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1. Introduction

1.1. The goal of this foundational note is to develop the 𝐷-module formalism on indschemes of
ind-infinite type.

1.2. The basic feature that we struggle against is that there are two types of infinite dimensionality
at play: pro-infinite dimensionality and ind-infinite dimensionality. That is, we could have an infinite
dimensional variety 𝑆 that is the union 𝑆 “ Y𝑖𝑆𝑖 “ colim𝑖𝑆𝑖 of finite dimensional varieties, or 𝑇
that is the projective limit 𝑇 “ lim𝑗 𝑇𝑗 of finite dimensional varieties, e.g., a scheme of infinite type.

Any reasonable theory of 𝐷-modules will produce produce some kinds of de Rham homology
and cohomology groups. We postulate as a basic principle that these groups should take values in
discrete vector spaces, that is, we wish to avoid projective limits.

Then, in the ind-infinite dimensional case, the natural theory is the homology of 𝑆:

𝐻˚p𝑆q :“ colim
𝑖

𝐻˚p𝑆𝑖q

while in the pro-infinite dimensional case, the natural theory is the cohomology of 𝑇 :

𝐻˚p𝑇 q :“ colim
𝑗

𝐻˚p𝑇𝑗q.

For indschemes that are infinite dimensional in both the ind and the pro directions, one requires
a semi-infinite homology theory that is homology in the ind direction and cohomology in the pro
direction.

Remark 1.2.1. Of course, such a theory requires some extra choices, as is immediately seen by
considering the finite dimensional case. For example, for a smooth variety, we have a choice of
normalization for the cohomological shifts.
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1.3. Theories of semi-infinite homology have appeared in many places in the literature. We do
not pretend to survey the literature on the subject here, but note that in the case of the loop
group, it is well-known that semi-infinite cohomology, in the sense above, may be defined using the
semi-infinite cohomology of Lie algebras.

We provide such a theory in large generality below. In fact, we develop two theories 𝐷! and 𝐷˚ of
derived categories of 𝐷-modules on indschemes of ind-infinite type. The theory 𝐷! is contravariant,
and therefore carries a natural dualizing complex, and the theory 𝐷˚ is covariant, and therefore is
the place where cohomology is defined.

For placid indschemes (a technical condition defined below), the two categories are identified
after a choice of dimension theory, and therefore allows us to define the renormalized or semi-
infinite cohomology of the scheme. The extra choice of dimension theory here precisely reflects the
numerical choice of cohomological shifts discussed above.

Remark 1.3.1. The main difference between our approach and other approaches taken in the lit-
erature is that we work systematically with derived categories of 𝐷-modules, rather than simply
working with homology or with abelian categories. This is facilitated by our use of higher category
theory, i.e., with the use of homotopy limits and colimits of DG categories.

1.4. Overview. In S2, we give very general definitions of our categories 𝐷! and 𝐷˚ of 𝐷-modules:
we define these categories for arbitrary prestacks. There’s not much one can say in this level of
generality, but it is convenient to work in this setting in order to note how formal the definitions
are.

We note for reference below that 𝐷! is contravariant, while 𝐷˚ is covariant. Moreover, for a

prestack 𝑆, the DG category 𝐷!p𝑆q admits a tensor product
!
b and acts on 𝐷˚p𝑆q in a canonical

way satisfying a version of the projection formula.

1.5. In S3, we develop the theory in the setting of (quasi-compact, quasi-separated) schemes.
The key technique here is to use Noetherian approximation, as developed in [Gro] and [TT]. Note

that this idea is already essentially present in [KV]; the authors of loc. cit. credit it to Drinfeld.

1.6. In S4 we will introduce the notion of placidity. One can understand this condition as saying
that the singularities of a scheme are of finite type in a precise sense.

The key point of placid schemes is that they admit a “renormalized dualizing complex” that
lies in 𝐷˚p𝑆q. This is notable because, as we recall, 𝐷˚ is covariant: its natural functoriality (with
respect to infinite type morphisms) is through pushforwards. Moreover, the functor of action on
the renormalized dualizing complex gives an equivalence 𝐷!p𝑆q » 𝐷˚p𝑆q. In particular, one obtains
a covariant structure on 𝐷! and a contravariant structure on 𝐷˚ is the placid setting.

1.7. In S5, we discuss the holonomic theory for schemes of infinite type. There is nothing terribly
unsurprising here.

Remark 1.7.1. This material could just as well be given for ℓ-adic sheaves.

1.8. In S6, we move to the setting of indschemes.
The key part is again a theory of placid indschemes with properties similar to the setting of

placid schemes described above. It is here that dimension theories enter the story.

1.9. There are many pushforward and pullback functors constructed in the text below. The bulk
of this text is really devoted to checking when certain functors are defined, when they coincide,
when they are adjoint, when they satisfy base-change, etc.
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Such a state of affairs can only lend itself to confusion for the reader, so to conclude this overview,
we include a table describing which functors are defined when and what their basic properties are.
The reader should refer to the body of this text for more information; this table is simply meant
to be available for convenient reference.

We let 𝑓 : 𝑆 Ñ 𝑇 be a morphism of indschemes in this table.

Hypotheses Functor Adjunctions Base-change
properties

References

None 𝑓 ! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q See 𝑓˚,!´𝑑𝑅, 𝑓˚,𝑟𝑒𝑛 See 𝑓˚,!´𝑑𝑅, 𝑓˚,𝑟𝑒𝑛 S3.6, S??
None 𝑓˚,𝑑𝑅 : 𝐷˚p𝑆q Ñ 𝐷˚p𝑇 q See 𝑓 ¡, 𝑓˚,𝑟𝑒𝑛 See 𝑓 ¡, 𝑓˚,𝑟𝑒𝑛 S3.18, S??
𝑓 ind-
finitely
presented

𝑓˚,!´𝑑𝑅 : 𝐷!p𝑆q Ñ 𝐷!p𝑇 q Left adjoint to 𝑓 ! for
𝑓 ind-proper; right ad-
joint to 𝑓 ! up to co-
homological shift for 𝑓
smooth

Always satisfies
base-change with
upper-! functors

S3.9, S6.3

𝑓 ind-
finitely
presented

𝑓 ¡ : 𝐷˚p𝑇 q Ñ 𝐷˚p𝑆q Right adjoint to 𝑓˚,𝑑𝑅
for 𝑓 proper; left ad-
joint to 𝑓˚,𝑑𝑅 up to co-
homological shift for 𝑓
smooth

Always satisfies
base-change with
lower-* functors

S3.22, S6.3

𝑆 and 𝑇
placid and
equipped
with di-
mension
theories

𝑓˚,𝑟𝑒𝑛 : 𝐷!p𝑆q Ñ 𝐷!p𝑇 q Right adjoint to 𝑓 ! for 𝑓
placid and with the di-
mension theory of 𝑆 in-
duced from that of 𝑇 by
Construction 6.12.6

For 𝑓 placid,
satisfies base-
change against
the upper-! func-
tors of finitely
presented mor-
phisms

S6.16, Prop.
6.18.1

𝑆 and 𝑇
placid and
equipped
with di-
mension
theories

𝑓 !,𝑟𝑒𝑛 : 𝐷˚p𝑇 q Ñ 𝐷˚p𝑆q Left adjoint to 𝑓˚,𝑑𝑅 for
𝑓 placid and with the
dimension theory of 𝑆
induced from that of 𝑇
by Construction 6.12.6

For 𝑓 finitely
presented, satis-
fies base-change
against the lower-
* functors of
placid morphisms

S6.16, Prop.
6.18.1

Table 1. 𝐷-module functors in infinite type

1.10. Mea culpa. This theory is inadequate in that it completely ignores that most characteristic
feature of the theory of 𝐷-modules: the forgetful functor to quasi-coherent sheaves. The reason is
that one needs a theory of ind-coherent sheaves (c.f. [GR]) for (ind)schemes of (ind-)infinite type.

The methods used below are apparently inadequate for this purpose. The problem is that base-
change between upper-! and lower-˚ functors does not hold for Cartesian squares in the category
of classical schemes as it does for 𝐷-modules: rather, one needs the square to be Cartesian in the
category of derived schemes, and this immediate appearance of non-eventually coconnective derived
schemes is in tension with our appeals to Noetherian approximation. However, at least in the placid
case, the situation is okay: c.f. to [Gai3].
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1.11. Categorical conventions. Our basic methodology in treating the above problems is the use
of modern derived techniques. However, we (mostly) do not appeal to derived algebraic geometry.

We spell this out further in what follows.

1.12. We appeal frequently to higher category theory, and it is convenient to use higher category
theory as the basic building block of our terminology. Therefore, by category we mean p8, 1q-
category, and similarly by groupoid we mean 8-groupoid. We let Cat and Gpd denote the corre-
sponding categories. When we mean to specify that we are working with the classical notion of
category, we use the term p1, 1q-category instead.

1.13. We work always over a field 𝑘 of characteristic 0.
We let DGCat denote the category of DG categories (alias: stable categories enriched over 𝑘-

modules). Let Vect “ Vect𝑘 denote the DG category of 𝑘-modules.
Let DGCat𝑐𝑜𝑛𝑡 denote the category of cocomplete1 DG categories and continuous functors: i.e.,

DG categories admitting all colimits, and functors commuting with all colimits. We freely use the
linear algebra of such categories (tensor products, duality and all that) from [Gai1].

1.14. Let AffSch denote the p1, 1q-category of (classical, i.e., non-derived) affine schemes. Let
PreStk denote the category of (classical) prestacks: by definition, this is the category of functors
AffSch𝑜𝑝 Ñ Gpd. Recall that e.g. the categories of schemes and indschemes are by definition full
subcategories of PreStk.

1.15. For 𝑆 a scheme of finite type, we let 𝐷p𝑆q denote the DG category of 𝐷-modules on 𝑆. We
refer to [GR], where this construction is given in detail in a format convenient for our purposes.

1.16. Acknowledgements. This material has been strongly influenced by [BD] S7, [Dri] and [KV].
We also thank Dennis Gaitsgory for many helpful discussions about this material; in particular, the
idea of systematically distinguishing between 𝐷! and 𝐷˚, our very starting point, is due to him.
Finally, we thank Dario Beraldo for helpful conversations on this material.

2. D-modules on prestacks

2.1. In this section, we define 𝐷! and 𝐷˚ for general prestacks.
There is not much to say in this level of generality: we work in this generality because the

definitions are most natural like this, and simply to point out that it can be done. The later
sections of this text are then dedicated to studying the special cases of schemes and indschemes.

2.2. Let AffSch𝑓.𝑡. Ď AffSch denote the subcategory of finite type affine schemes.
Note that AffSch » PropAffSch𝑓.𝑡.q: this is essentially the statement that a classical commutative

algebra is the union of its finite type subalgebras.

2.3. Definition of 𝐷!. We define:

𝐷! : AffSch𝑜𝑝 Ñ DGCat𝑐𝑜𝑛𝑡

as the left Kan extension of the functor 𝐷 : AffSch𝑓.𝑡.,𝑜𝑝 Ñ DGCat𝑐𝑜𝑛𝑡 attaching to a finite type
affine scheme 𝑆 its category of 𝐷-modules and attaches to a morphism 𝑓 : 𝑆 Ñ 𝑇 the corresponding
upper-! functor.

We extend this definition to:

1We freely ignore cardinality issues in what follows, but here cocomplete should be taken to mean presentable; we
recall that the difference is a set-theoretic condition that is always satisfied in the examples used below.
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𝐷! : PreStk𝑜𝑝 :“ HompAffSch,Gpdq Ñ DGCat𝑐𝑜𝑛𝑡

by right Kan extension.

Remark 2.3.1. Here is what the above definition says more concretely:

‚ For a classical commutative algebra 𝐴, write 𝐴 “ Y𝑖𝐴𝑖 with 𝐴𝑖 finite type. Note that
for 𝐴𝑖 Ď 𝐴𝑗 , we have a map Specp𝐴𝑗q Ñ Specp𝐴𝑖q, and therefore a !-pullback functor for

𝐷-modules. Then 𝐷!pSpecp𝐴qq is computed as:

𝐷!pSpecp𝐴qq :“ colim𝐷pSpecp𝐴𝑖qq P DGCat𝑐𝑜𝑛𝑡.

‚ For a nice enough stack 𝒴, choose a hypercovering by affine schemes 𝑌𝑛 “ Specp𝐴𝑛q, so
𝒴 “ |𝑌‚| “ colimr𝑛sPΔ𝑜𝑝 𝑌𝑛.

Then 𝐷!p𝒴q “ limr𝑛sPΔ𝐷!p𝑌𝑛q.
‚ More generally, for any prestack 𝒴, we can formally write 𝒴 “ colim𝑖PI 𝑌𝑖 for some diagram
𝑖 ÞÑ 𝑌𝑖 P AffSch. We then have:

𝐷!p𝒴q “ lim
𝑖PI𝑜𝑝

𝐷!p𝑌𝑖q.

Less precisely, one should think that a 𝐷!-module F on 𝒴 is defined by its compatible system of
restrictions to affine schemes 𝑌 mapping to 𝒴, and a “typical” 𝐷!-module on such a 𝑌 is pulled
back along some 𝑌 Ñ 𝑍 with 𝑍 P AffSch𝑓.𝑡..

Notation 2.3.2. For 𝑓 : 𝒴 Ñ 𝒵 a morphism of prestacks, we have a tautological map:

𝐷!p𝒵q Ñ 𝐷!p𝒴q P DGCat𝑐𝑜𝑛𝑡
which we denote by 𝑓 !. Note that there is no risk for confusion in this notation, since if 𝑓 is a map
between prestacks locally of finite type, this functor corresponds with the usual functor 𝑓 !.

2.4. For any prestack 𝒴, note that 𝐷!p𝒴q is a symmetric monoidal category. Indeed, for any
prestacks 𝒴 and 𝒵, there is a tautological functor:

𝐷!p𝒴q b𝐷!p𝒵q ´b´
ÝÝÝÑ 𝐷!p𝒴 ˆ 𝒵q

which is an equivalence if 𝒴,𝒵 P AffSch (indeed: this claim immediately to the case 𝒴,𝒵 P

AffSch𝑓.𝑡.).

Then pairing F
!
b G :“ ∆!pF b Gq defines the desired symmetric monoidal structure, where

∆ : 𝒴 Ñ 𝒴 ˆ 𝒴 is the diagonal map. We remark that
!
b commutes with colimits in each variable.

2.5. Definition of 𝐷˚. We now define the second category of 𝐷-modules on a prestack. The
definition is formally dual to the definition of 𝐷!.

Namely, we define:

𝐷˚ : AffSchÑ DGCat𝑐𝑜𝑛𝑡

as the right Kan extension of the functor 𝐷 : AffSch𝑓.𝑡. Ñ DGCat𝑐𝑜𝑛𝑡 attaching to a finite type affine
scheme 𝑆 its category of 𝐷-modules and attaches to a morphism 𝑓 : 𝑆 Ñ 𝑇 the corresponding
lower-˚ functor.

We extend this definition to:
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𝐷˚ : PreStk :“ HompAffSch,Gpdq Ñ DGCat𝑐𝑜𝑛𝑡

by left Kan extension.

Remark 2.5.1. Again, here is the concrete interpretation of this definition:

‚ For a classical commutative algebra 𝐴 “ Y𝑖𝐴𝑖, we have:

𝐷˚pSpecp𝐴qq :“ lim 𝐷pSpecp𝐴𝑖qq P DGCat𝑐𝑜𝑛𝑡

where the structure functors are lower-˚ functors.
‚ For any prestack 𝒴, we can write 𝒴 “ colim𝑖PI 𝑌𝑖 for some diagram 𝑖 ÞÑ 𝑌𝑖 P AffSch. We

then have:

𝐷˚p𝒴q “ colim𝐷˚p𝑌𝑖q.

Less precisely, one should think that a typical 𝐷˚-module on 𝒴 is pushed forward along some
map 𝑌 Ñ 𝒴 with 𝑌 P AffSch, and a 𝐷˚-module on such a 𝑌 is defined by the knowledge of its
compatible system of push forwards along maps 𝑌 Ñ 𝑍 with 𝑍 P AffSch𝑓.𝑡..

2.6. Locally finite type case. When 𝒴 is a prestack locally of finite type, we have canonical
identifications 𝐷!p𝒴q “ 𝐷p𝒴q, where we recall that 𝐷p𝒴q is defined in [GR]. For 𝒴 a scheme of
finite type, it is easy to identify this category with 𝐷˚p𝒴q as well (by a descent argument).

2.7. The projection formula. Next, we discuss the relationship between 𝐷! and 𝐷˚.
By the projection formula in the finite type setting, 𝐷!p𝒴q acts on 𝐷˚p𝒴q for any prestack 𝒴.

More precisely, 𝐷˚p𝒴q is a module for 𝐷!p𝒴q in DGCat𝑐𝑜𝑛𝑡. We discuss this a bit heuristically here,
and give a more precise construction in S2.8.

Indeed, in the case where 𝒴 “ 𝑆 P AffSch, this action is characterized by the formula:

𝑓˚,𝑑𝑅p𝑓
!pFq

!
b Gq “ F

!
b 𝑓˚,𝑑𝑅pGq

for 𝑓 : 𝑆 Ñ 𝑇 with 𝑇 P AffSch𝑓.𝑡., F P 𝐷!p𝑇 q “ 𝐷p𝑇 q, and G P 𝐷˚p𝑆q. In the case of general 𝒴, this
action is characterized by the formula:

F
!
b 𝑔˚,𝑑𝑅pGq “ 𝑔˚,𝑑𝑅p𝑔

!pFq
!
b Gq

for 𝑔 : 𝑆 Ñ 𝒴 with 𝑆 P AffSch, F P 𝐷!p𝒴q, and G P 𝐷˚p𝑆q.
Moreover, for 𝑓 : 𝒴 Ñ 𝒵 any morphism, 𝑓˚,𝑑𝑅 : 𝐷˚p𝒴q Ñ 𝐷˚p𝒵q is (canonically) a morphism of

𝐷!p𝒴q-module categories. We remark that this structure encodes the projection formula.

2.8. Here is a more precise construction of the above structures.
Let C (temporarily) denote the category whose objects are pairs A P ComAlgpDGCat𝑐𝑜𝑛𝑡q and

M a module for A in DGCat𝑐𝑜𝑛𝑡, and where morphisms pA,Mq Ñ pB,Nq are pairs of a symmet-
ric monoidal and continuous functor A Ñ B plus N Ñ M a continuous morphism of A-module
categories (where the A-module category structure on N is induced by AÑ B).

Now observe that there is a functor 𝐷 : Sch𝑓.𝑡.,𝑜𝑝 Ñ C sending 𝑆 to p𝐷p𝑆q, 𝐷p𝑆qq equipped with
upper-! functoriality in the first variable and lower-* functoriality in the second variable. Indeed,
this follows from the formalism of correspondences from [GR].

Then we obtain a AffSch𝑜𝑝 Ñ C sending 𝑆 to the pair p𝐷!p𝑆q, 𝐷˚p𝑆qq as the left Kan extension
of the [GR] functor. Indeed, one computes filtered colimits in C as a colimit in the first variable
and a limit in the second variable.
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This treats the projection formula in the case of schemes, and the same method works for general
prestacks.

3. D-modules on schemes

3.1. In this section, we treat 𝐷! and 𝐷˚ in the special case of (quasi-compact quasi-separated)
schemes.

The main idea is to use Noetherian approximation (c.f. S3.2) to reinterpret 𝐷! and 𝐷˚ on such
schemes. This will give us a handle on (possibly non-affine) morphisms of finite presentation, which
allows us to increase the functoriality of this functors.

3.2. Noetherian approximation. We begin with a brief review of the theory of Noetherian
approximation (alias: Noetherian descent). This theory is due to [Gro] and [TT].

3.3. Let 𝑆 be a quasi-compact quasi-separated base scheme. Let Sch𝑓.𝑝.
{𝑆 denote the category of

schemes finitely presentated (in particular: quasi-separated) over 𝑆. If 𝑆 is Noetherian we will also

use the notation Sch𝑓.𝑡.
{𝑆 because in this case finite type is equivalent to finite presentation.

We say an 𝑆-scheme 𝑇 is almost affine if for every 𝑆1 Ñ 𝑆 of finite presentation every map
𝑇 Ñ 𝑆1 factors as 𝑇 Ñ 𝑇 1 Ñ 𝑆1 where 𝑇 Ñ 𝑇 1 is affine and 𝑇 1 Ñ 𝑆1 is finitely presented. Let
Schal.aff{𝑆 denote the category of almost affine 𝑆-schemes.

Let ProaffpSch𝑓.𝑝.
{𝑆 q denote the full subcategory of PropSch𝑓.𝑝.

{𝑆 q consisting of objects 𝑇 that arise

as filtered limits 𝑇 “ lim 𝑇𝑖 of finitely presented 𝑆-schemes under affine structural morphisms
𝑇𝑗 Ñ 𝑇𝑖. We recall that projective limits of such systems exist and that if each 𝑇𝑖 is affine over 𝑆
then 𝑇 is as well. Clearly such limits commute with base-change.

3.4. The main result of Noetherian approximation is the following, due to [Gro] S8 and [TT]
Appendix C.

Theorem 3.4.1. (1) The right Kan extension:

ProaffpSch𝑓.𝑝.
{𝑆 q Ñ Sch{𝑆

of the embedding Sch𝑓.𝑝.
{𝑆 ãÑ Sch{𝑆 is defined and is fully-faithful. This right Kan extension

maps into Sch𝑎𝑙.𝑎𝑓𝑓
{𝑆 . If 𝑆 is Noetherian and affine, then the essential image of this functor is

all schemes over 𝑆 that are quasi-compact and quasi-separated (in particular, quasi-compact
quasi-separated 𝑘-schemes are almost affine).

(2) Suppose 𝑇 “ lim 𝑇𝑖 is a filtered limit with each 𝑇𝑖 finitely presented over 𝑆 and 𝑇𝑗 Ñ 𝑇𝑖
affine. Then if 𝑇 1 is a finitely presented 𝑇 -scheme there exists an index 𝑖 and a 𝑇𝑖-scheme
𝑇 1𝑖 of finite presentation such that 𝑇 1 “ 𝑇 1𝑖 ˆ𝑇𝑖 𝑇 (as a 𝑇 -scheme).

Moreover, if the map 𝑇 1 Ñ 𝑇 has any (finite) subset of the properties of being (e.g.)
smooth, flat, proper, or surjective, then 𝑇 1𝑖 Ñ 𝑇𝑖 may be taken to have the same properties.

(3) Suppose 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 as in (2). Then if 𝑇 Ñ 𝑆 is an affine morphism, then there exists
𝑖0 P I such that for every 𝑖 P I𝑖0{, 𝑇𝑖 Ñ 𝑆 is affine.

(4) Suppose that 𝑇 “ lim 𝑇𝑖 as in (2) and 𝑈 Ď 𝑇 is a quasi-compact open subscheme. Then for
some index 𝑖 P I and open 𝑈𝑖 Ď 𝑇𝑖 we have 𝑈 “ 𝑈𝑖 ˆ𝑇𝑖 𝑇 (as 𝑇 -schemes).

Remark 3.4.2. We note that (3) appears in [TT] as Proposition C.6, where it is stated only in the
case that 𝑆 is affine. However, this immediately generalizes, since 𝑆 is assumed quasi-compact and
therefore admits a finite cover by affines.
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3.5. We will also use the following technical result.

Proposition 3.5.1. Suppose that 𝑇 “ lim𝑖PI 𝑇𝑖 is a filtered limit of schemes under affine structure
maps. Let 𝛼𝑖 : 𝑇 Ñ 𝑇𝑖 denote the structure maps. Then passing to cotangent complexes, the
canonical map:

colim
𝑖PI

𝛼˚𝑖 pΩ
1
𝑇𝑖q Ñ Ω1

𝑇 P QCohp𝑇 q
ď0

is an equivalence. (Here e.g. Ω1
𝑇 denotes the whole cotangent complex).

Proof. Let DGSch denote the category of DG schemes. Note that filtered limits of derived schemes
under affine structural maps exists as well, and satisfy the same properties as in the non-derived
case: namely, if 𝑇 “ lim 𝑇𝑖 in DGSch is a filtered limit under affine structural maps of affine 𝑆-
schemes, then 𝑇 is affine over 𝑆 as well. In particular, we deduce that Sch Ď DGSch is closed under
such limits.

Now the result follows immediately from the description of the cotangent complex in terms of
square-zero extensions in derived algebraic geometry.

�

3.6. 𝐷!-modules. Let Sch𝑞𝑐𝑞𝑠 denote the category of quasi-compact quasi-separated 𝑘- schemes.
Let 𝑆 P Sch𝑞𝑐𝑞𝑠 be fixed.

By Theorem 3.4.1, we can write 𝑆 “ lim 𝑆𝑖 with 𝑆𝑖 P Sch
𝑓.𝑡. and all structure morphisms affine.

Proposition 3.6.1. The canonical morphism:

colim
𝑖

𝐷p𝑆𝑖q Ñ 𝐷!p𝑆q P DGCat𝑐𝑜𝑛𝑡 (3.6.1)

is an equivalence.

Remark 3.6.2. This claim is immediate from Theorem 3.4.1 (3) if 𝑆 is affine.

The proof is deferred to S3.13. In the meantime, we will give some preliminary constructions on
the left hand side of (3.6.1).

3.7. First, we claim that the left hand side of (3.6.1) is independent of the choice of way of writing
𝑆 “ lim 𝑆𝑖 with the above properties.

By Theorem 3.4.1, Sch𝑞𝑐𝑞𝑠 is a full subcategory of PropSch𝑓.𝑡.q. We define the functor r𝐷! :

Sch𝑜𝑝𝑞𝑐𝑞𝑠 Ñ DGCat𝑐𝑜𝑛𝑡 as the left Kan extension of the functor 𝐷 : Sch𝑓.𝑡.,𝑜𝑝 Ñ DGCat𝑐𝑜𝑛𝑡.

Remark 3.7.1. Suppose that C0 is an (essentially small) category and C Ď IndpC0q is a full sub-
category containing C0. Suppose that we are given 𝐹 : C Ñ D a functor that is the left Kan
extension of its restriction to C0. Then for any filtered colimit 𝑋 “ colim𝑖𝑋𝑖 P C in IndpC0q, we
have 𝐹 p𝑋q “ colim𝐹 p𝑋𝑖q. Indeed, by definition:

𝐹 p𝑋q “ colim
𝑋 1Ñ𝑋,𝑋 1PC0

𝐹 p𝑋 1q.

But this also computes the left Kan extension from C0 to IndpC0q. Therefore, this claim reduces to
the case C “ IndpC0q, where it is well-known.

Applying this remark in our setting, we see that r𝐷!p𝑆q computes the left hand side of (3.6.1).
Therefore, we need to show that the map:

r𝐷!p𝑆q Ñ 𝐷!p𝑆q
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is an equivalence.

Notation 3.7.2. For 𝑓 : 𝑆 Ñ 𝑇 P Sch𝑞𝑐𝑞𝑠, we let 𝑓 ! : r𝐷!p𝑇 q Ñ r𝐷!p𝑆q denote the induced functor: this

is hardly an abuse, since we will eventually be identifying this functor with 𝑓 ! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q.

3.8. Correspondences. Next, we extend the functoriality of r𝐷!.
Let Sch𝑓.𝑡.𝑐𝑜𝑟𝑟 be the (1,1)-category of finite type schemes under correspondences. By [GR], we have

the functor 𝐷 : Sch𝑓.𝑡.𝑐𝑜𝑟𝑟 Ñ DGCat𝑐𝑜𝑛𝑡 that attaches to a finite type scheme 𝑇 its category 𝐷p𝑇 q of

𝐷-modules and to a correspondence 𝑇 𝐻
𝛼oo 𝛽 // 𝑆 (i.e., a map 𝑇 Ñ 𝑆 in Sch𝑐𝑜𝑟𝑟) attaches

the functor 𝛽˚,𝑑𝑅𝛼
!.

Let Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑎𝑙𝑙,𝑓.𝑝. denote the category of quasi-compact quasi-separated schemes under cor-
respondences of the form:

𝐻
𝛼

~~

𝛽

��
𝑇 𝑆

where 𝐻 P Sch𝑞𝑐𝑞𝑠, 𝛽 is finitely presented and 𝛼 is arbitrary. Note that Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑎𝑙𝑙,𝑓.𝑝 contains

Sch𝑓.𝑝.𝑐𝑜𝑟𝑟 as a full subcategory. It also contains Sch𝑜𝑝𝑞𝑐𝑞𝑠 as a non-full subcategory where morphisms
are correspondences where the right arrow is an isomorphism.

We define the functor:

r𝐷!,𝑒𝑛ℎ : Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑎𝑙𝑙,𝑓.𝑝. Ñ DGCat𝑐𝑜𝑛𝑡

by left Kan extension from Sch𝑓.𝑡.𝑐𝑜𝑟𝑟.

Proposition 3.8.1. The restriction of r𝐷!,𝑒𝑛ℎ to Sch𝑜𝑝𝑞𝑐𝑞𝑠 canonically identifies with the functor
r𝐷! : Sch𝑜𝑝𝑞𝑐𝑞𝑠 Ñ DGCat𝑐𝑜𝑛𝑡.

The proof will be given in S3.11.

3.9. We assume Proposition 3.8.1 until S3.10 so that we can discuss its consequences.

For 𝑓 : 𝑇 Ñ 𝑆 a map of quasi-compact quasi-separated schemes, the induced functor r𝐷!,𝑒𝑛ℎp𝑆q “
r𝐷!p𝑆q Ñ r𝐷!,𝑒𝑛ℎp𝑇 q “ r𝐷!p𝑇 q coincides with 𝑓 !. If 𝑓 is finitely presented we will denote the corre-

sponding functor r𝐷!p𝑇 q Ñ r𝐷!p𝑆q by 𝑓˚,!´𝑑𝑅 (to avoid confusion with the functor 𝑓˚,𝑑𝑅 : 𝐷˚p𝑇 q Ñ
𝐷˚p𝑆q defined in S3.18 below). We refer to the functor 𝑓˚,!´𝑑𝑅 as the “!-dR ˚-pushforward functor.”

Note that the formalism of correspondences implies that we have base-change between ˚-pushforward
and !-pullback for Cartesian squares.

Remark 3.9.1. Suppose that 𝑓 : 𝑇 Ñ 𝑆 is finitely presented. One can compute the functor 𝑓˚,!´𝑑𝑅
“algorithmically” as follows. Let 𝑓 be obtained by base-change from 𝑓 1 : 𝑇 1 Ñ 𝑆1 a map of schemes
of finite type via a map 𝑆 Ñ 𝑆1. Write 𝑆 “ lim 𝑆𝑖 where structure maps are affine and each 𝑆𝑖 is
a finite type 𝑆1-scheme. Then 𝑇 “ lim 𝑇𝑖 for 𝑇𝑖 :“ 𝑆𝑖 ˆ𝑆1 𝑇

1. Let 𝛼𝑖 : 𝑆 Ñ 𝑆𝑖, 𝛽𝑖 : 𝑇 Ñ 𝑇𝑖 and
𝑓𝑖 : 𝑇𝑖 Ñ 𝑆𝑖 be the tautological maps.

Then for ℱ P 𝐷p𝑇𝑖q we have 𝑓˚,!´𝑑𝑅p𝛽
!
𝑖pℱqq “ 𝛼!

𝑖𝑓𝑖,˚,𝑑𝑅pℱq, which completely determines the
functor 𝑓˚,!´𝑑𝑅.

One readily deduces the following result from [GR].
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Proposition 3.9.2. If 𝑓 : 𝑆 Ñ 𝑇 is a proper (in particular, finitely presented) morphism of
quasi-compact quasi-separated schemes, then 𝑓 ! is canonically the right adjoint to 𝑓˚,!´𝑑𝑅. This
identification is compatible with the correspondence structure: e.g., given a Cartesian diagram:

𝑆1

𝑓 1

��

𝜓 // 𝑆

𝑓
��

𝑇 1
𝜙 // 𝑇

with 𝑓 proper, the identification:

𝑓˚,𝑑𝑅𝜙
! »ÝÑ 𝜓!𝑓 1˚,!´𝑑𝑅

arising from the correspondence formalism is given by the adjunction morphism.

Similarly, we have the following.

Proposition 3.9.3. If 𝑓 : 𝑆 Ñ 𝑇 is a smooth finitely presented map of quasi-compact quasi-
separated schemes, then 𝑓 !r´2 ¨ 𝑑𝑆{𝑇 s is left adjoint to 𝑓˚,!´𝑑𝑅. Here 𝑑𝑆{𝑇 is the rank of Ω1

𝑆{𝑇

regarded as a locally constant function on 𝑆.

Remark 3.9.4. By a locally constant function 𝑇 Ñ Z on a scheme 𝑇 , we mean a morphism of 𝑇 Ñ Z
with Z considered as the indscheme

š

𝑛PZ Specp𝑘q.
If 𝑇 is quasi-compact quasi-separated and therefore a pro-finite type scheme 𝑇 “ lim 𝑇𝑖 (under

affine structure maps), then, by Noetherian approximation, any locally constant function on 𝑇
arises by pullback from one on some 𝑇𝑖. In other words, if we define 𝜋0p𝑇 q as the profinite set
lim𝑖 𝜋0p𝑇𝑖q, then locally constant functions on 𝑇 are equivalent to continuous functions on 𝜋0p𝑇 q.

Remark 3.9.5. Recall that there is an automatic projection formula given the correspondence frame-
work. Indeed, for 𝑓 : 𝑆 Ñ 𝑇 a finitely presented map of quasi-compact quasi-separated schemes,

F P r𝐷!p𝑇 q and G P r𝐷!p𝑆q, we have a canonical isomorphisms:

𝑓˚,!´𝑑𝑅
`

𝑓 !pFq
!
b G

˘

» F
!
b 𝑓˚,!´𝑑𝑅pGq

coming base-change for F b G P r𝐷!p𝑇 ˆ 𝑆q and the Cartesian diagram:

𝑆

𝑓
��

Γ𝑓 // 𝑇 ˆ 𝑆

id𝑇 ˆ𝑓
��

𝑇
Δ𝑇 // 𝑇 ˆ 𝑇

where Γ𝑓 is the graph of 𝑓 and ∆𝑇 is the diagonal.
By the finite type case, these isomorphisms are given by the adjunctions of Proposition 3.9.2 and

3.9.3 when 𝑓 is proper or smooth.

3.10. In the proof of Proposition 3.8.1 we will need the following technical result.
Let 𝑇 be a quasi-compact quasi-separated scheme. Consider the category 𝒞𝑇 of correspondences:

𝒞𝑇 :“ t 𝑆 𝐻
𝛼oo 𝛽 // 𝑇 | 𝛽 finitely presented, 𝑆 P Sch𝑓.𝑡. and 𝐻 P Sch𝑞𝑐𝑞𝑠u.

Here, as usual, compositions are given by fiber products.
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Note that 𝒞𝑇 contains as a non-full subcategory Sch𝑓.𝑡.,𝑜𝑝𝑇 { of maps 7 : 𝑇 Ñ 𝑆 with 𝑆 P Sch𝑓.𝑡.,

where given such a map we attach the correspondence 𝑆 𝑇
7oo id𝑇 // 𝑇 .

Lemma 3.10.1. The embedding Sch𝑓.𝑡.𝑇 { Ñ 𝒞𝑇 is cofinal.

Proof. Fix a correspondence p 𝑆 𝐻
𝛼oo 𝛽 // 𝑇 q P 𝒞𝑇 . Translating Lurie’s 8-categorical Quillen

Theorem A to this setting, we need to show the contractibility of the category C of commutative
diagrams:

𝐻

𝛽
��

𝛿 // 𝐻 1

𝛽1

��

𝜖

  
𝑇

7 // 𝑇 1 𝑆

such that the square on the left is Cartesian, 𝐻 1, 𝑇 1 P Sch𝑓.𝑡. and 𝜖 ˝ 𝛿 “ 𝛼. Here a morphism from
one such diagram (denoted with subscripts “1”) to another such diagram (denoted with subscripts
“2”) is given by maps 𝑓 : 𝑇 11 Ñ 𝑇 12 and 𝑔 : 𝐻 11 Ñ 𝐻 12 such that the following diagram commutes
and all squares are Cartesian:

𝐻

𝛽

��

𝛿1
//

𝛿2

((
𝐻 11

𝛽11
��

𝑔
// 𝐻 12

𝛽12
��

𝜖2

��
𝑇

71 //

72

66𝑇 11
𝑓 // 𝑇 12 𝑆.

First, we observe that the category C is non-empty. Indeed, because 𝛽 is finitely presented we
can find 𝑇 Ñ 𝑇 1 P Sch𝑓.𝑡. and 𝛽1 : 𝐻 1 Ñ 𝑇 1 so that 𝐻 is obtained from 𝐻 1 by base-change. Noting
that 𝐻 can be written as a limit under affine transition maps of 𝐻 1 obtained in this way and 𝑆 is
finite type, we see that 𝐻 Ñ 𝑆 must factor though some 𝐻 1 obtained in this way.

To see that C is contractible, note that C admits non-empty finite limits (because Sch admits
finite limits) and therefore C𝑜𝑝 is filtered.

�

3.11. We now prove Proposition 3.8.1.

Proof of Proposition 3.8.1. We have an obvious natural transformation r𝐷! Ñ r𝐷!,𝑒𝑛ℎ|Sch𝑜𝑝𝑞𝑐𝑞𝑠 . It

suffices to see that this natural transformation is an equivalence when evaluated on any fixed
𝑇 P Sch𝑞𝑐𝑞𝑠.

With the notation of S3.10, r𝐷!,𝑒𝑛ℎ is by definition the colimit over p 𝑆 𝐻
𝛼oo 𝛽 // 𝑇 q P 𝒞𝑇 of

the category 𝐷p𝑆q. By Lemma 3.10.1, this coincides with the colimit over diagrams where 𝛽 is an
isomorphism, as desired.

�

Remark 3.11.1. Neither Lemma 3.10.1 nor Proposition 3.8.1 is particular to schemes, but rather a
general interaction between pro-objects in a category with finite limits and correspondences.
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3.12. Descent. Next, we discuss descent for r𝐷!.
For a map 𝑓 : 𝑆 Ñ 𝑇 of schemes and r𝑛s PΔ let Cech𝑛p𝑆{𝑇 q be defined as:

Cech𝑛p𝑆{𝑇 q :“ 𝑆 ˆ
𝑇
. . .ˆ

𝑇
𝑆

looooomooooon

𝑛 times

.

Of course, r𝑛s ÞÑ Cech𝑛p𝑆{𝑇 q forms a simplicial scheme in the usual way.
We use the terminology of Voevodsky’s ℎ-topology, developed in the infinite type setting in

[Ryd]. We simply recall that ℎ-coverings are finitely presented2 and include both the classes of fppf
coverings and proper3 coverings.

Proposition 3.12.1. Let 𝑓 : 𝑆 Ñ 𝑇 be an ℎ-covering of quasi-compact quasi-separated schemes.
Then the canonical functor (induced by pullback):

r𝐷!p𝑇 q Ñ lim
r𝑛sPΔ

r𝐷!pCech𝑛p𝑆{𝑇 qq (3.12.1)

is an equivalence.

Recall from [Ryd] Theorem 8.4 that the ℎ-topology of Sch𝑞𝑐𝑞𝑠 is generated by finitely presented
Zariski coverings4 and proper coverings. Therefore, it suffices to verify Lemmas 3.12.2 and 3.12.3
below.

Lemma 3.12.2. r𝐷! satisfies proper descent, i.e., for every 𝑓 : 𝑇 Ñ 𝑆 a proper (in particular,
finitely presented) surjective morphism of quasi-compact quasi-separated schemes the morphism
(3.12.1) is an equivalence.

Proof. We can find 𝑓 1 : 𝑆1 Ñ 𝑇 1 a proper covering between schemes of finite type and 𝑇 Ñ 𝑇 1 so
that 𝑓 is obtained by base-change. Let 𝑇 “ lim 𝑇𝑖 where each 𝑇𝑖 is a 𝑇 1-scheme of finite type and
structure maps are affine. Let 𝑆𝑖 :“ 𝑇𝑖 ˆ𝑇 1 𝑆

1.
We now decompose the map (3.12.1) as:

r𝐷!p𝑇 q “ colim
𝑖PI

𝐷p𝑇𝑖q
»
ÝÑ colim

𝑖PI
lim
r𝑛sPΔ

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq Ñ

lim
r𝑛sPΔ

colim
𝑖PI

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq “ lim
r𝑛sPΔ

𝐷pCech𝑛p𝑆{𝑇 qq.

Here the isomorphism is by ℎ-descent in the finite type setting.
Therefore, it suffices to see that the map:

colim
𝑖PI

lim
r𝑛sPΔ

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq Ñ lim
r𝑛sPΔ

colim
𝑖PI

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq

is an isomorphism. It suffices to verify the Beck-Chevalley conditions in this case (c.f. [Lur] Propo-
sition 6.2.3.19). For each 𝑖 P I and each map r𝑛s Ñ r𝑚s in I, the functor:

𝐷pCech𝑚p𝑆𝑖{𝑇𝑖qq Ñ 𝐷pCech𝑛p𝑆𝑗{𝑇𝑗qq

2More honestly: it seems there is a bit of disagreement in the literature whether ℎ-coverings are required to be finitely
presented or merely finite type. We are using the convention that they are finitely presented.
3We include “finitely presented” in the definition of proper.
4We explicitly note that these are necessarily finitely presented because we work only with quasi-compact quasi-
separated schemes. That is, any open embedding of quasi-compact quasi-separated schemes is necessarily of finite
presentation: the only condition to check is that it is a quasi-compact morphism, and any morphism of quasi-compact
schemes is itself quasi-compact.
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admits a left adjoint given by the !-dR ˚-pushforward as in Proposition 3.9.2. By base change
between upper-! and !-dR ˚-pushfoward (Proposition 3.8.1), the Beck-Chevalley conditions are
satisfied, since for every 𝑗 Ñ 𝑖 in I and r𝑛s Ñ r𝑚s in Δ the diagram:

Cech𝑚p𝑆𝑖{𝑇𝑖q

��

// Cech𝑛p𝑆𝑗{𝑇𝑗q

��
Cech𝑛p𝑆𝑖{𝑇𝑖q // Cech𝑚p𝑆𝑗{𝑇𝑗q

is Cartesian.
�

Lemma 3.12.3. r𝐷! : Sch𝑜𝑝𝑞𝑐𝑞𝑠 Ñ DGCat𝑐𝑜𝑛𝑡 satisfies quasi-compact Zariski descent.

Proof. It suffices to show for every 𝑆 a quasi-compact quasi-separated scheme and 𝑆 “ 𝑈 Y 𝑉 a
Zariski open covering of 𝑆 by quasi-compact open subschemes that the canonical map:

r𝐷!p𝑆q Ñ r𝐷!p𝑈q ˆ
r𝐷!p𝑈X𝑉 q

r𝐷!p𝑉 q

is an equivalence.
Let 𝑗𝑈 : 𝑈 Ñ 𝑆, 𝑗𝑉 : 𝑉 Ñ 𝑆 and 𝑗𝑈X𝑉 : 𝑈X𝑉 Ñ 𝑆 denote the corresponding (finitely presented)

open embeddings.
Define a functor:

r𝐷!p𝑈q ˆ
r𝐷!p𝑈X𝑉 q

r𝐷!p𝑉 q Ñ r𝐷!p𝑆q

´

F𝑈 P r𝐷!p𝑈q,F𝑉 P r𝐷!p𝑉 q,F𝑈 |𝑈X𝑉 » F𝑉 |𝑈X𝑉 “: F𝑈X𝑉 P r𝐷!p𝑈 X 𝑉 q
¯

ÞÑ

Ker
´

𝑗𝑈,˚,!´𝑑𝑅pF𝑈 q ‘ 𝑗𝑉,˚,!´𝑑𝑅pF𝑉 q Ñ 𝑗𝑈X𝑉,˚,!´𝑑𝑅pF𝑈X𝑉 q
¯

.

We claim that this functor is inverse to the above.
Note that e.g. 𝑗𝑈,˚,!´𝑑𝑅 : r𝐷!p𝑈q Ñ r𝐷!p𝑆q is fully-faithful. Indeed, by Proposition 3.9.3 we have

an adjunction between 𝑗!𝑈 and 𝑗𝑈,˚,!´𝑑𝑅. The counit:

𝑗!𝑈𝑗𝑈,˚,!´𝑑𝑅 Ñ id
r𝐷!p𝑈q

is an equivalence by Remark 3.9.1 and the corresponding statement in the finite type setting. This
shows that the composition:

r𝐷!p𝑈q ˆ
r𝐷!p𝑈X𝑉 q

r𝐷!p𝑉 q Ñ r𝐷!p𝑆q Ñ r𝐷!p𝑈q ˆ
r𝐷!p𝑈X𝑉 q

r𝐷!p𝑉 q

is the identity.
For the other direction, note that we have a canonical map:

id
r𝐷!p𝑆q

Ñ Ker
`

𝑗𝑈,˚,!´𝑑𝑅 𝑗
!
𝑈 ‘ 𝑗𝑉,˚,!´𝑑𝑅 𝑗

!
𝑉 Ñ 𝑗𝑈X𝑉,˚,!´𝑑𝑅 𝑗

!
𝑈X𝑉

˘

and it suffices to see that this map is an equivalence. But this again follows by reduction to the
finite presentation case via Remark 3.9.1.

�
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3.13. By Lemma 3.12.3, to prove Proposition 3.6.1, it suffices to observe the following result.

Lemma 3.13.1. 𝐷! satisfies descent with respect to quasi-compact Zariski coverings.

Proof. As in S3.8, for 𝑓 : 𝒴 Ñ 𝒵 an affine (in particular, schematic) and finitely presented morphism
of prestacks, there is a functor 𝑓˚,!´𝑑𝑅 : 𝐷!p𝒴q Ñ 𝐷!p𝒵q characterized by the fact that it satisfies
base-change with the upper-! functors, and coincides with the usual pushforward functor in the
finite type setting. Moreover, if 𝑓 is an open embedding, then we have an adjunction p𝑓 !, 𝑓˚,!´𝑑𝑅q,
and 𝑓˚,!´𝑑𝑅 is fully-faithful.

We prove the following two results by induction.

p𝐴𝑛q: For 𝑆 P AffSch and 𝑗 : 𝑈 ãÑ 𝑆 a quasi-compact open subscheme admitting a cover by
𝑛 affine schemes, the restriction functor 𝑗! : 𝐷!p𝑆q Ñ 𝐷!p𝑈q admits a fully-faithful right
adjoint 𝑗˚,!´𝑑𝑅. Formation of 𝑗˚,!´𝑑𝑅 commutes with base-change with respect to maps
𝑇 Ñ 𝑆 P AffSch.

p𝐵𝑛q: For 𝑆 P AffSch and a cover 𝑆 “ 𝑈 X 𝑉 by quasi-compact Zariski open subschemes with 𝑉
affine and 𝑈 admitting an open cover by 𝑛 affine schemes, the functor:

𝐷!p𝑆q Ñ 𝐷!p𝑈q ˆ
𝐷!p𝑈X𝑉 q

𝐷!p𝑉 q

is an equivalence.

We have already observed that 𝐴1 is true. Moreover, the statement 𝐴𝑛 implies 𝐵𝑛 by the same
argument as in Lemma 3.12.3. Therefore, we should show that 𝐴𝑛 and 𝐵𝑛 imply 𝐴𝑛`1.

Chose a cover 𝑈1 Y 𝑈2 with 𝑈2 affine and 𝑈1 admitting a covering by 𝑛 affine schemes. By 𝐵𝑛,
we have:

𝐷!p𝑈q » 𝐷!p𝑈1q ˆ
𝐷!p𝑈1X𝑈2q

𝐷!p𝑈2q.

Noting that 𝑈1 X 𝑈2 ãÑ 𝑈1 is an affine morphism and therefore this intersection admits a cover by
𝑛 affines, we can construct this right adjoint as:

𝐷!p𝑈1q ˆ
𝐷!p𝑈1X𝑈2q

𝐷!p𝑈2q Ñ 𝐷!p𝑆q

´

F1 P 𝐷
!p𝑈1q,F2 P 𝐷

!p𝑈2q,F1|𝑈1X𝑈2 » F2|𝑈1X𝑈2 “: F12 P 𝐷
!p𝑈1 X 𝑈2q

¯

ÞÑ

Ker
´

𝑗1,˚,!´𝑑𝑅pF1q ‘ 𝑗2,˚,!´𝑑𝑅pF2q Ñ 𝑗12,˚,!´𝑑𝑅pF12q

¯

where 𝑗1, 𝑗2 and 𝑗12 respectively denote the embeddings of 𝑈1, 𝑈2 and 𝑈12 into 𝑆.
This completes the proof of our inductive statements.
By base-change, we obtain that for any quasi-compactopen embedding 𝑗 : 𝒰 ãÑ 𝒴, 𝑗! : 𝐷!p𝒴q Ñ

𝐷!p𝒰q admits a fully-faithful right adjoint 𝑗˚,!´𝑑𝑅 characterized by its compatibility with base-
change, and then the proof of Lemma 3.12.3 gives the desired descent claim.

�

3.14. Having proved Proposition 3.6.1, we no longer distinguish between r𝐷! and 𝐷!, denoting both
by 𝐷!.
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3.15. Here is a useful corollary of Proposition 3.6.1.

Corollary 3.15.1. For 𝑆, 𝑇 P Sch𝑞𝑐𝑞𝑠, the functor:

𝐷!p𝑆q b𝐷!p𝑇 q Ñ 𝐷!p𝑆 ˆ 𝑇 q

is an equivalence.

Proof. This is immediate from the r𝐷! perspective and the corresponding result for finite type
schemes.

�

3.16. Correspondences for prestacks. We say that a morphism 𝑓 : 𝒴 Ñ 𝒵 is finitely presented
if it is schematic, and if for any 𝑆 Ñ 𝒵 with 𝑆 P AffSch the map 𝒴 ˆ𝒵 𝑆 Ñ 𝑆 is finitely presented.

As another corollary of Proposition 3.6.1, we obtain that there is a functor 𝑓˚,!´𝑑𝑅 compatible
with base-change for any finitely presented morphism 𝑓 : 𝒴 Ñ 𝒵 of prestacks.

Remark 3.16.1. We emphasize that by schematic, we mean schematic in the sense of classical (i.e.,
non-derived) algebraic geometry, which is a more forgiving notion than that of derived algebraic
geometry. This is relevant, say, for considering the embedding of 0 inside of the indscheme associated
with an infinite-dimensional 𝑘-vector space, which is a classically schematic embedding but not a
DG schematic embedding.

3.17. Equivariant setting. Suppose that 𝑆 is a quasi-compact quasi-separated base scheme and
𝒢 Ñ 𝑆 is a quasi-separated quasi-compact group scheme over 𝑆.

Suppose that 𝑃 is a quasi-compact quasi-separated 𝑆-scheme with an action of 𝒢. In this case,
the semisimplicial bar complex:

. . .
//////// 𝒢 ˆ

𝑆
𝒢 ˆ
𝑆
𝑃

////// 𝒢 ˆ
𝑆
𝑃 //// 𝑃 (3.17.1)

induces the diagram:

𝐷!p𝑃 q //// 𝐷!p𝒢 ˆ
𝑆
𝑃 q

// //// 𝐷!p𝒢 ˆ
𝑆
𝒢 ˆ
𝑆
𝑃 q

//////// . . . .

and we define the 𝒢-equivariant derived category 𝐷!p𝑃 q𝒢 of 𝑃 to be the limit of this diagram.

Example 3.17.1. Suppose that 𝒢 is constant, i.e., 𝒢 “ 𝑆ˆ𝒢0 for some quasi-compact quasi- separated
group scheme 𝒢0 over Specp𝑘q. Then, by Corollary 3.15.1, 𝐷!p𝒢0q obtains a coalgebra structure in
DGCat𝑐𝑜𝑛𝑡 in the usual way (e.g. the comultiplication is !-pullback along the multiplication for 𝒢0).
As such, 𝐷!p𝒢0q coacts on 𝐷!p𝑃 q and 𝐷!p𝑃 q𝒢 is the usual (strongly) 𝒢0-equivariant category, i.e.,
the limit of the diagram:

𝐷!p𝑃 q // // 𝐷!p𝒢0q b𝐷
!p𝑃 q

////// 𝐷!p𝒢0q b𝐷
!p𝒢0q b𝐷

!p𝑃 q
//////// . . . .

Let 𝒫𝒢 Ñ 𝑆 be a 𝒢-torsor, i.e., 𝒢 acts on 𝒫𝒢 and after an appropriate fppf base-change 𝑆1 Ñ 𝑆
we have a 𝒢-equivariant identification:

𝒫𝒢 ˆ
𝑆
𝑆1 “ 𝒢 ˆ

𝑆
𝑆1.

We obtain a canonical functor:

𝜙 : 𝐷!p𝑆q Ñ 𝐷!p𝒫𝒢q
𝒢 .
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Proposition 3.17.2. In the above setting the functor 𝜙 is an equivalence.

Proof. By fppf descent (Proposition 3.12.1), we reduce to the case there 𝒫𝒢 is a trivial 𝒢-bundle
over 𝑇 , i.e., 𝒫𝒢 “ 𝒢 ˆ𝑆 𝑇 . Then the bar complex extends to a split simplicial object in the usual
way from which we deduce the result.

�

Remark 3.17.3. If 𝒫𝒢 Ñ 𝑆 is a 𝒢-torsor, we will sometimes summarize the situation in writing
𝑆 “ 𝒫𝒢{𝒢.

3.18. 𝐷˚-modules. Next, we discuss the ˚-theory of 𝐷-modules.
We have the following analogue of Proposition 3.6.1.

Proposition 3.18.1. For 𝑆 P Sch𝑞𝑐𝑞𝑠 written as 𝑆 “ lim𝑖 𝑆𝑖 with 𝑆𝑖 P Sch𝑓.𝑡. and all structure
morphisms affine, the functor:

𝐷˚p𝑆q Ñ lim
𝑆Ñ𝑆𝑖

𝐷˚p𝑆𝑖q P DGCat𝑐𝑜𝑛𝑡

is an equivalence.

Proof. The proof is similar to the proof of Proposition 3.6.1:

As before, we denote the right hand side of the above by r𝐷˚p𝑆q and note that it is independent
of the choice of presentation 𝑆 “ lim 𝑆𝑖.

The statement again reduces to an appropriate descent type statement. Namely, for every 𝑆 P
Sch𝑞𝑐𝑞𝑠 with cover 𝑆 “ 𝑈 Y𝑉 for 𝑈, 𝑉 quasi-compact open subschemes, we claim that the functors:

𝐷˚p𝑈q ‘
𝐷˚p𝑈X𝑉 q

𝐷˚p𝑉 q Ñ 𝐷˚p𝑆q

r𝐷˚p𝑈q ‘
r𝐷˚p𝑈X𝑉 q

r𝐷˚p𝑉 q Ñ r𝐷˚p𝑆q

are equivalences.

The key point again is that e.g. the pushforward functor 𝑗˚,𝑑𝑅 : 𝐷˚p𝑈q Ñ 𝐷˚p𝑆q (resp. r𝐷˚p𝑈q Ñ
r𝐷˚p𝑆q) is fully-faithful and admits a right adjoint compatible with base-change. This is an easy

reduction to the finite type case for r𝐷˚, and is proved for 𝐷˚ by the same method as how the
analogous statement was proved for 𝐷! (c.f. the proof of Proposition 3.13.1).

�

3.19. Recall that for 𝑆 a finite type scheme the category 𝐷p𝑆q is self-dual under Verdier duality
and for a map 𝑓 : 𝑇 Ñ 𝑆 between finite type schemes the functor dual to 𝑓 ! is 𝑓˚,𝑑𝑅. Therefore, for
𝑆 a quasi-compact quasi-separated scheme we obtain the following from [Gai1].

Proposition 3.19.1. If 𝐷!p𝑆q is a dualizable category, then its dual is canonically identified with
𝐷˚p𝑆q.

Note that in this case this is an identification of p𝐷!p𝑆q,
!
bq-module categories. Moreover, the

functor dual to 𝑓 ! continues to be 𝑓˚,𝑑𝑅.

3.20. Constant sheaf. For 𝑇 quasi-compact quasi-separated, there is a canonical constant sheaf
𝑘𝑇 P 𝐷

˚p𝑇 q constructed as follows.

For any 𝑆 P Sch𝑓.𝑡. and 𝛼 : 𝑇 Ñ 𝑆, we define an object “𝛼˚,𝑑𝑅p𝑘𝑇 q” P 𝐷p𝑆q “ 𝐷˚p𝑆q by the
formula:
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“𝛼˚,𝑑𝑅p𝑘𝑇 q” :“ colim
𝑇

𝛽
ÝÑ𝑇 1

7
ÝÑ𝑆

𝑇 1PSch𝑓.𝑡.,7˝𝛽“𝛼

7˚,𝑑𝑅p𝑘𝑇 1q.

For any triangle:

𝑇

𝛼
��

𝛼1 // 𝑆1

𝑆
𝑓

??

with 𝑆 and 𝑆1 P Sch𝑓.𝑡., we have a canonical isomorphism:

“𝛼1˚,𝑑𝑅p𝑘𝑇 q”
»
ÝÑ 𝑓˚,𝑑𝑅p“𝛼˚,𝑑𝑅p𝑘𝑇 q”q

and therefore we obtain the object 𝑘𝑇 P 𝐷
˚p𝑇 q (with each 𝛼˚,𝑑𝑅p𝑘𝑇 q “ “𝛼˚,𝑑𝑅p𝑘𝑇 q”) as desired.

Letting 𝑝𝑇 : 𝑇 Ñ Specp𝑘q denote the structure map, the continuous functor 𝑝˚,𝑑𝑅𝑇 : VectÑ 𝐷˚p𝑇 q
sending 𝑘 to 𝑘𝑇 is readily seen to be the left adjoint to 𝑝𝑇,˚,𝑑𝑅.

3.21. Correspondences. Next, we extend the functoriality of 𝐷˚ as in S3.8.
Let Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑓.𝑝.,𝑎𝑙𝑙 denote the category of quasi-compact quasi-separated schemes under cor-

respondences of the form:

𝐻
𝛼

~~

𝛽

��
𝑇 𝑆

where 𝐻 P Sch𝑞𝑐𝑞𝑠, 𝛼 is finitely presented and 𝛽 is arbitrary. Note that Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑓.𝑝.,𝑎𝑙𝑙 contains

Sch𝑓.𝑡.𝑐𝑜𝑟𝑟 as a full subcategory. It also contains Sch𝑞𝑐𝑞𝑠 as a non-full subcategory where morphisms
are correspondences where the left arrow is an isomorphism.

We define the functor:

𝐷˚,𝑒𝑛ℎ : Sch𝑞𝑐𝑞𝑠,𝑐𝑜𝑟𝑟;𝑓.𝑝.,𝑎𝑙𝑙 Ñ DGCat𝑐𝑜𝑛𝑡

by right Kan extension from Sch𝑓.𝑡.𝑐𝑜𝑟𝑟.
Like Proposition 3.8.1, the following is immediate from Lemma 3.10.1.

Proposition 3.21.1. The restriction of 𝐷˚,𝑒𝑛ℎ to Sch𝑞𝑐𝑞𝑠 canonically identifies with the functor
𝐷˚|Sch𝑞𝑐𝑞𝑠 : Sch𝑞𝑐𝑞𝑠 Ñ DGCat𝑐𝑜𝑛𝑡.

3.22. For 𝑓 : 𝑇 Ñ 𝑆 a map of quasi-compact quasi-separated schemes, the induced functor:

𝐷˚,𝑒𝑛ℎp𝑇 q “ 𝐷˚p𝑇 q Ñ 𝐷˚,𝑒𝑛ℎp𝑆q “ 𝐷˚p𝑆q

coincides with 𝑓˚,𝑑𝑅. If 𝑓 is finitely presented we will denote the corresponding functor 𝐷˚p𝑆q Ñ

𝐷˚p𝑇 q by 𝑓 ¡ to avoid confusion with the functor 𝑓 ! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q. Note that the formalism
of correspondences implies that we have base-change between ˚-pushforward and ¡-pullback for
Cartesian squares.

Remark 3.22.1. Suppose that 𝑓 : 𝑇 Ñ 𝑆 is finitely presented. One can compute the functor 𝑓 ¡

as follows. In the notation of Remark 3.9.1, for ℱ P 𝐷p𝑆q we have 𝛼𝑖,˚,𝑑𝑅𝑓
¡pℱq “ 𝑓 !𝑖𝛽𝑖,˚,𝑑𝑅pℱq by

base-change, computing 𝑓 ¡pℱq in 𝐷p𝑇 q “ lim𝐷p𝑇𝑖q as promised.
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One deduces from Remark 3.22.1 the following result.

Proposition 3.22.2. If 𝑓 : 𝑆 Ñ 𝑇 is a finitely presented proper morphism of quasi-compact
quasi-separated schemes, then 𝑓 ¡ is canonically the right adjoint to 𝑓˚,𝑑𝑅.

Similarly, we have:

Proposition 3.22.3. If 𝑓 : 𝑆 Ñ 𝑇 is a finitely presented smooth map of quasi-compact quasi-
separated schemes, then 𝑓 ¡r´2𝑑𝑆{𝑇 s is left adjoint to 𝑓˚,𝑑𝑅, with 𝑑𝑆{𝑇 as in Proposition 3.9.3.

3.23. Descent. Next, we discuss descent for 𝐷˚.

Proposition 3.23.1. For 𝑓 : 𝑆 Ñ 𝑇 an ℎ-covering of quasi-compact quasi-separated schemes the
functor:

𝐷˚p𝑇 q Ñ lim
𝑛PΔ

𝐷˚pCech𝑛p𝑆{𝑇 qq

induced by the functors 𝑓
¡
𝑛 with 𝑓𝑛 : Cech𝑛p𝑆{𝑇 q Ñ 𝑇 the canonical map is an equivalence.

Proof. Because 𝑓 is finite presentation we can apply Noetherian approximation to find 𝑓 1 : 𝑆1 Ñ 𝑇 1

an ℎ-covering between schemes of finite type and 𝑇 Ñ 𝑇 1 so that 𝑓 is obtained by base-change.
Let 𝑇 “ lim 𝑇𝑖 where each 𝑇𝑖 is a 𝑇 1-scheme of finite type (and structure maps are affine) and let
𝑆𝑖 :“ 𝑇𝑖 ˆ𝑇 1 𝑆

1.
Then each 𝑆𝑖 Ñ 𝑇𝑖 is an ℎ-covering between finite type schemes. Note that Cech𝑛p𝑆{𝑇 q “

lim Cech𝑛p𝑆𝑖{𝑇𝑖q.
Now we have:

𝐷˚p𝑇 q “ lim
𝑖PI𝑜𝑝

𝐷p𝑇𝑖q
»
ÝÑ lim

𝑖PI𝑜𝑝
lim
r𝑛sPΔ

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq “ lim
r𝑛sPΔ

lim
𝑖PI𝑜𝑝

𝐷pCech𝑛p𝑆𝑖{𝑇𝑖qq “ lim
r𝑛sPΔ

𝐷˚pCech𝑛p𝑆{𝑇 qq.

Here the indicated isomorphism is by usual ℎ-descent for finite type schemes and Proposition 3.21.1.
�

Variant 3.23.2. One can similarly show that the functor:

colim
r𝑛sPΔ

𝐷˚pCech𝑛p𝑆{𝑇 qq Ñ 𝐷˚p𝑇 q

defined by de Rham pushforwards is an equivalence for 𝑆 Ñ 𝑇 an ℎ-covering. Indeed: it is easy
to verify for Zariski coverings (the argument is basically the same as for Lemma 3.12.3), and for
proper coverings, it follows automatically from Proposition 3.23.1.

This is the statement that should properly be thought of as dual to Proposition 3.12.1.

3.24. Equivariant setting. Suppose that we are in the setting of S3.17, i.e., 𝒢 is a group scheme
over 𝑆 that acts on an 𝑆-scheme 𝑃 .

In this case, (3.17.1) defines the coequivariant derived category :

𝐷˚p𝑃 q𝒢 :“ colim
`

. . . .
//////// 𝐷
˚p𝒢 ˆ

𝑆
𝒢 ˆ
𝑆
𝑃 q

////// 𝐷˚p𝒢 ˆ
𝑆
𝑃 q //// 𝐷˚p𝑃 q

˘

(3.24.1)

with the colimit computed in DGCat𝑐𝑜𝑛𝑡.
The analogue of Proposition 3.17.2 holds in this setting: if 𝑃 Ñ 𝑆 is an 𝒢-torsor, we obtain a

functor:

𝐷˚p𝑃 q𝒢 Ñ 𝐷˚p𝑆q



D-MODULES ON INFINITE DIMENSIONAL VARIETIES 19

that is an equivalence by essentially the same argument as in loc. cit, but using Variant 3.23.2 of
Proposition 3.23.1.

4. Placidity

4.1. In this section, we introduce the notion of placidity and discuss its consequences.
Recall from S1.6 that placidity is a technical condition on the singularities of a scheme 𝑆 allowing

us to identify 𝐷!p𝑆q with 𝐷˚p𝑆q.
For a morphism 𝑓 : 𝑆 Ñ 𝑇 of placid schemes, we let 𝑓˚,𝑟𝑒𝑛 : 𝐷!p𝑆q Ñ 𝐷!p𝑇 q and 𝑓 !,𝑟𝑒𝑛 : 𝐷!p𝑇 q Ñ

𝐷!p𝑆q denote the corresponding functors, obtained through the above identification.
In general, these renormalized functors are very badly behaved, e.g., the pairs p𝑓 !, 𝑓˚,𝑟𝑒𝑛q and

p𝑓 !,𝑟𝑒𝑛, 𝑓˚,𝑑𝑅q do not satisfy base-change.
In S4.10, we introduce a notion of placid morphism, which is something like a pro-smooth mor-

phism. Proposition 4.11.1 (generalized to the indschematic setting by Proposition 6.18.1) says that
for placid morphism, 𝑓 ! is left adjoint to 𝑓˚,𝑟𝑒𝑛, and similarly, 𝑓 !,𝑟𝑒𝑛 is left adjoint 𝑓˚,𝑑𝑅. Here
the dimension shifts implicit in the infinite dimensional setting work out to eliminate the usual
cohomological shifts needed to make such statements in the finite dimensional setting.

Moreover, Proposition 4.11.1 implies that there are good base-change properties for placid mor-
phisms.

4.2. Definition of placidity. We now give the definition of placidity.

Definition 4.2.1. For 𝑇 P Sch we say an expression 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 is a placid presentation of 𝑇 if:

(1) The indexing category I is filtered.
(2) Each 𝑇𝑖 is finite type over 𝑘.
(3) For every 𝑖Ñ 𝑗 in I the corresponding map 𝑇𝑗 Ñ 𝑇𝑖 is an affine smooth covering.

We say that 𝑇 P Sch is placid if it admits a placid presentation.

Example 4.2.2. As is well known from the theory of group schemes, any affine group scheme is
placid (we need the characteristic zero assumption on 𝑘 here).

Example 4.2.3. Suppose that 𝑆 is a finite type scheme and 𝒢 Ñ 𝑆 is a projective limit under smooth
surjective affine maps of smooth 𝑆-group schemes. Suppose that 𝒫𝒢 Ñ 𝑆 is a 𝒢-torsor in the sense
of S3.17. Then 𝒫𝒢 is placid.

Example 4.2.4. For a Cartesian square:

𝑆2

��

// 𝑇2

��
𝑆1 // 𝑇1

with 𝑇1 finite type, 𝑆1 and 𝑇2 placid, the scheme 𝑆2 is necessarily placid.
Indeed, for 𝑆1 “ lim𝑖PI𝑜𝑝 𝑆1,𝑖 and 𝑇2 “ lim𝑗PJ𝑜𝑝 𝑇2,𝑗 placid presentations by 𝑇1-schemes, we have:

𝑆2 “ lim
p𝑖,𝑗qPI𝑜𝑝ˆJ𝑜𝑝

𝑆1,𝑖 ˆ
𝑇1
𝑇2,𝑗 .

Obviously all structure maps are smooth affine covers, so this is a placid presentation of 𝑆2.

Remark 4.2.5. By Noetherian descent, if 𝑆 is placid and 𝑇 Ñ 𝑆 is finite presentation, then 𝑇 is
placid as well. Moreover, there always exist placid presentations 𝑆 “ lim𝑖PI𝑜𝑝 𝑆𝑖, 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 and
compatible morphisms 𝑇𝑖 Ñ 𝑆𝑖 inducing 𝑇 Ñ 𝑆, and such that, for every 𝑖Ñ 𝑗 P I, the diagram:
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𝑇𝑗 //

��

𝑆𝑗

��
𝑇𝑖 // 𝑆𝑖

is Cartesian.

Remark 4.2.6. By [Gro] Corollary 8.3.7, given a placid presentation 𝑇 “ lim𝑖 𝑇𝑖, each structure
morphism 𝑇 Ñ 𝑇𝑖 is surjective on schematic points.

Remark 4.2.7. A placid scheme is automatically quasi-compact and quasi-separated.

Remark 4.2.8. As explained in [Dri], many natural schemes are Nisnevich (in particular: étale)
locally placid, but not themselves placid. Much of the material that follows generalizes without
difficulty to the case of Nisnevich locally placid schemes. However, we do not pursue this level of
generality here because for our later applications, only placid schemes (and indschemes) occur.

4.3. If 𝑇 is a placid scheme with placid presentation 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 then we have:

𝐷˚p𝑇 q “ colim
𝑖PI

𝐷p𝑇𝑖q (4.3.1)

where the structure functors are the ˚-pullback functors (defined because the maps 𝑇𝑗 Ñ 𝑇𝑖 are

smooth). For 𝑖 P I𝑜𝑝 and 𝑓𝑖 : 𝑇 Ñ 𝑇𝑖 the corresponding structure map, we let 𝑓˚,𝑑𝑅𝑖 denote the
functor 𝐷˚p𝑇𝑖q Ñ 𝐷˚p𝑇 q left adjoint to 𝑓𝑖,˚,𝑑𝑅.

In particular, we see that 𝐷˚p𝑇 q is compactly generated and therefore canonically dual to 𝐷!p𝑇 q,
which is also compactly generated. (Note that in the 𝐷!-case, compact objects are !-pullbacks of
compact objects from finite type schemes, where for 𝐷˚ they are ˚-pullbacks).

Similarly, we obtain:

𝐷!p𝑇 q “ lim
𝑖PI𝑜𝑝

𝐷p𝑇𝑖q (4.3.2)

where the structure functors are the right adjoints to the 𝑓 !𝑖 functors, i.e., shifted de Rham coho-
mology functors (again, these are adjoint by smoothness).

Remark 4.3.1. It follows from the identification of 𝐷˚ as a colimit that for placid 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖
as above and F P 𝐷˚p𝑇 q, the canonical map:

colim
𝑖PI

𝑓˚,𝑑𝑅𝑖 𝑓𝑖,˚,𝑑𝑅pFq Ñ F (4.3.3)

is an equivalence.

4.4. Let 𝑇 be a quasi-compact quasi-separated scheme.
Let Presp𝑇 q denote the 1-category whose objects are placid presentations pI, t𝑇𝑖u𝑖PIq of 𝑇 and

where morphisms pI, t𝑇 1
𝑖 u𝑖PIq Ñ pJ, t𝑇 2

𝑗 u𝑗PJq are given by a datum:

𝐹 : IÑ J and t𝑓𝑖 : 𝑇 1
𝑖 Ñ 𝑇 2

𝐹 p𝑖qu𝑖PI compatible morphisms of schemes under 𝑇.

One easily shows that Presp𝑇 q is filtered.
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4.5. Fix two placid presentations pI, t𝑇 1
𝑖 u𝑖PIq and pJ, t𝑇 2

𝑗 u𝑗PJq of a scheme 𝑇 . We will make use of
the following observation.

Lemma 4.5.1. For every 𝑗 P J and every factorization 𝑇 Ñ 𝑇 1
𝑖 Ñ 𝑇 2

𝑗 for 𝑖 P I, the morphism

𝑇 1
𝑖 Ñ 𝑇 2

𝑗 is smooth.

Proof. Suppose 𝑥 is a geometric point of 𝑇 . For each 𝑖1 P I, let 𝑥𝑖1 denote the corresponding
geometric point of 𝑇 1

𝑖1 .
Applying Proposition 3.5.1, we obtain:

Coker

ˆ

𝑥˚𝑖 pΩ
1
𝑇 1
𝑖 {𝑇

2
𝑗
q Ñ 𝑥˚pΩ1

𝑇 {𝑇 2
𝑗
q

˙

“ colim
𝑖1PI𝑖{

Coker

ˆ

𝑥˚𝑖 pΩ
1
𝑇 1
𝑖 {𝑇

2
𝑗
q Ñ 𝑥˚𝑖1pΩ

1
𝑇 1
𝑖1
{𝑇 2

𝑗
q

˙

“ colim
𝑖1PI𝑖{

𝑥˚𝑖1pΩ
1
𝑇 1
𝑖1
{𝑇 1

𝑖
q.

Because the structure maps 𝑇𝑗 Ñ 𝑇𝑖 are smooth the right hand side is a filtered limit of vector
spaces concentrated in degree 0 and therefore is concentrated in degree 0 as well.

On cohomology we obtain a long exact sequence with segments:

. . .Ñ 𝐻 𝑖´1
´

colim
𝑖1PI𝑖{

𝑥˚𝑖1pΩ
1
𝑇 1
𝑖1
{𝑇 1

𝑖
q

¯

Ñ 𝐻 𝑖
´

𝑥˚𝑖 pΩ
1
𝑇 1
𝑖 {𝑇

2
𝑗
q

¯

Ñ 𝐻 𝑖
´

𝑥˚pΩ1
𝑇 {𝑇 2

𝑗
q

¯

Ñ . . . .

The left term is zero for 𝑖 ‰ 1 and the right term is zero for 𝑖 ‰ 0. But 𝑥˚𝑖 pΩ
1
𝑇 1
𝑖 {𝑇

2
𝑗
q is tautologically

concentrated in degrees ď 0, so it is concentrated in degree 0 as desired.
�

4.6. Dimensions. We digress briefly to fix some terminology regarding dimensions.
Let 𝑇 be a finite type scheme. We define the dimension function dim𝑇 : 𝑇 Ñ Zě0 to be the locally

constant function that on a connected component is constant with value the Krull dimension of that
connected component (i.e., the maximal dimension of an irreducible component of this connected
component).

For 𝑓 : 𝑇 Ñ 𝑆 a map between finite type schemes, we let dim𝑇 {𝑆 : 𝑇 Ñ Z be the locally constant
function dim𝑇 ´𝑓

˚pdim𝑆q.

Example 4.6.1. If 𝑓 : 𝑇 Ñ 𝑆 is a smooth dominant morphism, then dim𝑇 {𝑆 is the rank of the vector

bundle Ω1
𝑇 {𝑆 .

Therefore, for a Cartesian diagram of finite type schemes:

𝑇 1

𝑔
��

𝜓 // 𝑇

𝑓
��

𝑆1
𝜙 // 𝑆

with 𝜙 and 𝜓 both dominant smooth morphisms, dim𝑇 1{𝑆1 “ 𝜓˚pdim𝑇 {𝑆q. In particular, this identity
holds whenever 𝜙 is a smooth covering map.

Counterexample 4.6.2. We need not have dim𝑇 {𝑆 “ 𝑑𝑆{𝑇 :“ rankpΩ1
𝑇 {𝑆q if 𝑓 : 𝑇 Ñ 𝑆 is smooth but

not dominant.
For example, let 𝑆 “ A2

š

0A1 be a line and a plane glued along a point, and let 𝑇 “ G𝑚 ˆ A1

mapping to 𝑆 via the composition:

G𝑚 ˆ A1 Ñ G𝑚 ãÑ A1 ãÑ A2
ž

0

A1.
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Then 𝑑𝑆{𝑇 the constant function 1, while dim𝑆{𝑇 is the constant function dim𝑇 ´dim𝑆 “ 2´2 “ 0.

Remark 4.6.3. By Remark 4.2.5, we see from Example 4.6.1 that dim𝑇 {𝑆 can be defined as a
locally constant function 𝑇 Ñ Z for any finitely presented morphism 𝑇 Ñ 𝑆 of placid schemes by
Noetherian descent.

Given a pair of finitely presented morphisms 𝑇
𝑓
ÝÑ 𝑆 Ñ 𝑉 of placid schemes, this construction

satisfies the basic compatibility:

dim𝑇 {𝑉 “ dim𝑇 {𝑆 ´𝑓
˚pdim𝑆{𝑉 q. (4.6.1)

4.7. Renormalized dualizing sheaf. Suppose that 𝑇 is placid scheme. We will now define the
renormalized dualizing sheaf 𝜔𝑟𝑒𝑛𝑇 P 𝐷˚p𝑇 q.

Fix a placid presentation 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 of 𝑇 . Because each structure map 𝜙𝑖𝑗 : 𝑇𝑗 Ñ 𝑇𝑖 is a
smooth covering, we have canonical identifications:

𝜙˚,𝑑𝑅𝑖𝑗 p𝜔𝑇𝑖r´2 ¨ dim𝑇𝑖sq “ 𝜔𝑇𝑗 r´2 ¨ pdim𝑇𝑗 qs.

Therefore we have a uniquely defined sheaf 𝜔𝑟𝑒𝑛𝑇 characterized by the fact that it is the ˚-pullback
of 𝜔𝑇𝑖r´2 ¨ dim𝑇𝑖s from any 𝑇𝑖 to 𝑇 .

We claim that 𝜔𝑟𝑒𝑛𝑇 canonically does not depend on the choice of placid presentation. Indeed,
this follows from Lemma 4.5.1 and by filteredness of Presp𝑇 q.

Example 4.7.1. Let 𝑇 be finite type. Then 𝜔𝑟𝑒𝑛𝑇 P 𝐷˚p𝑇 q “ 𝐷p𝑇 q identifies with 𝜔𝑇 r´2 ¨ dim𝑇 s.

Example 4.7.2. Suppose 𝑇 admits a placid presentation 𝑇 “ lim 𝑇𝑖 with each 𝑇𝑖 smooth. Then
𝜔𝑟𝑒𝑛𝑇 “ 𝑘𝑇 .

4.8. Suppose that 𝑇 is a placid scheme. We define the functor:

𝜂𝑇 : 𝐷!p𝑇 q Ñ 𝐷˚p𝑇 q

by action on 𝜔𝑟𝑒𝑛𝑇 .

Proposition 4.8.1. The functor 𝜂𝑇 is an equivalence.

Proof. Choose 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 a placid presentation. We claim that the functor:

𝜂𝑇 : 𝐷!p𝑇 q :“ colim
𝑖PI

𝐷p𝑇𝑖q Ñ 𝐷˚p𝑇 q
(4.3.1)
“ colim

𝑖PI
𝐷p𝑇𝑖q.

is the colimit of the shifted identity functors id𝐷p𝑇𝑖qr´2¨dim𝑇𝑖s. Indeed, the colimit of these functors

is a morphism of 𝐷!p𝑇 q-module categories and sends 𝜔𝑇 P 𝐷
!p𝑇 q to 𝜔𝑟𝑒𝑛𝑇 P 𝐷˚p𝑇 q.

Now the result obviously follows from this identification.
�

Example 4.8.2. If 𝑇 is finite type then 𝜂𝑇 is the composite equivalence 𝐷!p𝑇 q :“ 𝐷p𝑇 q “: 𝐷˚p𝑇 q
shifted by ´2 dim𝑇 .

4.9. Renormalized functors. Let 𝑓 : 𝑇 Ñ 𝑆 a map of placid schemes.
We let 𝑓˚,𝑟𝑒𝑛 : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q denote the induced functor so that we have the commutative

diagram:
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𝐷!p𝑇 q

» 𝜂𝑇

��

𝑓˚,𝑟𝑒𝑛 // 𝐷!p𝑆q

» 𝜂𝑆

��
𝐷˚p𝑇 q

𝑓˚,𝑑𝑅 // 𝐷˚p𝑆q.

In the same way we obtain the functor 𝑓 !,𝑟𝑒𝑛 : 𝐷˚p𝑆q Ñ 𝐷˚p𝑇 q fitting into a commutative
diagram:

𝐷˚p𝑆q
𝑓 !,𝑟𝑒𝑛 // 𝐷˚p𝑇 q

𝐷!p𝑆q

»𝜂𝑆

OO

𝑓 ! // 𝐷!p𝑇 q

»𝜂𝑇

OO

Note that we have a canonical isomorphism

𝑓 !,𝑟𝑒𝑛p𝜔𝑟𝑒𝑛𝑆 q “ 𝜔𝑟𝑒𝑛𝑇 (4.9.1)

because:

𝑓 !,𝑟𝑒𝑛p𝜔𝑟𝑒𝑛𝑆 q “ 𝑓 !p𝜔𝑆q
!
b 𝜔𝑟𝑒𝑛𝑇 “ 𝜔𝑇

!
b 𝜔𝑟𝑒𝑛𝑇 “ 𝜔𝑟𝑒𝑛𝑇 .

Example 4.9.1 (Renormalized functors in finite type: 𝐷!). Suppose 𝑓 : 𝑇 Ñ 𝑆 is a map between
finite type schemes. We identify 𝐷!p𝑆q and 𝐷!p𝑇 q with 𝐷p𝑆q and 𝐷p𝑇 q in the canonical way.

Then the functor 𝑓˚,𝑟𝑒𝑛 : 𝐷p𝑇 q Ñ 𝐷p𝑆q identifies with 𝑓˚,𝑑𝑅r´2 ¨ dim𝑇 {𝑆s. In particular, if 𝑓 is

smooth and dominant, then p𝑓 !, 𝑓˚,𝑟𝑒𝑛q form an adjoint pair of functors.
Note that in this setting the functor 𝑓˚,!´𝑑𝑅 coincides with the (non-renormalized) functor 𝑓˚,𝑑𝑅.

Warning 4.9.2. If 𝑓 : 𝑆 Ñ 𝑇 is a closed embedding of placid schemes, then 𝑓˚,𝑟𝑒𝑛 is not left adjoint

to 𝑓 ! (c.f. Example 4.9.1). In fact, if 𝑓 is a closed embedding of infinite codimension, then 𝑓˚,𝑟𝑒𝑛
does not preserve compact objects and therefore does not admit a continuous right adjoint at all.
Moreover, the composition 𝑓 !𝑓˚,𝑟𝑒𝑛 is typically zero in this case.

Warning 4.9.3. Given a Cartesian diagram:

𝑇1

𝜑
��

𝜓 // 𝑆1

𝑓
��

𝑇2
𝑔 // 𝑆2

of finite type schemes, we find that:

𝑓 !𝑔˚,𝑟𝑒𝑛 “ 𝑓 !𝑔˚,𝑑𝑅r´2 ¨ dim𝑇2{𝑆2
s “ 𝜓˚,𝑑𝑅𝜙

!r´2 ¨ dim𝑇2{𝑆2
s

while 𝜓˚,𝑟𝑒𝑛𝜙
! “ 𝜓˚,𝑑𝑅𝜙

!r´2 ¨ dim𝑇1{𝑆1
s. Since dimensions do not always behave well under base-

change, we see that base-change does not always hold between renormalized pushforward and
upper-!.
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Example 4.9.4 (Renormalized functors in finite type: 𝐷˚). Suppose 𝑓 : 𝑇 Ñ 𝑆 is a map between
finite type schemes. We identify 𝐷˚p𝑆q and 𝐷˚p𝑇 q with 𝐷p𝑆q and 𝐷p𝑇 q in the canonical way.

Then the functor 𝑓 !,𝑟𝑒𝑛 : 𝐷p𝑆q Ñ 𝐷p𝑇 q identifies with 𝑓 !p´qr´2 dim𝑇 {𝑆s. Note that if 𝑓 is smooth

and dominant, then 𝑓 !,𝑟𝑒𝑛 identifies canonically with 𝑓˚,𝑑𝑅.
The functor 𝑓 ¡ coincides with the (non-renormalized) functor 𝑓 !.

Remark 4.9.5. We emphasize explicitly that the “renormalization” here has nothing to do with the
renormalized de Rham cohomology functor from [DG]. Rather, the terminology is taken from [Dri]
S6.8.

4.10. Placid morphisms. We will now further analyze the renormalized functors under certain
very favorable circumstances.

We say a morphism 𝑓 : 𝑆 Ñ 𝑇 of placid schemes is placid if, for any placid presentations
𝑆 “ lim𝑖PI𝑜𝑝 𝑆𝑖, 𝑇 “ lim𝑗PJ𝑜𝑝 𝑇𝑗 , for every 𝑗 P J there exists 𝑖 P I with the morphism 𝑆 Ñ 𝑇 Ñ 𝑇𝑗
factoring as 𝑆 Ñ 𝑆𝑖 Ñ 𝑇𝑗 and with 𝑆𝑖 Ñ 𝑇𝑗 a smooth covering.

Obviously, if this holds for one pair of placid presentations then it holds for any.

Example 4.10.1. By Noetherian descent and Remark 4.2.6, a smooth morphism of finite presentation
which is surjective on geometric points is placid.

Example 4.10.2. Suppose that 𝑆 “ lim𝑖PI𝑜𝑝 𝑆𝑖 and 𝑇 “ lim𝑖PI𝑜𝑝 𝑇𝑖 are placid presentations, and
suppose that we are given compatible smooth coverings 𝑓𝑖 : 𝑆𝑖 Ñ 𝑇𝑖 inducing 𝑓 : 𝑆 Ñ 𝑇 . Then 𝑓 is
a placid morphism. We emphasize that by compatible we mean that the relevant squares commute,
not that they are Cartesian.

Remark 4.10.3. For categorical arguments, it is convenient to use the following formulation of this
definition.

Let Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣 denote the category of finite type schemes where we only allow smooth coverings
as morphisms. Let:

ProaffpSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ď PropSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q

denote the full subcategory where we only allow objects obtained as projective limits under mor-
phisms that are affine (in addition to being a priori smooth coverings).

Then the functor:

ProaffpSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ñ ProaffpSch𝑓.𝑡.q “ Sch𝑞𝑐𝑞𝑠
is a (non-full) embedding of categories. Indeed, this is a general feature: (non-full) embeddings
of p1, 1q-categories induce embeddings on Ind or Pro categories, since filtered limits and colimits
of injections in Set are still injections. Moreover, its essential image are placid schemes, and a
morphism lies in this non-full subcategory if and only if it is placid.

Observe that ProaffpSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ñ Sch𝑞𝑐𝑞𝑠 commutes with filtered projective limits with affine

structure maps, i.e., this functor is the right Kan extension of its restriction to Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣. In-

deed, Sch𝑞𝑐𝑞𝑠 Ď PropSch𝑓.𝑡.q commutes with such filtered projective limits, and ProaffpSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ď

PropSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q does too. Moreover, PropSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ñ PropSch𝑓.𝑡.q tautologically commutes with
filtered limits, proving the claim.

Warning 4.10.4. Against the usual conventions for terminology in algebraic geometry, placid mor-
phisms are not intended as a relative form of placidity.

Indeed, we can only speak about placid morphisms between between schemes already known to
be placid. Moreover, for a placid scheme 𝑆, the structure map 𝑆 Ñ Specp𝑘q may not be placid.
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The terminology is rather taken by analogy with the definition of placid schemes, as in Remark
4.10.3.

Counterexample 4.10.5. It may be tempting to think of placid morphisms as being analogous to
being a smooth covering morphisms, since this condition is equivalent for finite type schemes. The
following example is meant to show the geometric limitations of this line of thought.

Let A1 ˆ A𝑛 Ñ A1 ˆ A𝑛´1 by:

´

𝜆, p𝑥1, . . . , 𝑥𝑛q
¯

ÞÑ

´

𝜆, p𝑥1 ´ 𝜆 ¨ 𝑥2, . . . , 𝑥𝑛´1 ´ 𝜆 ¨ 𝑥𝑛q
¯

.

Each of these morphisms is a smooth covering. Moreover, these morphisms are compatible as 𝑛
varies, and therefore induce a placid morphism (of infinite type):

A1 ˆ A8 Ñ A1 ˆ A8

p𝜆, 𝑥1, 𝑥2, . . .q ÞÑ p𝜆, 𝑥1 ´ 𝜆 ¨ 𝑥2, 𝑥2 ´ 𝜆 ¨ 𝑥3, . . .q.

where we use the notation A8 “ lim𝑛A𝑛, the limit taken under structure maps A𝑚 Ñ A𝑛 (𝑚 ě 𝑛)
of projection onto the first 𝑛-coordinates.

Then for 0 ‰ 𝜆 P 𝑘, the fiber of this map at p𝜆, 0, 0, . . . , 0q is a copy of A1, realized as the loci of
points:

p𝜆, 𝑥1, 𝜆
´1 ¨ 𝑥1, 𝜆

´2 ¨ 𝑥1, . . .q

with 𝑥1 P A1 arbitrary.
However, the fiber at p0, 0, 0, . . .q is just the point scheme Specp𝑘q, realized as the locus p0, 0, 0, . . .q.

Lemma 4.10.6. Given a Cartesian diagram:

𝑆2

𝜓
��

𝜙 // 𝑇2

𝑔

��
𝑆1

𝑓 // 𝑇1

of placid schemes with 𝑔 finite presentation and 𝑓 a placid morphism, the morphism 𝜙 is placid as
well.

Proof. Let 𝑆1 “ lim𝑖 𝑆1,𝑖 and 𝑇1 “ lim𝑗 𝑇1,𝑗 be placid presentations. We take a compatible placid
presentation 𝑇2 “ lim𝑗 𝑇2,𝑗 as in Remark 4.2.5.

Note that:

𝑆2 “ lim
𝑗

lim
𝑖
𝑆1,𝑖 ˆ

𝑇1,𝑗
𝑇2,𝑗

where we really only take the limit under 𝑖 such that the map 𝑆1 Ñ 𝑇1,𝑗 factors (necessarily
uniquely) through 𝑆1,𝑖.

For a pair of morphisms p𝑖1 Ñ 𝑖2q and p𝑗1 Ñ 𝑗2q, we claim that the induced map:

𝑆1,𝑖2 ˆ
𝑇1,𝑗2

𝑇2,𝑗2 Ñ 𝑆1,𝑖1 ˆ
𝑇1,𝑗1

𝑇2,𝑗1

is an affine smooth covering. Indeed, we have 𝑇2,𝑗2 “ 𝑇1,𝑗2 ˆ𝑇1,𝑗1 𝑇2,𝑗1 so that the left hand side
of the above is 𝑆1,𝑖2 ˆ𝑇1,𝑗1 𝑇2,𝑗1 . Because 𝑆1,𝑖2 Ñ 𝑆1,𝑖1 is an affine smooth covering, we obtain the
claim.

Therefore, the terms 𝑆1,𝑖 ˆ𝑇1,𝑗 𝑇2,𝑗 define a placid presentation of 𝑆2. But each map:
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𝑆1,𝑖 ˆ
𝑇1,𝑗

𝑇2,𝑗 Ñ 𝑇2,𝑗

is a smooth covering because each 𝑆1,𝑖 Ñ 𝑇1,𝑗 is assumed to be, completing the proof.
�

The following results from the argument above.

Corollary 4.10.7. Suppose that we have a Cartesian square:

𝑆2

𝜓
��

𝜙 // 𝑇2

𝑔

��
𝑆1

𝑓 // 𝑇1

of placid schemes with 𝑔 finite presentation and 𝑓 a placid morphism. Then dim𝑆2{𝑆1
“ 𝜙˚pdim𝑇2{𝑇1q.

Proof. Let 𝑆1 “ lim𝑖 𝑆1,𝑖, 𝑇1 “ lim𝑗 𝑇1,𝑗 and 𝑇2 “ lim𝑗 𝑇2,𝑗 be as in the proof of Lemma 4.10.6. As
in loc. cit., we have a placid presentation of 𝑆2 with terms:

𝑆1,𝑖 ˆ
𝑇1,𝑗

𝑇2,𝑗 .

Fixing and index 𝑗0, as in loc. cit., we have:

𝑆1,𝑖 ˆ
𝑇1,𝑗

𝑇2,𝑗 “ 𝑆1,𝑖 ˆ
𝑇1,𝑗0

𝑇2,𝑗0 .

for every morphism 𝑗0 Ñ 𝑗. Therefore, the morphisms 𝑆1,𝑖 ˆ
𝑇1,𝑗

𝑇2,𝑗 Ñ 𝑆1,𝑖 are obtained one from

another by base-change, so that dim𝑆2{𝑆1
is defined as the pullback of the function:

dim𝑆1,𝑖 ˆ
𝑇1,𝑗

𝑇2,𝑗{𝑆1,𝑖

for any choice of indices. But because our maps are smooth coverings, this function is the pullback
of dim𝑇2,𝑗{𝑇1,𝑗 , giving the result.

�

4.11. For our purposes, the key feature of placid morphisms is given by the following proposition.

Proposition 4.11.1. (1) For a placid morphism 𝑓 : 𝑆 Ñ 𝑇 of placid schemes, the left adjoint
𝑓˚,𝑑𝑅 to 𝑓˚,𝑑𝑅 : 𝐷˚p𝑆q Ñ 𝐷˚p𝑇 q is defined.

(2) For a placid morphism 𝑓 : 𝑆 Ñ 𝑇 of placid schemes, there is a canonical identification
𝑓 !,𝑟𝑒𝑛 » 𝑓˚,𝑑𝑅 : 𝐷˚p𝑇 q Ñ 𝐷˚p𝑆q.

More precisely, with Sch𝑝𝑙 denoting the category of placid schemes under placid mor-
phisms, there is a canonical identification of functors:

p𝐷˚, 𝑓˚,𝑑𝑅q » p𝐷˚, 𝑓 !,𝑟𝑒𝑛q : Sch𝑜𝑝𝑝𝑙 Ñ DGCat𝑐𝑜𝑛𝑡

inducing the identity over the maximal subgroupoid of Sch𝑜𝑝𝑝𝑙 .

(3) For a placid morphism 𝑓 : 𝑆 Ñ 𝑇 of placid schemes, the functor 𝑓 ! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q admits
a right adjoint, and this right adjoint is functorially identified with 𝑓˚,𝑟𝑒𝑛 in the sense above.
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(4) For a Cartesian square of placid schemes:

𝑆2

𝜓
��

𝜙 // 𝑇2

𝑔

��
𝑆1

𝑓 // 𝑇1

(4.11.1)

with 𝑓 placid and 𝑔 finitely presented, the canonical morphisms:

𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅 Ñ 𝜓˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛

𝑓 !𝑔˚,𝑟𝑒𝑛 Ñ 𝜓˚,𝑟𝑒𝑛𝜙
!

arising from the adjunctions above are equivalences.

We begin with the following general remarks.

Let DGCat𝑙𝑎𝑑𝑗𝑐𝑜𝑛𝑡 denote the category of cocomplete DG categories under 𝑘-linear functors that

admit continuous right adjoints. Let DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡 denote the category of cocomplete DG categories
under 𝑘-linear functors that admit left adjoints.

We have an obvious equivalence DGCat𝑙𝑎𝑑𝑗𝑐𝑜𝑛𝑡 » DGCat𝑟𝑎𝑑𝑗,𝑜𝑝𝑐𝑜𝑛𝑡 given by passing to the adjoint functor.
One easily verifies:

Lemma 4.11.2. The category DGCat𝑙𝑎𝑑𝑗𝑐𝑜𝑛𝑡 admits colimits, and the functor DGCat𝑙𝑎𝑑𝑗𝑐𝑜𝑛𝑡 Ñ DGCat𝑐𝑜𝑛𝑡
preserves these colimits. Similarly, DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡 admits limits, and the functor DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡 Ñ DGCat𝑐𝑜𝑛𝑡
commutes with limits.

Proof. The content is that given a diagram 𝑖 ÞÑ C𝑖 of cocomplete DG categories under structure
functors admitting continuous right adjoints, a functor C :“ colim𝑖 C𝑖 Ñ D admits a continuous
right adjoint if and only if each C𝑖 Ñ D does. But this is obvious, since C is then also the limit of
the C𝑖 under the right adjoint functors.

�

Proof of Proposition 4.11.1. Recall from Remark 4.10.3 that Sch𝑝𝑙 is the full subcategory:

ProaffpSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q Ď PropSch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣q.

Moreover, because Sch𝑝𝑙 Ñ Sch𝑞𝑐𝑞𝑠 is the right Kan extension of its restriction to Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣, we
see that 𝐷˚|Sch𝑝𝑙 is the right Kan extension of 𝐷˚|

Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣
“ 𝐷|

Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣
.

Moreover, note that 𝐷˚|
Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣

factors through DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡 by smoothness.

As in Example 4.9.4, the corresponding functor:

𝐷|
Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣

Ñ DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡 » DGCat𝑙𝑎𝑑𝑗,𝑜𝑝𝑐𝑜𝑛𝑡

identifies with p𝐷, 𝑓 !,𝑟𝑒𝑛q|
Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣

, i.e., the functor attaching to a scheme of finite type its category

of 𝐷-modules, and to a smooth surjective morphism of schemes the corresponding renormalized
pullback functor.5

By Lemma 4.11.2, the right Kan extension of this functor also factors through DGCat𝑟𝑎𝑑𝑗𝑐𝑜𝑛𝑡, proving

(1). Moreover, it follows that the corresponding functor to Sch𝑜𝑝𝑝𝑙 Ñ DGCat𝑙𝑎𝑑𝑗 encoding the left

adjoints is the left Kan extension of p𝐷, 𝑓 !,𝑟𝑒𝑛q|
Sch𝑓.𝑡.,𝑜𝑝𝑠𝑚–𝑐𝑜𝑣

.

We have an equivalence:

5This identification is treated formally in the homotopical setting in [GR].



28 SAM RASKIN

p𝐷, 𝑓 !,𝑟𝑒𝑛q|Sch𝑓.𝑡.,𝑜𝑝 » p𝐷, 𝑓
!q|Sch𝑓.𝑡.,𝑜𝑝

computed termwise on a finite type scheme 𝑆 as 𝜂´1𝑆 . Moreover, p𝐷!, 𝑓 !q is the left Kan extension
of the left hand side.

For a placid scheme 𝑆 with placid presentation 𝑆 “ lim 𝑆𝑖, we have:

𝜂𝑆 “ colim
𝑖

𝜂𝑆𝑖 : 𝐷!p𝑆q “ colim
𝑖

𝐷!p𝑆𝑖q Ñ colim
𝑖

𝐷˚p𝑆𝑖q “ 𝐷p𝑆q

the colimit on the right taken under renormalized pullback functors (equivalently: ˚-dR pullback).
Indeed, this was already observed in the proof of Proposition 4.8.1.

Therefore, we see that p𝐷!, 𝑓 !,𝑟𝑒𝑛q is the left Kan extension of p𝐷, 𝑓 !,𝑟𝑒𝑛q|
Sch𝑓.𝑡.𝑠𝑚–𝑐𝑜𝑣

, as desired.

This completes the proof of (2).
Note that (3) is a formal consequence of (2). Therefore, it remains to show (4).
Suppose we are given a Cartesian square (4.11.1). It obviously suffices to show either of the

base-change morphisms is an equivalence, so we treat the map 𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅 Ñ 𝜓˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛.

First, suppose that 𝑇1 and 𝑇2 are finite type.
We take a placid presentation 𝑆1 “ lim𝑖 𝑆1,𝑖. We can assume each 𝑆1,𝑖 is a 𝑇1-scheme by Noe-

therian approximation.
Because 𝑆1 Ñ 𝑇1 is placid, each 𝑆1,𝑖 Ñ 𝑇1 is a smooth covering. Define 𝑆2,𝑖 “ 𝑆1,𝑖 ˆ𝑇1 𝑇2.
We use the notation:

𝑆2

𝜓

��

𝛽𝑖 // 𝑆2,𝑖
𝜙𝑖 //

𝜓𝑖

��

𝑇2

𝑔

��
𝑆1

𝛼𝑖 // 𝑆1,𝑖
𝑓𝑖 // 𝑇1.

(4.11.2)

We now have:

𝑓˚,𝑑𝑅𝑓
!,𝑟𝑒𝑛𝑔˚,𝑑𝑅 “ colim

𝑖
𝑓𝑖,˚,𝑑𝑅𝑓

!,𝑟𝑒𝑛
𝑖 𝑔˚,𝑑𝑅 “ colim

𝑖
𝑓𝑖,˚,𝑑𝑅𝜓𝑖,˚,𝑑𝑅𝜙

!,𝑟𝑒𝑛
𝑖 “

colim
𝑖

𝑔˚,𝑑𝑅𝜙𝑖,˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛
𝑖 “ 𝑔˚,𝑑𝑅𝜙˚,𝑑𝑅𝜙

!,𝑟𝑒𝑛 “ 𝑓˚,𝑑𝑅𝜓˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛

Here the first and fourth equalities follows from filteredness of our index category and the adjunc-
tions. The base-change in our second equality follows from the usual smooth base-change theorem
in the finite type setting.

Applying the above argument to the left square of (4.11.2) and applying (finite dimensional)
smooth base-change to the right square, we see that the map:

𝛼𝑖,˚,𝑑𝑅𝑓
!,𝑟𝑒𝑛𝑔˚,𝑑𝑅 Ñ 𝛼𝑖,˚,𝑑𝑅𝜓˚,𝑑𝑅𝜙

!,𝑟𝑒𝑛

is always an equivalence. But this suffices to see our base-change by definition of 𝐷˚.
We now treat the case of general 𝑔 of finite presentation. Suppose that we have a diagram:

𝑆2

𝜓

��

𝜙 // 𝑇2

𝑔

��

𝜃 // 𝑇 12

𝑔1

��
𝑆1

𝑓 // 𝑇1
𝜀 // 𝑇 11

(4.11.3)

with both squares Cartesian, the schemes 𝑇 1𝑖 of finite type, and the maps 𝜃 and 𝜀 placid.
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Then we have base-change maps:

𝑓 !,𝑟𝑒𝑛𝜀!,𝑟𝑒𝑛𝑔1˚,𝑑𝑅 Ñ 𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅𝜃
!,𝑟𝑒𝑛 Ñ 𝜓˚,𝑑𝑅𝜙

!,𝑟𝑒𝑛𝜃!,𝑟𝑒𝑛.

By our earlier analysis, the first map is an equivalence by considering the right square of (4.11.3),
and the composite map is also an equivalence by considering the outer square of (4.11.3). Therefore,
we see that the map:

𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅𝜃
!,𝑟𝑒𝑛 Ñ 𝑓 !,𝑟𝑒𝑛𝑔˚,𝑟𝑒𝑛𝜃

!,𝑟𝑒𝑛

is an equivalence. Varying 𝑇 11 over some placid presentation of 𝑇1, the corresponding functors 𝜃!,𝑟𝑒𝑛

generate 𝐷˚p𝑇2q, so this suffices.
�

4.12. As a consequence of Proposition 4.11.1, we show that some features from Examples 4.9.1
and 4.9.4 survive to greater generality.

Proposition 4.12.1. For 𝑓 : 𝑇 Ñ 𝑆 a finitely presented morphism of placid schemes, we have
canonical identifications:

𝑓 ¡r´2 ¨ dim𝑇 {𝑆s “ 𝑓 !,𝑟𝑒𝑛 : 𝐷˚p𝑆q Ñ 𝐷˚p𝑇 q

𝑓˚,!´𝑑𝑅r´2 ¨ dim𝑇 {𝑆s “ 𝑓˚,𝑟𝑒𝑛 : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q.

where dim𝑇 {𝑆 is defined as in S4.6.

Proof. Let 𝑆 “ lim 𝑆𝑖 be a placid presentation, and by Remark 4.2.5, we may assume we have a
placid presentation 𝑇 “ lim 𝑇𝑖 so that we have maps 𝑓𝑖 : 𝑇𝑖 Ñ 𝑆𝑖 with each 𝑖 Ñ 𝑗 inducing a
Cartesian diagram, and with 𝑓 obtained by base-change from each of the 𝑓𝑖. Note that dim𝑇 {𝑆 is
then obtained by pullback from each dim𝑇𝑖{𝑆𝑖

.
We use the notation:

𝑇

𝑓
��

𝜓𝑖 // 𝑇𝑖

𝑓𝑖
��

𝑆
𝜙𝑖 // 𝑆𝑖.

For the first part, note that by (4.3.3) and Example 4.9.4, we have:

𝑓 ¡ “ colim
𝑖

𝜓˚,𝑑𝑅𝑖 𝜓𝑖,˚,𝑑𝑅𝑓
¡ “ colim

𝑖
𝜓˚,𝑑𝑅𝑖 𝑓

¡
𝑖𝜙𝑖,˚,𝑑𝑅 “ colim

𝑖
𝜓˚,𝑑𝑅𝑖 𝑓 !,𝑟𝑒𝑛𝑖 𝜙𝑖,˚,𝑑𝑅r2 ¨ dim𝑇 {𝑆s.

By Proposition 4.11.1, 𝜓˚,𝑑𝑅𝑖 “ 𝜓!,𝑟𝑒𝑛
𝑖 . Therefore, we compute the above as:

colim
𝑖

𝜓!,𝑟𝑒𝑛
𝑖 𝑓 !,𝑟𝑒𝑛𝑖 𝜙𝑖,˚,𝑑𝑅r2 ¨ dim𝑇 {𝑆s “ colim

𝑖
𝑓 !,𝑟𝑒𝑛𝜙!,𝑟𝑒𝑛

𝑖 𝜙𝑖,˚,𝑑𝑅r2 ¨ dim𝑇 {𝑆s “ 𝑓 !,𝑟𝑒𝑛r2 ¨ dim𝑇 {𝑆s

by again applying (4.3.3) and the identification 𝜙!,𝑟𝑒𝑛
𝑖 “ 𝜙˚,𝑑𝑅𝑖 .

For the second part, note that we have functorial base change isomorphisms:

𝜙!
𝑖𝑓𝑖,˚,𝑟𝑒𝑛 » 𝑓˚,𝑟𝑒𝑛𝜓

!
𝑖

by Proposition 4.11.1. By Example 4.9.1, 𝑓𝑖,˚,!´𝑑𝑅r´2 ¨dim𝑇 {𝑆s “ 𝑓𝑖,˚,𝑟𝑒𝑛. Moreover, these cohomo-
logical shifts are compatible with varying 𝑖, so we obtain the result by definition of 𝑓˚,!´𝑑𝑅.

�
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Corollary 4.12.2. Suppose we are given a Cartesian square:

𝑆2

𝜓
��

𝜙 // 𝑇2

𝑔

��
𝑆1

𝑓 // 𝑇1

with 𝑆1 and 𝑇2 placid schemes, 𝑓 and 𝑔 placid morphisms, and 𝑇1 finite type. Then the canonical
morphisms:

𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅 Ñ 𝜓˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛

𝑓 !𝑔˚,𝑟𝑒𝑛 Ñ 𝜓˚,𝑟𝑒𝑛𝜙
!

are equivalences.

Proof. Note that we have already seen in Example 4.2.4 that 𝑆2 is actually a placid scheme.
It tautologically suffices to prove that the first base-change morphism is an equivalence.
We form the diagram:

𝑆2

𝜓
��

𝑖 // 𝑆1 ˆ 𝑇2

id𝑆1
ˆ𝑔

��

𝑝2 // 𝑇2

𝑔

��
𝑆1

Δ𝑓 // 𝑆1 ˆ 𝑇1
𝑝2 // 𝑇1.

Here ∆𝑓 is the graph of 𝑓 . Note that each of these squares is Cartesian. In particular, 𝑖 is a finitely
presented morphism. We are reduced to proving the base-change result for each of these squares
separately.

For the right square, the result is essentially obvious: it follows from the compatibility of push-
forward with products of schemes.

For the left square, note that the base-change result holds with the upper-¡ functor in place of
the renormalized upper-! functor by the correspondence formalism. Therefore, the result follows
from Proposition 4.12.1.

�

5. Holonomic D-modules

5.1. In this section, we discuss the holonomic theory in infinite type.

Remark 5.1.1. Since many “standard” 𝐷-modules in infinite type are not compact (e.g., the delta
𝐷-module concentrated at a point in an infinite type placid scheme), it is convenient to break
conventions with the usual 𝐷-module theory and allow some non-compact 𝐷-modules to be counted
as holonomic.

5.2. Holonomic 𝐷-modules. Let 𝑆 be a scheme of finite type. Let 𝐷𝑐𝑜ℎ,ℎ𝑜𝑙p𝑆q denote the full
subcategory of 𝐷𝑐𝑜ℎp𝑆q (the compact objects in 𝐷p𝑆q) composed of those coherent complexes with
holonomic cohomologies, defined in the usual way. Let 𝐷ℎ𝑜𝑙p𝑆q Ď 𝐷p𝑆q denote the full subcategory:

𝐷ℎ𝑜𝑙p𝑆q :“ Indp𝐷𝑐𝑜ℎ,ℎ𝑜𝑙p𝑆qq Ď 𝐷p𝑆q.
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We refer to objects of 𝐷ℎ𝑜𝑙p𝑆q simply as holonomic objects.6

For 𝑓 : 𝑆 Ñ 𝑇 a map of finite type schemes, the usual theory of 𝐷-modules implies that the
functors 𝑓˚,𝑑𝑅 and 𝑓 ! preserve the subcategories of holonomic objects.

For 𝑆 a quasi-compact quasi-separated scheme, we obtain the categories:

𝐷!
ℎ𝑜𝑙p𝑆q and 𝐷˚ℎ𝑜𝑙p𝑆q

defined by a Kan extension, as in the case of 𝐷! and 𝐷˚. We have obvious functors 𝐷!
ℎ𝑜𝑙p𝑆q Ñ 𝐷!p𝑆q

and 𝐷˚ℎ𝑜𝑙p𝑆q Ñ 𝐷˚p𝑆q, the latter being fully-faithful. For 𝑆 placid, we can express 𝐷˚ℎ𝑜𝑙p𝑆q as a
limit as for 𝐷˚p𝑆q, and therefore we see that 𝐷˚ℎ𝑜𝑙p𝑆q Ñ 𝐷˚p𝑆q is fully-faithful in this case as well.

We refer to subobjects of 𝐷˚p𝑆q lying in 𝐷˚ℎ𝑜𝑙p𝑆q as holonomic objects, and similarly for 𝐷! when
𝑆 is placid.

We have upper-! and lower-* functors for 𝐷!
ℎ𝑜𝑙p𝑆q and 𝐷˚ℎ𝑜𝑙p𝑆q respectively, compatible with the

forgetful functors.

Proposition 5.2.1. For 𝑓 : 𝑆 Ñ 𝑇 a morphism of quasi-compact quasi-separated schemes, the
morphism 𝑓˚,𝑑𝑅 : 𝐷˚ℎ𝑜𝑙p𝑆q Ñ 𝐷˚ℎ𝑜𝑙p𝑇 q admits a left adjoint 𝑓˚,𝑑𝑅.

If 𝑇 is placid and 𝑓 is finitely presented, then the morphism 𝑓 ! : 𝐷!
ℎ𝑜𝑙p𝑇 q Ñ 𝐷!

ℎ𝑜𝑙p𝑆q admits a
left adjoint 𝑓!.

Moreover, in each of the above settings, these left adjoints are well-behaved with respect to maps
to non-holonomic objects as well, i.e., the partially-defined left adjoints to 𝑓˚,𝑑𝑅 : 𝐷˚p𝑆q Ñ 𝐷˚p𝑇 q

and 𝑓 ! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q are defined on holonomic objects, and these left adjoints preserve the
holonomic subcategories (and therefore are computed by the above functors). Of course, we are
assuming 𝑓 finitely presented and 𝑇 placid when discussing 𝑓!.

We will prove this in S5.4 below.

5.3. We digress to prove the following lemma.

Lemma 5.3.1. Let I be an indexing category with I𝑜𝑝 filtered. Let p𝑖 ÞÑ C𝑖q and p𝑖 ÞÑ D𝑖q are two
I-shaped diagrams of cocomplete categories under continuous functors, with structure functors:

𝜓𝛼 : C𝑖 Ñ C𝑗 𝜓𝑖 : C :“ lim
𝑗PI

C𝑗 Ñ C𝑖

𝜙𝛼 : D𝑖 Ñ D𝑗 𝜙𝑖 : D :“ lim
𝑗PI

D𝑗 Ñ D𝑖

for 𝛼 : 𝑖Ñ 𝑗 in I and for 𝑖 P I.
Suppose 𝐺𝑖 : C𝑖 Ñ D𝑖 are compatible functors with induced functor:

𝐺 : CÑ D.

If each functor 𝐺𝑖 admits a left adjoint 𝐹𝑖, then 𝐺 admits a left adjoint 𝐹 : D Ñ C such that,
for every 𝑗 P I, we have:

𝜓𝑗𝐹 “ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜓𝛼𝐹𝑖𝜙𝑖.

6We note that, of course, this condition completely ruins all the nice finiteness conditions that “usual” (coherent)
holonomic complexes satisfy, e.g., finiteness of de Rham cohomology. This loss is obvious necessary for the infinite
dimensional setting.
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Proof. For 𝑗 P I fixed, note that for any diagram:

𝑖1
𝛽
ÝÑ 𝑖

𝛼
ÝÑ 𝑗

we have the natural map:

𝜙𝛽 Ñ 𝜙𝛽𝐺𝑖1𝐹𝑖1 Ñ 𝐺𝑖𝜓𝛽𝐹𝑖1 .

By adjunction, this gives rise to a map:

𝐹𝑖𝜙𝛽 Ñ 𝜓𝛽𝐹𝑖1 .

Composing on the left with 𝜓𝛼 and on the right with 𝜙𝑖1 , we obtain the map:

𝜓𝛼𝐹𝑖𝜙𝛽𝜙𝑖1 “ 𝜓𝛼𝐹𝑖𝜙𝑖 Ñ 𝜓𝛼˝𝛽𝐹𝑖1𝜙𝑖1 “ 𝜓𝛼𝜓𝛽𝐹𝑖1𝜙𝑖1 .

Expressing this in the obvious homotopy-compatible way, we obtain a diagram of functors:

p𝛼 : 𝑖Ñ 𝑗q P pI{𝑗q
𝑜𝑝 ÞÑ 𝜓𝛼𝐹𝑖𝜙𝑖.

Define the functor:

“𝜓𝑗𝐹” :“ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜓𝛼𝐹𝑖𝜙𝑖.

As 𝑗 varies, we see by filteredness that these functors are homotopy compatible, and therefore we
obtain a functor 𝐹 : DÑ C with the property that we have functorial identifications:

𝜓𝑗𝐹 “ “𝜓𝑗𝐹”

with “𝜓𝑗𝐹” as above.
For every 𝑗 P I, we have the map:

𝜓𝑗𝐹𝐺 “ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜓𝛼𝐹𝑖𝜙𝑖𝐺 “ 𝜓𝛼𝐹𝑖𝐺𝑖𝜓𝑖 Ñ 𝜓𝛼𝜓𝑖 “ 𝜓𝑗 .

As 𝑗 P I varies, these maps are homotopy compatible and therefore we obtain the counit map:

𝐹𝐺Ñ idC .

Similarly, for every 𝑗 P I, we have the map:

𝜙𝑗 “ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜙𝑗 “ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜙𝛼𝜙𝑖 Ñ colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝜙𝛼𝐺𝑖𝐹𝑖𝜙𝑖 “

colim
p𝛼:𝑖Ñ𝑗qPpI{𝑗q𝑜𝑝

𝐺𝑗𝜓𝛼𝐹𝑖𝜙𝑖 “ 𝐺𝑗𝜓𝑗𝐹 “ 𝜙𝑗𝐺𝐹.

As 𝑗 varies, these maps are homotopy compatible and therefore give the unit map:

idD Ñ 𝐺𝐹.

One readily checks that the unit and counit maps constructed above actually define an adjunction.
�
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5.4. We now prove the proposition above.

Proof of Proposition 5.2.1. For any map 𝑓 : 𝑆 Ñ 𝑇 , it is easy to see that we can arrange to have
𝑆 “ lim𝑖PI𝑜𝑝 𝑆𝑖, 𝑇 “ lim𝑖PI𝑜𝑝 filtered systems of finite type schemes under affine maps and with
compatible maps 𝑓𝑖 : 𝑆𝑖 Ñ 𝑇𝑖 inducing 𝑓 in the limit (note that we do not assume any diagrams
are Cartesian). Therefore, the existence of the left adjoint 𝑓˚,𝑑𝑅 follows immediately from Lemma
5.3.1.

Let us see that these objects map in the obvious way to non-holonomic objects. For 𝛼 : 𝑖 Ñ 𝑗,
let 𝜙𝑖 : 𝑆 Ñ 𝑆𝑖, 𝜙𝛼 : 𝑆𝑗 Ñ 𝑆𝑖, 𝜓𝑖 : 𝑇 Ñ 𝑇𝑖, 𝜓𝛼 : 𝑇𝑗 Ñ 𝑇𝑖 denote the structure maps.

Note that e.g. 𝐷˚ℎ𝑜𝑙p𝑇 q Ñ 𝐷˚p𝑇 q is continuous. Therefore, for F P 𝐷˚ℎ𝑜𝑙p𝑇 q and G P 𝐷˚p𝑆q, we
have:

Hom𝐷˚p𝑇 qp𝑓
˚,𝑑𝑅pFq,Gq “ lim

𝑖
lim
𝛼:𝑖Ñ𝑗

Hom𝐷p𝑇𝑖qp𝜓𝛼,˚,𝑑𝑅𝑓
˚,𝑑𝑅
𝑗 𝜙𝑗,˚,𝑑𝑅pFq, 𝜓𝑖,˚,𝑑𝑅pGqq “

lim
𝑖

Hom𝐷p𝑇𝑖qp𝑓
˚,𝑑𝑅
𝑖 𝜙𝑖,˚,𝑑𝑅pFq, 𝜓𝑖,˚,𝑑𝑅pGqq “ Hom𝐷p𝑇𝑖qp𝜙𝑖,˚,𝑑𝑅pFq, 𝑓𝑖,˚,𝑑𝑅𝜓𝑖,˚,𝑑𝑅pGqq “

Hom𝐷p𝑇𝑖qp𝜙𝑖,˚,𝑑𝑅pFq, 𝜙𝑖,˚,𝑑𝑅𝑓˚,𝑑𝑅pGqq “ Hom𝐷˚p𝑇 qpF, 𝑓˚,𝑑𝑅pGqq

For 𝑓 finite presentation, we can take placid presentations 𝑆 “ lim 𝑆𝑖 and 𝑇 “ lim 𝑇𝑖 as in
Remark 4.2.5: by base-change, the upper-! functors are compatible with the shifted lower-* functors
expressing 𝐷˚ as a limit (using placidity), so Lemma 5.3.1 again applies. The same argument as
above treats maps to non-holonomic objects.

�

5.5. We also have the following observation.

Proposition 5.5.1. If 𝑆 is placid, then 𝜂𝑆 identifies the subcategories 𝐷!
ℎ𝑜𝑙p𝑆q and 𝐷

˚
ℎ𝑜𝑙p𝑆q.

Proof. Suppose F P 𝐷!p𝑆q. We will show that F P 𝐷!
ℎ𝑜𝑙p𝑆q if and only if 𝜂𝑆pFq P 𝐷

˚
ℎ𝑜𝑙pFq.

Let 𝑆 “ lim𝑖 𝑆𝑖 be a placid presentation of 𝑆 and let 𝛼𝑖 : 𝑆 Ñ 𝑆𝑖 denote the structure maps.
By definition, 𝜂𝑆pFq is in 𝐷˚ℎ𝑜𝑙pFq if and only if 𝛼𝑖,˚,𝑟𝑒𝑛pFq P 𝐷ℎ𝑜𝑙p𝑆𝑖q for every 𝑖. By (4.3.3) and

Proposition 4.11.1, we have:

F “ colim
𝑖

𝛼!
𝑖𝛼𝑖,˚,𝑟𝑒𝑛pFq

giving the result.
To see that for F “ 𝐷!

ℎ𝑜𝑙p𝑆q we have 𝛼𝑖,˚,𝑟𝑒𝑛pFq P 𝐷ℎ𝑜𝑙p𝑆𝑖q, note that 𝐷!
ℎ𝑜𝑙p𝑆q is tautologically

generated under colimits by objects 𝛼!
𝑗pF𝑗q, for F𝑗 P 𝐷ℎ𝑜𝑙p𝑆𝑗q. By filteredness of our indexing

category, we can compute 𝛼𝑖,˚,𝑟𝑒𝑛𝛼
!
𝑗pF𝑗q as a colimit of objects obtained by pushing and pulling

along correspondences 𝑆𝑖 Ð 𝑆𝑘 Ñ 𝑆𝑗 (coming from correspondences 𝑖 Ñ 𝑘 Ð 𝑗 in the indexing
category).

�

Corollary 5.5.2. For 𝑓 : 𝑆 Ñ 𝑇 a morphism of placid schemes, the functors 𝑓˚,𝑟𝑒𝑛 and 𝑓 !,𝑟𝑒𝑛

preserve holonomic objects in 𝐷! and 𝐷˚ respectively.

6. D-modules on indschemes

6.1. In this section, we generalize the earlier material to treat the theory of 𝐷-modules on ind-
schemes, and especially on placid indschemes.

The principal new feature is that for treating renormalized functors, we need a choice of dimension
theory, which was only implicit in the discussion in the schemes case.
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6.2. Indschemes. We say that 𝑇 P PreStk is a (classical) indscheme if 𝑇 “ colim𝑖Pℐ 𝑇𝑖 in PreStk
where ℐ is filtered, 𝑇𝑖 P Sch𝑞𝑐𝑞𝑠 Ď PreStk and each structure map 𝑇𝑖 Ñ 𝑇𝑗 is a closed embedding
(recall that in this case 𝑇 P Stk Ď PreStk).

6.3. Correspondences. We say a morphism 𝑓 : 𝑇 Ñ 𝑆 of indschemes is finitely presented if 𝑓 is
schematic and its base-change by any scheme is a finitely presented morphism.

Exactly parallel to Propositions 3.8.1 and 3.21.1 one shows that 𝐷! and 𝐷˚ upgrade (via Kan
extensions) to functors 𝐷!,𝑒𝑛ℎ and 𝐷˚,𝑒𝑛ℎ from the categories of indschemes under correspondences
where the “right” (resp. “left”) map is finitely presented.

For 𝑓 : 𝑆 Ñ 𝑇 finitely presented we have the corresponding functors 𝑓˚,!´𝑑𝑅 : 𝐷!p𝑆q Ñ 𝐷!p𝑇 q

and 𝑓 ¡ : 𝐷˚p𝑇 q Ñ 𝐷˚p𝑆q. If 𝑓 is additionally assumed proper or smooth, we again have the usual
adjunctions.

6.4. Reasonable indschemes. The following definition is taken from [BD] S7.

Definition 6.4.1. A subscheme 𝑆 Ď 𝑇 is a reasonable subscheme of 𝑇 if 𝑆 is a quasi-compact quasi-
separated closed subscheme such that, for every closed subscheme 𝑆1 of 𝑇 containing 𝑆, the closed
embedding 𝑆 ãÑ 𝑆1 is finitely presented.
𝑇 is a reasonable indscheme if 𝑇 is the colimit of its reasonable subschemes.

Example 6.4.2. Every quasi-compact quasi-separated scheme is reasonable when regarded as an
indscheme.

Example 6.4.3. Every indscheme of ind-finite type is reasonable.

Example 6.4.4. For an ind-pro finite set 𝑇 , considered as an indscheme in the obvious way, a subset
𝑆 Ď 𝑇 is reasonable if and only if it is compact and open in the ind-pro topology.

Terminology 6.4.5. Because of Example 6.4.4, we sometimes refer to reasonable subschemes as
“compact open” subschemes. We especially use this terminology in the group setting, where we
speak of compact open subgroups, meaning group subschemes that are reasonable as subschemes.

Lemma 6.4.6. Suppose 𝑇 is a reasonable indscheme and 𝑓 : 𝑆 Ñ 𝑇 a finitely presented morphism
of indschemes. Then 𝑆 is a reasonable indscheme, and for every reasonable subscheme 𝑇 1 Ď 𝑇 ,
𝑓´1p𝑇 1q Ď 𝑆 is a reasonable subscheme.

Proof. Fix a reasonable subscheme 𝑇 1 Ď 𝑇 . It suffices to show that 𝑓´1p𝑇 1q Ď 𝑆 is a reasonable
subscheme.

First, suppose that 𝑇 1 Ď 𝑇 2 Ď 𝑇 is a reasonable subscheme of 𝑇 . We will show that 𝑓´1p𝑇 1q ãÑ

𝑓´1p𝑇 2q is a finitely presented closed embedding.
Note that 𝑓´1p𝑇 1q Ñ 𝑇 1 is finitely presented because 𝑓 is, and similarly for 𝑇 2. Moreover,

𝑓´1p𝑇 1q Ñ 𝑇 2 is finitely presented, since it factors as 𝑓´1p𝑇 1q Ñ 𝑇 1 Ñ 𝑇 2 with the latter morphism
being finitely presented because 𝑇 1 is reasonable.

Therefore, since 𝑓´1p𝑇 1q Ñ 𝑓´1p𝑇 2q sits in the diagram:

𝑓´1p𝑇 1q Ñ 𝑓´1p𝑇 2q Ñ 𝑇 2

with the composite morphism and the right morphism finitely presented, the morphism 𝑓´1p𝑇 1q Ñ
𝑓´1p𝑇 2q is finitely presented as well (the relevant “two out of three” principle appears in [Gro]
Proposition 1.6.2).

To see that this suffices: suppose that 𝑓´1p𝑇 1q Ď 𝑆1 Ď 𝑇 is closed subscheme. We can take 𝑇 2 as
above we 𝑆1 Ñ 𝑇 factoring through 𝑇 2. Therefore, we have:
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𝑓´1p𝑇 1q Ď 𝑆1 Ď 𝑓´1p𝑇 2q.

That 𝑓´1p𝑇 1q Ñ 𝑓´1p𝑇 2q is finite presentation means that the ideal sheaf of 𝑓´1p𝑇 1q is finitely
generated over the structure sheaf of 𝑓´1p𝑇 2q. Therefore, we see that it is finitely generated over the
structure sheaf of 𝑆1 as well, so that our closed embedding 𝑓´1p𝑇 1q Ď 𝑆1 is itself finitely presented.

�

6.5. The key feature of reasonable indschemes is the following. Suppose 𝑇 “ colim𝑖Pℐ 𝑇𝑖 as in the
definition.

Then every 𝛼 : 𝑇𝑖 Ñ 𝑇𝑗 is a finitely presented closed embedding and therefore 𝛼! : 𝐷!p𝑇𝑗q Ñ

𝐷!p𝑇𝑖q admits the left adjoint 𝛼˚,!´𝑑𝑅 and 𝛼˚,𝑑𝑅 : 𝐷˚p𝑇𝑖q Ñ 𝐷˚p𝑇𝑗q admits the right adjoint 𝛼¡.
Therefore, we have:

𝐷!p𝑇 q “ colim
𝑖Pℐ

𝐷!p𝑇𝑖q

𝐷˚p𝑇 q “ lim
𝑖Pℐ𝑜𝑝

𝐷˚p𝑇𝑖q
(6.5.1)

where on the left we use functors 𝛼˚,!´𝑑𝑅 and on the right we use functors 𝛼¡.
We deduce that for 𝑇 and 𝑆 reasonable indschemes we have canonical equivalences:

𝐷!p𝑇 ˆ 𝑆q “ 𝐷!p𝑇 q b𝐷!p𝑆q. (6.5.2)

6.6. Descent. We say a morphism 𝑓 : 𝑇 Ñ 𝑆 of indschemes is an ℎ-covering if its base-change by
any affine scheme is an ℎ-covering.

Proposition 6.6.1. Let 𝑓 : 𝑆 Ñ 𝑇 be an ℎ-covering of indschemes. Then the canonical functor:

𝐷!p𝑇 q Ñ lim
r𝑛sPΔ

𝐷!pCech𝑛p𝑆{𝑇 qq

given by !-pullback is an equivalence.

Proof. This is obvious from Proposition 3.12.1: it just amounts to commuting limits with limits.
More generally, it holds for any ℎ-covering (in the above sense) of prestacks.

�

Similarly, we have the following result under more restrictive hypotheses.

Proposition 6.6.2. Let 𝑓 : 𝑆 Ñ 𝑇 be an ℎ-covering of reasonable indschemes. Then the canonical
functor:

𝐷˚p𝑇 q Ñ lim
r𝑛sPΔ

𝐷˚pCech𝑛p𝑆{𝑇 qq

given by ¡-pullback is an equivalence.

Proof. As above, this follows from Proposition 3.23.1 by commuting limits with limits, using the
presentation (6.5.1) of 𝐷˚.

�
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6.7. Equivariant setting. We now render the material of S3.17 and S3.24 to the indscheme setting.
Suppose that 𝑆 is an indscheme and 𝒢 Ñ 𝑆 is a group indscheme over 𝑆.
Suppose 𝑃 is an indscheme with a morphism 𝑃 Ñ 𝑆 and an action of 𝒢. We define the equivariant

derived category 𝐷!p𝑃 q𝒢 as the limit of the diagram formed using (3.17.1):

𝐷!p𝑃 q𝒢 :“ lim

˜

𝐷!p𝑃 q //// 𝐷!p𝒢 ˆ
𝑆
𝑃 q

////// 𝐷!p𝒢 ˆ
𝑆
𝒢 ˆ
𝑆
𝑃 q

//////// . . . .

¸

Similarly, we define the coequivariant derived category by (3.24.1).
Now suppose that 𝒫𝒢 Ñ 𝑆 is an indscheme with a 𝒢-action as above and that 𝒫𝒢 is a 𝒢-torsor

in the sense that, for every closed subscheme 𝑆1 of 𝑆, the fiber product 𝒫𝒢 ˆ𝑆 𝑆
1 is a 𝒢ˆ𝑆 𝑆1-torsor

in the sense of S3.17: after an fppf base-change in 𝑆1, 𝒫𝒢 ˆ𝑆 𝑆
1 Ñ 𝑆1 is 𝒢-equivariantly isomorphic

to 𝒢.

Proposition 6.7.1. The pullback functor:

𝐷!p𝑆q Ñ 𝐷!p𝒫𝒢q
𝒢

is an equivalence.
The pushforward functor:

𝐷˚p𝒫𝒢q𝒢 Ñ 𝐷˚p𝑆q

is an equivalence if 𝑆 is reasonable, and 𝒢 is a union 𝒢 “ Y𝒢𝑖 where the 𝒢𝑖 are closed group
indschemes in 𝒢 with the property that 𝒢𝑖 ˆ𝑆 𝑆1 Ñ 𝒢 ˆ𝑆 𝑆1 is a reasonable subscheme for every
reasonable subscheme 𝑆1 Ď 𝑆.

Proof. For the first functor, we commute limits with limits to dévissage to the case where 𝑆 is a
quasi-compact quasi-separated scheme. Then the result follows as in Proposition 3.17.2: by Propo-
sition 6.6.1 we reduce to the case of a trivial 𝒢-bundle where it follows by using split simplicial
objects.

The second functor is analyzed similarly: commuting colimits with colimits, we reduce to the
case where 𝑆 is a quasi-compact quasi-separated scheme.

Note that 𝒫𝒢 must be induced as a torsor from some 𝒢𝑖-torsor for some 𝑖0. Therefore, 𝒫𝒢 is
reasonable: it is a union of the induced 𝒢𝑖-torsors for 𝑖 Ñ 𝑖0, and these are obviously reasonable
subschemes. Therefore, we can apply Proposition 6.6.2 to again reduce to the case of a trivial torsor.

�

Remark 6.7.2. When our indschemes are reasonable, Example 3.17.1 translates verbatim to the
present setting by using (6.5.2).

Remark 6.7.3. We will sometimes use the notational convention of Remark 3.17.3 in the above
setting as well.

6.8. Placidity. We now give an indscheme analogue of the notion of placidity.

Definition 6.8.1. We say that 𝑇 P IndSch is a placid indscheme if 𝑇 is reasonable and every
reasonable subscheme of 𝑇 is placid.

Remark 6.8.2. By Remark 4.2.5, we see that 𝑇 is placid if and only if we can write 𝑇 “ colim𝑖Pℐ 𝑇𝑖
as in the definition of indscheme so that each 𝑇𝑖 is placid and a reasonable subscheme of 𝑇 .

Remark 6.8.3. By (6.5.1) and S4.3, for 𝑇 placid the categories 𝐷!p𝑇 q and 𝐷˚p𝑇 q are compactly
generated and canonically dual.
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The following is the indscheme analogue of Example 4.2.3.

Example 6.8.4. Suppose that 𝑆 is a placid indscheme and 𝒢 Ñ 𝑆 is a group indscheme over 𝑆.
Suppose moreover that for every closed subscheme 𝑆1 of 𝑆 the fiber product 𝒢ˆ𝑆𝑆1 Ñ 𝑆1 is a group
scheme that can be written as a projective limit under smooth maps of group schemes 𝒢𝑖 smooth
and affine over 𝑆1. Then 𝒢 is a placid indscheme.

More generally, if 𝒫𝒢 Ñ 𝑆 is a 𝒢-torsor over 𝑆 in the sense of S6.7 then 𝒫𝒢 is a placid indscheme.
Indeed, we reduce to showing that if 𝑆 as above is actually a placid scheme, then 𝒫𝒢 Ñ 𝑆 is a
placid morphism. But 𝒫𝒢 is the projective limit of the induced 𝒢𝑖-torsors, giving the result.

6.9. Fiber products. We digress somewhat to give the following technical result, which we will
need in [Ras].

Proposition 6.9.1. Let 𝑆1 Ñ 𝑆2 and 𝑇 Ñ 𝑆2 be morphisms of indschemes.

(1) If 𝑆1 and 𝑆2 are finite type schemes, then the canonical morphisms:

𝐷!p𝑇 q b
𝐷p𝑆2q

𝐷p𝑆1q Ñ 𝐷!p𝑇 ˆ
𝑆2

𝑆1q

𝐷˚p𝑇 q b
𝐷p𝑆2q

𝐷p𝑆1q Ñ 𝐷˚p𝑇 ˆ
𝑆2

𝑆1q

of ! and ¡-pullback respectively are equivalences.
(2) If 𝑆1 is a placid indscheme and 𝑆2 is a finite type scheme and 𝑇 is an arbitrary indscheme,

then:

𝐷!p𝑇 q b
𝐷p𝑆2q

𝐷!p𝑆1q Ñ 𝐷!p𝑇 ˆ
𝑆2

𝑆1q

is an equivalence.

We will deduce Proposition 6.9.1 from the following two lemmas from the finite dimensional
setting.

Lemma 6.9.2. Let 𝑆1 Ñ 𝑆2 and 𝑇 Ñ 𝑆2 morphisms of finite type schemes, the canonical mor-
phism:

𝐷p𝑇 q b
𝐷p𝑆2q

𝐷p𝑆1q Ñ 𝐷p𝑇 ˆ
𝑆2

𝑆1q

is an equivalence.

This result is well-known, and follows easily e.g. from the 1-affineness of the prestacks 𝑆𝑑𝑅 for 𝑆
finite type: see [Gai2] for the terminology and for this result.

Lemma 6.9.3. For 𝑓 : 𝑆 Ñ 𝑇 a morphism of finite type schemes, 𝐷p𝑆q is dualizable as a 𝐷p𝑇 q-
module category.

Proof. We will show that 𝐷p𝑆q is self-dual as a 𝐷p𝑇 q-module category.
Let ∆𝑓 denote the diagonal embedding 𝑆 Ñ 𝑆 ˆ𝑇 𝑆.
We have the evaluation:

𝐷p𝑆q b
𝐷p𝑇 q

𝐷p𝑆q » 𝐷p𝑆 ˆ
𝑇
𝑆q

Δ!
𝑓

ÝÝÑ 𝐷p𝑆q
𝑓˚,𝑑𝑅
ÝÝÝÑ 𝐷p𝑇 q

and coevaluation:
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𝐷p𝑇 q
𝑓 !
ÝÑ 𝐷p𝑆q

Δ𝑓,˚,𝑑𝑅
ÝÝÝÝÝÑ 𝐷p𝑆 ˆ

𝑇
𝑆q » 𝐷p𝑆q b

𝐷p𝑇 q
𝐷p𝑆q.

One readily checks by base-change that these define a duality datum as required.
�

Proof of Proposition 6.9.1. For (1): the category 𝐷p𝑆1q is dualizable as a 𝐷p𝑆2q-module category.
Therefore, tensoring over 𝐷p𝑆2q with 𝐷p𝑆1q commutes with limits of categories. Applying the
definition of 𝐷!, the result then immediately follows from the finite type case.

Similarly, to prove (2) it suffices to show that 𝐷!p𝑆1q is dualizable as a 𝐷p𝑆2q-module category.
Using the methods of [Gai1], this follows from the finite type case combined with (6.5.1).

�

6.10. Dimension theories. Let 𝑇 be a placid indscheme. We use the notation of S4.6 here.

Definition 6.10.1. A dimension theory 𝜏 “ 𝜏𝑇 on 𝑇 is a rule that assigns to every reasonable
subscheme 𝑆 of 𝑇 a locally constant function:

𝜏𝑆 : 𝑆 Ñ Z

such that for any pair of reasonable subschemes 𝑆1 Ď 𝑆 Ď 𝑇 we have:

𝜏𝑆1 “ 𝜏𝑆 |𝑆1 ` dim𝑆1{𝑆 . (6.10.1)

Example 6.10.2. By Remark 4.6.3, every placid scheme 𝑇 carries a canonical dimension theory
normalized by the condition that dim𝑇 be identically zero.

Example 6.10.3. Let 𝑇 be an indscheme of ind-finite type. Then a reasonable subscheme of 𝑇 is
just a closed finite type subscheme 𝑆, and the rule 𝜏𝑆 :“ dim𝑆 is a dimension theory on 𝑇 .

Remark 6.10.4. If 𝑇 “ Y𝑖𝑆𝑖 is written as a union of reasonable subschemes, it suffices to define the
𝜏𝑆𝑖 satisfying the compatibility (6.10.1). Indeed, this again follows from Remark 4.6.3.

Example 6.10.5. By Remark 6.10.4, the product 𝑇1ˆ𝑇2 of indschemes 𝑇𝑖 equipped with dimension
theories 𝜏𝑇𝑖 inherits a canonical dimension theory 𝜏𝑇1ˆ𝑇2 such that, for every pair 𝑆𝑖 Ď 𝑇𝑖, 𝑖 “ 1, 2
of reasonable subschemes, we have:

𝜏𝑇1ˆ𝑇2𝑆1ˆ𝑆2
“ 𝑝˚1p𝜏

𝑇1
𝑆1
q ` 𝑝˚2p𝜏

𝑇2
𝑆2
q

with 𝑝˚𝑖 denoting the restriction of a function along the projection.

Remark 6.10.6. Dimension theories are étale local.

Remark 6.10.7. For 𝑇 a group indscheme, the choice of dimension theory may be seen as analogous
to the choice of a Haar measure in the 𝑝-adic setting.

Remark 6.10.8. See [Dri] for relevant material on dimension theories. In particular, questions of
existence (and non-existence) are treated in some detail.
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6.11. We now give something of a classification of the set of dimension theories.

Definition 6.11.1. A locally constant function 𝑇 Ñ Z on an indscheme 𝑇 is a morphism of ind-
schemes 𝑇 Ñ Z “

š

𝑛PZ Specp𝑘q.

Remark 6.11.2. For 𝑇 “ colim𝑇𝑖, a locally constant function on 𝑇 is equivalent to a compatible
system of locally constant functions on the 𝑇𝑖. As in Remark 3.9.4, we can make sense of 𝜋0p𝑇 q
as an ind-profinite set, and a locally constant function on 𝑇 is equivalent to a continuous function
𝜋0p𝑇 q Ñ Z, with 𝜋0 equipped with its natural topology as an ind-profinite set.

Clearly locally constant functions form an abelian group under addition. Moreover, they obviously
act on the set of dimension theories on 𝑇 : given 𝑑 : 𝑇 Ñ Z and 𝜏 a dimension theory on 𝑇 , we
obtain a new dimension theory 𝑑` 𝜏 with p𝑑` 𝜏q𝑆 “ 𝑑|𝑆 ` 𝜏𝑆 for every reasonable subscheme 𝑆 of
𝑇 .

Proposition 6.11.3. Suppose that 𝑆 is a placid indscheme that admits a dimension theory. Then
the set of dimension theories for 𝑆 is a torsor for the set of locally constant functions 𝑆 Ñ Z, i.e.,
the above action of locally constant functions on dimension theories is a simply transitive action.

Proof. The difference between two dimension theories obviously defines a locally constant function
on 𝑆.

�

6.12. The following construction of dimension theories is useful in many situations.

Definition 6.12.1. A morphism 𝑓 : 𝑇 Ñ 𝑆 of placid indschemes is healthy if there exists a reasonable
subscheme 𝑆1 Ď 𝑆 such that:

(1) The inverse image of any closed subscheme 𝑆1 Ď 𝑆2 Ď 𝑆 is a reasonable subscheme of 𝑇 .
(2) For every closed subscheme 𝑆1 Ď 𝑆2 Ď 𝑆, we have:

dim𝑇 1{𝑇 2 “ 𝑓 1,˚pdim𝑆1{𝑆2q

with 𝑓 1 : 𝑇 1 Ñ 𝑆1 the fiber product of 𝑓 along 𝑆1 and 𝑇 2 the fiber along 𝑆2.

We say a subscheme 𝑆1 Ď 𝑆 is 𝑓 -healthy if it is reasonable and satisfies the above conditions (so
𝑓 is healthy if and only if there exists an 𝑓 -healthy subscheme of 𝑆).

Example 6.12.2. Every morphism 𝑓 : 𝑇 Ñ 𝑆 of placid schemes is healthy: 𝑆 itself is 𝑓 -healthy.

Counterexample 6.12.3. For 𝑛 ě 0, let 𝑆𝑛 be the union of a line, a plane, up to an affine 𝑛-space all
glued together along 0. Let 𝑆 “ colim𝑆𝑛. Let 𝑇𝑛 be the union of 𝑛 (ordered) lines glued along 0,
mapping to 𝑆𝑛 by embedding the 𝑟th irreducible component into A𝑟 as a line into a vector space.
Let 𝑇 “ colim𝑛 𝑇𝑛. Then the resulting map 𝑇 Ñ 𝑆 is not healthy.

Example 6.12.4. In S6.17, we will give a definition of placid morphism of placid indschemes such
that every placid morphism is healthy.

Remark 6.12.5. Any reasonable subscheme containing an 𝑓 -healthy subscheme is itself 𝑓 -healthy.
In particular, we see that given two choices 𝑆11, 𝑆

1
2 of 𝑓 -healthy subschemes of 𝑆, there is always

a third 𝑆13 containing both.

Our key use of this definition is the following construction.
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Construction 6.12.6. For 𝑓 : 𝑇 Ñ 𝑆 a healthy morphism of placid indschemes, any dimension
theory 𝜏𝑆 on 𝑆 induces a unique dimension theory 𝜏𝑇 on 𝑇 such that for any 𝑓 -healthy reasonable
subscheme 𝑆1 Ď 𝑆, we have 𝜏𝑇𝑇 1 “ 𝑓 1,˚p𝜏𝑆𝑆1q for 𝑓 1 : 𝑇 1 Ñ 𝑆1 the base-change of 𝑓 along 𝑆1 ãÑ 𝑆.

Indeed, that this construction can be performed follows immediately from Remarks 6.10.4 and
6.12.5.

Remark 6.12.7. Healthy morphisms are obviously preserved under compositions, and Construction
6.12.6 is obviously compatible with compositions.

6.13. As S6.12 generalizes Example 6.10.2, we now generalize Example 6.10.3.
We say a morphism 𝑓 : 𝑇 Ñ 𝑆 of reasonable indschemes is ind-finitely presented if 𝑇 “ colim𝑇𝑖

with each 𝑇𝑖 Ñ 𝑇 a reasonable subscheme such that 𝑇𝑖 Ñ 𝑆 factors through a reasonable subscheme
𝑆𝑖 of 𝑆 with 𝑇𝑖 Ñ 𝑆𝑖 finite presentation.

We claim under this hypothesis that 𝑇 inherits a canonical dimension theory 𝜏𝑇 from a dimension
theory 𝜏𝑆 of 𝑆.

Indeed, for 𝑇 1 Ď 𝑇 a reasonable subscheme, the morphism 𝑇 1 Ñ 𝑆 factors through some reason-
able subscheme 𝑆1 Ď 𝑆, and 𝑓 1 : 𝑇 1 Ñ 𝑆1 is finite presentation by assumption. We take:

𝜏𝑇𝑇 1 :“ dim𝑇 1{𝑆1 `𝑓
1,˚p𝜏𝑆𝑆1q.

To simultaneously show that 𝜏𝑇 is well-defined and actually defines a dimension theory, take 𝑇 1
𝑖1
ãÑ

𝑇 2 Ď 𝑇 reasonable subschemes mapping via 𝑓 1 and 𝑓2 to reasonable subschemes 𝑆1
𝑖2
ãÑ 𝑆2 Ď 𝑆

respectively, and compute:

𝜏𝑇𝑇 1 ´ 𝑖
˚
1p𝜏

𝑇
𝑇 2q :“ dim𝑇 1{𝑆1 ´𝑖

˚
1pdim𝑇 2{𝑆2q ` 𝑓

1,˚p𝜏𝑆𝑆1q ´ 𝑓
1,˚𝑖˚2p𝜏

𝑆
𝑆2q “

“ ´𝑓 1,˚pdim𝑆1{𝑆2q ` dim𝑇 1{𝑇 2 `𝑓
1,˚pdim𝑆1{𝑆2q “ dim𝑇 1{𝑇 2

as desired, where we have used the expansions:

dim𝑇 1{𝑆1 “ dim𝑇 1{𝑆2 ´𝑓
1,˚pdim𝑆1{𝑆2q

𝑖˚1pdim𝑇 2{𝑆2q “ dim𝑇 1{𝑆2 ´dim𝑇 1{𝑇 2

of (4.6.1).

Example 6.13.1. If 𝑇 is a reasonable subscheme of a placid indscheme 𝑆, then the embedding 𝑇 ãÑ 𝑆
satisfies the hypotheses of this section. If 𝜏𝑆 is a dimension theory on 𝑆, the induced dimension
theory 𝜏𝑇 on 𝑇 constructed above is the “obvious” one, which to a reasonable subscheme 𝑇 1 Ď 𝑇
assigns the function 𝜏𝑇𝑇 1 :“ 𝜏𝑆𝑇 1 .

Warning 6.13.2. If 𝑓 : 𝑇 Ñ 𝑆 is a finitely presented morphism of placid schemes, the pullback con-
structed above of the dimension theory 𝜏𝑆 given in Example 6.10.2 is not (generally) the dimension
theory on 𝑇 constructed in Example 6.10.2: they differ by dim𝑇 {𝑆 .

6.14. Renormalization. Let 𝑇 be a placid indscheme and let 𝜏 be a dimension theory on 𝑇 . We
will define the “𝜏 -renormalized dualizing sheaf” 𝜔𝜏𝑇 P 𝐷

˚p𝑇 q below.
Let 𝑖 : 𝑆 ãÑ 𝑇 be a reasonable subscheme. We formally define:

“𝑖¡p𝜔𝜏𝑇 q” :“ 𝜔𝑟𝑒𝑛𝑆 r2𝜏𝑆s P 𝐷
˚p𝑆q.

Suppose that for 𝑆 as above 𝜄 : 𝑆1 Ñ 𝑆 is a reasonable subscheme (equivalently: of 𝑆 or of 𝑇 , or
equivalently 𝜄 is a finitely presented closed embedding). Then we have canonical isomorphisms:
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𝜄¡p“𝑖¡p𝜔𝜏𝑇 q”q “ 𝜄¡p𝜔𝑟𝑒𝑛𝑆 qr2𝜏𝑆s “ 𝜄!,𝑟𝑒𝑛p𝜔𝑟𝑒𝑛𝑆 qr2¨p𝜏𝑆`dim𝑆1{𝑆qs “ p𝜔
𝑟𝑒𝑛
𝑆1 qr2¨p𝜏𝑆`dim𝑆1{𝑆qs “: “p𝑖˝𝜄q¡p𝜔𝜏𝑇 q”

where the second equality is Proposition 4.12.1 and the third equality is (4.9.1).
These identifications are readily made homotopy compatible and therefore define 𝜔𝜏𝑇 in 𝐷˚p𝑇 q

so that 𝜄¡p𝜔𝜏𝑇 q “ “𝜄¡p𝜔𝜏𝑇 q” for all 𝜄 : 𝑆 ãÑ 𝑇 as above.

6.15. Let 𝑇 and 𝜏 be as in S6.14.
Let 𝜂𝜏𝑇 : 𝐷!p𝑇 q Ñ 𝐷˚p𝑇 q denote the functor of action on 𝜔𝜏𝑇 . We immediately deduce from

Proposition 4.8.1 that 𝜂𝜏𝑇 is an equivalence.

6.16. Let 𝑓 : 𝑇 Ñ 𝑆 a morphism of placid indschemes equipped with dimension theories 𝜏𝑇 and
𝜏𝑆 .

Then as in S4.9 we obtain functors 𝑓˚,𝜏 : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q and 𝑓 !,𝜏 : 𝐷!p𝑆q Ñ 𝐷!p𝑇 q so that we
have the commuting diagram:

𝐷!p𝑇 q

» 𝜂𝜏
𝑇

𝑇
��

𝑓˚,𝜏 // 𝐷!p𝑆q

» 𝜂𝜏
𝑆

𝑆
��

𝐷˚p𝑆q

» 𝜂𝜏
𝑆

𝑆��

𝑓 !,𝜏 // 𝐷˚p𝑇 q

» 𝜂𝜏
𝑇

𝑇��
𝐷˚p𝑇 q

𝑓˚,𝑑𝑅 // 𝐷˚p𝑆q 𝐷!p𝑆q
𝑓 ! // 𝐷!p𝑇 q.

Example 6.16.1. If 𝑓 : 𝑇 Ñ 𝑆 is a map of placid schemes, each equipped with their canonical
dimension theories (see Example 6.10.2), then the functors constructed above are the renormalized
functors of S4.9.

Notation 6.16.2. In light of Example 6.16.1, when the relative dimension theory 𝜏 is implicit we
denote the functors 𝑓𝜏,𝑟𝑒𝑛 and 𝑓 !,𝑟𝑒𝑛 above simply by 𝑓˚,𝑟𝑒𝑛 and 𝑓 !,𝑟𝑒𝑛.

Fixing a map 𝑓 : 𝑇 Ñ 𝑆 of placid indschemes, we obtain a pullback map for locally constant
functions and therefore an induced diagonal action of locally constant functions on 𝑆 on the set of
pairs p𝜏𝑇 , 𝜏𝑆q of dimension theories for 𝑇 and 𝑆:

´

𝑑 : 𝑆 Ñ Z, p𝜏𝑇 , 𝜏𝑆q
¯

ÞÑ p𝜏𝑇 ` 𝑑 ˝ 𝑓, 𝜏𝑆 ` 𝑑q.

Definition 6.16.3. A relative dimension theory for 𝑇 and 𝑆 is an equivalence class of pairs p𝜏𝑇 , 𝜏𝑆q
of dimension theories for 𝑇 and for 𝑆 modulo the above action of locally constant functions on 𝑆.

Clearly the functors 𝑓 !,𝑟𝑒𝑛 and 𝑓˚,𝑟𝑒𝑛 only depend on the relative dimension theory defined by
the pair p𝜏𝑇 , 𝜏𝑆q.

Example 6.16.4. Let 𝑓 : 𝑇 Ñ 𝑆 be an ind-finitely presented morphism of placid indschemes with
𝑆 equipped with dimension theory. By S6.13, we obtain a dimension theory on 𝑇 and therefore a
relative dimension theory for 𝑓 .

As in Examples 4.9.1 and 4.9.4, the functors 𝑓˚,𝑟𝑒𝑛 and 𝑓 !,𝑟𝑒𝑛 canonically identify with 𝑓˚,!´𝑑𝑅
and 𝑓 ¡ respectively.7

7Unlike Example 4.9.1, there are no cohomological shifts in this formula. There is no real discrepancy because of
Warning 6.13.2.
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6.17. Next, we extend the notion of placid morphism from S4.10 to the indscheme framework.

Definition 6.17.1. A morphism 𝑓 : 𝑇 Ñ 𝑆 of placid indschemes is placid if there exists a reasonable
subscheme 𝑆1 Ď 𝑆 such that:

(1) The inverse image of any closed subscheme 𝑆1 Ď 𝑆2 Ď 𝑆 is a reasonable subscheme of 𝑇 .
(2) For every closed subscheme 𝑆1 Ď 𝑆2 Ď 𝑆, the morphism 𝑇 2 :“ 𝑆2 ˆ𝑆 𝑇 Ñ 𝑆2 is placid.

Remark 6.17.2. By Corollary 4.10.7, we immediately see that any placid morphism is healthy.

Example 6.17.3. If 𝑓 is finitely presented, smooth and surjective on geometric points, then 𝑓 is
placid.

Example 6.17.4. Suppose that 𝑆 is a placid indscheme and 𝒢 Ñ 𝑆 is a group indscheme satisfying
the hypotheses of Example 6.8.4. Suppose 𝒫𝒢 Ñ 𝑆 is a 𝒢-torsor on 𝑆. Then 𝒫𝒢 Ñ 𝑆 is placid. In
particular, this morphism is healthy. Indeed, this follows by Example 6.8.4.

6.18. We have the following indschematic version of Proposition 4.11.1.

Proposition 6.18.1. Let 𝑓 : 𝑇 Ñ 𝑆 be placid and suppose that 𝑆 is equipped with a dimension
theory. By Construction 6.12.6, this choice induces a dimension theory on 𝑇 .

(1) The functors:

𝑓˚,𝑑𝑅 : 𝐷˚p𝑇 q Ñ 𝐷˚p𝑆q

𝑓˚,𝑟𝑒𝑛 : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q

admit left adjoints. Moreover, these left adjoints are canonically identified with 𝑓 !,𝑟𝑒𝑛 and
𝑓 ! respectively.

(2) Suppose that we are given a Cartesian diagram:

𝑇 1

𝜓
��

𝜙 // 𝑆1

𝑔

��
𝑇

𝑓 // 𝑆

of placid indschemes with 𝑓 placid and 𝑔 finitely presented. Then 𝜙 is also placid, and the
natural transformations:

𝑓 !,𝑟𝑒𝑛𝑔˚,𝑑𝑅 Ñ 𝜓˚,𝑑𝑅𝜙
!,𝑟𝑒𝑛

𝑓 !𝑔˚,𝑟𝑒𝑛 Ñ 𝜓˚,𝑟𝑒𝑛𝜙
!

are equivalences. Here we have equipped 𝑆1 and 𝑇 1 with the dimension theories of S6.13
using the finitely presented maps 𝑔 and 𝜓.

Proof. It suffices to prove each of these statements in the 𝐷!-setting.
Then (1) then follows immediately Proposition 4.11.1 (say, by applying a simplified version of

Lemma 5.3.1). So it remains to show (2).
Let 𝑆0 be a reasonable subscheme of 𝑆 satisfying the hypotheses of the definition of placid

morphism for 𝑓 . Then combining Lemmas 4.10.6 and 6.4.6., we find that its pullback to 𝑆1 satisfies
the same conditions for 𝜙. In particular, we see that 𝜙 is placid.

We form the commutative cube:
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𝑇 10
𝜙0 //

𝜄1

��
𝜓0

��

𝑆10

𝑔0

��

𝑖1

��
𝑇 1

��

// 𝑆1

��

𝑇0
𝜄

  

𝑓0 // 𝑆0
𝑖

  
𝑇 // 𝑆

where all faces are taken to be Cartesian squares. We equip these new schemes with the dimension
theories obtained using Example 6.13.1.

Note that the dimension theories on the back square are not (necessarily) the canonical ones on
placid schemes from Example 6.10.2.

Still, the relative dimension theories of 𝑇0{𝑆0 and 𝑇 10{𝑆
1
0 are the same, so renormalized functors

for these dimension theories coincide with those of S4.9.
Moreover, the dimension theories for 𝑆10{𝑆0 differs from the “canonical” one by dim𝑆10{𝑆0

, and

similarly for 𝑇 10{𝑇0. Note that this error term dim𝑆10{𝑆0
pulls back to 𝑇 10 as dim𝑇 10{𝑇0

by Corollary
4.10.7.

We will use the notation e.g. 𝑔0,˚,𝑟𝑒𝑛 here for the renormalized functor corresponding to our given
dimension theory, therefore differing by cohomological shifts from the so-named functor in S4.9.

In this notation, we see from the above discussion that we can apply Proposition 4.11.1 to deduce:

𝑓 !0𝑔0,˚,𝑟𝑒𝑛
»
ÝÑ𝜓0,˚,𝑟𝑒𝑛𝜙

!
0.

Because 𝐷!p𝑆1q is generated under colimits by 𝐷-modules of the form 𝑖1˚,!´𝑑𝑅pFq “ 𝑖1˚,𝑟𝑒𝑛pFq as
we increase 𝑆0, it suffices to show that the natural transformation:

𝑓 !𝑔˚,𝑟𝑒𝑛𝑖
1
˚,𝑟𝑒𝑛 Ñ 𝜓˚,𝑟𝑒𝑛𝜙

!𝑖1˚,𝑟𝑒𝑛

is an equivalence.
Similarly, since 𝑇 is a union of the schemes 𝑇0 as 𝑆0 varies, it suffices to show that the natural

transformation:

𝜄!𝑓 !𝑔˚,𝑟𝑒𝑛𝑖
1
˚,𝑟𝑒𝑛 Ñ 𝜄!𝜓˚,𝑟𝑒𝑛𝜙

!𝑖1˚,𝑟𝑒𝑛

is an equivalence.
Now we compute:

𝜄!𝑓 !𝑔˚,𝑟𝑒𝑛𝑖
1
˚,𝑟𝑒𝑛 “ 𝑓 !0𝑖

!𝑖˚,𝑟𝑒𝑛𝑔0,˚,𝑟𝑒𝑛 “ 𝑓 !0𝑔0,˚,𝑟𝑒𝑛
»
ÝÑ 𝜓0,˚,𝑟𝑒𝑛𝜙

!
0 “ 𝜄!𝜄˚,𝑟𝑒𝑛𝜓0,˚,𝑟𝑒𝑛𝜙

!
0 “

𝜄!𝜓˚,𝑟𝑒𝑛𝜄
1
˚,𝑟𝑒𝑛𝜙

!
0𝑖
1,!𝑖1˚,𝑟𝑒𝑛 “ 𝜄!𝜓˚,𝑟𝑒𝑛𝜄

1
˚,𝑟𝑒𝑛𝜄

1,!𝜙!𝑖1˚,𝑟𝑒𝑛 “ 𝜄!𝜓˚,𝑟𝑒𝑛𝜙
!𝑖1˚,𝑟𝑒𝑛

as desired.
�
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6.19. Holonomic 𝐷-modules. For 𝑇 an indscheme, we define 𝐷!
ℎ𝑜𝑙p𝑆q and 𝐷˚ℎ𝑜𝑙p𝑆q by Kan ex-

tension, as in the definition of 𝐷! and 𝐷˚.
We have canonical forgetful functors:

𝐷!
ℎ𝑜𝑙p𝑆q Ñ 𝐷!p𝑆q and 𝐷˚ℎ𝑜𝑙p𝑆q Ñ 𝐷˚p𝑆q

and compatible upper-! and lower-* functoriality, respectively. For 𝑆 reasonable (resp. placid),
𝐷˚ℎ𝑜𝑙p𝑆q Ñ 𝐷˚p𝑆q (resp. 𝐷!

ℎ𝑜𝑙p𝑆q Ñ 𝐷!
ℎ𝑜𝑙p𝑆q) is fully-faithful.

Definition 6.19.1. A morphism 𝑓 : 𝑆 Ñ 𝑇 of reasonable indschemes is a reasonable morphism if
there exists cofinal system 𝑇 “ Y𝑇𝑖 of reasonable subschemes such that 𝑓´1p𝑇𝑖q is a reasonable
subscheme in 𝑆 (in particular: 𝑓 is schematic).

Proposition 6.19.2. If 𝑓 : 𝑆 Ñ 𝑇 is a reasonable morphism of reasonable indschemes, then the
partially-defined left adjoint 𝑓˚,𝑑𝑅 to 𝑓˚,𝑑𝑅 is defined on holonomic objects in 𝐷˚p𝑇 q.

Similarly, if 𝑓 is a morphism of ind-finite presentation of placid indschemes, then the partially-
defined left adjoint 𝑓! to 𝑓

! : 𝐷!p𝑇 q Ñ 𝐷!p𝑆q is defined on holonomic objects.

Proof. Follows from the combination of Proposition 5.2.1 and Lemma 5.3.1 by the same argument
as in Proposition 5.2.1.

�

We have the following counterparts to Proposition 5.5.1 and its Corollary 5.5.2, proved by the
same arguments.

Proposition 6.19.3. For 𝑆 a placid indscheme with a dimension theory 𝜏 , 𝜂𝜏𝑆 identifies 𝐷!
ℎ𝑜𝑙p𝑆q

with 𝐷˚ℎ𝑜𝑙p𝑆q.

Corollary 6.19.4. For 𝑆 and 𝑇 placid indschemes with a dimension theories and 𝑓 : 𝑆 Ñ 𝑇 a
morphism, 𝑓˚,𝑟𝑒𝑛 and 𝑓 !,𝑟𝑒𝑛 preserve holonomic objects in 𝐷! and 𝐷˚ respectively.
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