal étaleness of

the map (9.14.1), we have:

B𝛤 ˆ
Liep𝛤 q{𝛤

B𝛤 »
ÝÑ LocSys𝛤 p𝒟𝑥q ˆ

LocSys𝛤 p
𝑜
𝒟𝑥q

LocSys𝛤 p𝒟𝑥q

9.27. Combining the above, we obtain that the left and right hand sides of (9.20.1) are isomorphic;
tracing the constructions, it is easy to see that such an isomorphism is effected by the map in
(9.20.1).

10. Fusion and nearby cycles

10.1. Suppose that C is a QCohpLiep𝛤 q^0 {𝛤 q-module category. We have seen that we can recover
this structure using the induced chiral Repp𝛤 q-module structure on C. However, the procedure is
somewhat inexplicit: we merely showed that the functor is fully-faithful.

Arkhipov-Bezrukavnikov’s interpretation of Gaitsgory’s central sheaves [Gai1] suggests a more
explicit construction, and below we will compare the two, as will be essential for the comparison
with their functor.

More precisely, note that the factorization functor Whit𝑠𝑝ℎ,fact ÑWhit
8
2
,fact

𝑎𝑐𝑐 and the Casselman-

Shalika equivalence Whit𝑠𝑝ℎ,fact » Repp𝐺̌qfact makes Whit
8
2
𝑥,𝑎𝑐𝑐 into a chiral Repp𝐺̌qfact-module cate-

gory (supported at 𝑥). We show in Proposition 10.2.1 that it lies in the full subcategory:

QCohpǧ^0 {𝐺̌q–mod Ď FactModCat𝑢𝑛,𝑥pRepp𝐺̌q
factq.

Then from S10.3 to the end of the section, we compare this structure to a similar structure produced
in [AB].
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10.2. The accessible semi-infinite Whittaker category and fusion. First, we verify the
following compatibility.

Proposition 10.2.1. Whit
8
2
𝑥,𝑎𝑐𝑐 lies in the full subcategory:

QCohpǧ^0 {𝐺̌q–mod Ď FactModCat𝑢𝑛,𝑥pRepp𝐺̌q
factq.

Here Whit
8
2
𝑥,𝑎𝑐𝑐 is considered as a chiral module category (supported at 𝑥) first over Whit

8
2
,fact

𝑎𝑐𝑐 , then

over Whit𝑠𝑝ℎ,fact » Repp𝐺̌qfact by restriction.

Proof. We have an adjunction Whit𝑠𝑝ℎ𝑥
// Whit

8
2
𝑥,𝑎𝑐𝑐oo with the right adjoint being conservative

by definition. Therefore, the right adjoint is monadic.
Moreover, this adjunction is compatible with chiral Repp𝐺̌q-module structures (since the adjunc-

tion works factorizably). Since Whit𝑠𝑝ℎ𝑥 » Repp𝐺̌q obviously lies in our full subcategory, this implies

the claim. Indeed, the induced monad on Whit𝑠𝑝ℎ𝑥 is a morphism in QCohpǧ^0 {𝐺̌q–mod, so modules
over it is a QCohpǧ^0 {𝐺̌q-module category.

�

10.3. Comparison with Arkhipov-Bezrukavnikov. Here is the main idea of the [AB] construc-
tion.

For each representation 𝑉 P Repp𝛤 q, we obtain a vector bundle E𝑉 on Liep𝛤 q^0 {𝛤 by pullback
from 𝛤 . Moreover, this vector bundle carries a canonical endomorphism 𝑠𝑉 : indeed, this is true
already on Liep𝛤 q{𝛤 by the usual Tannakian formalism.

Remark 10.3.1. Note that 𝑠𝑉 is locally nilpotent in the sense that if we invert it (i.e., form

colimZě0 E𝑉
𝑠𝑉
ÝÑ E𝑉

𝑠𝑉
ÝÑ . . .), we get the zero object. This follows from the fact that its restriction

to the reduced locus of Liep𝛤 q^0 {𝛤 is canonically zero.

Now for C as above, E𝑉 defines an endofunctor of C, and this endofunctor carries a canonical
locally nilpotent self-natural transformation induced by 𝑠𝑉 . The Arkhipov-Bezrukavnikov idea is
that this same natural transformation arises via nearby cycles (equipped with its monodromy
endomorphism), using the Repp𝛤 q-chiral module structure on C.

In S10.4-10.7, we will give a comparison of this type.

10.4. Nearby cycles construction. We first recall the construction of nearby cycles, following
[Bei].

Let 𝑋 “ A1, 𝑥 “ 0 P 𝑋 and 𝑈 “ A1z𝑥 with embedding 𝑗 : 𝑈 ãÑ 𝑋. Let 𝒥𝑛 P 𝐷p𝑈q♡ be the
Jordan block of length 𝑛.

Suppose that rC is a𝐷p𝑋q-module category, with
!
b denoting the action functor. Let rC𝑈 denote the

subcategory of objects ˚-extended from 𝑈 , and let C denote the subcategory of objects supported
at 0 P A1.

Suppose F P rC𝑈 , and that the left adjoint 𝑖˚,𝑑𝑅 to the embedding C ãÑ rC is defined on 𝑗˚,𝑑𝑅pFq.

Note that the same then holds for 𝑗˚,𝑑𝑅pJ𝑛
!
b Fq for any 𝑛. Following [Bei], we then define the

(unipotent) nearby cycles of F as:

Ψ𝑢𝑛pFq :“ colim
𝑛

𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅pJ𝑛
!
b Fq P C.

Note that Ψ𝑢𝑛pFq carries a canonical endomorphism 𝑁 “ 𝑁F coming from the monodromy of
J𝑛, which is “locally nilpotent” (i.e., Ψ𝑢𝑛pFqr𝑁´1s “ 0).
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10.5. Suppose that C is a QCohpLiep𝛤 q^0 {𝛤 q-module category, and let rC P 𝐷p𝑋q–mod denote the

category encoding the “over 𝑋 ˆ 𝑥” part of the chiral module structure. So rC𝑈 “ Repp𝛤 q b C, and
rC𝑥 “ C.

Proposition 10.5.1. Suppose C is compactly generated.41

Then for any F P C and 𝑉 P Repp𝛤 q, Ψ𝑢𝑛p𝑉 b Fq P C is defined, and canonically isomorphic to
E𝑉 b F. The monodromy action on Ψ𝑢𝑛p𝑉 b Fq corresponds to the endomorphism 𝑠𝑉 from above.

The proof of this result is postponed to S10.7.

10.6. Review of [FG1]. We will need to use some results from [FG1]. These results will essentially
be about relating the Kashiwara-Malgrange V-filtration to nearby cycles, so we will need to work
in a classical setting for which such ideas make sense (though it would be interesting to find a more
derived version of what follows).

Let z P 𝐷p𝑋q with zr´1s P 𝐷p𝑋q♡ be a classical commutative 𝐷𝑋 -algebra (considered as a
right 𝐷-module) that is flat over 𝑋. Let rz be another such classical 𝐷𝑋 -algebra equipped with a
𝐷𝑋 -algebra map rz ãÑ z that is an isomorphism when restricted to 𝑈 .

We will refer to z-modules with compatible (right) 𝐷𝑋 -module structures as zr𝐷𝑋s-modules.
Suppose that V P 𝐷p𝑋q is a zr𝐷𝑋s-module that is finite rank projective as a mere z-module (so

V is in cohomological degree -1, like z itself).
We have the following result, which is a generalization of results from [FG1] (see below).

Proposition 10.6.1. There is a unique finite rank projective rz-module rV with an isomorphism
rV|𝑈 » V|𝑈 of rz|𝑈 “ z|𝑈 -modules such that the induced connection on rV|𝑈 has a pole of order 1 (i.e.,

for 𝑡 a local coordinate at 𝑥 P 𝑋, the operator 𝑡B𝑡 preserves rV Ď 𝑗˚𝑗
˚prVq).

Moreover, there is a canonical isomorphism between 𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅pVq P rz𝑥–mod and the two step
complex:

rV𝑥
𝑡B𝑡
ÝÝÑ rV𝑥

(concentrated in cohomological degrees ´1 and ´2, since V is in degree ´1). Here 𝑖 : 𝑥 ãÑ 𝑋 and
rz𝑥 :“ 𝑖!𝑥rz. Moreover, 𝑖˚,𝑑𝑅 is the partially defined left adjoint to the functor rz𝑥–mod ãÑ rzr𝐷𝑋s–mod
(so satisfies a different universal property from the usual ˚-pullback of 𝐷-modules).

Remark 10.6.2. The existence statement is [FG1] Lemma 1.4. The calculation of 𝑖˚,𝑑𝑅𝑗˚,𝑑𝑅pVq on
´1st cohomology is [FG1] Proposition 3.4, but we will be redone in what follows.

Proof. We use 𝑡 as a coordinate at 𝑥 P 𝑋.
Let 𝑁 P z–mod𝑥 be given. The main observation is that we can compute the complex of maps

𝑗˚pVq Ñ 𝑖˚,𝑑𝑅p𝑁q “ 𝑁pp𝑡qq𝑑𝑡{𝑁 rr𝑡ss𝑑𝑡 of z-modules (not zr𝐷𝑋s-modules) explicitly as follows:

Let z𝑥 “ 𝑖!z, which is a commutative algebra (in cohomological degree 0) with z–mod𝑥 “ z𝑥–mod.
Let zℓ :“ zbO𝑋 𝜔

´1
𝑋 P ComAlgpQCohp𝑋q♡q be the left 𝐷-module underlying z. Let zℓ𝐾𝑥 (resp. zℓ𝑂𝑥)

be the sections of zℓ over
𝑜
𝒟𝑥 (resp. 𝒟𝑥), i.e., zℓ bO𝑋 𝑘pp𝑡qq (resp. zℓ bO𝑋 𝑘rr𝑡ss).

Note that there is a canonical map zℓ𝑂𝑥 Ñ z𝑥rr𝑡ss coming from the 𝐷𝑋 -algebra structure: indeed,

the target is the 𝑡-adic completion of the source. Inverting 𝑡, we obtain a map zℓ𝐾𝑥 Ñ z𝑥pp𝑡qq, which

we observe lifts to rz𝑥pp𝑡qq. In particular, zℓ𝐾𝑥 acts on 𝑁pp𝑡qq.
We then claim that the above complex of morphisms identifies canonically with:

41This hypothesis is probably unnecessary, but is satisfied for us in practice and simplifies the argument in any
case.
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V
ℓ,_
𝐾𝑥

b
zℓ𝐾𝑥

𝑁pp𝑡qq

where the superscript ℓ means we tensor with 𝜔´1𝑋 , and the subscript 𝐾𝑥 indicates that we tensor

over zℓ with zℓ𝐾𝑥 . To see the displayed equation, write 𝑗˚pVq “ colim𝑛
rVp𝑛 ¨𝑥q to see that it identifies

with:

lim
𝑛

rVℓ,_p´𝑛 ¨ 𝑥q b
rzℓ
𝑁pp𝑡qq{𝑁 rr𝑡ss “ lim

𝑛
rVℓ,_ b

rzℓ
𝑁pp𝑡qq{𝑡𝑛𝑁 rr𝑡ss “ rVℓ,_ b

rzℓ
lim
𝑛
𝑁pp𝑡qq{𝑡𝑛𝑁 rr𝑡ss “

rVℓ,_ b
rzℓ
𝑁pp𝑡qq “ rVℓ,_ b

rzℓ
zℓ𝐾𝑥 b

rzℓ𝐾𝑥

𝑁pp𝑡qq “ V
ℓ,_
𝐾𝑥

b
zℓ𝐾𝑥

𝑁pp𝑡qq

as desired (where the second equality follows from dualizability of rVℓ over rzℓ).
Then using the de Rham resolution:

𝑗˚,𝑑𝑅pVq b
O𝑋

𝑇𝑋 b
O𝑋

𝐷𝑋 Ñ 𝑗˚,𝑑𝑅pVq b
O𝑋

𝐷𝑋

of 𝑗˚,𝑑𝑅pVq, we find that Homzr𝐷𝑋 s–modp𝑗˚,𝑑𝑅pVq, 𝑖˚,𝑑𝑅p𝑁qq is computed by a two-step complex:

V
ℓ,_
𝐾𝑥

b
zℓ𝐾𝑥

𝑁pp𝑡qq Ñ V
ℓ,_
𝐾𝑥

b
zℓ𝐾𝑥

𝑁pp𝑡qq𝑑𝑡

where the differential is induced by the connection on 𝑗˚pV
ℓ,_q.

Using the logarithmic property of the connection on rV, we can filter this complex by:

𝑡𝑖rVℓ,_ b
zℓ𝑂𝑥

𝑁 rr𝑡ss Ñ 𝑡𝑖´1rVℓ,_ b
zℓ𝑂𝑥

𝑁 rr𝑡ss𝑑𝑡.

If Γ P EndprVℓ,_𝑥 q is the residue of the connection (which we recall is given by the action of 𝑡B𝑡 on this
fiber, and is nilpotent), then on the 𝑖th graded piece of the above map we have pΓ`𝑖¨id

rVℓ,_
qbid𝑁rr𝑡ss,

which is invertible for 𝑖 ‰ 0. Therefore, the above complex is canonically quasi-isomorphic to:

Vℓ,_𝑥 b
z𝑥
𝑁 “ prVℓ,_ b

zℓ𝑂𝑥

𝑁 rr𝑡ssq{𝑡Ñ
`

𝑡´1rVℓ,_ b
zℓ𝑂𝑥

𝑁 rr𝑡ss𝑑𝑡
˘

{rVℓ,_ b
zℓ𝑂𝑥

𝑁 rr𝑡ss𝑑𝑡 “ rVℓ,_𝑥 b
z𝑥
𝑁

where the differential is Γb id𝑁 .

Since this last complex is also the complex of z𝑥-module maps from rV𝑥
𝑡B𝑡
ÝÝÑ rV𝑥 to 𝑁 , we obtain

the desired claim.
�

We obtain the following standard consequence.

Corollary 10.6.3. In the above setting, we have Ψ𝑢𝑛p𝑗˚,𝑑𝑅pVqq “ rV𝑥, with the monodromy operator
𝑁 given by the residue of connection.
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10.7. We now prove Proposition 10.5.1.

Proof of Proposition 10.5.1.

Step 1. First, consider the case where C “ QCohpLiep𝛤 q^0 {𝛤 q and F “ 𝜔Liep𝛤 q^0 {𝛤
the dualizing

sheaf. (Note that F is in the heart of the canonical 𝑡-structure.) We should show that Ψ𝑢𝑛p𝑉 b Fq

is the fiber of E𝑉 at 𝑥.
Indeed, for 𝑉 finite-dimensional, this follows after base-change to the space of gauge forms from

Corollary 10.6.3, and by equivariance, we obtain the desired isomorphism after descending to the
space of local systems as well. For 𝑉 arbitrary, this follows from the commutation of Ψ𝑢𝑛 with
colimits.

Step 2. Next, let C “ QCohpLiep𝛤 q^0 {𝛤 q b D for some D P DGCat𝑐𝑜𝑛𝑡 compactly generated, and
F “ 𝜔Liep𝛤 q^0 {𝛤

b G for some G P D.
This case reduces to the case where G is compact, since nearby cycles tautologically commutes

with colimits. Then, since:

´b G : QCohpLiep𝛤 q^0 {𝛤 q Ñ QCohpLiep𝛤 q^0 {𝛤 q bD

is a left adjoint, the corresponding functor of 𝐷p𝑋q-module categories commutes42 with nearby
cycles.

Step 3. Finally, let C be arbitrary (and compactly generated), and let F P C be given.
We have the action functor QCohpLiep𝛤 q^0 {𝛤 q b C Ñ C, which admits QCohpLiep𝛤 q^0 {𝛤 q-linear

right adjoint. Therefore, the induced functor of 𝐷p𝑋q-module categories commutes with nearby
cycles.

Applying the previous step to 𝜔Liep𝛤 q^0 {𝛤
b F, we now obtain the claim.

�

10.8. Compatibility with Arkhipov-Bezrukavnikov. We obtain following result.

Theorem 10.8.1. The action of QCohpǧ^0 {𝐺̌q on Whit
8
2
𝑥,𝑎𝑐𝑐 induced by Arkhipov-Bezrukavnikov

theory coincides with that arising via fusion, i.e., via Proposition 10.2.1.

In order to do this, we need to recall the Arkhipov-Bezrukavnikov construction of the QCohpǧ{𝐺̌q-
action. This is done in S10.9-10.14

10.9. In what follows, we let VBpYq denote the 1-category of finite rank vector bundles on a stack
Y.

10.10. Recall that for every representation 𝑉 P Repp𝐺̌q♡ finite-dimensional (i.e., 𝑉 P VBpB𝐺̌q),
the corresponding object E𝑉 of VBpǧ{𝐺̌q carries a canonical endomorphism as an object of this
category. Roughly speaking, at a point 𝜉 P ǧ, this endomorphism is given by 𝜉.

More precisely, we use the following construction. It suffices to construction a 𝐺̌-equivariant map
of Sympǧ_q-modules:

𝑉 b Sympǧ_q Ñ 𝑉 b Sympǧ_q,

or equivalently, a 𝐺̌-equivariant map:

𝑉 Ñ 𝑉 b Sympǧ_q.

42The only non-trivial part in the commutation with nearby cycles the commutation with the partially-defined
left adjoin 𝑖˚,𝑑𝑅.
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This map is given by dualizing the action map ǧb 𝑉 Ñ 𝑉 and composing:

𝑉 Ñ 𝑉 b ǧ_ Ñ 𝑉 b Sympǧ_q.

10.11. We will appeal to the following version of a result of [AB].

Theorem 10.11.1 (Arkhipov-Bezrukavnikov). Suppose C P AlgpDGCat𝑐𝑜𝑛𝑡q a monoidal DG cat-
egory, and 𝐹 : QCohpǧ{𝐺̌q Ñ C is a monoidal functor. Suppose moreover that 𝐹 |VBpǧ{𝐺̌q factors

through a monoidal 1-category43 in C.
Then 𝐹 can be reconstructed from 𝐹 |VBpǧ{𝐺̌q, i.e., the appropriate restriction functor44 is fully-

faithful.
Moreover, 𝐹VBpǧ{𝐺̌q can be recovered from the composite monoidal functor:

VBpB𝐺̌q Ñ VBpǧ{𝐺̌q
𝐹VBpǧ{𝐺̌q
ÝÝÝÝÝÑ C

𝑉 ÞÑ 𝐹 p𝑉 q

plus the data of the canonical endomorphisms of the objects 𝐹 p𝑉 q (i.e., the endomorphisms induced
by S10.10).

Proof. This result is just a mild reinterpretation of what occurs in [AB]. This being the case, we
prove the result by referring to the relevant parts of loc. cit.

We can recover 𝐹 from 𝐹 |VBpǧ{𝐺̌q by [Lur] Theorem 1.3.3.8.

Let
𝑜
C Ď C be the monoidal category generated by the essential image of 𝐹 |VBpǧ{𝐺̌q. By assumption,

this is a 1-category, and obviously it is an additive 1-category. Then apply [AB] Proposition 4 to
obtain the second part of the theorem.

�

10.12. Now recall the construction of [AB]: they construct a monoidal functor VBpǧ{𝐺̌q Ñ 𝐻aff :“

𝐷pFlaff𝐺,𝑥q
𝐼 using Gaitsgory’s nearby cycles construction [Bei] and [Gai2].

This functor maps into the heart of the (perverse) 𝑡-structure, so extends canonically to the
bounded derived category Perfpǧ{𝐺̌q of the (exact) category VBpǧ{𝐺̌q, and then by ind-extension
we obtain a functor from QCohpǧ{𝐺̌q.

Then 𝐻aff acts on WhitpFlaff𝐺 q » Whit
8
2
𝑥 by convolution, so QCohpǧ{𝐺̌q acts. Moreover, their

work shows that WhitpFlaff𝐺 q is isomorphic to QCohpň{𝐵̌q as a QCohpǧ{𝐺̌q-module category. Accord-

ing to Lemma 11.6.1 below, the subcategory Whit
8
2
𝑎𝑐𝑐,𝑥 Ď Whit

8
2
𝑥 corresponds to the subcategory

QCohpň^0 {𝐵̌q of quasi-coherent sheaves set-theoretically supported on B𝐵̌.

10.13. We claim that the monoidal functor:45

QCohpǧ{𝐺̌q Ñ EndDGCat𝑐𝑜𝑛𝑡pWhit
8
2
𝑎𝑐𝑐,𝑥q

satisfies the hypothesis of Theorem 10.11.1.
Indeed, the right hand side can be identified with QCohpň^0 {𝐵̌ ˆ ň^0 {𝐵̌q. We can identify this

QCoh with IndCoh via tensoring with the dualizing sheaf by formal smoothness.

43In other words, there are no negative Exts between objects in this subcategory.
44From monoidal functors defined on QCohpǧ{𝐺̌q satisfying our hypotheses to monoidal functors from VBpǧ{𝐺̌q.
45The same works for Whit

8
2
𝑥 , but is less relevant for us.
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Then our monoidal functor is given by !-pullback to ň^0 {𝐵̌ and then applying IndCoh pushforward
along the diagonal map. The restriction to VBpǧ{𝐺̌q then maps, up to shift, to the heart of the
“inductive” 𝑡-structure from [GR1] S7, so maps through a 1-category.

10.14. Proof of Theorem 10.8.1. By the above, we can recover the action of QCohpǧ{𝐺̌q on

Whit
8
2
𝑎𝑐𝑐,𝑥 from action of the sheaves E𝑉 (𝑉 P VBpB𝐺̌q) plus the isomorphisms between the action

of Etriv and the identity functor (for triv the trivial representation), plus the isomorphisms between
E𝑉b𝑊 and the composition of E𝑉 and E𝑊 .

Recall that the action of E𝑉 in Arkhipov-Bezrukavnikov theory comes from a nearby cycles
construction with the corresponding spherical sheaf on the affine Grassmannian, and the canonical
endomorphism of this endofunctor corresponds to the monodromy of the nearby cycles. Since we are
dealing with Whittaker categories, we can instead do fusion against the corresponding Whittaker
sheaf on the affine Grassmannian. Indeed, because !-averaging from 𝐺p𝑂𝑥q-equivariance to Whit-
taker equivariance is a left adjoint, it commutes with nearby cycles. Finally, since we are working

over a single point, 𝐷!pFl
8
2
𝑥 q is 𝐺p𝐾𝑥q-equivariantly equivalent to 𝐷pFlaff𝐺,𝑥q. Now Proposition 10.5.1

gives the desired identification.
Matching the identifications between the action of Etriv with the identity is easy: it is a simple

ULAness argument that we omit.
Finally, matching up the isomorphisms between E𝑉b𝑊 and E𝑉 bOǧ{𝐺̌

E𝑊 follows directly using

the 2-dimensional nearby cycles from [Gai2] S4. Indeed, these are a tool that make sense for a
general Repp𝐺̌q-module category, providing a correspondence between the nearby cycles against
𝑉 b𝑊 and the iterated nearby cycles for 𝑉 and 𝑊 . In the Arkhipov-Bezrukavnikov setup, these
are tautologically used to produce the isomorphism we are after. It is a simple check that in the
general setting of a 𝐷𝑋 -algebra z as above, the isomorphism matches up under Proposition 10.5.1,
c.f. [FG1] Lemma 3.5.

11. Proof of the main theorem

11.1. In this section, we draw together the work from the rest of this paper to prove Theorem

5.7.1, i.e., that the functor 𝑖
8
2
,!,𝑒𝑛ℎ is an equivalence.

11.2. Outline of this section. WRITE

11.3. We begin with the next result.

Lemma 11.3.1. The functor 𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼 : Whit
8
2

𝑎𝑐𝑐,𝑋𝐼 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑋𝐼 qq preserves ULA ob-

jects (c.f. Theorem 5.10.1).

Proof. By the proof of Proposition 5.15.1, translates of the unit object of Whit
8
2

𝑎𝑐𝑐,𝑋𝐼 are ULA gen-

erators for the category. Noting that 𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼 commutes with these translations (which are 𝐷p𝑋𝐼q-
linear automorphisms of the categories in question, so formally preserve ULAness), it suffices to
see that the image of the unit is ULA.

Of course, this object is the vacuum representation Υň itself, i.e., the corresponding factorization
module over 𝑋𝐼 . ULAness of the vacuum in this case46 is proved47 in [Ras2] Proposition 7.13.1.

�

46Note that this is not true for a general factorization algebra. We remind that the proof in this case relies on
the especially simple nature of ϒň, and ultimately on good properties of the factorization category 𝐼 ÞÑ Repp𝐵̌q𝑋𝐼

established in [Ras2] S6.
47In a slightly different setting, but the same proof goes through.
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11.4. Reduction to a point. We now show that the main theorem reduces to its version over the
fiber of a single point 𝑥 P 𝑋. First, note that this case implies the theorem for 𝐼 “ t˚u, i.e., over
the first power of the curve. Indeed, this follows from étale local constancy of everything in this
case.

Now by Lemma 11.3.1, the functor 𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼 admits a 𝐷p𝑋𝐼q-linear (in particular, continuous)
right adjoint (c.f. [Ras2] Proposition B.7.1). We need to test whether the unit for this adjunction is
an equivalence. In fact, one can test whether any natural transformation of 𝐷p𝑋𝐼q-linear functors

is an equivalence over any stratification, in particular the “partition” stratification.48 Since 𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼

factorizes, we are reduced to the 𝐼 “ t˚u-case, as desired.

11.5. Reduction to the case 𝑍p𝐺q connected. Recall that there exists a short exact sequence

1 Ñ 𝐺 Ñ r𝐺 Ñ T Ñ 1 for T a torus and r𝐺 reductive with connected center, and such that r𝐺

is equipped with a Cartan and Borel r𝑇 Ď r𝐵´ with r𝐵´ X 𝐺 “ 𝐵´, r𝑇 X 𝐺 “ 𝑇 .49 Note that the

embedding 𝐵´ ãÑ r𝐵´ induces an isomorphism on unipotent radicals. Suppose the theorem is true

for r𝐺.
Then it is easy to see:

Whit
8
2

r𝐺,𝑋𝐼
»Whit

8
2

𝐺,𝑋𝐼 b
𝐷pGr

𝑇,𝑋𝐼
q

𝐷pGr
r𝑇 ,𝑋𝐼 q

Υň–modfact𝑢𝑛 p𝐷pGr
r𝑇 ,𝑋𝐼 qq » Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑋𝐼 qq b

𝐷pGr
𝑇,𝑋𝐼

q

𝐷pGr
r𝑇 ,𝑋𝐼 q.

In particular, Whit
8
2

r𝐺,𝑋𝐼
and Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑋𝐼 qq embed as full subcategories of the correspond-

ing categories for r𝐺, giving the desired claim.

11.6. Our subcategories match up under Arkhipov-Bezrukavnikov. We now have the fol-
lowing basic result about Arkhipov-Bezrukavnikov theory.

Lemma 11.6.1. Under the equivalence Whit
8
2
𝑥 » Whit1p𝐷pFlaff𝐺 qq » QCohpň{𝐵̌q of [AB], the sub-

categories Whit
8
2
𝑎𝑐𝑐,𝑥 and QCohpň^0 {𝐵̌q match up.

Indeed, this follows immediately from Theorem 7.3.1 of [FG2].50

11.7. The kernel. We wish to reinterpret our comparison functor as being given by a kernel so
that we can analyze this kernel using 𝑡-structures.

Since we are working with the formal completions, this requires a bit of generalities first.

Remark 11.7.1. We emphasize in what follows that we’re working with derived schemes: this is
especially relevant when looking at formulae involving fiber products.

48For precision: we mean the stratification indexed by surjections 𝑝 : 𝐼 � 𝐽 , where the corresponding strata is the
image of r𝑋𝐽

s𝑑𝑖𝑠𝑗 under the diagonal map.
49E.g., if 𝐺 “ 𝑆𝐿𝑛, we can take r𝐺 “ 𝐺𝐿𝑛 mapping to T “ G𝑚 by the determinant. The general case is proved

using an argument with root data: one finds that r𝐺 actually has the form 𝐺 ˆ T1{𝑍p𝐺q for T1 a torus with 𝑍p𝐺q
embedded into it.

50Note however that there is a potentially confusing typo in the beginning of S7.1 from loc. cit.: the right hand side
of the second equation break should be about the base-change of 𝐷pFlaff𝐺 q to B𝐵̌ along the embedding B𝐵̌ ãÑ ň{𝐵̌.
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11.8. Recall that a prestack Y is quasi-perfect if QCohpYq is compactly generated by perfect ob-
jects.51 Here F P QCohpYq is perfect if its restriction to any affine scheme is.

In this case, QCohpYq has an obvious canonical self-duality (as an object of DGCat𝑐𝑜𝑛𝑡).
For 𝑓 : YÑ Z a morphism of quasi-perfect prestacks, we let 𝑓 𝑟𝑒𝑛˚ : QCohpYq Ñ QCohpZq denote

the functor dual to the pullback.

Example 11.8.1. Quasi-compact quasi-separated schemes are quasi-perfect. The functor 𝑓 𝑟𝑒𝑛˚ is the
usual pushforward functor in this case.

Example 11.8.2. The following results are shown in [GR1] S7. Suppose Y “ 𝑆^𝑇 is the formal
completion of a quasi-compact quasi-separated scheme 𝑆 along a finitely presented closed embedding
𝑇 ãÑ 𝑆. Then 𝑆^𝑇 is quasi-perfect.

Moreover, given a commutative diagram:

𝑇1 //

��

𝑆1

𝑔

��
𝑇2 // 𝑆2

with induced morphism 𝑓 : 𝑆1,𝑇^1 Ñ 𝑆2,𝑇^2 , the functor 𝑓 𝑟𝑒𝑛˚ is computed via the commutative
diagram:

QCohp𝑆1,𝑇^1 q

𝑓𝑟𝑒𝑛˚
��

� � // QCohp𝑆1q

𝑔˚

��
QCohp𝑆2,𝑇^2 q

� � // QCohp𝑆2q.

The horizontal arrows are the canonical embeddings, realizing QCohp𝑆𝑖,𝑇^𝑖 q as the subcategory of
QCohp𝑆1q of objects set-theoretically supported on 𝑇1.

Moreover, using the results of loc. cit., one finds in this case that 𝑓 𝑟𝑒𝑛˚ restricted to compact
objects coincides with 𝑓˚, the right adjoint to 𝑓˚: since 𝑓 𝑟𝑒𝑛˚ is continuous, this characterizes it
uniquely.

11.9. We have a functor:

𝐹 : QCohpň^0 {𝐵̌q Ñ QCohpň^0 {𝐵̌q

defined by:

QCohpň^0 {𝐵̌q
[AB]
» Whit

8
2
𝑎𝑐𝑐,𝑥

𝑖
8
2 ,!,𝑒𝑛ℎ
𝑥
ÝÝÝÝÝÑ QCohpň^0 {𝐵̌q Ď Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq

that we are trying to show is an equivalence.

11.10. Observe that 𝐹 is a morphism of QCohpǧ^0 {𝐺̌q-module categories. Indeed, this follows from

the fact that 𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 is a morphism of factorization Repp𝐺̌qfact-module categories by Theorem 4.15.1,
and the comparison of Theorem 10.8.1.

Note also that QCohpň^0 {𝐵̌q is self-dual as a QCohpǧ^0 {𝐺̌q-module category : this follows from the
corresponding facts about52 QCohpǧ{𝐺̌q-module categories, which in turn follows from rigidity of
QCohpǧ{𝐺̌q.

51There is no requirement that every perfect object be compact, however.
52Note the absense of the formal completion.
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We deduce that there exists a kernel :53

K P QCohpň^0 {𝐵̌q b
QCohpǧ^0 {𝐺̌q

QCohpň^0 {𝐵̌q
»
ÝÑ QCohpň^0 {𝐵̌ ˆ

ǧ^0 {𝐺̌
ň^0 {𝐵̌q

such that:

𝐹 p´q “ 𝑝𝑟𝑒𝑛2,˚ pKb 𝑝
˚
1p´qq.

We will analyze this kernel in the remainder of this section, in order to deduce that 𝐹 is an
equivalence.

Remark 11.10.1. In what follows, it is helpful to remember that we are trying to show that K »

∆𝑟𝑒𝑛
˚ pOň^0 {𝐵̌

q for ∆ the (relative) diagonal map.

11.11. Note that QCohpň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q carries a canonical 𝑡-structure, called the inductive 𝑡-

structure in [GR1] S7. It is readily characterized by compatibility with filtered colimits and the fact
that the pushforward from the reduced locus (which is 𝐵̌z𝐺̌{𝐵̌ here) is 𝑡-exact.

We have the following key result.

Proposition 11.11.1. K lies in the heart of the (inductive) 𝑡-structure on QCohpň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q.

We will prove this after some generalities in S11.15.

11.12. Group actions and 𝑡-structures. Let C be a cocomplete DG category equipped with a
𝑡-structure compatible with filtered colimits.

Let 𝛤 be an affine algebraic group. Note that QCohp𝛤 q is a monoidal category under convolution.
By duality, it is a coalgebra object in DGCat𝑐𝑜𝑛𝑡 as well. Modules for the monoidal structure are
the same as comodules for the coalgebra structure. We say that 𝛤 acts weakly on C to mean C is
equipped with a co/module structure.

A weak 𝛤 -action on C is compatible with this 𝑡-structure if the coaction functor:

CÑ Cb QCohp𝛤 q

is 𝑡-exact. Here C b QCohp𝛤 q “ O𝛤 –modpCq is equipped with the obvious 𝑡-structure: connective
objects are generated under colimits by objects induced from Cď0, i.e., by objects of the form FbO𝛤
for F P Cď0.

Lemma 11.12.1. In the above setting, C𝛤,𝑤 :“ HomQCohp𝛤 q–modpVect,Cq admits a unique 𝑡-structure

such that Oblv : C𝛤,𝑤 Ñ C is 𝑡-exact.

Proof. Equipping C b QCohp𝛤 qb𝑛 with a 𝑡-structure as above, one finds that each functor in the
semi-cosimplicial diagram defining C𝛤,𝑤 is 𝑡-exact. This immediately gives the result.

�

Lemma 11.12.2. A weak 𝛤 -action on C is compatible with the 𝑡-structure if and only if act :
Cb QCohp𝛤 q Ñ C is 𝑡-exact.

Proof. Recall that one can compute the functor actp´b O𝛤 q : CÑ C as the composition:

C
coact
ÝÝÝÑ Cb QCohp𝛤 q

idCbΓp𝛤,´q
ÝÝÝÝÝÝÝÑ Cb Vect “ C

53The isomorphism here follows from 1-affineness: see [Gai6].
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(this is a standard argument with the Beck-Chevalley formalism).
Suppose act is 𝑡-exact. Then we obtain that the composition above is 𝑡-exact. But the latter

functor is conservative and 𝑡-exact, so we obtain that coact must be 𝑡-exact.
Conversely, suppose that coact is 𝑡-exact. Then the composition above is the composition of two

𝑡-exact functors, so is 𝑡-exact. By definition of the 𝑡-structure on C b QCohp𝛤 q, this implies that
act is right 𝑡-exact. But act is obviously left 𝑡-exact (being right adjoint to a 𝑡-exact functor), so is
𝑡-exact.

�

11.13. Suppose that 𝐺̌ acts weakly on C and that is equipped with a 𝑡-structure compatible with
the 𝐺̌-action. By Lemma 11.12.2, the induced 𝐵̌-action is also compatible with 𝑡-structures.

Some notation: let Av𝐵̌Ñ𝐺̌,𝑤˚ denote the right adjoint to the forgetful functor C𝐺̌,𝑤 Ñ C𝐵̌,𝑤. Also,

recall that Repp𝐵̌q acts on C𝐵̌,𝑤; we denote the action by ˙. For 𝜆̌ a coweight, we let ℓ𝜆̌ denote the
corresponding representation of 𝑇 (or 𝐵̌).

Proposition 11.13.1. If F P C𝐵̌,𝑤 satisfies Av𝐵̌Ñ𝐺̌,𝑤˚ pℓ𝜆̌ ˙ Fq P C𝐺̌,𝑤,♡ for all 𝜆̌ P Λ̌ sufficiently
negative, then F P C♡.

Proof. For 𝜆̌ a weight, let L𝜆̌ denote the corresponding line bundle on 𝐺̌{𝐵̌.

Let 𝐷 be an ample divisor on 𝐺̌{𝐵̌. Note that Op𝐷q “ L´𝜆̌ for some regular dominant 𝜆̌.54 We
can assume that 𝜆̌ is sufficiently large in the sense of our hypothesis.

Let 𝑗 : 𝑈 ãÑ 𝐺̌{𝐵̌ denote the affine open subvariety 𝑈 :“ p𝐺̌{𝐵̌qz𝐷 of 𝐺̌{𝐵̌. By affineness
and Lemma 11.12.2, the functor C𝐵,𝑤 Ñ C given by convolution with 𝑗˚pO𝑈 q is conservative and
𝑡-exact.55

We have embeddings Op𝐷q ãÑ Op2𝐷q ãÑ . . . ãÑ Op𝑛𝐷q ãÑ . . . in QCohp𝐺̌{𝐵̌q and the colimit

is 𝑗˚pO𝑈 q. Now observe that convolution with Op𝑛𝐷q computes the functor Av𝐵̌Ñ𝐺̌,𝑤˚ pℓ´𝑛𝜆̌ ˙ ´q.
Therefore, our hypothesis on F implies that convolution with 𝑗˚pO𝑈 q sends F to an object in degree
0, which implies the claim on F by conservativeness and exactness of F.

�

11.14. A normalization. Before proceeding, we need the following normalization.

Below, we will consider Whit
8
2
𝑥 as a 𝐷pGr𝑇,𝑥q “ Repp𝑇 q-module category not under usual trans-

lations, but with cohomological shifts built in: that is, 𝛿𝜆̌p𝑡q acts by translating by 𝜆̌p𝑡q on Fl
8
2
𝑥 and

applying a cohomological shift rp2𝜌, 𝜆̌qs. Note that this makes sense factorizably as well: c.f. S2.26.
A further normalization, for clarity: when we speak of translation by 𝜆̌p𝑡q, this sends the identity

in Fl
8
2
𝑥 to 𝜆̌p𝑡q. We mention this, since we will think of Fl

8
2
𝑥 as 𝐺p𝐾𝑥q{𝑁p𝐾𝑥q𝑇 p𝑂𝑥q, i.e., we quotient

on the right, and then it might be regarded as more natural to take the inverted action. But to be
clear, we are not doing this, but are using commutativity of 𝑇 to turn this right action into a left
one.

Because of the cohomological shifts incorporated above, note that 𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼 is a morphism of
𝐷pGr𝑇,𝑋𝐼 q-module categories (recall that there were such cohomological shifts in the definition of

𝑖
8
2
,!,𝑒𝑛ℎ

𝑋𝐼 in the first place). Moreover, this Gr𝑇 -linearity is compatible with factorization.

54Of course, this is the usual sign issue in Borel-Weil-Bott. Recall the basic reason we need this sign: the canonical
line bundle Ω𝑡𝑜𝑝

𝐺̌{𝐵̌
is anti-ample, and comes from the representation Λ𝑡𝑜𝑝pǧ{b̌q_, which has weight 2𝜌.

55For example: we can take our divisor 𝐷 as the sum of the codimension 1 𝑁´-Schubert varieties. Then 𝑈 is the

big cell 𝑁´ and then convolution with 𝑗˚pO𝑈 q computes Av𝑁
´,𝑤

˚ .
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11.15. Proof of Proposition 11.11.1. We now show that the kernel lies in the heart of the
𝑡-structure.

Proof of Proposition 11.11.1. To see that K lies in the heart of the 𝑡-structure, it suffices to see

that its restriction rK to:

B𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌

does.
We will see this by applying Proposition 11.13.1 with C “ QCohpSpecp𝑘q ˆ

ǧ^0 {𝐺̌
ň^0 {𝐵̌q. By loc. cit.,

it suffices to show that for every dominant coweight 𝜆̌, the pushforward:

𝑞˚p𝑝
˚
1pℓ

´𝜆̌q b rKq P QCohpB𝐺̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q (11.15.1)

lies in the heart of the 𝑡-structure. Here 𝑝1 is the projection to B𝐵̌, and 𝑞 is the projection:

𝑞 : B𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌ Ñ B𝐺̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌.

The object (11.15.1) can be considered as the kernel of a functor:

Repp𝐺̌q Ñ QCohpň^0 {𝐵̌q

of QCohpǧ^0 {𝐺̌q-module categories. Its relation to 𝐹 is described as follows.
First, let 𝑖 denote the map B𝐵̌ Ñ ň^0 {𝐵̌. Then the functor defined by (11.15.1) is given by

applying the functor 𝑖˚𝑞
˚ : Repp𝐺̌q Ñ QCohpň^0 {𝐵̌q, tensoring with 𝜋˚pℓ´𝜆̌q, and then applying the

functor 𝐹 , where 𝜋 is the projection ň^0 {𝐵̌ Ñ B𝑇 .

By assumption, 𝐹 intertwines the operation of tensoring with 𝜋˚pℓ´𝜆̌q.

Moreover, we claim that the composition Repp𝐺̌q Ñ QCohpň^0 {𝐵̌q
𝐹
ÝÑ QCohpň^0 {𝐵̌q is computed

as the tautological functor Repp𝐺̌q Ñ QCohpň^0 {𝐵̌q, defined by the kernel 𝜙˚pOB𝐵̌q P QCohpB𝐺̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q where 𝜙 : B𝐵̌ Ñ B𝐺̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌ is the obvious map. Indeed, since 𝐹 is a morphism of

categories over ǧ^0 {𝐺̌, it is a functor of categories over B𝐺̌, so we see we only need to compute
the image of the trivial representation under 𝐹 , and this is the structure sheaf of B𝐵̌ Ď ň^0 {𝐵̌ by
construction.

We deduce that 𝑞˚p𝑝
˚
1pℓ

´𝜆̌q b rKq is isomorphic to the kernel 𝜙˚pℓ
´𝜆̌q. We claim that this object

lies in the heart of the 𝑡-structure for 𝜆̌ dominant. Indeed, 𝜙 is given by the composition:

B𝐵̌ Ñ B𝐺̌Ñ B𝐺̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌

and the latter map is a closed embedding, so the claim follows from Borel-Weil-Bott.
�

11.16. By Proposition 11.11.1, we have:

K P QCohpň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q
♡.
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Note that we can replace our stack by its underlying classical substack here, since this operation
preserves the heart of the 𝑡-structure on QCoh.

We now aim to show that K is scheme-theoretically supported on the diagonally embedded copy
of ň^0 {𝐵̌. Note that this only makes sense in the abelian category, not in the derived category.

Note that we have a fiber square of classical stacks:

ň^0
Δ //

��

pň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q
𝑐𝑙

��
B𝐵̌ Δ // B𝐵̌ ˆ

B𝐺̌
B𝐵̌ “ 𝐵̌z𝐺̌{𝐵̌

(i.e., this is not a fiber square of derived stacks).

11.17. In some more generality that 𝑌 is a classical Artin stack equipped with a representable
projection 𝑝 : 𝑌 Ñ 𝐵̌z𝐺̌{𝐵̌, and F P QCohp𝑌 q♡ is given. We wish to give a criterion to check that
F is scheme-theoretically supported on 𝑝´1pB𝐵̌q𝑐𝑙.56

For 𝜆̌ a dominant coweight, let V𝜆̌ denote the vector bundle on 𝑌 induced from the highest

weight representation 𝑉 𝜆̌ from the structure map:

𝑌 Ñ 𝐵̌z𝐺̌{𝐵̌ Ñ B𝐺̌.

Similarly, for 𝜆̌ a coweight, let L𝜆̌1 and L𝜆̌2 denote the line bundles induced from the two projections:

𝑌 Ñ 𝐵̌z𝐺̌{𝐵̌ Ñ B𝐵̌.
We have canonical surjective maps:

𝜅𝜆̌𝑖 : V𝜆̌ Ñ L
𝑤0p𝜆̌q
𝑖 , 𝑖 “ 1, 2.

First, we claim that 𝑝´1pB𝐵̌q𝑐𝑙 is exactly the (classically defined) locus where these two quotients

of V𝜆̌ coincide.57 Indeed, this follows from the Plücker relations for the flag variety.

11.18. We want a version of the above that takes a quasi-coherent sheaf F into account.
We claim the following:

Proposition 11.18.1. A quasi-coherent sheaf F P QCohp𝑌 q♡ is scheme-theoretically supported on
𝑝´1pB𝐵̌q𝑐𝑙 if (and only if) the quotients:

V𝜆̌ b
O𝑌

F Ñ L
𝑤0p𝜆̌q
𝑖 b

O𝑌

F, 𝑖 “ 1, 2

coincide (i.e., are isomorphic as quotients).

This follows immediately from the next result.

56The notation 𝑐𝑙 here is just used to emphasize that we are working with classical stacks, though it’s hard to
make a mistake in this setting since we’re only using the abelian category of quasi-coherent sheaves.

57This should be understood in the usual sense from Grothendieck’s theory of the quot scheme.
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Lemma 11.18.2. Suppose 𝑌 is a classical stack, V is a finite rank vector bundle on 𝑌 , and
𝜅𝑖 : VÑ L𝑖 are quotients. Let 𝑍 Ď 𝑌 be the classical substack where these quotients agree.

Then F P QCohp𝑌 q♡ is scheme-theoretically supported on 𝑍 if (and only if) the quotients:

V b
O𝑌

F Ñ L𝑖 b
O𝑌

F, 𝑖 “ 1, 2

coincide.

Proof. The claim is smooth (even flat) local on 𝑌 , so we can assume 𝑌 is an affine scheme 𝑌 “

Specp𝐴q and that all vector bundles in sight are trivialized.
Let 𝑛 be the rank of V, so our quotients are defined by row vectors

`

𝑓1 . . . 𝑓𝑛
˘

and
`

𝑔1 . . . 𝑔𝑛
˘

,
where the condition that these be quotients means that each of the two maps 𝑌 Ñ A𝑛 should fac-
tor through A𝑛z0. Further Zariski localizing (using the standard affine covering of P𝑛´1), we may
WLOG assume that 𝑓1 is invertible, and then without changing the isomorphism class of our
quotient, we may assume that 𝑓1 “ 1.

Note that the ideal defining 𝑍 is generated by the elements 𝑔1𝑓𝑖 ´ 𝑔𝑖, 𝑖 “ 2, . . . , 𝑛.
Now the two maps:

F‘𝑛 Ñ F

are also defined using the row vectors above. If they coincide as quotients, there is an isomorphism

𝛼 : F
»
ÝÑ F such that the diagram commutes, i.e., we should have:

𝛼p
𝑛
ÿ

𝑖“1

𝑓𝑖𝑠𝑖q “
𝑛
ÿ

𝑖“1

𝑔𝑖𝑠𝑖

for all p𝑠𝑖q
𝑛
𝑖“1 P F

‘𝑛.
For 𝑠 P F fixed, letting 𝑠1 “ 𝑠 and 𝑠𝑗 “ 0 for 𝑗 ‰ 1, we see that 𝛼p𝑠q “ 𝑔1𝑠. In turn taking

𝑠𝑖 “ 𝑠 for 𝑖 fixed and all 𝑠𝑗 “ 0 for 𝑗 ‰ 𝑠, we obtain 𝛼p𝑓𝑖𝑠q “ 𝑔𝑖𝑠, but we have just seen that
𝛼p𝑓𝑖𝑠q “ 𝑔1𝑓𝑖𝑠, so p𝑔1𝑓𝑖 ´ 𝑔𝑖q𝑠 “ 0, which is what was to be shown.

(For the converse, which we will not need, note that 𝑔1 is invertible on 𝑍, since by assumption,
the 𝑔𝑖 generate the unit ideal of 𝐴, and each 𝑔𝑖|𝑍 is divisible by 𝑔1|𝑍 . Therefore, taking 𝛼 as above
to be defined as multiplication by 𝑔1 really is an isomorphism if F is scheme-theoretically supported
on 𝑍.)

�

11.19. To specialize to our setting, take 𝑌 “ pň{𝐵̌ ˆ
ǧ{𝐺̌

ň{𝐵̌q𝑐𝑙 mapping to 𝐵̌z𝐺̌{𝐵̌ in the obvious way.

Our K can be considered as an object of QCohp𝑌 q♡ set-theoretically supported on 𝐵̌z𝐺̌{𝐵̌ Ď 𝑌 .
We want to apply Proposition 11.18.1 in this setting to see that K is scheme-theoretically sup-

ported on the inverse image of B𝐵̌ (which is the diagonally embedded copy of ň{𝐵̌).
Translating from kernels to functors, we should verify the following condition:

Let V𝜆̌ and L𝑤0p𝜆̌q denote the vector bundles on ň^0 {𝐵̌ obtained from the projections to B𝐺̌ and
B𝑇 (so we are changing the notation slightly from S11.18, since ň^0 {𝐵̌ is not our 𝑌 ). We have a

canonical map V𝜆̌ Ñ L𝑤0p𝜆̌q.
We have an isomorphism:

𝐹 pV𝜆̌ b´q
»
ÝÑ V𝜆̌ b 𝐹 p´q

since 𝐹 is a functor of categories over ǧ^0 {𝐺̌. Then to verify the condition of Proposition 11.18.1,
we should produce a commutative diagram:
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𝐹 pV𝜆̌ b´q

��

» // V𝜆̌ b 𝐹 p´q

��

𝐹 pL𝑤0p𝜆̌q b´q
» // L𝑤0p𝜆̌q b 𝐹 p´q.

(11.19.1)

This should be understood as a diagram of QCohpǧ^0 {𝐺̌q-linear functors.
In fact, we already have an isomorphism in the bottom row from the Repp𝑇 q-linearity of 𝐹 .58 All

that is left is to verify that this diagram commutes.
We will verify this property in what follows.

11.20. Geometric input. We first make some observations about the Whit
8
2 and the functor

𝑖
8
2
,!,𝑒𝑛ℎ, which will provide the substance for the verification above.

11.21. Let 𝜆̌ be a dominant coweight.

Let W𝜆̌
𝑥 PWhit

8
2
𝑥 be obtained from 𝑉 𝜆̌ via the composition:

Repp𝐺̌q »Whit𝑠𝑝ℎ𝑥 ÑWhit𝑖𝑛𝑡𝑥 ÑWhit
8
2
𝑥

(i.e., we take the corresponding spherical Whittaker sheaf and create an object of Whit
8
2
𝑥 from it

in the only way we know how).

Let unit
𝑤0p𝜆̌q

Whit
8
2
𝑥

denote the 𝑤0p𝜆̌q-translate of the unit object, where we are using the convention

of S11.14 here.59 We will construct a canonical map:

𝜀𝜆̌𝑥 : W𝜆̌
𝑥 Ñ unit

𝑤0p𝜆̌q

Whit
8
2
𝑥

PWhit
8
2
𝑎𝑐𝑐,𝑥. (11.21.1)

Note that the left hand side is obtained from the IC sheaf on𝐺p𝑂qz𝐺p𝑂𝑥q𝜆̌p𝑡q𝐺p𝑂𝑥q by projecting
from 𝐵p𝑂𝑥q-invariants = 𝐵p𝑂𝑥q-coinvariants to𝑁p𝐾𝑥q𝑇 p𝑂𝑥q-coinvariants (with respect to the right
action) and then !-averaging from 𝐺p𝑂q to Whittaker (with respect to the left action).

The right hand side admits a similar interpretation, but we should start with the ˚-extension of

𝜔rp´2𝜌, 𝜆̌qs on 𝐺p𝑂qz𝐺p𝑂𝑥q𝑤0p𝜆̌qp𝑡q𝐵p𝑂𝑥q instead.
Now recall that:

𝐺p𝑂qz𝐺p𝑂𝑥q𝑤0p𝜆̌qp𝑡q𝐵p𝑂𝑥q ãÑ 𝐺p𝑂qz𝐺p𝑂𝑥q𝜆̌p𝑡q𝐺p𝑂𝑥q

is an open embedding.60

Therefore, we have a map from our IC sheaf to our ˚-extension of 𝜔, but we should cohomo-
logically shift 𝜔 up by the dimension of each of these orbits, which is exactly p2𝜌, 𝜆̌q. This gives a
map in the category of left 𝐺p𝑂𝑥q-equivariant and right 𝐵p𝑂𝑥q-equivariant 𝐷-modules, and then

we obtain the desired map in Whit
8
2
𝑥 by functoriality.

58More precisely, K descends to ň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌ˆB𝑇

ň^0 {𝐵̌ for simple reasons.

59Since is easy to forget who this object is: it is the ˚-extension of the canonical Whittaker 𝐷-module on
𝑁´p𝐾𝑥q𝐺p𝑂𝑥q𝑤0p𝜆̌qp𝑡q𝑁p𝐾𝑥q “ 𝑁´p𝐾𝑥q𝐺p𝑂𝑥q𝑤0p𝜆̌qp𝑡q𝑁p𝐾𝑥q𝑇 p𝑂𝑥q Ď 𝐺p𝐾𝑥q, with the cohomological shift
rp2𝜌,𝑤0p𝜆̌qqs “ rp´2𝜌, 𝜆̌qs.

60If the reader thinks it should be 𝜆̌p𝑡q instead of 𝑤0p𝜆̌qp𝑡q, this is because we are used considering orbits on
𝐺p𝐾𝑥q{𝐺p𝑂𝑥q, but we are switching left and right actions here and the inversion means antidominant Iwahori orbits
are the ones open in the corresponding 𝐺p𝑂𝑥q-orbits (and these Iwahori orbits equal the corresponding 𝐵p𝑂𝑥q-orbits).
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11.22. Now observe that we can compute 𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 applied to both sides of (11.21.1): the left

hand side goes to Chevspec
ň,𝑥 p𝑉

𝜆̌q by Theorem 4.15.1, and the right hand side goes to the 𝑤0p𝜆̌q-
translate of the vacuum representation for Υň at 𝑥, i.e., to the factorization Υň-module obtained

from ℓ𝑤0p𝜆̌q P Repp𝐵̌q via chiral induction from the corresponding Lie-˚ module for ň𝑋 .
More descripitively: the left hand side is the chiral module version of the homological Chevalley

complex for ň with coefficients in 𝑉 𝜆̌, and the right hand side is the same but for ℓ𝑤0p𝜆̌q.
Our main geometric input is the fact that the map obtained from our geometric procedure

coincides with the canonical map seen in the spectral picture, i.e., the map induced by the map

𝑉 𝜆̌ Ñ ℓ𝑤0p𝜆̌q P Repp𝐵̌q. This follows from the proof of Theorem 4.15.1: see [Ras2] S7.25.

11.23. Finally, we note that the above all makes sense if we work over the curve 𝑋, instead of just
at the single point 𝑥. We will need the above in this form actually. We use subscripts 𝑋 instead of
𝑥 to indicate that this is the case.

11.24. Verification of the claim from S11.19. We now verify that the diagram (11.19.1) com-
mutes forgetting about the fact that these are QCohpǧ^0 {𝐺̌q-linear functors. That is, we instead
show that the diagram commutes as a diagram of mere functors. Then we will explain why this
was enough in S11.25.

We will do this by identifying each of the vertical arrows in this diagram with some other
morphism of functors.

Namely, suppose we use [AB] to identify Whit
8
2
𝑎𝑐𝑐,𝑥 with QCohpň^0 {𝐵̌q, and we identify QCohpň^0 {𝐵̌q

with a full subcategory of Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq. Then every vertex in the diagram (11.19.1) can
be recovered from the corresponding functor:

Whit
8
2
𝑎𝑐𝑐,𝑥 Ñ Υň–modfact𝑢𝑛 p𝐷pGr𝑇,𝑥qq.

We claim that the vertical legs of the diagram can each be identified with 𝑖
8
2
,!,𝑒𝑛ℎ

𝑥 composed with the

endofunctor of Whit
8
2
𝑥 given by taking nearby cycles against the moving points version of (11.21.1),

i.e., the maps:

𝜀𝜆̌𝑋z𝑥 : W𝜆̌
𝑋z𝑥 Ñ unit

𝑤0p𝜆̌q

Whit
8
2
𝑋z𝑥

PWhit
8
2

𝑎𝑐𝑐,𝑋z𝑥.

For the left vertical arrow of (11.19.1), this is an extended chase through the constructions: up
to identifying our semi-infinite categories with categories of Iwahori nature and easy checks that
various functors commute with nearby cycles61, this is the Arkhipov-Bezrukavnikov construction
of the action using Gaitsgory’s central sheaves [Gai1].62

For the right vertical arrow, this follows from Proposition 10.5.1, using the geometric input from

S11.20-11.23 and the fact that semi-infinite restriction 𝑖
8
2
,!,𝑒𝑛ℎ commutes with nearby cycles (which

follows from Lemma 11.3.1).

61The basic (easy) fact for such verification is that any 𝐷p𝑋q-linear functor 𝐹 : CÑ D P 𝐷p𝑋q–mod that admits
a 𝐷p𝑋q-linear right adjoint commutes with nearby cycles. In particular, this is the case if C is ULA and 𝐹 preserves
ULA objects.

62We apologize for not providing more details here. There are many small details to fill in, and we expect that
the reader comfortable with the construction of [AB] and the categorical machinery used in this paper will not have
difficulty with this, while the reader lacking either of those backgrounds will not benefit from their being included.
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11.25. Finally, we explain why we did not need to worry about the QCohpǧ^0 {𝐺̌q-linearity in
verifying the commutativity of the diagram (11.19.1).

Namely, we can regard this as a diagram of kernels, i.e., objects of QCohpň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌q
♡.

Since the diagonal morphism:

ň^0 {𝐵̌ ˆ
ǧ^0 {𝐺̌

ň^0 {𝐵̌ Ñ ň^0 {𝐵̌ˆň
^
0 {𝐵̌

is affine63, the corresponding pushforward functor is injective on Homs in the abelian category, so
we can verify the commutativity of the diagram downstairs instead.

11.26. Completion of the proof. We have now obtained that K is set-theoretically supported
on ň^0 {𝐵̌, meaning that we can regard it as having been pushed forward from there. So we can
change notation and consider K as an object of QCohpň^0 {𝐵̌q. Then the relation to 𝐹 becomes that
𝐹 is given by tensoring with K.

Recall that 𝐹 takes 𝑖˚pOB𝐵̌q to itself, where 𝑖 is the map B𝐵̌ Ñ ň^0 {𝐵̌. Therefore, we obtain:

𝑖˚pOB𝐵̌q “ 𝐹 p𝑖˚pOB𝐵̌qq “ Kb 𝑖˚pOB𝐵̌q “ 𝑖˚𝑖
˚pKq.

We claim that this forces K to be a line bundle, and thereby obtaining that 𝐹 is an equivalence.
It suffices to verify this after base-changing to ň^0 . Therefore, it follows from the next lemma.

Lemma 11.26.1. Suppose K P QCohpA𝑛,^0 q with 𝑖˚pKq » 𝑘, where 𝑖 : Specp𝑘q ãÑ A𝑛,^0 is the
inclusion. Then K » OA𝑛,^0

.

Proof. First, we claim that ΓpA𝑛,^0 ,Kq P Vect♡.
Indeed, let 𝑖𝑚 denote the embedding 𝑋𝑚 :“ Specp𝑘r𝑥1, . . . , 𝑥𝑛s{p𝑥1, . . . , 𝑥𝑛q

𝑚q ãÑ A𝑛,^0 . Then
K “ lim𝑚 𝑖𝑚,˚𝑖

˚
𝑚pKq, so:

ΓpA𝑛,^0 ,Kq “ lim
𝑚

Γp𝑋𝑚, 𝑖
˚
𝑚pKqq.

Using iterated square-zero extensions (and the hypothesis that 𝑖˚pKq P Vect♡), we find that every
term of this limit is in cohomological degree zero and all structure maps are surjective, giving the
claim.

Now recall from [GR1] S7 that this means K lies in the heart of a 𝑡-structure, and this heart is the
abelian category of derived 𝐼-adically complete 𝑘r𝑥1, . . . , 𝑥𝑛s modules, where 𝐼 “ p𝑥1, . . . , 𝑥𝑛q. In
particular, OA𝑛,^0

also lies in the heart of this 𝑡-structure and is projective there, and KÑ 𝑖˚𝑖
˚pKq

is an epimorphism in this abelian category.
Therefore, the map OA𝑛,^0

Ñ 𝑘 » 𝑖˚𝑖
˚pKq lifts to a map to K, which is an isomorphism since it

is such after applying 𝑖˚.
�

Appendix A. Proof of Lemmas 9.8.1 and 9.9.2

A.1. The purpose of this section is to prove two technical results on regular local systems from S9.
In each, we essentially want to describe the geometry of the (factorizable versions) of the spaces of
local systems in terms of the categories Repp𝛤 q𝑋𝐼

𝑑𝑅
studied in [Ras2] S6.

63Being obtained by base-change from the diagonal morphism for ǧ^0 {𝐺̌.
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A.2. First, recall the setup of Lemma 9.8.1: we want to show that 𝐼 ÞÑ QCohpLocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅
q

is the factorization category associated with the symmetric monoidal DG category Repp𝛤 q P
DGCat𝑐𝑜𝑛𝑡.

We will first prove a version of Lemma 9.8.1 with affine schemes (or more generally, possibly
non-connective commutative algebras) playing the role of B𝛤 , and will deduce the lemma from
here and from structural results on Repp𝛤 q𝑋𝐼 given in [Ras2].

A.3. Let 𝐴 P Vect be a commutative algebra.
Recall from [Ras2] S6.12 (c.f. also [Ras1] S7) that there is a commutative factorization algebra:

𝐼 ÞÑ 𝐴𝑋𝐼
𝑑𝑅
P ComAlgp𝐷p𝑋𝐼qq

associated to 𝐴, such that 𝐴𝑋 “ 𝐴b 𝜔𝑋 .

Here each 𝐴𝑋𝐼
𝑑𝑅

is a commutative algebra for the
!
b tensor product on 𝐷p𝑋𝐼q. Therefore, we can

take the associated category of modules:

𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq P 𝐷p𝑋𝐼q–mod.

The assignment 𝐼 ÞÑ 𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq defines a factorization category.

A.4. On the other hand, 𝐴–mod is a rigid and symmetric monoidal DG category, and therefore
we may form the factorization category:

𝐼 ÞÑ 𝐴–mod𝑋𝐼
𝑑𝑅
.

By construction, we have a canonical functor:

𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq Ñ 𝐴–mod𝑋𝐼
𝑑𝑅
. (A.4.1)

Proposition A.4.1. The functor (A.4.1) is an equivalence.

Proof. First, note that 𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq is ULA as a category over 𝑋𝐼
𝑑𝑅, in the sense of [Ras2]

Appendix B, and has ULA generator 𝐴𝑋𝐼
𝑑𝑅

. Indeed, this follows since the (conservative) forgetful

functor 𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq Ñ 𝐷p𝑋𝐼q admits a 𝐷p𝑋𝐼q-linear right adjoint sending 𝜔𝑋𝐼 to 𝐴𝑋𝐼
𝑑𝑅

.

Moreover, by [Ras2] Lemma 6.16.2, the image of 𝐴𝑋𝐼
𝑑𝑅

–modp𝐷p𝑋𝐼qq under (A.4.1) is ULA.

Indeed, loc. cit. shows that for any rigid symmetric monoidal category C, the unit object is ULA
over 𝑋𝐼 .

Therefore, by [Ras2] Proposition B.8.1 and by factorization, to see that (A.4.1) is an equivalence,
it suffices to check this for 𝐼 “ t˚u, where the result is clear.

�

A.5. We now deduce the appropriate version of this result for LocSys𝛤 p𝒟q.

Proof of Lemma 9.8.1.

Step 1. First, we use the expression of LocSys𝛤 p𝒟q by gauge forms from S9.4. In the notation of
loc. cit., we obtain:
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QCohpLocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅
q
»
ÝÑ lim

r𝑛sPΔ
QCoh

`

𝐺p𝑂q𝑋𝐼
𝑑𝑅

ˆ
𝑋𝐼
𝑑𝑅

. . . ˆ
𝑋𝐼
𝑑𝑅

𝐺p𝑂q𝑋𝐼
𝑑𝑅

looooooooooooooooooomooooooooooooooooooon

𝑛 times

ˆ
𝑋𝐼
𝑑𝑅

Liep𝛤 q b Ω1
𝑋p𝑂q𝑋𝐼

𝑑𝑅

˘

.

(A.5.1)

Step 2. Now observe that by étale descent for sheaves of categories, we may reduce to the case
where 𝑋 “ A1. Let 𝑥 P 𝑋p𝑘q be the point 0.

Trivialize Ω1
𝑋 by a translation invariant 1-form, and similarly write 𝐺p𝑂q𝑋𝑑𝑅 “ 𝐺p𝑂𝑥q ˆ 𝑋𝑑𝑅

via translations. Wethen obtain that the action of 𝐺p𝑂q𝑋𝑑𝑅 on Liep𝛤 q bΩ1
𝑋p𝑂q𝑋𝑑𝑅 is obtain from

the action of 𝐺p𝑂𝑥q on Ω1
𝑋p𝑂𝑥q (i.e., 1-forms on the disc at 𝑥) by realizing these as constant

𝐷𝑋 -schemes. We formally deduce the same over each 𝑋𝐼
𝑑𝑅.

Step 3. Applying (A.5.1) over a point, we obtain:

Repp𝛤 q “ QCohpLocSys𝛤 p𝒟𝑥qq » lim
r𝑛sPΔ

QCoh
`

𝐺p𝑂𝑥q
𝑛 ˆ Liep𝛤 q b Ω1

𝑋p𝑂𝑥q
˘

.

Since each structure functor is symmetric monoidal, we obtain:

Repp𝛤 q𝑋𝐼
𝑑𝑅
» lim
r𝑛sPΔ

QCoh
`

𝐺p𝑂𝑥q
𝑛 ˆ Liep𝛤 q b Ω1

𝑋p𝑂𝑥q
˘

𝑋𝐼
𝑑𝑅
. (A.5.2)

Indeed, recall that for C P ComAlgpDGCat𝑐𝑜𝑛𝑡q, the associated category C𝑋𝐼
𝑑𝑅

is a limit in DGCat𝑐𝑜𝑛𝑡
of terms of the form:

Cb𝐾 b𝐷p𝑈q

where 𝑈 Ď 𝑋𝐼 is a certin (variable) open subset, and 𝐾 is a (variable) finite set. It follows that
C ÞÑ C𝑋𝐼

𝑑𝑅
commutes with sifted those limits in ComAlgpDGCat𝑐𝑜𝑛𝑡q formed from diagrams of

dualizable DG categoriesand with dualizable limit (to commute the appropriate limits with tensor
products); this justifies (A.5.2), recalling that the simplex category is sifted.

By our earlier work on affine 𝐷𝑋 -schemes and by Step 2, the right hand side of this equation
identifies with the right hand side of (A.5.1), giving the result.

�

A.6. We now begin work on Lemma 9.9.2.

A.7. As a first step, we reduce to showing only that LocSys𝛤 p𝒟q𝑋𝐼 is 1-affine.
Indeed, for both results, it suffices to show that the morphism LocSys𝛤 p𝒟q𝑋𝐼

𝑑𝑅
Ñ 𝑋𝐼

𝑑𝑅 is 1-affine

(see [Ras1] SA.8 for the terminology here), since the morphism 𝑋𝐼
𝑑𝑅 Ñ Specp𝑘q is 1-affine. This

means that for every 𝑆 Ñ 𝑋𝐼
𝑑𝑅 with 𝑆 an affine scheme, we need to show that the corresponding

fiber product is 1-affine.
Since every map 𝑆 Ñ 𝑋𝐼

𝑑𝑅 lifts to𝑋𝐼 (by smoothness of𝑋), it suffices to show that LocSys𝛤 p𝒟q𝑋𝐼 Ñ

𝑋𝐼 is 1-affine. But this is equivalent to 1-affineness of the total space by [Ras1] Proposition A.11.6.

A.8. Next, we observe the following consequence of Lemma 9.8.1.

Corollary A.8.1. The prestack LocSys𝛤 p𝒟q𝑋𝐼 is passable in the sense of [Gai6] S5, i.e., QCohpLocSys𝛤 p𝒟q𝑋𝐼 q

is rigid monoidal, and the diagonal map for LocSys𝛤 p𝒟q𝑋𝐼 is quasi-affine (in fact: affine in this
case).
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Proof. The canonical map:

QCohpLocSys𝛤 p𝒟q𝑋𝐼
𝑑𝑅

b
𝐷p𝑋𝐼q

QCohp𝑋𝐼q Ñ QCohpLocSys𝛤 p𝒟q𝑋𝐼 q

is an equivalence since 𝑋𝐼
𝑑𝑅 and 𝑋𝐼 are 1-affine.

The rigid monoidality now follows from the analysis of Repp𝛤 q𝑋𝐼
𝑑𝑅

b
𝐷p𝑋𝐼q

QCohp𝑋𝐼q given in [Ras2]

Theorem 6.17.1. The affineness of the diagonal follows from the expression of LocSys𝛤 p𝒟q𝑋𝐼 as the
quotient of of gauge forms by the gauge group.

�

We now obtain the following result from [Gai6] Proposition 5.1.3:

Corollary A.8.2. The functor:

Γ : ShvCat{LocSys𝛤 p𝒟q𝑋𝐼 Ñ QCohpLocSys𝛤 p𝒟q𝑋𝐼 q–mod

is fully-faithful.

A.9. Following [Gai6] S6, we will deduce 1-affineness from the following.

Proposition A.9.1. The map:

colim
r𝑛sPΔ𝑜𝑝

QCoh
`

𝐺p𝑂q𝑋𝐼 ˆ
𝑋𝐼

. . . ˆ
𝑋𝐼

𝐺p𝑂q𝑋𝐼

loooooooooooooooomoooooooooooooooon

𝑛 times

ˆ
𝑋𝐼

Liep𝛤 qbΩ1
𝑋p𝑂q𝑋𝐼

˘

Ñ QCohpLocSys𝛤 p𝒟q𝑋𝐼 q P DGCat𝑐𝑜𝑛𝑡

(A.9.1)
is an equivalence, where all the structure maps are pushforwards for quasi-coherent sheaves.

Proof that Proposition A.9.1 implies Lemma 9.9.2. We sketch the argument just to remind the
reader how it goes, referring to [Gai6] Proposition 6.2.7 for details.

One has a functor:

ShvCat{LocSys𝛤 p𝒟q𝑋𝐼 Ñ DGCat𝑐𝑜𝑛𝑡

given by forming an appropriate version of the colimit (A.9.1) with coefficients (e.g., the sheaf of
categories QCoh{ShvCat{LocSys𝛤 p𝒟q𝑋𝐼

maps to (A.9.1)).

We claim that the composition:

QCohpLocSys𝛤 p𝒟q𝑋𝐼 q–modÑ ShvCat{LocSys𝛤 p𝒟q𝑋𝐼 Ñ DGCat𝑐𝑜𝑛𝑡

is the forgetful functor, where the first functor is the left adjoint to global sections. Indeed, both
functors are formed using colimits and tensor products, so it is easy to compute the composition
as:

`

C P QCohpLocSys𝛤 p𝒟q𝑋𝐼 q–mod
˘

ÞÑ

C b
QCohpLocSys𝛤 p𝒟q𝑋𝐼 q

´

colim
r𝑛sPΔ𝑜𝑝

QCoh
`

𝐺p𝑂q𝑋𝐼 ˆ
𝑋𝐼

. . . ˆ
𝑋𝐼

𝐺p𝑂q𝑋𝐼

loooooooooooooooomoooooooooooooooon

𝑛 times

ˆ
𝑋𝐼

Liep𝛤 q b Ω1
𝑋p𝑂q𝑋𝐼

˘

¯

𝑃𝑟𝑜𝑝.𝐴.9.1
» C.

In particular, the left adjoint to Γ : ShvCat{LocSys𝛤 p𝒟q𝑋𝐼 Ñ QCohpLocSys𝛤 p𝒟q𝑋𝐼 q–mod is con-

servative, so we obtain the result by Corollary A.8.2.
�
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A.10. It now remains to prove Proposition A.9.1.

A.11. First, we prove a version of Proposition A.9.1 at a (closed) point 𝑥 P 𝑋.

Lemma A.11.1. The map:

colim
r𝑛sPΔ𝑜𝑝

QCoh
`

𝐺p𝑂𝑥q
𝑛 ˆ Liep𝛤 q b Ω1

𝑋p𝑂𝑥q
˘

Ñ QCohpLocSys𝛤 p𝒟𝑥qq P DGCat𝑐𝑜𝑛𝑡 (A.11.1)

is an equivalence.

Proof.

Step 1. First, we rewrite the left hand side of (A.11.1): since all of these schemes are affine, QCoh
turns products into tensor products in DGCat𝑐𝑜𝑛𝑡. Therefore, we can rewrite the left hand side of
(A.11.1) as the (weak) coinvariants of 𝛤 p𝑂𝑥q acting on QCohpLiep𝛤 q b Ω1

𝑋p𝑂𝑥qq, i.e., it is:

QCohpLiep𝛤 q b Ω1
𝑋p𝑂𝑥qq b

QCohp𝛤 p𝑂𝑥qq
Vect P DGCat𝑐𝑜𝑛𝑡

where QCohp𝛤 p𝑂𝑥qq is equipped with the convolution monoidal structure, and it acts on Vect
through the action of 𝛤 p𝑂𝑥q on Specp𝑘q.

Step 2. Let 𝒦1 Ď 𝛤 p𝑂𝑥q denote the first congruence subgroup, i.e., the kernel of the evaluation
map to 𝛤 .

We can rewrite the above (weak) coinvariants by first taking coinvariants with respect to 𝒦1 and
then taking the coinvariants with respect to the residual (weak) action of 𝛤 .

Step 3. Next, observe that the weak coinvariants of 𝒦1 acting on QCohpLiep𝛤 q b Ω1
𝑋p𝑂𝑥qq is Vect

equipped with the trivial weak 𝛤 -action: indeed, this follows from the fact that 𝛤 acts simply
transitively on Liep𝛤 q b Ω1

𝑋p𝑂𝑥q.

Step 4. Finally, it remains to see that the map:

Vect b
QCohp𝛤 q

VectÑ QCohpLocSys𝛤 p𝒟𝑥qq “ Repp𝛤 q

is an equivalence. But this is exactly the main result of [Gai6] S7.
�

A.12. We now deduce Proposition A.9.1 (and with it, Lemma 9.9.2) from the above and from
results of [Ras2].

Proof of Proposition A.9.1. First, we observe that the statement is étale local on 𝑋 (e.g., using an
easier version of Proposition 6.2.7 of [Gai6] to justify the descent), and therefore we can reduce to
the case 𝑋 “ A1. Let 𝑥 P 𝑋p𝑘q again denote the point 0.

For every surjection 𝑝 : 𝐼 � 𝐽 , let 𝑈p𝑝q Ď 𝑋𝐼 denote the corresponding open subscheme:

𝑈p𝑝q “ t𝑥 “ p𝑥𝑖q P 𝑋
𝐼 | 𝑥𝑖 ‰ 𝑥𝑗 if 𝑝p𝑖q ‰ 𝑝p𝑗qu.

By [Ras2] Lemma 6.18.1, for C P ComAlgpDGCat𝑐𝑜𝑛𝑡q compactly generated and rigid monoidal
(in particular, canonically self-dual), we have an isomorphism:

colim
𝐼
𝑝
�𝐽�𝐾

Cb𝐾 b QCohp𝑈p𝑝qq
»
ÝÑ C𝑋𝐼

𝑑𝑅

where we recall the (irrelevant for our purposes) information that:
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‚ The index category is the twisted arrow category of the partially-ordered set of partitions
of 𝐼.

‚ This diagram is dual to the diagram defining C𝑋𝐼 , i.e., maps in the 𝐽-variable induced
pushforward functors on the QCohp𝑈p𝑝qq factor, and maps in the 𝐾-variable induce functors

dual to the tensor product functors Cb𝐾 Ñ Cb𝐾
1

.

It follows that the assignment C ÞÑ C𝑋𝐼 P QCohp𝑋𝐼q–mod commutes with sifted colimits of
diagrams where all terms are compactly generated rigid monoidal and the colimit is as well.

Since C “ QCohp𝛤 p𝑂𝑥qq, QCohpΩ
1
𝑋p𝑂𝑥qq and Repp𝛤 q are rigid monoidal, we obtain the claim

from Lemma A.11.1.
�
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