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1. Review of linear algebra and tensors

1.1. Linear algebra is assumed as a prerequisite to these notes. However, this section serves to
review the language of abstract linear algebra (particularly tensor products) for use in the remainder
of these notes.

We assume the reader familiar with these notions, and therefore do not provide a complete and
detailed treatment. In particular, we assume the reader knows what a homomorphism of algebraic
objects is.

1.2. Rings and fields. Recall that a ring is a set 𝐴 equipped with associative binary operations
` and ¨ called “addition” and “multiplication” respectively, such that p𝑘,`q is an abelian group
with identity element 0, such that multiplication distributes over addition, and such that there is a
multiplicative identity 1. The ring 𝐴 is said to be commutative if its multiplication is a commutative
operation. Homomorphisms of rings are maps are always assumed to preserve 1.

We say that a commutative ring 𝐴 is a field if every non-zero element 𝑎 P 𝐴 admits a multiplica-
tive inverse 𝑎´1. We usually denote fields by 𝑘 (this is derived from the German “Körper”).

Example 1.2.1. For example, the rational numbers Q, the real numbers R, and the complex numbers
C are all fields. The integers Z form a commutative ring but not a field. However, for 𝑝 a prime
number, the integers modulo 𝑝 form a field that we denote by F𝑝, and refer to as the field with 𝑝
elements.

For 𝐴 a ring, we let 𝐴ˆ denote the group of invertible elements in 𝐴.

Exercise 1.1. If 𝑘 is a field and 𝐺 Ď 𝑘ˆ is a finite subgroup, show that 𝐺 is cyclic. Deduce that Fˆ𝑝
is a cyclic group of order 𝑝´ 1.
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1.3. Characteristic. For a ring 𝐴, we have a canonical (and unique) homomorphism ZÑ 𝐴:

𝑛 ÞÑ 1` . . .` 1
looooomooooon

𝑛 times

P 𝐴

and we abuse notation in letting 𝑛 P 𝐴 denote the image of 𝑛 P Z under this map.
For a field 𝑘, this homomorphism has a kernel of the form 𝑝 ¨ Z for 𝑝 either a prime number or

0; we say that 𝑘 has characteristic 𝑝 accordingly. We see that 𝑘 has characteristic 0 if Q Ď 𝑘, and
𝑘 has characteristic 𝑝 ą 0 if F𝑝 Ď 𝑘. We denote the characteristic of 𝑘 as charp𝑘q.

1.4. Vector spaces. Let 𝑘 be a field fixed for the remainder of this section.
A vector space over 𝑘 (alias: 𝑘-vector space) is an abelian group p𝑉,`q equipped with an action

of 𝑘 by scaling. That is, for 𝜆 P 𝑘 and 𝑣 P 𝑉 , we have a new element 𝜆 ¨ 𝑣 P 𝑉 such that this
operation satisfies the obvious axioms. We frequently refer to elements of 𝑉 as vectors.

We sometimes refer to homomorphisms of vector spaces sometimes as linear transformations, or
as 𝑘-linear maps.

Remark 1.4.1. Note that the totality of linear transformations 𝑇 : 𝑉 Ñ 𝑊 can itself be organized
into a vector space Hom𝑘p𝑉,𝑊 q, also denoted Homp𝑉,𝑊 q if the field 𝑘 is unambiguous. The vector
space operations are defined point-wise:

p𝑇1 ` 𝑇2qp𝑣q :“ 𝑇1p𝑣q ` 𝑇2p𝑣q

p𝜆 ¨ 𝑇 qp𝑣q :“ 𝜆 ¨ p𝑇 p𝑣qq.

1.5. Direct sums and bases. We will primarily be interested in finite-dimensional vector spaces,
but for the construction of tensor products it will be convenient to allow infinite direct sums.

Definition 1.5.1. Given two vector spaces 𝑉 and 𝑊 , we define their direct sum 𝑉 ‘ 𝑊 to be
the set-theoretic product 𝑉 ˆ 𝑊 equipped with the structure of termwise addition and scalar
multiplication.

More generally, given a set 𝐼 and a collection t𝑉𝑖u𝑖P𝐼 of vector spaces indexed by elements of 𝐼,
we define the direct sum ‘𝑖P𝐼𝑉𝑖 as the subset of

ś

𝑖P𝐼 𝑉𝑖 consisting of elements 𝑣 “ p𝑣𝑖q𝑖P𝐼 (𝑣𝑖 P 𝑉𝑖)
such that 𝑣𝑖 “ 0 for all but finitely many 𝑖 P 𝐼. Note that this does indeed generalize the pairwise
example above.

Given t𝑉𝑖u𝑖P𝐼 as above, let 𝜀𝑖 : 𝑉𝑖 Ñ ‘𝑗P𝐼𝑉𝑗 denote the linear transformation sending 𝑣𝑖 P 𝑉𝑖 to
the vector that is 𝑣𝑖 in the 𝑖th coordinate and 0 in all others.

Proposition 1.5.2. Given t𝑉𝑖u𝑖P𝐼 as above and 𝑊 an auxiliary vector space, the map:

t𝑇 : ‘𝑖P𝐼𝑉𝑖 Ñ𝑊 a linear transformationu Ñ t𝑇𝑖 : 𝑉𝑖 Ñ𝑊 linear transformationsu𝑖P𝐼

𝑇 ÞÑ t𝑇 ˝ 𝜀𝑖u𝑖P𝐼
(1.1)

is a bijection.

Proof. Suppose that we are given a collection 𝑇𝑖 : 𝑉𝑖 Ñ𝑊 of linear transformations. Note that for
every vector 𝑣 P ‘𝑖P𝐼𝑉𝑖, there exists a unique finite subset 𝑆 Ď 𝐼 and collection of non-zero vectors
t𝑣𝑠 P 𝑉𝑠u𝑠P𝑆 such that:

𝑣 “
ÿ

𝑠P𝑆

𝜀𝑠p𝑣𝑠q

(if 𝑆 is empty, we understand the empty sum to mean the zero vector). We then define:
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𝑇 p𝑣q “
ÿ

𝑠P𝑆

𝑇𝑠p𝑣𝑠q P𝑊.

It is easy to verify that 𝑇 is a linear transformation, and that this operation is inverse to the map
(1.1).

�

Remark 1.5.3. The above proposition characterizes the direct sum by a universal property. This
means that we have characterized the vector space ‘𝑖P𝐼𝑉𝑖 by describing how it maps to other vector
spaces (it would be also be a proper use of the terminology universal property to describe how to
map into a given vector space).

Notation 1.5.4. For 𝐼 a set, we let 𝑉 ‘𝐼 denote the direct sum ‘𝑖P𝐼𝑉𝑖, i.e., the direct sum indexed
by 𝐼 with each “𝑉𝑖” equal to 𝑉 .

For 𝐼 “ t1, . . . , 𝑛u, 𝑛 P Zą0, we use the notation 𝑉 ‘𝑛 instead.

Example 1.5.5. The vector space 𝑘‘𝑛 consists of 𝑛-tuples of elements of 𝑘, considered as a vec-
tor space under termwise addition and scaling given by termwise multiplication. We represent an
element 𝑣 “ p𝜆𝑖q

𝑛
𝑖“1 of 𝑘‘𝑛 by the vector notation:

¨

˚

˚

˚

˝

𝜆1

𝜆2
...
𝜆𝑛

˛

‹

‹

‹

‚

. (1.2)

Definition 1.5.6. For 𝑉 a vector space, we say that 𝑉 is finite-dimensional (of dimension 𝑛) if there

exists an isomorphism 𝑉
»
ÝÑ 𝑘‘𝑛. A choice of such isomorphism is called a basis for 𝑉 . The vectors

𝑒1, . . . , 𝑒𝑛 in 𝑉 corresponding under this isomorphism to the vectors:

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

, . . . ,

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

are the basis vectors of 𝑉 corresponding to this basis. We say that 𝑛 is the dimension of 𝑉 and
write 𝑛 “ dim𝑉 .

Remark 1.5.7. To say that 𝑒1, . . . , 𝑒𝑛 are basis vectors of a basis of 𝑉 is to say that every vector
𝑣 P 𝑉 can be written uniquely as:

𝑣 “
𝑛
ÿ

𝑖“1

𝜆𝑖𝑒𝑖

for 𝜆𝑖 P 𝑘. The expression of 𝑣 as such corresponds to the expression (1.2) for 𝑣.

Notation 1.5.8. Any linear transformation 𝑇 : 𝑘‘𝑛 Ñ 𝑘‘𝑚 determines a p𝑚ˆ 𝑛q-matrix 𝐴, i.e., a
matrix with 𝑚 rows and 𝑛 columns. The 𝑖th column of the matrix is the vector 𝑇 p𝑒𝑖q, written as
in (1.2).
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1.6. Linear transformations. A subspace 𝑈 Ď 𝑉 is a subset closed under addition and scalar
multiplication. Subspaces are the same as injective linear transformations 𝑇 : 𝑈 Ñ 𝑉 . Dually, we
define quotient spaces as surjective linear transformations 𝑇 : 𝑉 Ñ𝑊 .

Notation 1.6.1. By abuse, we let 0 denote the subspace of any vector space consisting only of the
element 0.

Given a subspace 𝑈 of 𝑉 , we can form the quotient space 𝑊 :“ 𝑉 {𝑈 whose elements are cosets
of 𝑈 in 𝑉 , i.e., an element 𝑤 P 𝑉 {𝑈 is a subset of 𝑉 of the form 𝑣 ` 𝑈 “ t𝑣 ` 𝑢 | 𝑢 P 𝑈u
for some 𝑣 P 𝑉 . Addition and scalar multiplication on 𝑉 {𝑈 are defined in the obvious ways,
as is the homomorphism 𝑉 Ñ 𝑉 {𝑈 . The quotient space satisfies a universal property: giving a
homomorphism 𝑊 “ 𝑉 {𝑈 Ñ𝑊 1 is equivalent (by means of restriction along 𝑉 Ñ 𝑉 {𝑈) to giving
a homomorphism 𝑉 Ñ𝑊 1 with the property that 𝑈 maps to 0 under this transformation.

Construction 1.6.2. Given a linear transformation 𝑇 : 𝑉 Ñ 𝑊 , we can associate various other
vector spaces:

‚ We define the kernel Kerp𝑇 q of 𝑇 as the subspace of 𝑉 consisting of vectors 𝑣 P 𝑉 such
that 𝑇 p𝑣q “ 0 P𝑊 .

‚ We define the image Imagep𝑇 q of 𝑇 as the subspace of 𝑊 consisting of vectors 𝑤 P 𝑊 of
the form 𝑇 p𝑣q for some 𝑣 P 𝑉 .

‚ We define the cokernel Cokerp𝑇 q as the quotient 𝑊 { Imagep𝑇 q of 𝑊 .

Notation 1.6.3. A diagram:

0 Ñ 𝑈
𝑇
ÝÑ 𝑉

𝑆
ÝÑ𝑊 Ñ 0 (1.3)

is a short exact sequence of vector spaces if Kerp𝑆q “ 𝑈 and Cokerp𝑇 q “𝑊 .
In other words, we say that (1.3) is a short exact sequence if 𝑈 injects into 𝑉 , 𝑉 surjects onto

𝑊 , the composition 𝑆 ˝ 𝑇 is equal to 0, and the induced maps:

𝑈 Ñ Kerp𝑆q

Cokerp𝑆q Ñ𝑊

are equivalences (it suffices to check this for either of the two maps).

Remark 1.6.4. There is clearly no mathematical content here. Still, the notion of short exact se-
quence is regarded as a useful organizing principle by many mathematicians, and we will use it as
such below.

1.7. Duality. The dual vector space 𝑉 _ to a vector space 𝑉 is defined as Hom𝑘p𝑉, 𝑘q.
Elements of 𝑉 _ are referred to as linear functionals.

Example 1.7.1. For 𝑉 “ 𝑘‘𝑛, the dual is canonically identified with 𝑉 itself in the obvious way:
however, the corresponding isomorphism 𝑉 » 𝑉 _ depends on the choice of basis.

We have a canonical map:

𝑉 Ñ p𝑉 _q_

𝑣 ÞÑ
´

𝜆 ÞÑ 𝜆p𝑣q
¯

that is an isomorphism for 𝑉 finite-dimensional (since we need only verify it for 𝑉 “ 𝑘‘𝑛, where it
is obvious).

Given a map 𝑇 : 𝑉 Ñ𝑊 , we obtain the dual (aliases: transpose or adjoint) map 𝑇_ : 𝑊_ Ñ 𝑉 _

by restriction.
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Exercise 1.2. For 𝑉 “ 𝑘‘𝑛 and 𝑊 “ 𝑘‘𝑚, show that the matrix of the dual transformation is the
transpose of the matrix of the original linear transformation.

1.8. Let 𝑉 , 𝑊 , and 𝑈 be 𝑘-vector spaces.

Definition 1.8.1. A function 𝐵p´,´q : 𝑉 ˆ 𝑊 Ñ 𝑈 is (𝑘-)bilinear if for every 𝑣 P 𝑉 the map
𝐵p𝑣,´q : 𝑊 Ñ 𝑈 is linear, and for every 𝑤 P𝑊 the map 𝐵p´, 𝑤q : 𝑉 Ñ 𝑈 is linear.

Remark 1.8.2. We emphasize that bilinear maps are not linear (except in degenerate situations).

Proposition 1.8.3. For every pair of vector spaces 𝑉 and 𝑊 , there is a 𝑘-vector space 𝑉 b𝑘 𝑊
defined up to unique isomorphism and equipped with a bilinear pairing:

𝑉 ˆ𝑊 Ñ 𝑉 b
𝑘
𝑊 (1.4)

such that every 𝑘-bilinear map 𝑉 ˆ𝑊 Ñ 𝑈 factors uniquely as:

𝑉 ˆ𝑊 //

""

𝑉 b
𝑘
𝑊

||
𝑈

with the right map being 𝑘-linear.

Proof. Define the set 𝐼 as 𝑉 ˆ𝑊 . Define the vector space Č𝑉 b𝑘 𝑊 as 𝑘‘𝐼 . For each 𝑖 “ p𝑣, 𝑤q P 𝐼,

we abuse notation in letting p𝑣, 𝑤q denote the element 𝜀𝑖p1q P Č𝑉 b𝑘 𝑊 , i.e., the element of the
direct sum that is 1 is the entry 𝑖 and 0 in all other entries.

Define the subspace 𝐾 of Č𝑉 b𝑘 𝑊 to be spanned by vectors of the form:

‚ p𝑣1 ` 𝑣2, 𝑤q ´ p𝑣1, 𝑤q ´ p𝑣2, 𝑤q for 𝑣𝑖 P 𝑉 , 𝑤 P𝑊 , 𝜆 P 𝑘
‚ p𝑣, 𝑤1 ` 𝑤2q ´ p𝑣, 𝑤1q ´ p𝑣, 𝑤2q for 𝑣 P 𝑉 , 𝑤𝑖 P𝑊 , 𝜆 P 𝑘
‚ p𝜆 ¨ 𝑣, 𝑤q ´ 𝜆 ¨ p𝑣, 𝑤q for 𝑣 P 𝑉 , 𝑤 P𝑊 , 𝜆 P 𝑘
‚ p𝑣, 𝜆 ¨ 𝑤q ´ 𝜆 ¨ p𝑣, 𝑤q for 𝑣 P 𝑉 , 𝑤 P𝑊 , 𝜆 P 𝑘.

Define 𝑉 b𝑘 𝑊 to be the quotient of Č𝑉 b𝑘 𝑊 by 𝐾.
We need to verify the universal property. By the universal property of direct sums, giving a

linear transformation r𝐵 : Č𝑉 b𝑘 𝑊 Ñ 𝑈 is equivalent to giving a function 𝐵 : 𝑉 ˆ𝑊 Ñ 𝑈 : indeed,

𝐵p𝑣, 𝑤q is the image of p𝑣, 𝑤q under r𝐵. Moreover, by the universal property of quotients, this map

will factor through 𝑉 b𝑘 𝑊 if and only if r𝐵 sends each element of 𝐾 to 0 P 𝑈 . It suffices to verify
this for the spanning set of vectors defining 𝐾, where it translates to the relations:

𝐵p𝑣1 ` 𝑣2, 𝑤q ´𝐵p𝑣1, 𝑤q ´𝐵p𝑣2, 𝑤q “ 0

𝐵p𝑣, 𝑤1 ` 𝑤2q ´𝐵p𝑣, 𝑤1q ´𝐵p𝑣, 𝑤2q “ 0

𝐵p𝜆 ¨ 𝑣, 𝑤q ´ 𝜆 ¨𝐵p𝑣, 𝑤q “ 0

𝐵p𝑣, 𝜆 ¨ 𝑤q ´ 𝜆 ¨𝐵p𝑣, 𝑤q “ 0

as relations in 𝑈 . But these are exactly the conditions of bilinearity of the map 𝐵.
�

Notation 1.8.4. Where the field 𝑘 is unambiguous, we use the notation 𝑉 b𝑊 “ 𝑉 b𝑘 𝑊 .

Notation 1.8.5. For p𝑣, 𝑤q P 𝑉 ˆ𝑊 , let 𝑣 b 𝑤 denote the corresponding vector in 𝑉 b𝑊 , i.e., the
image of p𝑣, 𝑤q under the map (1.4).
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Notation 1.8.6. For an integer 𝑛 ě 0, we let 𝑉 b𝑛 denote the 𝑛-fold tensor product of 𝑉 with itself,
where for the case 𝑛 “ 0 we understand the empty tensor product as giving 𝑘.

Exercise 1.3. (1) Show using the proof of Proposition 1.8.3 that vectors of the form 𝑣 b 𝑤 for
𝑣 P 𝑉 and 𝑤 P𝑊 span 𝑉 b𝑊 .

(2) Show the same using the universal property of tensor products alone (hint: consider the
span of the image of the map 𝑉 ˆ𝑊 Ñ 𝑉 b𝑘 𝑊 and show that this subspace also satisfies
the universal property of tensor products).

(3) If dim𝑉 ‰ 0, 1, show that not every vector in 𝑉 b𝑊 is of the form 𝑣 b 𝑤.

Remark 1.8.7. The construction appearing in the proof of Proposition 1.8.3 appears very compli-
cated: we take a huge vector space (with a basis indexed by elements of 𝑉 ˆ𝑊 ), and quotient by a
huge subspace. However, things are not as bad as they look! For 𝑉 “ 𝑘‘𝑛 and 𝑊 “ 𝑘‘𝑚, we claim
that there is a canonical identification:

𝑉 b𝑊 » 𝑘‘p𝑛𝑚q.

In particular, the tensor product of finite-dimensional vector spaces is again finite-dimensional.
We denote the given bases of 𝑉 and 𝑊 by 𝑒1, . . . , 𝑒𝑛 and 𝑒11, . . . , 𝑒

1
𝑚 respectively. It suffices to

show that the vectors 𝑒𝑖 b 𝑒1𝑗 form a basis of 𝑉 b 𝑊 . Given 𝑣 “
ř

𝑖 𝜆𝑖𝑒𝑖 and 𝑤 “
ř

𝑗 𝜂𝑗𝑒
1
𝑗 , by

bilinearity of 𝑉 ˆ𝑊 Ñ 𝑉 b𝑊 , we have:

𝑣 b 𝑤 “
ÿ

𝑖,𝑗

𝜆𝑖𝜂𝑗 ¨ 𝑒𝑖 b 𝑒1𝑗 .

By Exercise 1.3, this shows that the vectors 𝑒𝑖 b 𝑒1𝑗 span 𝑉 b𝑊 . In particular, the dimension of
𝑉 b𝑊 is ď 𝑛 ¨𝑚.

Denote the given basis of 𝑘‘p𝑛𝑚q by 𝑓1, . . . , 𝑓𝑛¨𝑚. Define the bilinear map:

𝑉 ˆ𝑊 Ñ 𝑘‘p𝑛𝑚q

by the formula:

p
ÿ

𝑖

𝜆𝑖𝑒𝑖,
ÿ

𝑗

𝜂𝑗𝑒
1
𝑗q ÞÑ

ÿ

𝑖,𝑗

𝜆𝑖𝜂𝑗 ¨ 𝑓p𝑖´1q¨𝑚`𝑗 .

(Note that as p𝑖, 𝑗q varies subject to the conditions 1 ď 𝑖 ď 𝑛, 1 ď 𝑗 ď 𝑚, the value p𝑖´ 1q ¨𝑚` 𝑗
obtains each integral value between 1 and 𝑛𝑚 exactly once). One immediately verifies that this
map actually is bilinear.

The induced map:

𝑉 b𝑊 Ñ 𝑘‘p𝑛𝑚q

sends 𝑒𝑖b 𝑒1𝑗 to 𝑓p𝑖´1q¨𝑚`𝑗 , and therefore spans the target. Therefore, since dim𝑉 b𝑊 ď 𝑛 ¨𝑚, this
map must be an isomorphism, as desired.

As a corollary, one may try to think of tensor product of vector spaces as an animation of the
usual multiplication of non-negative integers, since dimp𝑉 b𝑊 q “ dimp𝑉 q ¨ dimp𝑊 q.

Exercise 1.4. Show that the map:

Homp𝑉 b𝑊,𝑈q Ñ Homp𝑉,Homp𝑊,𝑈qq

𝑇 ÞÑ

ˆ

𝑣 ÞÑ
´

𝑤 ÞÑ 𝑇 p𝑣, 𝑤q
¯

˙
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is an isomorphism.

Exercise 1.5. For 𝑉 and 𝑊 vector spaces, show that the map:

𝑉 _ b𝑊 Ñ Homp𝑉,𝑊 q

𝜆b 𝑤 ÞÑ p𝑣 ÞÑ 𝜆p𝑣q ¨ 𝑤q

is an isomorphism if 𝑉 is finite-dimensional.
In the case when 𝑊 is also finite-dimensional, understand the relationship to the matrix repre-

sentation of linear transformations in the presence of bases (hint: note that the right hand side is
then a vector space of matrices).

Exercise 1.6. Show that the map:

𝑉 _ b𝑊_ Ñ p𝑉 b𝑊 q_

induced by the map:

𝜆b 𝜂 ÞÑ
´

𝑣 b 𝑤 ÞÑ 𝜆p𝑣q ¨ 𝜂p𝑤q
¯

is an isomorphism for 𝑉 and 𝑊 finite-dimensional.

1.9. Suppose that 𝑉 is a vector space. Define the tensor algebra 𝑇 p𝑉 q of 𝑉 as the direct sum
‘𝑛PZě0𝑉 b𝑛.

Note that 𝑇 p𝑉 q can indeed be made into a 𝑘-algebra in a natural way: the multiplication is given
component-wise by the maps:

𝑉 b𝑛 b 𝑉 b𝑚
»
ÝÑ 𝑉 bp𝑛`𝑚q.

Proposition 1.9.1. Let 𝐴 be a 𝑘-algebra. Restriction along the map 𝑉 Ñ 𝑇 p𝑉 q induces an iso-
morphism:

HomAlg{𝑘p𝑇 p𝑉 q, 𝐴q
»
ÝÑ Hom𝑘p𝑉,𝐴q.

Here HomAlg{𝑘 indicates the set of maps of 𝑘-algebras.

Remark 1.9.2. This is a universal property of the tensor algebra, typically summarized by saying
that 𝑇 p𝑉 q is the free associative algebra on the vector space 𝑉 .

Proof. Given 𝑇 : 𝑉 Ñ 𝐴 a map of vector spaces, we obtain a map 𝑉 b𝑛 Ñ 𝐴 as the composition:

𝑉 b . . .b 𝑉
𝑇b...b𝑇
ÝÝÝÝÝÑ 𝐴b . . . 𝐴Ñ 𝐴

where the last map is induced by the 𝑛-fold multiplication on 𝐴.
One easily verifies that the corresponding map 𝑇 p𝑉 q “ ‘𝑛𝑉

b𝑛 Ñ 𝐴 is a map of 𝑘-algebras and
provides an inverse to the restriction map.

�

1.10. Let 𝑛 ě 0 be an integer and let 𝑉 be a vector space.
We consider quotients Sym𝑛 and Λ𝑛 of 𝑉 uniquely characterized by the following universal

properties:
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‚ A map 𝑇 : 𝑉 b𝑛 Ñ𝑊 factors as:

𝑉 b𝑛

����

𝑇

$$
Sym𝑛p𝑉 q // 𝑊

if and only if 𝑇 is symmetric, i.e., for every collection 𝑣1, . . . , 𝑣𝑛 of vectors of 𝑉 and every

permutation (i.e., bijection) 𝜎 : t1, . . . , 𝑛u
»
ÝÑ t1, . . . , 𝑛u, we have:

𝑇 p𝑣1 b . . .b 𝑣𝑛q “ 𝑇 p𝑣𝜎p1q b . . .b 𝑣𝜎p𝑛qq.

‚ A map 𝑇 : 𝑉 b𝑛 Ñ𝑊 factors as:

𝑉 b𝑛

����

𝑇

##
Λ𝑛p𝑉 q // 𝑊

if and only if 𝑇 is alternating, i.e., for every collection 𝑣1, . . . , 𝑣𝑛 of vectors of 𝑉 and every

permutation (i.e., bijection) 𝜎 : t1, . . . , 𝑛u
»
ÝÑ t1, . . . , 𝑛u, we have:

𝑇 p𝑣1 b . . .b 𝑣𝑛q “ sgnp𝜎q ¨ 𝑇 p𝑣𝜎p1q b . . .b 𝑣𝜎p𝑛qq.

Here sgnp𝜎q is the sign of the permutation 𝜎.

Definition 1.10.1. We say that Sym𝑛p𝑉 q (resp. Λ𝑛p𝑉 q) is the 𝑛th symmetric power (resp. 𝑛th
alternating power) of 𝑉 .

Notation 1.10.2. For 𝑣1, . . . , 𝑣𝑛 P 𝑉 , we let 𝑣1 . . . 𝑣𝑛 or 𝑣1 ¨ . . . ¨ 𝑣𝑛 denote the corresponding element
of Sym𝑛p𝑉 q, i.e., the image of 𝑣1 b . . . b 𝑣𝑛 under the structure map 𝑉 b𝑛 Ñ Sym𝑛p𝑉 q. We let
𝑣1 ^ . . .^ 𝑣𝑛 denote the corresponding vector of Λ𝑛p𝑉 q.

Note that e.g. for 𝑛 “ 2 we have 𝑣1𝑣2 “ 𝑣2𝑣1 and 𝑣1 ^ 𝑣2 “ ´𝑣2 ^ 𝑣1.

Exercise 1.7. Suppose that 𝑉 is finite-dimensional with basis 𝑒1, . . . , 𝑒𝑚.

(1) Show that Sym𝑛p𝑉 q has a basis indexed by the set of non-decreasing functions 𝑓 : t1, . . . , 𝑛u Ñ
t1, . . . ,𝑚u, where the corresponding basis vector is 𝑒𝑓p1q . . . 𝑒𝑓p𝑛q.

Deduce that dimpSym𝑛p𝑉 qq is the binomial coefficient

ˆ

𝑛`𝑚´ 1
𝑚

˙

.

(2) Show that Λ𝑛p𝑉 q has a basis indexed by the subsets 𝐼 of t1, . . . ,𝑚u of order 𝑛, where the
corresponding basis vector is 𝑒𝐼 :“ ^𝑖P𝐼𝑒𝑖 (i.e., the iterated wedge product of the elements
𝑒𝑖 for 𝑖 P 𝐼, where we write the wedge product in the increasing order according to size of
𝑖 P r1, 𝑛s).

Deduce that dimpΛ𝑛p𝑉 qq is the binomial coefficient

ˆ

𝑚
𝑛

˙

for 0 ď 𝑛 ď 𝑚, and dimension

0 for 𝑛 ą 𝑚.

We define the symmetric algebra Symp𝑉 q as ‘𝑛ě0 Sym𝑛p𝑉 q. Note that Symp𝑉 q is a commutative
algebra in an obvious way. We then have the following analogue of Proposition 1.9.1.
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Proposition 1.10.3. Let 𝐴 be a commutative 𝑘-algebra. Restriction along the map 𝑉 Ñ Symp𝑉 q
induces an isomorphism:

HomAlg{𝑘pSymp𝑉 q, 𝐴q
»
ÝÑ Hom𝑘pSymp𝑉 q, 𝐴q.

Remark 1.10.4. This is a universal property of the symmetric algebra, typically summarized by
saying that Symp𝑉 q is the free commutative algebra on the vector space 𝑉 .

Construction 1.10.5. Elements of Sym𝑛p𝑉 _q can be considered as 𝑘-valued functions on 𝑉 , where
for 𝜆1, . . . , 𝜆𝑛 P 𝑉

_ the function on 𝑉 corresponding to 𝜆1 . . . 𝜆𝑛 is 𝑣 ÞÑ 𝜆1p𝑣q . . . 𝜆𝑛p𝑣q.
Functions on 𝑉 arising in this manner are by definition polynomial functions of degree 𝑛 on 𝑉 .

Sums of such functions are called polynomial functions on 𝑉 .

1.11. Bilinear forms. Let 𝑉 be a 𝑘-vector space.

Definition 1.11.1. A (𝑘-valued) bilinear form on 𝑉 is a bilinear map 𝐵 : 𝑉 ˆ 𝑉 Ñ 𝑘.

Suppose that 𝑉 is finite-dimensional.

Remark 1.11.2. Note that Homp𝑉 b 𝑉, 𝑘q “ p𝑉 b2q_ » p𝑉 _qb2, so that bilinear forms may be
considered as elements of 𝑉 _,b2.

Given a bilinear form 𝐵, we obtain a second bilinear form 𝐵𝑇 by setting 𝐵𝑇 p𝑣, 𝑤q :“ 𝐵p𝑤, 𝑣q.
We refer to 𝐵𝑇 as the transpose or adjoint bilinear form.

Remark 1.11.3. By Exercise 1.5, we have an isomorphism:

𝑉 _,b2
»
ÝÑ Homp𝑉, 𝑉 _q

That is, bilinear forms are equivalent to linear transformations 𝑉 Ñ 𝑉 _. To normalize the con-
ventions: under this dictionary, the bilinear form 𝐵 maps to the linear transformation 𝑉 Ñ 𝑉 _

associating to a vector 𝑣 the linear functional 𝑤 ÞÑ 𝐵p𝑣, 𝑤q.

Exercise 1.8. Show that if 𝑇 : 𝑉 Ñ 𝑉 _ corresponds to a bilinear form 𝐵, the linear transformation
corresponding to 𝐵𝑇 is the dual:

𝑇_ : p𝑉 _q_ “ 𝑉 Ñ 𝑉 _

of 𝑇 .

Definition 1.11.4. A bilinear form 𝐵 is non-degenerate if the corresponding linear transformation
𝑉 Ñ 𝑉 _ is an isomorphism.

Exercise 1.9. (1) Show that 𝐵 is non-degenerate if and only if for every 0 ‰ 𝑣 P 𝑉 the corre-
sponding functional 𝐵p𝑣,´q is non-zero, i.e., there exists 𝑤 P 𝑉 with 𝐵p𝑣, 𝑤q ‰ 0.

(2) Suppose that 𝑒1, . . . , 𝑒𝑛 is a basis for 𝑉 and that 𝐵p𝑒𝑖,´q is a non-zero functional for each
𝑖. Is 𝐵 necessarily non-degenerate?

(3) Show that 𝐵 is non-degenerate if and only if 𝐵𝑇 is.

1.12. Symmetric bilinear forms. We now focus on the special case where the bilinear form is
symmetric.

Definition 1.12.1. A bilinear form 𝐵 is symmetric if 𝐵 “ 𝐵𝑇 .

The following result records some equivalent perspectives on the symmetry conditions.

Proposition 1.12.2. The following are equivalent:
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(1) The bilinear form 𝐵 is symmetric.
(2) 𝐵p𝑣, 𝑤q “ 𝐵p𝑤, 𝑣q for all 𝑣, 𝑤 P 𝑉 .
(3) 𝐵 P 𝑉 _,b2 is left invariant under the automorphism:

𝜆b 𝜂 ÞÑ 𝜂 b 𝜆

of 𝑉 _,b2.
(4) The linear transformation 𝑉 Ñ 𝑉 _ corresponding to 𝐵 is self-dual.

2. Quadratic forms and spaces

2.1. Quadratic spaces. Let 𝑘 be a field.

Definition 2.1.1. A quadratic space over 𝑘 is a pair p𝑉, 𝑞q where 𝑉 is a finite-dimensional 𝑘-vector
space and 𝑞 P Sym2p𝑉 _q.

Remark 2.1.2. Given a quadratic space p𝑉, 𝑞q, we obtain a function 𝑉 Ñ 𝑘 by Construction 1.10.5.
By abuse of notation, we denote this function also by 𝑞.

Note that 𝑞 satisfies the properties:

‚ 𝑞p𝜆𝑣q “ 𝜆2𝑞p𝑣q for 𝑣 P 𝑉 and 𝜆 P 𝑘.
‚ The map 𝑉 ˆ 𝑉 Ñ 𝑘 defined by p𝑣, 𝑤q ÞÑ 𝑞p𝑣 ` 𝑤q ´ 𝑞p𝑣q ´ 𝑞p𝑤q is bilinear.

Definition 2.1.3. A function 𝑞 : 𝑉 Ñ 𝑘 satisfying the two conditions of Remark 2.1.2 is said to be
a quadratic form on 𝑉 .

Exercise 2.1. If 𝑞 : 𝑉 Ñ 𝑘 is a quadratic form, show that 𝑞 arises from a unique quadratic space
structure on 𝑉 .

Example 2.1.4. Suppose that p𝑉, 𝑞q is a quadratic space with a chosen basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 . Letting
𝑥1, . . . , 𝑥𝑛 denote the corresponding dual basis of 𝑉 _, we see that 𝑞 is an expression of the form:

ÿ

𝑖

𝑎𝑖,𝑖𝑥
2
𝑖 `

ÿ

𝑖ă𝑗

𝑎𝑖,𝑗𝑥𝑖𝑥𝑗 (2.1)

for 𝑎𝑖,𝑗 P 𝑘.
The corresponding function 𝑞 : 𝑘𝑛 Ñ 𝑘 is given by substitution in the above expression:

¨

˚

˝

𝜆1
...
𝜆𝑛

˛

‹

‚

ÞÑ
ÿ

𝑖

𝑎𝑖,𝑖𝜆
2
𝑖 `

ÿ

𝑖ă𝑗

𝑎𝑖,𝑗𝜆𝑖𝜆𝑗 .

In this case, we will write 𝑞 as a function of 𝑛-variables in the usual way.

Definition 2.1.5. A quadratic space structure on 𝑘𝑛 is a quadratic form in 𝑛 variables. That is, a
quadratic form in 𝑛-variables is an expression (2.1).

Terminology 2.1.6. When referencing quadratic forms without mentioning an ambient vector space,
we will typically mean a quadratic form in some variables, i.e., a quadratic form on some 𝑘‘𝑛.

Terminology 2.1.7. We follow classical usage is referring to a quadratic form in one (resp. two, resp.
three, resp. four) variables as a unary (resp. binary, resp. ternary, resp. quaternary) form.
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Remark 2.1.8. By definition, a quadratic form is a quadratic space with chosen coordinates. His-
torically, quadratic forms were the original objects of study. However, we will see that for some
questions (e.g., representability by the form—see below), the perspective of quadratic spaces is
much more flexible.

In what follows, we will first develop the theory in the abstract setting of quadratic spaces, and
then explain how to translate the questions of the theory into problems of the matrix calculus of
linear algebra. This approach will not be ideal for all readers, some of whom will prefer to practice
computing before developing the abstract (and simpler) setting. Such readers are advised to skip
ahead to S2.6 and refer back as necessary.

Remark 2.1.9. The definition of quadratic space allows to consider the case 𝑉 “ 0 (and 𝑞 “ 0). We
refer to this as the zero quadratic space. This should not be confused with the zero quadratic form
on a vector space 𝑉 , which is defined as 𝑞p𝑣q “ 0 for all 𝑣 P 𝑉 .

2.2. Morphisms of quadratic spaces. A morphism 𝑇 : p𝑉, 𝑞𝑉 q Ñ p𝑊, 𝑞𝑊 q of quadratic spaces
is a linear transformation 𝑇 : 𝑉 Ñ𝑊 such that 𝑞𝑊 p𝑇 p𝑣qq “ 𝑞𝑉 p𝑣q for every 𝑣 P 𝑉 .

Remark 2.2.1. Such linear transformations are often called isometries in the literature (this phrase
also sometimes refers more specifically to injective or bijective morphisms of quadratic spaces).

An isomorphism of quadratic spaces is a morphism that is a morphism inducing an isomorphism

𝑉
»
ÝÑ𝑊 of vector spaces.
We say that two quadratic forms in 𝑛-variables are equivalent if the corresponding quadratic

spaces are isomorphic.

2.3. Operations with quadratic spaces. We give some basic constructions of new quadratic
spaces from old: direct sum, restriction, and extension of scalars.

Suppose that p𝑉, 𝑞𝑉 q and p𝑊, 𝑞𝑊 q are quadratic spaces. Then 𝑉 ‘𝑊 carries a canonical quadratic
form 𝑞𝑉 ‘ 𝑞𝑊 defined by p𝑞𝑉 ‘ 𝑞𝑊 qp𝑣, 𝑤q “ 𝑞𝑉 p𝑣q ` 𝑞𝑊 p𝑤q.

Next, suppose that 𝑇 : 𝑉 Ñ 𝑊 is a linear transformation and 𝑞𝑊 is a quadratic form on 𝑊 .
Define 𝑞𝑉 by 𝑞𝑉 p𝑣q :“ 𝑞𝑊 p𝑇 p𝑣qq. Obviously 𝑞𝑉 is a quadratic form on 𝑉 ; we say that it is obtained
by restriction and sometimes denote it by 𝑞𝑊 |𝑉 .

𝑞p𝑣 ` 𝑤q “ 𝑞p𝑣q ` 𝑞p𝑤q `𝐵𝑞p𝑣, 𝑤q

Finally, let p𝑉, 𝑞q be a quadratic space over 𝑘, and let 𝑘 ãÑ 𝑘1 be an embedding of fields. Then
𝑉 b𝑘 𝑘

1 is naturally a 𝑘1-vector space and 𝑞 extends to a quadratic form 𝑞𝑘1 on 𝑉 b𝑘 𝑘
1. For example,

if we fix a basis 𝑉 » 𝑘‘𝑛 of 𝑉 , then 𝑉 b𝑘 𝑘
1 acquires a natural basis, and the quadratic form (2.1)

defines the “same” quadratic form, where we consider elements of 𝑘 as elements of 𝑘1 through the
embedding.

Remark 2.3.1. It would be better to refer to p𝑉 ‘𝑊, 𝑞𝑉‘𝑊 q as the orthogonal direct sum, as in
[Ser]. Indeed, morphisms p𝑉 ‘𝑊, 𝑞𝑉‘𝑊 q Ñ p𝑈, 𝑞𝑈 q are equivalent to giving a pair of morphisms
𝑇 : p𝑉, 𝑞𝑉 q Ñ p𝑈, 𝑞𝑈 q and 𝑆 : p𝑊, 𝑞𝑊 q Ñ p𝑈, 𝑞𝑈 q with the additional conditions that their images
be orthogonal, i.e., 𝐵𝑞𝑈 p𝑇 p𝑣q, 𝑆p𝑤qq “ 0 for all 𝑣 P 𝑉 and 𝑤 P𝑊 .

2.4. Representability. Suppose that p𝑉, 𝑞q is a quadratic space.

Definition 2.4.1. We say that 𝑞 represents 𝜆 P 𝑘 if there exists a vector 𝑣 P 𝑉 such that 𝑞p𝑣q “ 𝜆
(i.e., if 𝜆 is in the image of the function 𝑞).

Remark 2.4.2. If 𝑞 represents 𝜆, then 𝑞 represents 𝜂2𝜆 for any 𝜂 P 𝑘: indeed, if 𝑞p𝑣q “ 𝜆 then
𝑞p𝜂𝑣q “ 𝜂2𝜆. Therefore, we may also speak about 𝑞 representing classes in 𝑘ˆ{p𝑘ˆq2.
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Example 2.4.3. Suppose that 𝑉 “ 𝑘 is the trivial one-dimensional vector space. Then by Example
2.1.4, 𝑞 must be of the form 𝑞p𝑥q “ 𝑎𝑥2 for some 𝑎 P 𝑘, and we assume 𝑎 ‰ 0 for conveninence. We
see that 𝑞 represents 𝜆 if and only if 𝜆{𝑎 is a square in 𝑘.

We specialize this to particular fields:

(1) For example, if 𝑘 is algebraically closed, 𝑞 represents all values 𝜆 P 𝑘 so long as 𝑎 ‰ 0.
(2) If 𝑘 “ R, 𝑞 represents 𝜆 if and only if 𝑎 and 𝜆 have the same sign.
(3) If 𝑘 “ F𝑝, then 𝑞 represents 𝜆 if and only if 𝜆{𝑎 is a quadratic residue in F𝑝. Indeed, here

“quadratic residue” simply means “is a square.”
(4) Suppose 𝑘 “ Q. We introduce the following notation: for 𝑝 a prime number and 𝑛 ‰ 0

an integer, let 𝑣𝑝p𝑛q P Zě0 be the order to which 𝑝 divides 𝑛 (alias: the valuation of 𝑛 at
𝑝), i.e., it is the unique integer such that 𝑛

𝑝𝑣𝑝p𝑛q
P Z and 𝑛

𝑝𝑣𝑝p𝑛q`1 is not. More generally,

for 𝑟 “ 𝑛
𝑚 P Qˆ, let 𝑣𝑝p𝑟q :“ 𝑣𝑝p𝑛q ´ 𝑣𝑝p𝑚q. (For example: 𝑣𝑝p𝑝q “ 1, 𝑣𝑝p𝑝

2q “ 2, and

𝑣𝑝p
1
𝑝q “ ´1).

Then 𝑞 as above represents 𝜆 if and only if 𝑎 and 𝜆 have the same sign, and moreover,
𝑣𝑝p𝑎q ´ 𝑣𝑝p𝜆q is even for each prime 𝑝 (if this is confusing, it is instructive here to work out
the case 𝑎 “ 1).

We notice the following feature: 𝑞 represents a particular value if and only if certain
conditions are verified at each prime 𝑝, and there is an additional condition involving R
(here that 𝑎 and 𝜆 have the same sign). This is the most elementary instance of the Hasse
principle.

(5) In general, if 𝑎 and 𝜆 are non-zero (the case where either is zero being trivial), then 𝑞
obviously represents 𝜆 if and only if 𝑎 and 𝜆 project to the same element in the (2-torsion)
abelian group 𝑘ˆ{p𝑘ˆq2. The above analysis amounts to saying that Rˆ{pRˆq2 “ Z{2Z
(according to sign), and Qˆ{pQˆq2 is isomorphic to the direct sum:

Z{2Z‘
`

‘
𝑝 prime

Z{2Z
˘

given by the sign homomorphism on the first factor and the parity of the valuation at 𝑝 on
the factor corresponding to a prime 𝑝.

Exercise 2.2. This exercise is meant to flesh out (3) above.

(1) Show that there is a (necessarily unique) isomorphism Fˆ𝑝 {pFˆ𝑝 q2 » Z{2Z as long as 𝑝 ‰ 2.

(2) For 𝑎 P Fˆ𝑝 , we use the Legendre symbol
´

𝑎
𝑝

¯

P t1,´1u for the resulting map:

Fˆ𝑝 Ñ Fˆ𝑝 {pFˆ𝑝 q2 » Z{2Z “ t1,´1u.

Here we use multiplicative notation for Z{2Z.

Show that
´

´

𝑝

¯

is a homomorphism Fˆ𝑝 Ñ t1,´1u.

(3) Show that 𝑝´1
2 elements of Fˆ𝑝 are quadratic residues and an equal number are not.

Exercise 2.3. Suppose that 𝑘 “ Q, 𝑉 “ 𝑘2 and 𝑞p𝑥, 𝑦q “ 𝑥2 ` 𝑦2. Show that 𝑞 represents 𝜆 P Z
implies that 𝜆 ‰ 3 modulo 4.

Of course, every quadratic form represents 0, since 𝑞p0q “ 0. However, the following condition is
less trivial.

Definition 2.4.4. An isotropic vector in p𝑉, 𝑞q is a nonzero 𝑣 P 𝑉 such that 𝑞p𝑣q “ 0. The quadratic
form 𝑞 : 𝑉 Ñ 𝑘 is isotropic if there exists an isotropic vector in p𝑉, 𝑞q.

We say that 𝑞 is anisotropic if it is not isotropic.
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Exercise 2.4. Let 𝑘 be a subfield of R (e.g., 𝑘 “ Q or 𝑘 “ R).

(1) show that 𝑞p𝑥1, . . . , 𝑥𝑛q “
ř𝑛

𝑖“1 𝑥
2
𝑖 is anisotropic. Show that for 0 ‰ 𝑎𝑖 P 𝑘 “ R, the form:

𝑞p𝑥1, . . . , 𝑥𝑛q “
𝑛
ÿ

𝑖“1

𝑎𝑖𝑥
2
𝑖

is anisotropic if and only if all the 𝑎𝑖 have the same sign (i.e., are all positive or all negative).
Show that for 𝑘 “ Q this condition is no longer sufficient.

(2) More generally, we say that a form p𝑉, 𝑞q is positive-definite (resp. negative-definite) if
𝑞p𝑣q ą 0 (resp. 𝑞p𝑣q ă 0) for all 0 ‰ 𝑣 P 𝑉 b𝑘 R, and merely definite if it is either positive
or negative definite.1

Show that any definite form is anisotropic.
(3) Show that a form 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑥𝑦 ` 𝑐𝑦2 is definite if and only if the discriminant

∆ “ 𝑏2 ´ 4𝑎𝑐 is negative.

Exercise 2.5. Let 𝑘 be algebraically closed. Show that every quadratic space p𝑉, 𝑞q over 𝑘 with
dimp𝑉 q ą 1 is isotropic.

Note that the property of being isotropic is preserved under extension of scalars, although the
property of being anisotropic is not necessarily.

Suppose that 𝜆 P 𝑘 and 𝑞 : 𝑉 Ñ 𝑘 is a quadratic form. Define 𝑞𝜆 : 𝑉 ‘ 𝑘 Ñ 𝑘 by 𝑞𝜆p𝑣, 𝜂q “
𝑞p𝑣q ´ 𝜆 ¨ 𝜂2: obviously 𝑞𝜆 is a quadratic form.

Proposition 2.4.5. If 𝑞 represents 𝜆, then 𝑞𝜆 is isotropic. Moreover, if 𝑞 is itself anisotropic, then
this condition is necessary and sufficient.

Proof. If 𝑞p𝑣q “ 𝜆, then:

𝑞𝜆p𝑣, 1q “ 𝑞p𝑣q ´ 𝜆 ¨ 1 “ 𝜆´ 𝜆 “ 0

so that 𝑞𝜆 is isotropic.
Conversely, if 𝑞𝜆p𝑣, 𝜂q “ 0, then either 𝜂 “ 0, in which case 𝑞p𝑣q “ 0, or else:

𝑞p𝜂´1𝑣q “ 𝜂´2𝑞p𝑣q “ 𝜂´2
`

𝑞𝜆p𝑣, 𝜂q ` 𝜆 ¨ 𝜂2q “ 𝜆

as desired.
�

Remark 2.4.6. In this manner, representability questions can be reduced to the question of a form
being isotropic, which can be easier to treat. We will develop these methods further below, proving
in particular the strengthening Corollary 2.10.3 of Proposition 2.4.5.

2.5. By Remark 2.1.2, to every quadratic space p𝑉, 𝑞q there is an associated bilinear form 𝐵𝑞:

𝐵𝑞 : 𝑉 ˆ 𝑉 Ñ 𝑘

𝐵𝑞p𝑣, 𝑤q :“ 𝑞p𝑣 ` 𝑤q ´ 𝑞p𝑣q ´ 𝑞p𝑤q.

Obviously 𝐵𝑞 is symmetric.
Likewise, given 𝐵 a bilinear form on 𝑉 , the function 𝑞𝐵 defined by 𝑞𝐵p𝑣q :“ 𝐵p𝑣, 𝑣q is a quadratic

form, since:

𝑞𝐵p𝜆𝑣q “ 𝐵p𝜆𝑣, 𝜆𝑣q “ 𝜆2𝐵p𝑣, 𝑣q “ 𝜆2𝑞𝐵p𝑣q

1We remark explicitly that definiteness depends only on the form obtained by extending scalars from 𝑘 to R.
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and:

𝑞𝐵p𝑣 ` 𝑤q ´ 𝑞𝐵p𝑣q ´ 𝑞𝐵p𝑤q “ 𝐵p𝑣 ` 𝑤, 𝑣 ` 𝑤q ´𝐵p𝑣, 𝑣q ´𝐵p𝑤,𝑤q “

𝐵p𝑣, 𝑣q `𝐵p𝑣, 𝑤q `𝐵p𝑤, 𝑣q `𝐵p𝑤,𝑤q ´𝐵p𝑣, 𝑣q ´𝐵p𝑤,𝑤q “ 𝐵p𝑣, 𝑤q `𝐵p𝑤, 𝑣q “ p𝐵 `𝐵𝑇 qp𝑣, 𝑤q

and the latter expression is manifestly bilinear as the sum of two bilinear forms.
Observe that these constructions are almost, but not quite, inverses to each other: the quadratic

form 𝑞𝐵𝑞 (associated with the bilinear form associated with the quadratic from 𝑞) is 2 ¨ 𝑞:

𝑞𝐵𝑞p𝑣q “ 𝐵𝑞p𝑣, 𝑣q “ 𝑞p𝑣 ` 𝑣q ´ 𝑞p𝑣q ´ 𝑞p𝑣q “ 𝑞p2 ¨ 𝑣q ´ 2 ¨ 𝑞p𝑣q “ 4𝑞p𝑣q ´ 2𝑞p𝑣q “ 2𝑞p𝑣q.

Likewise, 𝐵𝑞𝐵 “ 2 ¨𝐵 if 𝐵 is symmetric bilinear (generally, it is 𝐵 `𝐵𝑇 , as we have already seen).
Therefore, we deduce that there is a bijection between quadratic forms and symmetric bilinear

forms as long as the characteristic of 𝑘 is not 2, with each of the maps above being bijections
(though not quite mutually inverse bijections due to the factor of 2).

Exercise 2.6. Show that the bilinear form associated with the quadratic form:

𝑛
ÿ

𝑖“1

𝑎𝑖,𝑖𝑥
2
𝑖 `

ÿ

𝑖ă𝑗

𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

is given by the bilinear form:

˜

¨

˚

˝

𝜆1
...
𝜆𝑛

˛

‹

‚

,

¨

˚

˝

𝜂1
...
𝜂𝑛

˛

‹

‚

¸

ÞÑ

𝑛
ÿ

𝑖“1

2𝑎𝑖,𝑖𝜆𝑖𝜂𝑗 `
𝑛
ÿ

𝑖ă𝑗

𝑎𝑖,𝑗p𝜆𝑖𝜂𝑗 ` 𝜆𝑗𝜂𝑖q.

Deduce that the assignment of a symmetric bilinear form to a quadratic form is neither injective
nor surjective in characteristic 2.

Exercise 2.7. If 𝑇 : p𝑉, 𝑞𝑉 q Ñ p𝑊, 𝑞𝑊 q is a morphism of quadratic spaces, show that for every
𝑣1, 𝑣2 P 𝑉 we have:

𝐵𝑞𝑉 p𝑣1, 𝑣2q “ 𝐵𝑞𝑊 p𝑇 p𝑣1q, 𝑇 p𝑣2qq.

Remark 2.5.1. The equivalence between quadratic forms and symmetric bilinear forms for charp𝑘q ‰
2 may be considered as an instance of Maschke’s theorem from the representation theory of finite
groups, considering the representation of Z{2Z on 𝑉 b2 given by switching factors.

2.6. Matrices. Suppose that 𝑉 is equipped with a bilinear form 𝐵 : 𝑉 b 𝑉 Ñ 𝑘 and a basis
𝑒1, . . . , 𝑒𝑛. As in S1.11, we associate to 𝐵 a linear transformation 𝑉 Ñ 𝑉 _, and using our basis we
may view this as a linear transformation from 𝑘‘𝑛 to itself, i.e., as a matrix. This evidently defines
a bijection between p𝑛ˆ 𝑛q-matrices and bilinear forms on 𝑘‘𝑛.

Exercise 2.8. (1) Show that the bilinear form associated to a p𝑛ˆ 𝑛q-matrix 𝐴 is given by:

p𝑣, 𝑤q ÞÑ 𝑤𝑇𝐴𝑣

where we consider 𝑣 and 𝑤 as column vectors, and the superscript 𝑇 indicates the transpose
of a matrix (so 𝑤𝑇 is the row vector associated to 𝑤); note that the result of the above
matrix multiplication is a p1ˆ 1q-matrix, i.e., an element of 𝑘.
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(2) Show that the matrix associated to the bilinear form 𝐵 above is:

𝐴 “

¨

˚

˚

˚

˝

𝐵p𝑒1, 𝑒1q 𝐵p𝑒2, 𝑒1q . . . 𝐵p𝑒𝑛, 𝑒1q
𝐵p𝑒1, 𝑒2q 𝐵p𝑒2, 𝑒2q . . . 𝐵p𝑒𝑛, 𝑒2q

...
...

...
...

𝐵p𝑒1, 𝑒𝑛q 𝐵p𝑒2, 𝑒𝑛q . . . 𝐵p𝑒𝑛, 𝑒𝑛q

˛

‹

‹

‹

‚

.

In particular, the bilinear form is symmetric if and only if its associated matrix is sym-
metric (meaning that it is equal to its own transpose).

Exercise 2.9. Suppose that 𝑓1, . . . , 𝑓𝑛 is a second choice of basis. Let 𝑆 be the (invertible) matrix
whose 𝑖th column is the vector 𝑓𝑖 P 𝑘

‘𝑛 (written in coordinates relative to the basis t𝑒𝑗u). Suppose
that we find that matrix 𝐴1 of a bilinear form 𝐵 with respect to the basis 𝑓1, . . . , 𝑓𝑛. Show that 𝐴1

is obtained from 𝐴 as:

𝐴1 “ 𝑆𝑇𝐴𝑆.

Conclude that if charp𝑘q ‰ 2, then equivalence classes of quadratic spaces over 𝑘 are in bijection
with the quotient set of symmetric matrices modulo the action of 𝐺𝐿𝑛p𝑘q by 𝑆 ¨𝐴 :“ 𝑆𝑇𝐴𝑆.

We will also speak of the matrix of a quadratic form, meaning the matrix of the associated
symmetric bilinear form.

2.7. A remark regarding characteristic 2. Quadratic forms in characteristic 2 behave different
from in other characteristics. In many respects, they can be regarded as pathological.

We note that they do arise in nature as the reduction modulo 2 of integral quadratic forms, and
for some purposes they cannot be avoided. However, for the purposes of these notes, we will not
need the theory.

Still, the author has opted to include some finer material regarding characteristic 2 than is
needed. The reader may safely ignore all of it, ignoring in particular the difference between the
radical and the reduced radical, and the difference between various notions of non-degeneracy. The
only loss to the reader would be a few fun exercises.

2.8. Radical. Let p𝑉, 𝑞q be a quadratic space. We define the radical Radp𝑉 q of 𝑉 as the subset of
vectors 𝑣 P 𝑉 such that 𝐵𝑞p𝑣, 𝑤q “ 0 for every 𝑤 P 𝑉 . We define the reduced radical Radp𝑉 q as the
subset of isotropic vectors in the radical of 𝑉 .

Clearly Radp𝑉 q is a subspace, and one immediately finds that Radp𝑉 q is as well: indeed, if
𝑣, 𝑤 P Radp𝑉 q, then 𝑞p𝑣q “ 𝑞p𝑤q “ 0 and 𝐵𝑞p𝑣, 𝑤q “ 0 so that 𝑞p𝑣`𝑤q “ 𝑞p𝑣q`𝑞p𝑤q`𝐵𝑞p𝑣, 𝑤q “ 0.

If charp𝑘q ‰ 2, then Radp𝑉 q “ Radp𝑉 q: indeed, for any 𝑣 P Radp𝑉 q we have 0 “ 𝐵𝑞p𝑣, 𝑣q “
2 ¨ 𝑞p𝑣q.

Construction 2.8.1. For every 𝑣 P Radp𝑉 q and every 𝑤 P 𝑉 , we have:

𝑞p𝑣 ` 𝑤q “ 𝑞p𝑣q ` 𝑞p𝑤q `𝐵𝑞p𝑣, 𝑤q “ 𝑞p𝑤q

and therefore we obtain an induced quadratic form on the quotient space 𝑉 {Radp𝑉 q. Of course,
more generally, we obtain such a form on the quotient by any subspace of the reduced radical.

We define the rank rankp𝑞q of a quadratic space p𝑉, 𝑞q as dimp𝑉 q´dimpRadp𝑉 qq and the reduced
rank of a quadratic space as dimp𝑉 q ´ dimpRadp𝑉 qq.
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Exercise 2.10. Let 𝑘 be a perfect2 field of characteristic 2. Show that dimpRadp𝑉 qq´dimpRadp𝑉 qq
must equal 0 or 1.

2.9. Non-degenerate quadratic forms. We say that p𝑉, 𝑞q is non-degenerate if Radp𝑉 q “ 0, and
we say that p𝑉, 𝑞q is strongly non-degenerate if Radp𝑉 q “ 0 (equivalently: 𝐵𝑞 is non-degenerate).
These notions coincide if charp𝑘q ‰ 2.

Remark 2.9.1. Unwinding the definitions: p𝑉, 𝑞q is strongly non-degenerate if for every 0 ‰ 𝑣 P 𝑉
there exists 𝑤 P 𝑉 with 𝐵𝑞p𝑣, 𝑤q ‰ 0, and non-degenerate if for every 0 ‰ 𝑣 P 𝑉 , either there exists
such a 𝑤 P 𝑉 or else 𝑞p𝑣q ‰ 0.

Remark 2.9.2. Clearly a form is (resp. strongly) non-degenerate if and only if its rank (resp. reduced
rank) is equal to its dimension.

Example 2.9.3. The 1-variable quadratic form 𝑞p𝑥q “ 𝑎𝑥2 for 𝑎 P 𝑘 is non-degenerate in the above
sense if and only if 𝑎 ‰ 0 (for 𝑘 of arbitrary characteristic). However, for charp𝑘q “ 2, this form is
not strongly non-degenerate.

Exercise 2.11. Suppose that 𝑇 : p𝑉, 𝑞𝑉 q Ñ p𝑊, 𝑞𝑊 q is a morphism of quadratic spaces with p𝑉, 𝑞𝑉 q
non-degenerate. Show that 𝑇 is injective.

Exercise 2.12. Show that 𝑉 {Radp𝑉 q is non-degenerate when equipped with the quadratic space
structure of Construction 2.8.1.

Definition 2.9.4. Suppose that p𝑉, 𝑞q is a quadratic space and 𝑊 is a subspace of 𝑉 . The orthogonal
subspace 𝑊K to 𝑊 is the subspace of vectors 𝑣 P 𝑉 such that 𝐵𝑞p𝑣, 𝑤q “ 0 for all 𝑤 P𝑊 .

Remark 2.9.5. If p𝑉, 𝑞q is strongly non-degenerate, then dim𝑊 ` dim𝑊K “ dim𝑉 , since 𝑊K :“
Kerp𝑉 Ñ𝑊_q and the map 𝑉 Ñ𝑊_ is surjective by strong non-degeneracy.

Remark 2.9.6. If charp𝑘q ‰ 2, then any vector in 𝑊 X𝑊K is isotropic.

Proposition 2.9.7. Suppose that p𝑉, 𝑞q is a quadratic space and 𝑊 Ď 𝑉 with p𝑊, 𝑞|𝑊 q strongly
non-degenerate. Then p𝑉, 𝑞q » p𝑊, 𝑞|𝑊 q ‘ p𝑊

K, 𝑞|𝑊Kq.
p𝑊K, 𝑞|𝑊Kq is strongly non-degenerate if and only if p𝑉, 𝑞q is.

Proof. First, we claim that 𝑊 X𝑊K “ 0. Suppose that 0 ‰ 𝑤 P𝑊 . Then, because 𝑞|𝑊 is strongly
non-degenerate, there exists 𝑤1 P𝑊 with 𝐵𝑞p𝑤,𝑤

1q ‰ 0, meaning that 𝑤 R𝑊K.
Next, for any 𝑣 P 𝑉 , we claim that there exists 𝑤 P 𝑊 with 𝐵𝑞p𝑣, 𝑤

1q “ 𝐵𝑞p𝑤,𝑤
1q for every

𝑤1 P 𝑊 . Indeed, 𝐵𝑞p𝑣,´q : 𝑊 Ñ 𝑘 is a linear functional, and therefore, by strong non-degeneracy
of 𝑊 , it is of the form 𝐵𝑞p𝑤,´q for a unique choice of 𝑤 P 𝑊 . Observing that 𝑣 ´ 𝑤 is obviously
in 𝑊K, we obtain that 𝑉 “𝑊 ‘𝑊K.

We then note that for any 𝑤 P𝑊 , 𝑤1 P𝑊K, we have:

𝑞p𝑤 ` 𝑤1q “ 𝑞p𝑤q ` 𝑞p𝑤1q `𝐵𝑞p𝑤,𝑤
1q “ 𝑞p𝑤q ` 𝑞p𝑤1q

so that the quadratic form 𝑞 is obtained as the direct sum of its restriction to these subspaces.
The second part follows from Exercise 2.13 below.

�

Exercise 2.13. Show that the direct sum of two quadratic spaces is non-degenerate if and only if
each of the summands is.

2Recall that a field of characteristic 𝑝 is said to be perfect if the map 𝑥 ÞÑ 𝑥𝑝 is an isomorphism.
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The following lemma is useful for verifying non-degeneracy computationally.

Lemma 2.9.8. Suppose that 𝑞 is a quadratic form in 𝑛-variables with associated bilinear form
having matrix 𝐴, as in S2.6.

Then 𝑞 is strongly non-degenerate if and only if detp𝐴q ‰ 0.

Proof. Indeed, for 𝑉 “ 𝑘𝑛, 𝐴 is the matrix associated to the map 𝑘𝑛 “ 𝑉 Ñ 𝑉 _ “ 𝑘𝑛, so it is an
equivalence if and only if its determinant is non-zero.

�

Remark 2.9.9. Some authors use the term “regular” instead of non-degenerate.

Remark 2.9.10. The reader may safely skip this remark.
A more sophisticated variant of the above in characteristic 2: we say that p𝑉, 𝑞q is geometrically

non-degenerate if Radp𝑉 b𝑘 𝑘1q “ 0 for every field extension 𝑘 ãÑ 𝑘1. Note that formation of the
usual radical Rad commutes with extension of scalars, so this definition still gives the same answer
in characteristic not equal to 2. Note that by Exercise 2.10 this implies that the dimension of the
radical is ď 1. We note that if 𝜆 P 𝑘 is not a square, then 𝑥2`𝜆𝑦2 is an example of a non-degenerate
but not geometrically non-degenerate quadratic form.

The reader may take as an exercise to show that geometric non-degeneracy is equivalent to strong
non-degeneracy if dimp𝑉 q is even, and equivalent to dimpRadq “ 1 if dimp𝑉 q is odd.

We remark that geometric non-degeneracy is equivalent to algebro-geometric conditions: essen-
tially just smoothness of the associated (projective) quadric hypersurface 𝑞 “ 0.

2.10. The hyperbolic plane. The most important example of an isotropic quadratic space is the
hyperbolic plane.3

By definition, this is the quadratic space 𝑘‘2 with the quadratic form 𝑞p𝑥, 𝑦q “ 𝑥𝑦. We denote
the hyperbolic plane as p𝐻, 𝑞𝐻q. The matrix for the associated symmetric bilinear form is:

ˆ

0 1
1 0

˙

.

Proposition 2.10.1. For every non-degenerate isotropic quadratic space p𝑉, 𝑞q is isomorphic to
p𝑉 1, 𝑞1q ‘ p𝐻, 𝑞𝐻q for an appropriate choice of p𝑉 1, 𝑞1q. The quadratic space p𝑉 1, 𝑞1q is necessarily
non-degenerate as well.

Proof. Let 𝑣 be an isotropic vector in 𝑉 . We claim that there is an isotropic vector 𝑤 P 𝑉 such
that 𝐵𝑞p𝑣, 𝑤q “ 1.

Indeed, by non-degeneracy of 𝑞, there exists 𝑤0 P 𝑉 with 𝐵𝑞p𝑣, 𝑤0q ‰ 0. Therefore, we can define:

𝑤 :“
1

𝐵𝑞p𝑣, 𝑤0q
¨
`

𝑤0 ´
𝑞p𝑤0q

𝐵𝑞p𝑣, 𝑤0q
¨ 𝑣
˘

.

We then readily verify:

𝑞p𝑤q “
1

𝐵𝑞p𝑣, 𝑤0q
2
¨ 𝑞p𝑤0 ´

𝑞p𝑤0q

𝐵𝑞p𝑣, 𝑤0q
¨ 𝑣q “

1

𝐵𝑞p𝑣, 𝑤0q
2
¨
`

𝑞p𝑤0q ´𝐵𝑞p
𝑞p𝑤0q

𝐵𝑞p𝑣, 𝑤0q
𝑣, 𝑤0q

˘

“ 0

and:

3We note that there’s no substantive relationship here to the hyperbolic plane in geometry. Rather, 𝐻 is a plane
because it is 2-dimensional, and hyperbolic because its non-zero level sets are hyperbolas.
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𝐵𝑞p𝑣, 𝑤q “
1

𝐵𝑞p𝑣, 𝑤0q
¨𝐵𝑞p𝑣, 𝑤0 ´

𝑞p𝑤0q

𝐵p𝑣, 𝑤0q
𝑣q “

1

𝐵𝑞p𝑣, 𝑤0q
𝐵𝑞p𝑣, 𝑤0q “ 1

as desired.
This gives an embedding of the hyperbolic plane into p𝑉, 𝑞q, and then we obtain the result by

Proposition 2.9.7.
�

Corollary 2.10.2. If 𝑞 is non-degenerate and isotropic, then every 𝜆 P 𝑘 is represented by 𝑞.

Proof. This follows from Proposition 2.10.1 upon noting that the hyperbolic plane represents every
𝜆 P 𝑘.

�

Corollary 2.10.3. A non-degenerate quadratic space p𝑉, 𝑞q represents 𝜆 P 𝑘 if and only if p𝑉 ‘𝑘, 𝑞𝜆q
is isotropic (recall that 𝑞𝜆p𝑥, 𝜂q :“ 𝑞p𝑥q ´ 𝜆𝜂2).

Proof. The case that p𝑉, 𝑞q is anisotropic is treated in Proposition 2.4.5. If p𝑉, 𝑞q is isotropic, then
by Corollary 2.10.2 p𝑉, 𝑞q represents every value.

�

Exercise 2.14. Suppose in (slightly) more generality that p𝑉, 𝑞q is an isotropic non-degenerate
quadratic space. Does p𝑉, 𝑞q necessarily contain a copy of the hyperbolic plane?

2.11. Diagonalization. Let p𝑉, 𝑞q be a quadratic space.

Definition 2.11.1. A diagonalization of p𝑉, 𝑞q is a decomposition p𝑉, 𝑞q “ p𝑉1, 𝑞1q ‘ . . . ‘ p𝑉𝑛, 𝑞𝑛q
with dimp𝑉𝑖q “ 1 for all 𝑖.

Remark 2.11.2. In terms of quadratic forms in 𝑛-variables, a diagonalization of a quadratic form
𝑞p𝑥1, . . . , 𝑥𝑛q is an equivalence of 𝑞 with a form 𝑞1 of the type:

𝑞1p𝑦1, . . . , 𝑦𝑛q “
𝑛
ÿ

𝑖“1

𝑎𝑖𝑦
2
𝑖 .

Proposition 2.11.3. Let p𝑉, 𝑞q be a quadratic space over 𝑘 with charp𝑘q ‰ 2. Then there exists a
diagonalization of p𝑉, 𝑞q.

Proof. First, suppose that 𝑉 is non-degenerate. We proceed by induction: the result is tautological
if dimp𝑉 q “ 0.

If dimp𝑉 q ą 0 there exists 𝑣 P 𝑉 with 𝑞p𝑣q ‰ 0, since otherwise 𝑞 is identically zero and therefore
𝐵𝑞 could not be non-degenerate.

Let 𝑊 Ď 𝑉 be the subspace 𝑘 ¨ 𝑣 spanned by 𝑣. Then 𝑊K X𝑊 “ 0 by assumption on 𝑣, and
we obviously have a decomposition direct sum decomposition 𝑉 “𝑊 ‘𝑊K. Moreover, for 𝑤 P𝑊
and 𝑤1 P𝑊K, we compute:

𝑞p𝑤 ` 𝑤1q “ 𝑞p𝑤q ` 𝑞p𝑤1q `𝐵𝑞p𝑤,𝑤
1q “ 𝑞p𝑤q ` 𝑞p𝑤1q

and therefore we obtain:

𝑉 “ p𝑊, 𝑞|𝑊 q ‘ p𝑊
K, 𝑞|𝑊Kq

and obtain the result in this case by induction.
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In general, let 𝑉 1 Ď 𝑉 be a subspace so that Radp𝑉 q‘𝑉 1 » 𝑉 . Note that p𝑉 1, 𝑞|𝑉 1q maps isomor-
phically onto the quotient 𝑉 {Radp𝑉 q equipped with its canonical quadratic space structure, and
therefore is non-degenerate by Exercise 2.12. Moreover, we see that p𝑉, 𝑞q » p𝑉 1, 𝑞|𝑉 1q‘pRadp𝑉 q, 0q,
each of which can be diagonalized.

�

Corollary 2.11.4. Over an algebraically closed field 𝑘 with charp𝑘q ‰ 2, all quadratic spaces of
the same rank and dimension are equivalent.

Exercise 2.15. Show that the hyperbolic plane cannot be diagonalized in characteristic 2. Deduce
that Proposition 2.11.3 fails for strongly non-degenerate quadratic spaces in characteristic 2. Where
does the argument in Proposition 2.11.3 fail?

Exercise 2.16. Deduce Corollary 2.11.4 from Proposition 2.10.1 and Exercise 2.5.

2.12. Transposes. Let p𝑉, 𝑞q be a strongly non-degenerate quadratic space and let 𝑆 : 𝑉 Ñ 𝑉 be
any linear transformation (not necessarily a morphism of quadratic spaces).

We define the 𝑞-transpose 𝑆𝑇𝑞 : 𝑉 Ñ 𝑉 of 𝑆 as the unique linear transformation such that the
diagram:

𝑉

»

��

𝑆𝑇𝑞 // 𝑉

»

��
𝑉 _

𝑆_ // 𝑉 _.

(2.2)

commutes. Here the vertical maps are defined by 𝐵𝑞. Note that 𝑆𝑇𝑞 is uniquely defined because
these vertical maps are isomorphisms by the assumption of strong non-degeneracy.

Proposition 2.12.1. 𝑆𝑇𝑞 is the unique linear transformation 𝑉 Ñ 𝑉 satisfying:

𝐵𝑞p𝑆
𝑇𝑞p𝑣q, 𝑤q “ 𝐵𝑞p𝑣, 𝑆p𝑤qq

for all 𝑣, 𝑤 P 𝑉 .

Proof. The commutation of the diagram (2.2) says that for every 𝑣 P 𝑉 , two certain functionals
𝑉 Ñ 𝑘 should be equal. Evaluating these two functionals on 𝑤 P 𝑉 , one finds that the bottom leg
of the diagram gives 𝐵𝑞p𝑣, 𝑆p𝑤qq, while the top leg of the diagram gives 𝐵𝑞p𝑆

𝑇𝑞p𝑣q, 𝑤q.
�

Lemma 2.12.2. In the above setting, detp𝑆q “ detp𝑆𝑇𝑞q.

Proof. Immediate from the commutation of the diagram (2.3), since this gives detp𝑆𝑇𝑞q “ detp𝑆_q,
and detp𝑆_q “ detp𝑆q.

�

Exercise 2.17. Suppose that 𝑉 “ 𝑘𝑛, so that 𝐵𝑞 is given by a symmetric matrix 𝐴 (that is invertible
by assumption) and 𝑆 can be considered as a matrix.

Show that the matrix 𝑆𝑇𝑞 is computed as:

𝑆𝑇𝑞 “ 𝐴´1𝑆𝑇𝐴.

Deduce that the 𝑞-transpose associated with the quadratic form
ř𝑛

𝑖“1 𝑥
2
𝑖 is the usual transpose.
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2.13. Orthogonal groups. Let p𝑉, 𝑞q be a quadratic space. We define 𝑂p𝑞q as the group of auto-

morphisms of the quadratic space p𝑉, 𝑞q, i.e., elements of 𝑂p𝑞q are isomorphisms p𝑉, 𝑞q
»
ÝÑ p𝑉, 𝑞q

with multiplication in 𝑂p𝑞q defined by composition.
Note that 𝑂p𝑞q acts on 𝑉 .4

Example 2.13.1. Let 𝑣 P 𝑉 with 𝑞p𝑣q ‰ 0. Define 𝑠𝑣 P 𝑂p𝑞q the reflection through 𝑣 by the formula:

𝑠𝑣p𝑤q “ 𝑤 ´
𝐵𝑞p𝑣, 𝑤q

𝑞p𝑣q
¨ 𝑣.

Clearly 𝑠𝑣 is a linear transformation. To see that it lies in 𝑂p𝑞q, we compute:

𝑞p𝑠𝑣p𝑤qq “ 𝑞p𝑤 ´
𝐵𝑞p𝑣, 𝑤q

𝑞p𝑣q
¨ 𝑣q “ 𝑞p𝑤q ` p

𝐵𝑞p𝑣, 𝑤q

𝑞p𝑣q
q2𝑞p𝑣q ´

𝐵𝑞p𝑣, 𝑤q

𝑞p𝑣q
𝐵𝑞p𝑣, 𝑤q “ 𝑞p𝑤q.

Note that 𝑠𝑣p𝑣q “ ´𝑣, and if 𝐵𝑞p𝑣, 𝑤q “ 0 then 𝑠𝑣p𝑤q “ 0. Therefore, if charp𝑘q ‰ 2 we see that
𝑠𝑣 is a non-identity linear transformation with eigenvalue -1 of multiplicity 1 and eigenvalue 1 of
multiplicity dimp𝑉 q ´ 1.

Lemma 2.13.2. Let p𝑉, 𝑞q be a strongly non-degenerate quadratic space.

(1) A linear transformation 𝑔 : 𝑉 Ñ 𝑉 lies in 𝑂p𝑞q satisfies 𝑔𝑇𝑞𝑔 “ id𝑉 . If charp𝑘q ‰ 2, then
the converse holds as well.

(2) For every 𝑔 P 𝑂p𝑞q, detp𝑔q “ ˘1.

Proof. For (1), we use Proposition 2.12.1 to compute:

𝐵𝑞p𝑔
𝑇𝑞𝑔p𝑣q, 𝑤q “ 𝐵𝑞p𝑔p𝑣q, 𝑔p𝑤qq.

We see that the identity 𝐵𝑞p𝑔p𝑣q, 𝑔p𝑤qq “ 𝐵𝑞p𝑣, 𝑤q is equivalent to 𝑔𝑇𝑞𝑔 “ id𝑉 , giving the desired
result.

For (2), we compute:

1 “ detpid𝑉 q “ detp𝑔𝑇𝑞𝑔qq “ detp𝑔𝑇𝑞q ¨ detp𝑔q “ detp𝑔q2

using Lemma 2.12.2.
�

Remark 2.13.3. By Example 2.13.1, if charp𝑘q ‰ 2 then the map 𝑂p𝑞q
det
ÝÑ t1,´1u is surjective. We

let 𝑆𝑂p𝑞q denote its kernel, the special orthogonal group.

Exercise 2.18. The purpose of this exercise is to show that Lemma 2.13.2 (2) holds even when 𝑞 is
merely assumed to be non-degenerate.

Let p𝑉, 𝑞q be a quadratic space.

(1) Show that any 𝑔 P 𝑂p𝑞q fixes Radp𝑉 q and Radp𝑉 q.
(2) Suppose that detp𝑔|Radp𝑉 qq P t1,´1u.5 Show that detp𝑔q P t1,´1u.
(3) Suppose that p𝑉, 𝑞q is a non-degenerate quadratic space with 𝑉 “ Radp𝑉 q. Show that 𝑂p𝑞q

consists only of the identity element.
(4) Deduce that (2) holds for 𝑞 non-degenerate.

4In fact, 𝑂p𝑞q acts in a way that commutes appropriately with addition and scaling operations in 𝑉 , i.e., its action
on 𝑉 arises through a homomorphism 𝑂p𝑞q Ñ 𝐺𝐿p𝑉 q. In this situation, one says that 𝑉 is a representation of 𝑂p𝑞q.

5The notation is a bit lazy. For clarity: in characteristic 2 we regard t1,´1u as consisting of one element.
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2.14. Spheres. Let p𝑉, 𝑞q be a quadratic space and fix 𝑟 P 𝑘.
We define the associated sphere S𝑟p𝑞q as t𝑥 P 𝑉 | 𝑞p𝑥q “ 𝑟u.

Example 2.14.1. Let 𝑘 “ R and let 𝑞 “
ř𝑛`1

𝑖“1 𝑥2𝑖 . Then S𝑟p𝑞q is the usual 𝑛-sphere of radius
?
𝑟.

Note that the action of 𝑂p𝑞q on 𝑉 preserves S𝑟p𝑞q.

Proposition 2.14.2. Let p𝑉, 𝑞q be a non-degenerate quadratic space and suppose charp𝑘q ‰ 2.
Then for every 𝑟 ‰ 0, the action of 𝑂p𝑞q on S𝑟p𝑞q is transitive.

Proof. Let 𝑣, 𝑤 P S𝑟p𝑞q.
We claim that either 𝑣 ` 𝑤 or 𝑣 ´ 𝑤 is not isotropic. Indeed, we otherwise have:

0 “ 𝑞p𝑣 ` 𝑤q ´ 𝑞p𝑣 ´ 𝑤q “ 𝑞p𝑣q ` 𝑞p𝑤q `𝐵𝑞p𝑣, 𝑤q ´ 𝑞p𝑣q ´ 𝑞p𝑤q `𝐵𝑞p𝑣, 𝑤q “ 2𝐵𝑞p𝑣, 𝑤q

so that 𝐵𝑞p𝑣, 𝑤q “ 0. Then 𝑞p𝑣 ` 𝑤q “ 𝑞p𝑣q ` 𝑞p𝑤q “ 2𝑟 ‰ 0.
Suppose that 𝑣 ´ 𝑤 is not isotropic. Then we can make sense of the reflection 𝑠𝑣´𝑤 P 𝑂p𝑞q. We

claim that 𝑠𝑣´𝑤p𝑣q “ 𝑤.
First, note that 𝐵𝑞p𝑣 ` 𝑤, 𝑣 ´ 𝑤q “ 0 since:

𝐵𝑞p𝑣 ` 𝑤, 𝑣 ´ 𝑤q “ 2𝑞p𝑣q ´ 2𝑞p𝑤q `𝐵𝑞p𝑣, 𝑤q ´𝐵𝑞p𝑣, 𝑤q “ 0.

Therefore, we have:

𝑣 ` 𝑤 “ 𝑠𝑣´𝑤p𝑣 ` 𝑤q “ 𝑠𝑣´𝑤p𝑣q ` 𝑠𝑣´𝑤p𝑤q

´𝑣 ` 𝑤 “ 𝑠𝑣´𝑤p𝑣 ´ 𝑤q “ 𝑠𝑣´𝑤p𝑣q ´ 𝑠𝑣´𝑤p𝑤q.

Adding these equations, we obtain 𝑠𝑣´𝑤p𝑣q “ 𝑤 as desired.
Otherwise, 𝑣 ` 𝑤 is anisotropic, and the above gives that 𝑠𝑣`𝑤p𝑣q “ ´𝑤; composing 𝑠𝑣`𝑤 with

´ id𝑉 P 𝑂p𝑞q, we obtain the result.
�

Exercise 2.19. In the above setting, suppose that rankp𝑞q ą 1. Does 𝑆𝑂p𝑞q act transitively on
S𝑟p𝑞q?

2.15. Witt’s cancellation theorem. Suppose that we have an identification:

p𝑉, 𝑞𝑉 q ‘ p𝑊1, 𝑞𝑊1q » p𝑉, 𝑞𝑉 q ‘ p𝑊2, 𝑞𝑊2q

of quadratic spaces. What can we deduce about the relationship between p𝑊1, 𝑞𝑊1q and p𝑊2, 𝑞𝑊2q?
Witt’s theorem addresses this problem completely.

Theorem 2.15.1 (Witt). Suppose that charp𝑘q ‰ 2. Then in the above situation, p𝑊1, 𝑞𝑊1q and
p𝑊2, 𝑞𝑊2q are isomorphic.

Proof. We proceed by steps.

Step 1. First, we reduce to the case that 𝑞𝑉 is non-degenerate.
Indeed, choosing a complementary subspace in 𝑉 to Radp𝑉 q, we see as in the proof of Proposition

2.11.3 that 𝑉 is the direct sum of its radical and a non-degenerate quadratic space, giving the
reduction.

Step 2. Next, we reduce to the case where 𝑞𝑊1 and 𝑞𝑊2 are non-degenerate.
One immediately finds (supposing that 𝑞𝑉 is non-degenerate) that Radp𝑉 ‘𝑊1q “ Radp𝑊1q and

similarly for 𝑊2. Therefore, quotienting out by the radical of 𝑉 ‘𝑊1 “ 𝑉 ‘𝑊2, we find that:
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p𝑉, 𝑞𝑉 q ‘ p𝑊1{Radp𝑊1q, 𝑞𝑊1{Radp𝑊1qq » p𝑉, 𝑞𝑉 q ‘ p𝑊2{Radp𝑊2q, 𝑞𝑊2{Radp𝑊2qq

Therefore, if we know the result for triples of non-degenerate spaces, we can deduce that:

p𝑊1{Radp𝑊1q, 𝑞𝑊1{Radp𝑊1qq » p𝑊2{Radp𝑊2q, 𝑞𝑊2{Radp𝑊2qq.

Since e.g p𝑊1, 𝑞𝑊1q is the direct sum of its radical and its quotient by its radical, and since the
radicals of 𝑊1 and 𝑊2 have been identified, we obtain the result in the general case.

Step 3. Choose 𝑣 P 𝑉 with 𝑞p𝑣q ‰ 0, and let 𝑉 1 be the orthogonal complement to 𝑘 ¨ 𝑣, so that
𝑉 “ 𝑉 1 ‘ spanp𝑣q as a quadratic space.

Under the isomorphism 𝑇 : 𝑉 ‘𝑊1
»
ÝÑ 𝑉 ‘𝑊2, we have 𝑞𝑉‘𝑊2p𝑇 p𝑣, 0qq “ 𝑞𝑉 p𝑣q “ 𝑞𝑉‘𝑊2p𝑣, 0q.

Therefore, by Proposition 2.14.2, there is an automorphism of p𝑉 ‘ 𝑊2, 𝑞𝑉‘𝑊2q taking 𝑇 p𝑣q to
p𝑣, 0q.

This automorphism induces an equivalence between the orthogonal complement to (the span of)
𝑇 p𝑣q and p𝑣, 0q. The latter is obviously 𝑉 1 ‘𝑊2. Using 𝑇 , we see that the former is isomorphic to
𝑉 1 ‘𝑊1.

We now obtain the result by induction.
�

Corollary 2.15.2 (Sylvester’s theorem). Every quadratic form 𝑞p𝑥1, . . . , 𝑥𝑛q over R of rank 𝑟 is

equivalent to
ř𝑗

𝑖“1 𝑥
2
𝑖 ´

ř𝑟
𝑖“𝑗`1 𝑥

2
𝑖 for a unique choice of 1 ď 𝑗 ď 𝑟.

Proof. Diagonalizing 𝑞, it is clear that 𝑞 is equivalent to such a form. Uniqueness then follows by
induction from Witt’s theorem.

�

Definition 2.15.3. For 𝑞 a quadratic form over R equivalent to
ř𝑗

𝑖“1 𝑥
2
𝑖 ´

ř𝑟
𝑖“𝑗`1 𝑥

2
𝑖 , the pair p𝑗, 𝑟´

𝑗q P Z2 is called the signature of 𝑞.

2.16. Tensor products. We suppose in S2.16-2.18 that charp𝑘q ‰ 2.

Construction 2.16.1. Suppose that p𝑉, 𝑞𝑉 q and p𝑊, 𝑞𝑊 q are quadratic spaces. Recall that 𝑞 1
2
𝐵𝑞𝑉

“

𝑞𝑉 , and similarly for 𝑞𝑊 .
We define a quadratic space structure 𝑞𝑉b𝑊 on 𝑉 b𝑊 by associating it to the bilinear form:

𝑉 b𝑊 Ñ p𝑉 b𝑊 q_ “ 𝑉 _ b𝑊_

obtained by tensor product of the maps 𝑉 Ñ 𝑉 _ and 𝑊 Ñ𝑊_ defined by 1
2𝐵𝑞𝑉 and 1

2𝐵𝑞𝑊 .

Exercise 2.20. Show that the bilinear form 𝐵𝑞𝑉b𝑊 satisfies:

𝐵𝑞𝑉b𝑊 p𝑣1 b 𝑤1, 𝑣2 b 𝑤2q “
1

2
𝐵𝑞𝑉 p𝑣1, 𝑣2q𝐵𝑞𝑊 p𝑤1, 𝑤2q.

Deduce that 𝑞𝑉b𝑊 p𝑣 b 𝑤q “ 𝑞𝑉 p𝑣q𝑞𝑊 p𝑤q.

Exercise 2.21. Show that p𝑉, 𝑞𝑉 q b p𝑘, 𝑞p𝑥q :“ 𝑥2q » p𝑉, 𝑞𝑉 q.

Exercise 2.22. Go to the Wikipedia page for “Kronecker product” and figure out the relation to
this construction.
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2.17. Alternating and symmetric powers. Let 𝑛 ě 0 be an integer and let p𝑉, 𝑞𝑉 q be a qua-
dratic space. We claim that there are natural quadratic space structures on Sym𝑛p𝑉 q and Λ𝑛p𝑉 q.
(We remind that we have assumed that charp𝑘q ‰ 2).

First, note that (in any characteristic) we have canonical “norm” maps:

Sym𝑛p𝑉 q Ñ 𝑉 b𝑛 and Λ𝑛p𝑉 q Ñ 𝑉 b𝑛.

The former is induced by the (unnormalized) symmetrization map:

𝑉 b𝑛 Ñ 𝑉 b𝑛

𝑣1 b . . .b 𝑣𝑛 ÞÑ
ÿ

𝜎P𝑆𝑛

𝑣𝜎p1q b . . .b 𝑣𝜎p𝑛q

and the latter is induced similarly by:

𝑉 b𝑛 Ñ 𝑉 b𝑛

𝑣1 b . . .b 𝑣𝑛 ÞÑ
ÿ

𝜎P𝑆𝑛

sgnp𝜎q ¨ 𝑣𝜎p1q b . . .b 𝑣𝜎p𝑛q.

We remark that each composition:

Sym𝑛p𝑉 q Ñ 𝑉 b𝑛 Ñ Sym𝑛p𝑉 q

Λ𝑛p𝑉 q Ñ 𝑉 b𝑛 Ñ Λ𝑛p𝑉 q

is multiplication by 𝑛! “ |𝑆𝑛|.

Exercise 2.23. What is the relationship between the above constructions and the connection between
symmetric bilinear forms and quadratic forms?

We now obtain a quadratic form 𝑞Sym𝑛p𝑉 q (resp. 𝑞Λ𝑛p𝑉 q) on Sym𝑛p𝑉 q and Λ𝑛p𝑉 q by restriction
of 𝑞𝑉 b𝑛 (as defined by Construction 2.16.1) along these homomorphisms.

The following important exercise gives the interaction between symmetric and alternating powers
and duality, and then describes the relation to the above constructions.

Exercise 2.24. The following exercises (except (3)) work for both Sym𝑛 and Λ𝑛: we write them for
Sym𝑛 for definiteness.

(1) Show that the map Sym𝑛p𝑉 q_ Ñ 𝑉 b,_ dual to the structure map 𝑉 b𝑛 Ñ Sym𝑛p𝑉 q is
injective and has image the subspace of functionals on 𝑉 b𝑛 invariant under the action of
the symmetric group.

(2) Show that the norm map Sym𝑛p𝑉 _q Ñ 𝑉 _,b𝑛 factors through the subspace Sym𝑛p𝑉 q_.
(3) Show that the maps Sym𝑛p𝑉 _q Ñ Sym𝑛p𝑉 q_ are isomorphisms if and only if charp𝑘q “ 0

or 𝑛 ă charp𝑘q, but that the maps Λ𝑛p𝑉 _q Ñ Λ𝑛p𝑉 q_ are always isomorphisms whenever
charp𝑘q ‰ 2.

(4) Suppose now that 𝑉 Ñ 𝑉 _ is a symmetric bilinear form. Consider the induced map:

Sym𝑛p𝑉 q Ñ Sym𝑛p𝑉 q_ (2.3)

defined as the composition:

Sym𝑛p𝑉 q Ñ Sym𝑛p𝑉 _q Ñ Sym𝑛p𝑉 q_
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with the first map given by functoriality6 of Sym𝑛 and the second map is the one constructed
in (2) above.

Show that if 𝑞𝑉 is the induced quadratic form on 𝑉 , then 𝑞Sym𝑛p𝑉 q is induced by (2.3).

2.18. The discriminant. Suppose that p𝑉, 𝑞𝑉 q is a quadratic space and charp𝑘q ‰ 2.

Recall that detp𝑉 q :“ Λdimp𝑉 qp𝑉 q is 1-dimensional. By S2.17, we obtain a quadratic space struc-
ture on this 1-dimensional vector space.

Lemma 2.18.1. The quadratic form on detp𝑉 q is non-zero if and only if p𝑉, 𝑞q is non-degenerate.

Proof. Let 𝐵 : 𝑉 Ñ 𝑉 _ be defined by the symmetric bilinear structure on 𝑉 giving rise to 𝑞𝑉 . By
Exercise 2.24, the induced map detp𝐵q : detp𝑉 q Ñ detp𝑉 _q “ detp𝑉 q_ is the symmetric bilinear
form giving rise to 𝑞detp𝑉 q. But 𝐵 is an isomorphism if and only if detp𝐵q is, and since 𝐵 “ 1

2𝐵𝑞

we obtain the result.
�

Suppose now that p𝑉, 𝑞q is a non-degenerate quadratic space. By Lemma 2.18.1, we obtain that
pdetp𝑉 q, 𝑞detp𝑉 qq is a non-degenerate 1-dimensional quadratic space.

Obviously isomorphism classes of non-degenerate 1-dimensional quadratic forms are in bijection
with the set 𝑘ˆ{p𝑘ˆq2, where the quadratic form 𝑞p𝑥q “ 𝑎𝑥2, 𝑎 ‰ 0 has invariant the class of 𝑎 in
𝑘ˆ{p𝑘ˆq2.

Definition 2.18.2. For p𝑉, 𝑞q non-degenerate as above, the discriminant discp𝑞q P 𝑘ˆ{p𝑘ˆq2 of 𝑉 is
the invariant of pdetp𝑉 q, 𝑞detp𝑉 qq as defined above.

Now let us explain how to concretely compute the discriminant.

Proposition 2.18.3. Suppose that 𝐴 is an invertible symmetric p𝑛 ˆ 𝑛q-matrix and let 𝑞 be the
associated quadratic form 𝑞p𝑥q “ 𝑥𝑇𝐴𝑥 in 𝑛-variables.

Then discp𝑞q “ detp𝐴q mod p𝑘ˆq2.

Proof. By construction the map detp𝑉 q Ñ detp𝑉 q_ defined by 𝑞 is given as multiplication by
detp𝐴q. Therefore, the induced quadratic form in 1-variable is 𝑥 ÞÑ detp𝐴q ¨ 𝑥2 as desired.

�

Remark 2.18.4. Recall from Exercise 2.9 that matrices 𝐴 and 𝐴1 define equivalent quadratic forms
if and only if 𝐴1 “ 𝑆𝑇𝐴𝑆, in which case:

detp𝐴1q “ detp𝑆𝑇𝐴𝑆q “ detp𝑆𝑇 q detp𝐴qdetp𝑆q “ detp𝑆q2 detp𝐴q

showing directly that detp𝐴q considered modulo p𝑘ˆq2 is a well-defined invariant of the underlying
quadratic space.

Remark 2.18.5. Suppose that 𝑞 has been diagonalized and we realize 𝑞 as equivalent to a form
ř𝑛

𝑖“1 𝑎𝑖𝑥
2
𝑖 . We see that discp𝑞q “

ś

𝑎𝑖 mod p𝑘ˆq2.

Exercise 2.25. Let 𝑘 “ F𝑝 with 𝑝 ‰ 2 and let 𝑞1 and 𝑞2 be the binary forms 𝑞1p𝑥, 𝑦q “ 𝑥2 ` 𝑦2 and

𝑞2p𝑥, 𝑦q “ 𝑥2 ` 𝑟𝑦2 for 𝑟 P Fˆ𝑝 a quadratic non-residue (i.e.,
´

𝑟
𝑝

¯

“ ´1).

(1) Show that each of 𝑞1 and 𝑞2 represents every element of F𝑝.
(2) Show that 𝑞1 and 𝑞2 are inequivalent quadratic forms.

6Functorial is a scientific word that here refers to the obvious map Sym𝑛
p𝑉 q Ñ Sym𝑛

p𝑊 q induced by a given
linear transformation 𝑇 : 𝑉 Ñ𝑊 (similarly, Λ𝑛 is functorial.)
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Exercise 2.26. Use discriminants to prove Witt’s theorem Theorem 2.15.1 in the case that p𝑉, 𝑞q is
non-degenerate and dim𝑊1 “ dim𝑊2 “ 1.

Exercise 2.27. (1) Show that the discriminant of the hyperbolic plane is ´1.
(2) Show that if p𝑉, 𝑞q is a non-degenerate quadratic space with dimp𝑉 q “ 2 and discp𝑞q “ ´1,

then 𝑉 is equivalent to the hyperbolic plane.

3. 𝑝-adic fields

3.1. Recall from S2.4 that 1-dimensional quadratic forms over Q are of the form 𝑞p𝑥q “ 𝑎𝑥2, 𝑎 P Q,
where the equivalence class of 𝑞 is determined by the sign of 𝑎 and the parity of 𝑣𝑝p𝑎q for each
prime 𝑝, where 𝑣𝑝p𝑎q measures the degree to which 𝑝 divides 𝑎.

We want to formulate this information in a more systematic way so that we can generalize it to
forms 𝑞 of higher rank. To generalize the sign of 𝑎, we use 𝑞R the extension of scalars of 𝑞 along
Q ãÑ R.

For each prime 𝑝, we will introduce the field Q𝑝 Ą Q of 𝑝-adic numbers such that the extension
of scalars 𝑞Q𝑝 generalizes 𝑣𝑝p𝑎q from the rank 1 case.

3.2. We will give several perspectives on Q𝑝 below: as a metric completion of Q, as a (field of
fractions of) a kind of limit of the rings Z{𝑝𝑛Z, and as infinite base 𝑝 exansions of numbers.

3.3. Analytic approach. Recall that for 𝑎 P Qˆ, we have defined in S2.4 the 𝑝-adic valuation
𝑣𝑝p𝑎q as the unique integer such that 𝑎 “ 𝑝𝑣𝑝p𝑎q 𝑛𝑚 with 𝑛 and 𝑚 not divisible by 𝑝. We extend this
definition to Q by setting 𝑣𝑝p0q “ 8.

Lemma 3.3.1. (1) For 𝑎, 𝑏 P Q, we have 𝑣𝑝p𝑎𝑏q “ 𝑣𝑝p𝑎q ` 𝑣𝑝p𝑏q.
(2) For 𝑎, 𝑏 P Q, we have mint𝑣𝑝p𝑎q, 𝑣𝑝p𝑏qu ď 𝑣𝑝p𝑎` 𝑏q.

Proof. The first part is obvious. If 𝑎, 𝑏 P Z with 𝑎 “ 𝑝𝑣𝑝p𝑎q𝑎1, 𝑏 “ 𝑝𝑣𝑝p𝑏q𝑏1, then clearly 𝑝mint𝑎,𝑏u

divides 𝑎 ` 𝑏 giving the second part in this case. We can deduce it in general by either the same
method, or by clearing denominators and applying the first part.

�

Example 3.3.2. We have 𝑣𝑝
`

1 ` p𝑝 ´ 1q
˘

“ 1 ą 0 “ maxt𝑣𝑝p1q, 𝑣𝑝p𝑝 ´ 1qu, giving an example in
which the inequality in Lemma 3.3.1 (2) is strict.

We then define the 𝑝-adic absolute norm |𝑎|𝑝 P R of 𝑎 P Q as 𝑝´𝑣𝑝p𝑎q, where for 𝑎 “ 0 we interpret
𝑝´8 as 0.

Remark 3.3.3. The function |¨|𝑝 : QÑ R can only take the values in t𝑝ZuYt0u “ t. . . , 1
𝑝2
, 1𝑝 , 1, 𝑝, 𝑝

2, . . .uY

t0u.

Warning 3.3.4. We have |𝑝|𝑝 “ 𝑝´1.

From Lemma 3.3.1, we immediately deduce:

Lemma 3.3.5. We have |𝑎𝑏|𝑝 “ |𝑎|𝑝|𝑏|𝑝 and |𝑎` 𝑏|𝑝 ď maxt|𝑎|𝑝, |𝑏|𝑝u.

Note that 𝑑p𝑥, 𝑦q :“ |𝑥´ 𝑦|𝑝 defines a metric on Q. Indeed, by the lemma we have:

|𝑥´ 𝑦|𝑝 ` |𝑦 ´ 𝑧|𝑝 ě maxt|𝑥´ 𝑦|𝑝, |𝑦 ´ 𝑧|𝑝u ě |𝑥´ 𝑧|𝑝
so that 𝑑p𝑥, 𝑦q satisfies a strong version of the triangle inequality. We therefore refer to the inequality
|𝑎` 𝑏|𝑝 ď maxt|𝑎|𝑝, |𝑏|𝑝u as the ultrametric inequality.

We define Q𝑝 to be the completion of Q with respect to this metric.
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Exercise 3.1. (1) Show that addition and multiplication on Q are continuous with respect to
the 𝑝-adic metric. Deduce that Q𝑝 is a commutative ring with Q a dense subring.

(2) Show that the inversion map Qˆ Ñ Qˆ, 𝑥 ÞÑ 𝑥´1 is a continuous homomorphism with
respect to the 𝑝-adic metric. Deduce that Q𝑝 is a field.

We see that 𝑣𝑝 and | ¨ |𝑝 extend to Q𝑝 by continuity; we denote these extensions in the same
manner. Since on Q these functions took values in the closed subsets Z Ď R and 𝑝Z Y t0u Ď R
respectively, their extensions to Q𝑝 do as well.

We will also use the notation 𝑝𝑛|𝑎 to say that 𝑣𝑝p𝑎q ě 𝑛.

Notation 3.3.6. By Lemma 3.3.5, we see that t𝑎 P Q𝑝 | |𝑎|𝑝 ď 1u forms a subring of Q𝑝. We deduce
this subring by Z𝑝 and call it the ring of 𝑝-adic integers.

Note that 𝑥 P Z𝑝 if and only if 𝑣𝑝p𝑥q ě 0.

Exercise 3.2. (1) Show that Z𝑝 is open and closed in Q𝑝.
(2) Show that a rational number 𝑛

𝑚 P Q Ď Q𝑝 lies in Z𝑝 if and only if when 𝑛 and 𝑚 are chosen
relatively prime 𝑝 does not divide 𝑚.

(3) Show that the image of Z ãÑ Z𝑝 has dense image.
(4) Show that the field of fractions of Z𝑝 is Q𝑝. More precisely, show that Q𝑝 is obtained from

Z𝑝 by inverting the single element 𝑝.

Exercise 3.3. Prove the product formula, which states that for 𝑎 P Q we have:

|𝑎|8 ¨
ź

𝑝 a prime

|𝑎|𝑝 “ 1

where | ¨ |8 is the “usual” absolute value on Q, whose completion is R.

Exercise 3.4. Show that if 𝑥 P Q𝑝 is a root of a monic polynomial:

𝑥𝑛 ` 𝑎1𝑥
𝑛´1 ` . . .` 𝑎𝑛

with 𝑎𝑖 P Z𝑝, then 𝑥 P Z𝑝.

3.4. Infinite summation in Q𝑝. We briefly digress to discuss infinite sums in Q𝑝.
We say that a sequence 𝑥1, 𝑥2, . . . has convergent sum if the sequence 𝑆𝑛 :“

ř𝑛
𝑖“1 𝑥𝑖 converges in

Q𝑝. In this case, we write
ř8

𝑖“1 for the limit of the sequence 𝑆𝑛. We will summarize the situation
informally by saying that the sum

ř8
𝑖“1 𝑥𝑖 converges.

Lemma 3.4.1. The sum
ř8

𝑖“1 𝑥𝑖 converges if and only if 𝑣𝑝p𝑥𝑖q Ñ 8 as 𝑖Ñ8.

Proof. To check if the sequence 𝑆𝑛 of partial sums is convergent, it suffices to check if it is Cauchy,
which in turn translates to verifying that for every 𝜀 ą 0 there exists 𝑁 such that for every 𝑚 ą 𝑁
we have:

|

𝑚
ÿ

𝑖“𝑁

𝑥𝑖|𝑝 ă 𝜀.

By the ultrametric inequality, we have |
ř𝑚

𝑖“𝑁 𝑥𝑖|𝑝 ď maxt|𝑥𝑖|𝑝u
𝑚
𝑖“𝑁 , giving the result.

�

Remark 3.4.2. This result stands in stark contrast to the case of R, where convergence of an infinite
series is a much more subtle question.
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3.5. Some computations. We’ll now do some computations to get a feeling for working with Q𝑝.
A first observation is that 1, 𝑝, 𝑝2, 𝑝3, . . . converges to 0 in Q𝑝. Indeed, we have |𝑝𝑛|𝑝 “ 𝑝´𝑛, giving

the result.
More generally, we see that a sequence t𝑥𝑛u𝑛ě0 converges to 0 if and only if for every 𝑁 ą 0

there exists 𝑀 such that for 𝑛 ą 𝑀 we have 𝑥𝑛 P 𝑝𝑁Z𝑝. Indeed, 𝑝𝑁Z𝑝 is the open (and closed)
neighborhood of the identity consisting of all 𝑥 P Q𝑝 with |𝑥|𝑝 ď 𝑝´𝑁 .

Example 3.5.1. Note that the sequence 𝑥𝑛 :“ 1`𝑝`𝑝2` . . .`𝑝𝑛 is Cauchy and therefore converges
in Q𝑝. The usual argument shows that this element is the inverse to 1 ´ 𝑝 in Q𝑝. Clearly each of
1´ 𝑝 and 1` 𝑝` 𝑝2 ` . . . lie in Z𝑝.

Next, observe that 𝑝𝑛Z𝑝 is an ideal of Z𝑝 with:

Z{𝑝𝑛Z »
ÝÑ Z𝑝{𝑝

𝑛Z𝑝.

Indeed, this follows since Z is dense in Z𝑝 and 𝑝𝑛Z𝑝 is an open ideal.

Proposition 3.5.2. The topological space Z𝑝 is compact.

Remark 3.5.3. Note that this proposition does not hold for Q𝑝, since the sequence 𝑝´𝑛 (𝑛 ě 0)
does not converge to a limit.

Proof of Proposition 3.5.2. We need to show that every sequence 𝑥𝑛 contains a convergent subse-
quence 𝑦𝑚.

There must be some residue class 𝑎1 in Z{𝑝Z such that 𝑥𝑛 mod 𝑝Z𝑝 takes that value infinitely
often. Choose 𝑦1 “ 𝑥𝑛1 to be some element in our sequence that reduces to this element.

Of the classes in Z{𝑝2Z, there must be at least one that reduces to 𝑎1 infinitely often. Call one
such as 𝑎2. Then there must be an index 𝑛2 ą 𝑛1 such that 𝑦2 :“ 𝑥𝑛2 reduces to 𝑎2 modulo 𝑝2Z𝑝.

Repeating this for Z{𝑝3Z, etc., we obtain a sequence 𝑦𝑛 that is obviously Cauchy and therefore
convergent.

�

3.6. The 𝑝-adic numbers as a limit. Suppose we have a sequence:

. . .Ñ 𝐴𝑛`1
𝜙𝑛
Ñ 𝐴𝑛

𝜙𝑛´1
Ñ . . .

𝜙1
Ñ 𝐴1

of commutative rings 𝐴𝑛. We call such a datum a projective system.
Define the projective limit lim𝑛𝐴𝑛 as the subset of the product

ś

𝑛𝐴𝑛 consisting of elements
p𝑎𝑛q P

ś

𝑛𝐴𝑛 such that for each 𝑖 ą 1 we have 𝜙𝑛´1p𝑎𝑛q “ 𝑎𝑛´1. That is, elements of lim𝑛𝐴𝑛 are
elements of 𝐴1 with a chosen lift to 𝐴2, and a chosen lift of that element of 𝐴2 to 𝐴3, etc. The
commutative algebra structure on lim𝑛𝐴𝑛 is defined by termwise addition and multiplication.

Example 3.6.1. We have a projective system with 𝐴𝑛 “ Z{𝑝𝑛Z, where the structure map Z{𝑝𝑛`1ZÑ
Z{𝑝𝑛Z is given by modding out by the ideal 𝑝𝑛Z{𝑝𝑛`1Z.

Remark 3.6.2. We can also make sense of projective limits of groups, projective limit of abelian
groups, projective limit of rings, etc.

Proposition 3.6.3. The canonical map:

Z𝑝 Ñ lim
𝑛

Z𝑝{𝑝
𝑛Z𝑝 “ lim

𝑛
Z{𝑝𝑛Z

is an isomorphism.
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Proof. First, note that the resulting map is injective: an element 𝑎 P Z𝑝 goes to zero if and only if
it lies in 𝑝𝑛Z𝑝 for each 𝑛, but this implies that the |𝑎|𝑝 ď 𝑝´𝑛 for each 𝑛, so |𝑎|𝑝 “ 0 which implies
that 𝑎 “ 0.

To see that this map is surjective, let p𝑎𝑛q be an element of the right hand side, we 𝑎𝑛 P Z{𝑝𝑛Z
a compatible sequence. Choose 𝑥𝑛 P Z reducing to 𝑎𝑛 modulo 𝑝𝑛. Note that for 𝑛,𝑚 ě 𝑁 , we have
𝑝𝑁 | 𝑥𝑛´𝑥𝑚, so that |𝑥𝑛´𝑥𝑚|𝑝 ď 𝑝´𝑁 . Therefore, this sequence is Cauchy and therefore converges
to some 𝑥 P Z𝑝.

Note that 𝑥 ´ 𝑥𝑛 P 𝑝𝑛Z𝑝 since 𝑥𝑚 ´ 𝑥𝑛 P 𝑝𝑛Z for all 𝑚 ě 𝑛. Therefore, 𝑥 ´ 𝑥𝑛 P 𝑝𝑛Z𝑝, so that
𝑥 “ 𝑎𝑛 mod 𝑝𝑛Z𝑝, as desired.

�

Remark 3.6.4. One upshot of this construction of Z𝑝 is that it is algebraic, i.e., it makes no reference
to the real numbers (whereas the very notion of metric space does). Note that we can obtain Q𝑝

from Z𝑝 by inverting 𝑝, so this construction gives an algebraic perspective on Q𝑝 as well

3.7. Infinite base 𝑝 expansion. We have the following lemma that gives a concrete way of
thinking about 𝑝-adic numbers.

Proposition 3.7.1. For every 𝑥 P Q𝑝, there exist unique integers 0 ď 𝑎𝑖 ă 𝑝 defined for 𝑖 ě 𝑣𝑝p𝑥q
such that:

𝑥 “
ÿ

𝑖“𝑣𝑝p𝑥q

𝑎𝑖𝑝
𝑖.

The coefficient 𝑎𝑣𝑝p𝑥q is non-zero. We have 𝑎𝑖 “ 0 for all 𝑖 sufficiently large if and only if

𝑝𝑣𝑝p𝑥q𝑥 P Z Ď Z𝑝.

Proof. First, by multiplying by 𝑝𝑣𝑝p𝑥q, we reduce to the case when 𝑥 P Z𝑝.
Reduce 𝑥 modulo 𝑝𝑛; there is a unique integer 0 ď 𝑥𝑛 ă 𝑝𝑛 with 𝑥𝑛 “ 𝑥 mod 𝑝𝑛Z𝑝. Take the

base 𝑝 expansion of 𝑥𝑛:

𝑥𝑛 “
𝑛´1
ÿ

𝑖“0

𝑎𝑖𝑝
𝑖.

It is clear that the coefficients 𝑎𝑖, 0 ď 𝑖 ă 𝑛 are the same when we work with 𝑥𝑚 for 𝑚 ě 0 instead.
Moreover, the infinite sum obviously converges to 𝑥, giving the existence of such an expression.

The remaining properties are easily verified.
�

Remark 3.7.2. The proof shows that we could replace the condition that 𝑎𝑖 are integers between
0 and 𝑝 ´ 1 by the condition that the 𝑎𝑖 P 𝑆 where 𝑆 Ď Z𝑝 is a subset of coset representatives of
Z{𝑝Z.

A common choice one finds in the literature instead of 𝑆 “ t0, 1, . . . , 𝑝 ´ 1u is that 𝑆 is the
set of Teichmuller lifts of elements of F𝑝: these are defined in Remark 3.10.6. The Teichmuller
normalization is important in the theory of Witt vectors.

3.8. Invertibility in Z𝑝. Here we will give several perspectives on the following important result.

Proposition 3.8.1. An element 𝑥 P Z𝑝 is invertible in Z𝑝 if and only if 𝑝 - 𝑥.

First proof of Proposition 3.8.1. Suppose 𝑥 P Z𝑝 is non-zero, so we can make sense of 𝑥´1 P Q𝑝.
Then we have:
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0 “ 𝑣𝑝p1q “ 𝑣𝑝p𝑥𝑥
´1q “ 𝑣𝑝p𝑥q ` 𝑣𝑝p𝑥

´1q.

Since by hypothesis 𝑣𝑝p𝑥q ě 0, we see that 𝑥´1 P Z𝑝 if and only if:

𝑣𝑝p𝑥q “ 𝑣𝑝p𝑥
´1q “ 0

as desired.
�

We will give two additional and more explicit proofs below modeled on Example 3.5.1. Though
one argument will be analytic and the other algebraic, we note from the onset that they are two
essentially identical arguments packaged in different ways.

Second proof of Proposition 3.8.1. First, suppose that 𝑥 “ 1 mod 𝑝Z𝑝.
Write 𝑥 “ 1´ p1´ 𝑥q so that we heuristically expect:

1

𝑥
“

1

1´ p1´ 𝑥q
“

8
ÿ

𝑖“0

p1´ 𝑥q𝑖

Now observe that 𝑝𝑖 | p1 ´ 𝑥q𝑖 by assumption on 𝑥, so that the series on the right converges. We
then easily compute:

p1´ 𝑥q ¨
8
ÿ

𝑖“0

p1´ 𝑥q𝑖 “
8
ÿ

𝑖“1

p1´ 𝑥q𝑖 “
`

8
ÿ

𝑖“0

p1´ 𝑥q𝑖
˘

´ 1

so that on subtracting
ř8

𝑖“0p1´ 𝑥q𝑖 from each side we find:

𝑥 ¨
8
ÿ

𝑖“0

p1´ 𝑥q𝑖 “ 1

as desired.
In general, choose 𝑦 P Z such that 𝑥𝑦 “ 1 mod 𝑝Z𝑝: such 𝑦 exists because 𝑥 ‰ 0 mod 𝑝Z𝑝. Then

1
𝑦 P Q Ď Q𝑝 obviously lies in Z𝑝, so we see that 𝑦 is invertible on the one hand and 𝑥𝑦 is too, giving

the result.
�

Remark 3.8.2. Here’s another presentation of the above argument: as in the proof, we reduce to
the case where 𝑥 “ 1 mod 𝑝Z𝑝. Then the operator 𝑇 : Z𝑝 Ñ Z𝑝 defined as 𝑇 p𝑦q “ p1 ´ 𝑥q𝑦 ` 1
multiplication by 1´𝑥 is contracting, since |𝑇 p𝑦1q´𝑇 p𝑦2q|𝑝 ď

1
𝑝 ¨ |𝑦1´𝑦2|𝑝. Therefore, by Banach’s

fixed point theorem, there exists 𝑥0 P Z𝑝 with 𝑥0 “ 𝑇 p𝑥0q “ 𝑥0p1 ´ 𝑥q ` 1 meaning that 𝑥0𝑥 “ 1
as desired.

For the third proof, we use the following result.

Lemma 3.8.3. (1) Let 𝐴 be a commutative ring, let 𝑥 P 𝐴 be invertible, and let 𝑦 P 𝐴 be
nilpotent (i.e., 𝑦𝑁 “ 0 for 𝑁 large enough).

Then 𝑥` 𝑦 is invertible.
(2) Let 𝐴 be a commutative ring and let 𝐼 be an ideal consisting only of nilpotent elements of

𝐴.
Then 𝑥 P 𝐴 is invertible if and only if its reduction 𝑥 P 𝐴{𝐼 is invertible.
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Proof. For (1), we explicitly compute:

1

𝑥` 𝑦
“

𝑥´1

1` 𝑦
𝑥

“
1

𝑥

8
ÿ

𝑖“0

p´1q𝑖
`𝑦

𝑥

˘𝑖

where the infinite sum makes sense because 𝑦 is nilpotent, i.e., it is really only a finite sum.
For (2): first, note that if 𝑥 is invertible in 𝐴, then it certainly is modulo 𝐼 as well.
For the converse, choose some 𝑦 P 𝐴 such that 𝑥𝑦 “ 1 mod 𝐼. Then 𝑥𝑦 is invertible by (1), since

it is of the form 1`pan element of 𝐼q, and every element of 𝐼 is nilpotent. We we find that p𝑥𝑦q´1 ¨𝑦
is the inverse to 𝑥.

�

Third proof of Proposition 3.8.1. To show that 𝑥 is invertible, it suffices to show that 𝑥 mod 𝑝𝑛Z𝑝

is invertible for each 𝑛: indeed, the inverses clearly form a compatible system and therefore define
an element of Z𝑝 “ limZ{𝑝𝑛Z.

But for each 𝑛 ą 1, the ideal 𝑝𝑛´1Z{𝑝𝑛Z consists only of nilpotent elements, so to test if an
element in Z{𝑝𝑛Z is invertible, it suffices by Lemma 3.8.3 (2) to check that its reduction modulo 𝑝
is.

�

3.9. Algebraic structure of the unit group. We want to describe Qˆ𝑝 in more detail. First,
note that we have an isomorphism:

Qˆ𝑝
»
ÝÑ Zˆ Zˆ𝑝

𝑥 ÞÑ
`

𝑣𝑝p𝑥q, 𝑝
´𝑣𝑝p𝑥q ¨ 𝑥q.

(3.1)

Therefore, it suffices to understand Zˆ𝑝 .
For each 𝑛 ą 0, note that:

Ker
`

Zˆ𝑝 Ñ pZ𝑝{𝑝
𝑛Z𝑝q

ˆ
˘

is the subgroup 1 ` 𝑝𝑛Z𝑝, noting that subgroup indeed lies in Zˆ𝑝 by Proposition 3.8.1. Moreover,
the resulting map is surjective because

Proposition 3.9.1. The map:

Zˆ𝑝 Ñ lim
𝑛
pZ𝑝{𝑝

𝑛Z𝑝q
ˆ

is an isomorphism.

Proof. If 𝑥 P Zˆ𝑝 is in the kernel of this map, then 𝑥 P 1 ` 𝑝𝑛Z𝑝 for all 𝑛 ą 0, meaning that 𝑥 is
arbitrarily close to 1 and therefore equals 1 as desired. Surjectivity is clear from Proposition 3.6.3:
any element in the projective limit arises from an element of Z𝑝 that obviously lies in Zˆ𝑝 .

�

Remark 3.9.2. The 𝑝-adic exponential and logarithm functions introduced below shed further light
on Zˆ𝑝 .
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3.10. Hensel’s lemma. Hensel’s lemma is a generalization Proposition 3.8.1, giving solutions to
equations in Z𝑝 by checking for their reduction modulo 𝑝.

Definition 3.10.1. Let 𝐴 be a ring and let 𝑓p𝑡q “
ř𝑛

𝑖“0 𝑎𝑖 ¨ 𝑡
𝑖 P 𝐴r𝑡s be a polynomial. We define the

formal derivative of 𝑓 as:

𝑓 1p𝑡q “
𝑛
ÿ

𝑖“1

𝑖𝑎𝑖𝑡
𝑖´1 P 𝐴r𝑡s

Proposition 3.10.2 (Hensel’s lemma). Let 𝑓p𝑡q P Z𝑝r𝑡s be a polynomial with coefficients in Z𝑝.

Let 𝑓p𝑡q P F𝑝r𝑡s be the polynomial induced by reducing the coefficients of 𝑓 modulo 𝑝.

Suppose that 𝑓p𝑡q has a root 𝑥 with 𝑓
1
p𝑡qp𝑥q ‰ 0 P F𝑝, where 𝑓

1
is the formal derivative of 𝑓 .7

Then there exists a unique root 𝑥 P Z𝑝 of 𝑓 that reduces to 𝑥.

Remark 3.10.3. The hypothesis on the derivative of 𝑓 is necessary: otherwise, consider 𝑓p𝑡q “ 𝑡2´𝑝.
Since 𝑓p𝑡q “ 𝑡2, there exists a solution modulo 𝑝, but Q𝑝 does not contain a square root of 𝑝: indeed,
we would have 𝑣𝑝p

?
𝑝q “ 1

2𝑣𝑝p𝑝q “
1
2 , and 𝑣𝑝 can only take integral values.

Proof of Proposition 3.10.2. We use the notation 𝑥1 in place of 𝑥. For each 𝑛 ą 0, we let 𝑓𝑛p𝑡q P
Z{𝑝𝑛Zr𝑡s denote the corresponding reduction of 𝑓 .

We will prove the following statement by induction:

p˚q𝑛: There exists a unique root 𝑥𝑛 P Z{𝑝𝑛Z of 𝑓𝑛 lifting 𝑥1.

Clearly this statement suffices, since the 𝑥𝑛 obviously form a compatible system and therefore
define the desired 𝑥 in Z𝑝.

Observe that the inductive hypothesis p˚q1 is obvious; therefore, it suffices to perform the induc-
tive step, deducing p˚q𝑛`1 from p˚q𝑛.

Let r𝑥𝑛`1 P Z{𝑝𝑛`1Z be some element lifting 𝑥𝑛. Define the polynomial 𝑔p𝑡q as 𝑓𝑛`1pr𝑥𝑛`1`𝑝𝑛 ¨ 𝑡q.
It suffices to show that 𝑔p𝑡q has a exactly 𝑝𝑛 roots 𝑦, since then r𝑥𝑛`1 ` 𝑝𝑛𝑦 “ 𝑥𝑛`1 obviously is
well-defined and is the unique solution to 𝑓𝑛`1 lifting 𝑥𝑛.

Note that for each 𝑟 ě 0, pr𝑥𝑛`1 ` 𝑝𝑛 ¨ 𝑡q𝑟 “ r𝑥𝑟𝑛`1 ` 𝑟𝑝𝑛r𝑥𝑛`1 ¨ 𝑡 since p𝑝𝑛q2 “ 0 P Z{𝑝𝑛`1Z. We
deduce by linearity that 𝑔p𝑡q “ 𝑓𝑛`1pr𝑥𝑛`1q ` 𝑝𝑛𝑓 1𝑛`1pr𝑥𝑛`1q ¨ 𝑡.

We see that 𝑓 1𝑛`1pr𝑥𝑛`1q is a unit in Z{𝑝𝑛`1Z by assumption on 𝑓 and by Lemma 3.8.3 (2).

Therefore, 𝑔p𝑡q is a linear polynomial over Z{𝑝𝑛`1Z with leading and constant terms lying in
𝑝𝑛Z{𝑝𝑛`1Z, giving the claim.

�

Corollary 3.10.4. Let 𝑝 be an odd prime. Then 𝑥 P Zˆ𝑝 is a square if and only if 𝑥 mod 𝑝Z𝑝 is a
quadratic residue.

More generally, 𝑥 P Q𝑝 is a square if and only if 𝑣𝑝p𝑥q is even and 𝑝´𝑣𝑝p𝑥q𝑥 is a quadratic residue
modulo 𝑝Z𝑝.

Proof. For 𝑥 P Z𝑝, the polynomial 𝑓p𝑡q “ 𝑡2´𝑥 has derivative 2𝑡, which is non-vanishing derivative
at any element of Fˆ𝑝 as long as 𝑝 is prime. We deduce the first part then from Hensel’s lemma.

For the more general case, we appeal to the isomorphism (3.1).
�

Corollary 3.10.5. For 𝑝 odd, the map:

7This condition is equivalent to saying that 𝑥 is a simple root of 𝑓 .
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Qˆ𝑝 Ñ t1,´1u ˆ t1,´1u

𝑥 ÞÑ
´

p´1q𝑣𝑝p𝑥q,

˜

𝑝´𝑣𝑝p𝑥q𝑥

𝑝

¸

¯

induces a group isomorphism:

Qˆ𝑝 {pQˆ𝑝 q2
»
ÝÑ Z{2Zˆ Z{2Z.

Here the second coordinate of this map indicates the Legendre symbol of 𝑝´𝑣𝑝p𝑥q𝑥 P Fˆ𝑝 , this

element being the reduction modulo 𝑝 of 𝑝´𝑣𝑝p𝑥q𝑥 P Zˆ𝑝 .

Exercise 3.5. (1) Show that Q𝑝 contains all p𝑝´ 1qst roots of unity.
(2) Show that there is a unique multiplicative (but not additive) map F𝑝 Ñ Z𝑝 such that the

induced map F𝑝 Ñ Z𝑝 Ñ F𝑝 is the identity.

Remark 3.10.6. The map F𝑝 Ñ Z𝑝 is called “Teichmuller lifting.”

3.11. 𝑝-adic exponential and logarithm. We now introduce 𝑝-adic analogues of the usual expo-
nential and logarithm functions in order to better understand the structure of the unit groups Qˆ𝑝 .
Note that this is in analogy with the case of the real and complex numbers, where these functions
are crucial for giving a complete description of the relevant multiplicative groups.

We will define exp and log in Notation 3.11.3 by the usual power series definitions after discussing
the convergence of these series.

Lemma 3.11.1. (1) Suppose that 𝑥 P Q𝑝 with 𝑣𝑝p𝑥q ą
1

𝑝´1 .

Then the series:

8
ÿ

𝑖“0

1

𝑖!
¨ 𝑥𝑖 (3.2)

converges in Q𝑝.
(2) For |𝑥|𝑝 ă 1, the series:

8
ÿ

𝑖“1

´
1

𝑖
𝑥𝑖 (3.3)

converges.

Remark 3.11.2. We note that in (1), 𝑣𝑝p𝑥q ą
1

𝑝´1 is equivalent to 𝑥 P 𝑝Z𝑝 for 𝑝 odd, and is equivalent

to 𝑥 P 𝑝2Z𝑝 for 𝑝 “ 2. We formulate the result in terms of the apparently too precise estimate of
1

𝑝´1 since it is what emerges from the proof, and is relevant for generalizations of this lemma to

finite extensions of Q𝑝. Therefore, we will continue to use this estimate below to indicate the radius
of convergence of the 𝑝-adic exponential function, silly though it might appear given the above.

Proof of Lemma 3.11.1. For (1): it suffices to see that 𝑣𝑝p
1
𝑖!𝑥

𝑖q Ñ 8. A standard sieving argument
gives:

𝑣𝑝p𝑖!q “
8
ÿ

𝑖“1

t
𝑖

𝑝𝑖
u

(note that this sum is actually finite). Therefore, we estimate:
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𝑣𝑝p𝑖!q ă
8
ÿ

𝑖“1

𝑖

𝑝𝑖
“ 𝑖 ¨

1

𝑝
¨

1

1´ 1
𝑝

“ 𝑖 ¨
1

𝑝´ 1
.

On the other hand, 𝑣𝑝p𝑥
𝑖q “ 𝑖 ¨ 𝑣𝑝p𝑥q, so we find:

𝑣𝑝p
𝑥𝑖

𝑖!
q “ 𝑣𝑝p𝑥

𝑖q ´ 𝑣𝑝p𝑖!q ą 𝑖 ¨ p𝑣𝑝p𝑥q ´
1

𝑝´ 1
q

which goes to 8 with 𝑖 if 𝑣𝑝p𝑥q ą
1

𝑝´1 .

For (2): we expand 𝑣𝑝p
1
𝑖 𝑥

𝑖q as 𝑖 ¨𝑣𝑝p𝑥q´𝑣𝑝p𝑖q. As 𝑝𝑣𝑝p𝑖q ď 𝑖, we can bound 𝑣𝑝p𝑖q by logp𝑖q
logp𝑝q , so that:

𝑣𝑝p
1

𝑖
𝑥𝑖q ě 𝑖𝑣𝑝p𝑥q ´

logp𝑖q

logp𝑝q
.

As long as |𝑥|𝑝 ă 1 (equivalently: 𝑣𝑝p𝑥q ą 0), the linear leading term grows faster than the loga-
rithmic second term, and we obtain the result.

�

Notation 3.11.3. For 𝑣𝑝p𝑥q ą
1

𝑝´1 , we let expp𝑥q denote the result of evaluating the series (3.2). For

|𝑥|𝑝 ă 1, let logp1´ 𝑥q denote the result of evaluating the series (3.3) at 𝑥.

Note that expp𝑥q lies in the subset 1 ` 𝑝Z𝑝 of Q𝑝 (for 𝑣𝑝p𝑥q ą
1

𝑝´1), since the first term in the

series (3.2) is 1 and the higher order terms are divisible by 𝑝 (we see that for 𝑝 “ 2, we even have
expp𝑥q P 1` 4Z2).

Note that 𝑥 P 1 ` 𝑝Z𝑝 is equivalent to requiring |1 ´ 𝑥|𝑝 ă 1, so these are exactly the elements
for which we can make sense of the 𝑝-adic logarithm logp𝑥q.

Proposition 3.11.4. (1) For 𝑥 and 𝑦 of valuation greater than 1
𝑝´1 , we have:

expp𝑥` 𝑦q “ expp𝑥q ¨ expp𝑦q.

(2) For 𝑥, 𝑦 P 1` 𝑝Z𝑝, we have:

logp𝑥𝑦q “ logp𝑥q ` logp𝑦q.

(3) For 𝑣𝑝p𝑥q ą
1

𝑝´1 , we have logpexpp𝑥qq “ 𝑥, and for 𝑣𝑝p1´𝑥q ą
1

𝑝´1 we have 𝑣𝑝plogp𝑥qq ą 1
𝑝´1

and expplogp𝑥qq “ 𝑥.

Proof. These all follow from standard series manipulations. For (1):

expp𝑥` 𝑦q :“
8
ÿ

𝑖“0

1

𝑖!
p𝑥` 𝑦q𝑖 “

8
ÿ

𝑖“0

𝑖
ÿ

𝑗“0

1

𝑖!

𝑖!

𝑗!p𝑖´ 𝑗q!
𝑥𝑗𝑦𝑖´𝑗 “

8
ÿ

𝑖“0

𝑖
ÿ

𝑗“0

1

𝑗!

1

p𝑖´ 𝑗q!
𝑥𝑗𝑦𝑖´𝑗 “

8
ÿ

𝑖“0

ÿ

𝑗,𝑘ě0

𝑗`𝑘“𝑖

1

𝑗!

1

𝑘!
𝑥𝑗𝑦𝑘 “

´

8
ÿ

𝑗“0

1

𝑗!
𝑥𝑗
¯

¨

´

8
ÿ

𝑘“0

1

𝑘!
𝑦𝑘
¯

“ expp𝑥q ¨ expp𝑦q.

For (2), we first claim that for a general field 𝑘 of characteristic 0, in the ring 𝑘rr𝑡, 𝑠ss of formal
power series in two variables we have an identity:

8
ÿ

𝑖“1

´
1

𝑖
p𝑠` 𝑡´ 𝑠𝑡q𝑖 “

8
ÿ

𝑖“1

´
1

𝑖
p𝑠𝑖 ` 𝑡𝑖q. (3.4)
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Note that in the left hand side the coefficient of 𝑠𝑛𝑡𝑚 obviously has only finitely many contributions,
so this is a well-defined formal power series. To verify this identity, we first apply the formal partial
derivative B

B𝑡 to the left hand side and compute:

B

B𝑡

´

8
ÿ

𝑖“1

´
1

𝑖
p𝑠` 𝑡´ 𝑠𝑡q𝑖

¯

“

8
ÿ

𝑖“1

´p1´ 𝑠qp𝑠` 𝑡´ 𝑠𝑡q𝑖´1 “ ´
1´ 𝑠

p1´ 𝑠´ 𝑡` 𝑠𝑡q
“

´
1´ 𝑠

p1´ 𝑠qp1´ 𝑡q
“ ´

1

1´ 𝑡
“
B

B𝑡

´

´

8
ÿ

𝑖“1

1

𝑖

`

𝑡𝑖 ` 𝑠𝑖
˘

¯

.

Therefore, it suffices to verify the equality (3.4) after setting 𝑡 “ 0, since the formal derivative
computation implies that the coefficients of 𝑠𝑛𝑡𝑚 of the left and right hand sides of (3.4) are equal
whenever 𝑛 ą 0. But we obviously have the desired equality after setting 𝑡 “ 0.

We then immediately deduce (2) from the equality of the formal power series (3.4), since by
convergence we can substitute 1´ 𝑥 for 𝑠 and 1´ 𝑦 for 𝑡 into (3.4).

Finally, for (3), we similarly use formal power series in a variable 𝑡. First, note that:

8
ÿ

𝑗“0

1

𝑗!

´

8
ÿ

𝑖“1

´
1

𝑖
𝑡𝑖
¯𝑗

is defined in 𝑘rr𝑡ss (for 𝑘 as above), since one easily sees that for each coefficient 𝑡𝑖 only finitely
many terms contribute. Let 𝑔p𝑡q denote the resulting power series; we wish to show that 𝑔p𝑡q “ 1´𝑡.
One computes:

𝑑

𝑑𝑡
𝑔p𝑡q “

𝑑

𝑑𝑡

ˆ 8
ÿ

𝑗“0

1

𝑗!

´

8
ÿ

𝑖“1

´
1

𝑖
𝑡𝑖
¯𝑗
˙

“

8
ÿ

𝑗“1

1

p𝑗 ´ 1q!

´

8
ÿ

𝑖“1

´
1

𝑖
𝑡𝑖
¯𝑗´1

¨
´1

1´ 𝑡
“

´1

1´ 𝑡
¨ 𝑔p𝑡q.

Multiplying by 1 ´ 𝑡, we see that this equation defines a recursion on the coefficients of 𝑔p𝑡q, and
one finds that it characterizes 𝑔p𝑡q up to scaling. Moreover, 1 ´ 𝑡 is a solution to this equation.
Setting 𝑡 “ 0, we then deduce that 𝑔p𝑡q “ 1´ 𝑡. One argues similarly that:

8
ÿ

𝑖“0

´1

𝑖

`

´

8
ÿ

𝑗“1

1

𝑗!
𝑡𝑗q𝑖

˘

“ 𝑡.

Next, we claim that for 𝑦 P Q𝑝 with 𝑣𝑝p𝑦q ą
1

𝑝´1 , we have:

𝑖 ¨ 𝑣𝑝p𝑦q ´ 𝑣𝑝p𝑖q ą
1

𝑝´ 1
. (3.5)

Supposing this inequality for a moment, then applying this to 𝑦 “ 1 ´ 𝑥 we see that logp𝑥q “
ř8

𝑖“1´
1
𝑖 p1 ´ 𝑥q𝑖 is a sum of terms of valuation at least 1

𝑝´1 , giving that logp𝑥q has the same

property, as desired. From here, the rest of (3) follows from convergence and the properties of
formal power series noted above.

It remains to verify the claim (3.5). First, observe that it is true for 𝑖 ă 𝑝: in this case, we have
𝑣𝑝p𝑖q “ 0, so the result is clear.

To treat 𝑖 ě 𝑝, we first bound the left hand side as:

𝑖 ¨ 𝑣𝑝p𝑦q ´ 𝑣𝑝p𝑖q ą
𝑖

𝑝´ 1
´

logp𝑖q

logp𝑝q
. (3.6)

We can now regard 𝑖 as a continuous variable in R. The derivative of this function is then:
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1

𝑝´ 1
´

1

𝑖 logp𝑝q
.

This derivative is zero exactly for 𝑖 “ 𝑝´1
logp𝑝q , which is obviously the minimum for the function.

Note that 𝑝´1
logp𝑝q ă 𝑝 for all 𝑝. Indeed, for 𝑝 ‰ 2 (i.e., 𝑝 ą 𝑒 :“ the base of the natural logarithm)

this is clear since then the left hand side is less than 𝑝 ´ 1. For 𝑝 “ 2, this says that 1
2 ă logp2q,

i.e.,
?
𝑒 ă 2, which is clear. Moreover, substituting the value 𝑖 “ 𝑝 into the right hand side of (3.6)

above gives:

𝑝

𝑝´ 1
´ 1 “

1

𝑝´ 1
.

Since this 𝑝 is past the minimum of the function, this gives the desired result for all 𝑖 ě 𝑝.
�

Corollary 3.11.5. The exponential and logarithm maps define mutually inverse equivalences of
abelian groups between t𝑥 P Z𝑝 | 𝑣𝑝p𝑥q ą

1
𝑝´1u and t𝑥 P Z𝑝 | 𝑣𝑝p1 ´ 𝑥q ą 1

𝑝´1u, the former

being considered as an abelian group under addition, and the latter as an abelian group under
multiplication.

3.12. Squares in Q2. We now discuss the consequences of Corollary 3.11.5 for the structure of
squares in Q𝑝, generalizing Corollary 3.10.4.

Proposition 3.12.1. 𝑥 P Zˆ2 is a square if and only if 𝑥 “ 1 mod 8.

Proof. To see necessity, note that invertibility of 𝑥 implies that 𝑥 P t1, 3, 5, 7u mod 8, and the only
square in Z{8Z among these is 1 (since p2𝑘 ` 1q2 “ 4p𝑘2 ` 𝑘q ` 1 and 𝑘2 ` 𝑘 is always even).

For the converse, first note that for 𝑝 “ 2, the inequality 𝑣𝑝p𝑥q ą
1

𝑝´1 translates to 𝑣𝑝p𝑥q ě 2.

Therefore, by Corollary 3.11.5 we have an isomorphism 1 ` 4Z2
log
» 4Z2, the former group being

considered with multiplication and the latter with addition. Since the image of multiplication by 2
in 4Z2 is 8Z2, it suffices to show that this equivalence identifies 8Z2 with 1` 8Z2.

Recall from the proof of Lemma 3.11.1 that we proved in general that:

𝑣𝑝p
𝑥𝑖

𝑖!
q ą 𝑖 ¨ p𝑣𝑝p𝑥q ´

1

𝑝´ 1
q.

For 𝑝 “ 2, we obtain 𝑣2p
𝑥𝑖

𝑖! q ą 𝑖 ¨ p𝑣2p𝑥q ´ 1q. For 𝑣2p𝑥q ě 2, this implies that for 𝑖 ě 2 we have:

𝑣2p
𝑥𝑖

𝑖!
q ą 2p𝑣2p𝑥q ´ 1q “ 𝑣2p𝑥q ` p𝑣2p𝑥q ´ 2q ě 𝑣2p𝑥q

so that:

|1´ expp𝑥q|𝑝 “ |𝑥|𝑝

for all 𝑥 with 𝑣𝑝p𝑥q ě 2, verifying the claim.
�

Corollary 3.12.2. We have an isomorphism:

Qˆ2 {pQ
ˆ
2 q

2 »
ÝÑ t1,´1u ˆ pZ{8Zqˆ

𝑥 ÞÑ
´

p´1q𝑣2p𝑥q, 2´𝑣2p𝑥q𝑥
¯
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where 2´𝑣2p𝑥q𝑥 P pZ{8Zqˆ denotes the reduction of 2´𝑣2p𝑥q ¨ 𝑥 P Zˆ2 .

Remark 3.12.3. In particular, we see that |Qˆ2 {pQ
ˆ
2 q

2| “ 8.

Exercise 3.6. Show that Qˆ2 {pQ
ˆ
2 q

2 is generated by the images of 2, 3 and 5.

3.13. Quadratic forms over finite fields. Before proceeding to discuss quadratic forms over Q𝑝,
we need to digress to treat quadratic forms over finite fields.

The main result on the former subject is the following.

Proposition 3.13.1. Let 𝑝 be an odd prime.

(1) Any form of rank ě 2 represents every value in F𝑝.
(2) Two non-degenerate forms over F𝑝 are equivalent if and only if their discriminants are

equal.
(3) Let 𝑟 be a quadratic non-residue modulo 𝑝. Then every non-degenerate rank 𝑛 form 𝑞 over

F𝑝 is equivalent to exactly one of the forms:

𝑥21 ` . . .` 𝑥2𝑛 or

𝑥21 ` . . .` 𝑟𝑥2𝑛.

Proof. For (1), by diagonalization it suffices to show any form 𝑎𝑥2 ` 𝑏𝑦2 with 𝑎, 𝑏 ‰ 0 represents
every value 𝜆 P F𝑝.

Note that 𝑥2 represents exactly 𝑝`1
2 values in F𝑝: the 𝑝´1

2 quadratic residues and 0. Therefore,

the same counts hold for 𝑎𝑥2 and 𝑏𝑦2, since 𝑎, 𝑏 ‰ 0. Therefore, the intersection:

t𝑎𝛼2 | 𝛼 P F𝑝u X t𝜆´ 𝑏𝛽2 | 𝛽 P F𝑝u

is non-empty, since each of these sets has order greater than 𝑝
2 . Choosing 𝛼, 𝛽 P F𝑝 defining an

element of the intersection, this gives 𝑎𝛼2 “ 𝜆´ 𝑏𝛽2 as desired.
For (3), we proceed by induction on 𝑛. The result is clear for 𝑛 “ 1. Otherwise, by (1), 𝑞

represents 1 P F𝑝. Choosing a vector 𝑣 in the underlying quadratic space 𝑉 with 𝑞p𝑣q “ 1 and
decomposing according to orthogonal complements, we obtain the result by induction.

Finally, (2) obviously follows from (2).
�

3.14. Hilbert symbol. Let 𝑘 “ Q𝑝 for some 𝑝 or 𝑘 “ R.
For 𝑎, 𝑏 P 𝑘ˆ, we define the Hilbert symbol of 𝑎 and 𝑏 as 1 if the binary quadratic form 𝑎𝑥2` 𝑏𝑦2

represents 1, and ´1 otherwise. We denote the Hilbert symbol of 𝑎 and 𝑏 by:

p𝑎, 𝑏q𝑝 P t1,´1u if 𝑘 “ Q𝑝, and

p𝑎, 𝑏q8 P t1,´1u if 𝑘 “ R.

Remark 3.14.1. Of course, this definition makes sense over any field, but it does not have good
properties: Theorem 3.14.5 will use specific facts about the choice 𝑘 “ Q𝑝 and 𝑘 “ R. This failure
represents the fact that our definition is somewhat ad hoc.

Remark 3.14.2. The role the Hilbert symbol plays for us is that it is clearly an invariant of the
quadratic form 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2, i.e., it only depends on the underlying quadratic space, not on
𝑎 and 𝑏. Eventually, we will denote it by 𝜀p𝑞q, call it the Hasse-Minkowski invariant of 𝑞, and we
will generalize it to higher rank quadratic forms.

Here we record the most obvious properties of the Hilbert symbol.
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Proposition 3.14.3. The following identities are satisfied by the Hilbert symbol for 𝑝 a prime or
𝑝 “ 8.

(1) p𝑎, 𝑏q𝑝 “ p𝑏, 𝑎q𝑝.
(2) p𝑎, 1´ 𝑎q𝑝 “ 1.
(3) p1, 𝑎q𝑝 “ 1.
(4) p𝑎,´𝑎q𝑝 “ 1.
(5) p𝑎𝜆2, 𝑏q𝑝 “ p𝑎, 𝑏q𝑝 for all non-zero 𝜆.
(6) p𝑎, 𝑏q𝑝 “ p𝑎,´𝑎𝑏q𝑝.

Proof. In words, (1) says that 𝑎𝑥2 ` 𝑏𝑦2 represents 1 if and only if 𝑏𝑥2 ` 𝑎𝑦2 does, which is clear.
Then (2) says that 𝑎𝑥2` p1´ 𝑎q𝑦2 represents 1, which it does with p𝑥, 𝑦q “ p1, 1q, while (3) says

that 𝑥2 ` 𝑎𝑦2 represents 1, which it does with p1, 0q.
Next, (4) says that 𝑎𝑥2 ´ 𝑎𝑦2 represents 1, and this is clear because the form is isotropic and

non-degenerate, therefore equivalent to the hyberbolic plane, and therefore represents all values.
(5) follows because p𝑎, 𝑏q𝑝 is an invariant of the equivalence class of the quadratic form 𝑎𝑥2`𝑏𝑦2.
Finally, for (6), we note that p𝑎, 𝑏q𝑝 “ 1 if and only if 𝑞1p𝑥, 𝑦, 𝑧q :“ 𝑎𝑥2 ` 𝑏𝑦2 ´ 𝑧2 is isotropic by

Corollary 2.10.3. Similarly, p𝑎,´𝑎𝑏q𝑝 “ 1 if and only if:

𝑞2p𝑥, 𝑦, 𝑧q :“
´1

𝑎
p𝑎𝑥2 ´ 𝑎𝑏𝑦2 ´ 𝑧2q “ ´𝑥2 ` 𝑏𝑦2 `

1

𝑎
𝑧2

is isotropic. Therefore, it suffices to see that 𝑞1 and 𝑞2 are equivalent quadratic forms. But this is
clear: swap the variables 𝑥 and 𝑧 and change 1

𝑎 to 𝑎 by multiplication by 𝑎2.
�

Remark 3.14.4. By (5), we the Hilbert symbol defines a symmetric pairing:

Qˆ𝑝 {pQˆ𝑝 q2 Ñ Qˆ𝑝 {pQˆ𝑝 q2 Ñ t1,´1u (3.7)

and similarly for R.

We will prove the following less trivial results below. It is here that we will really need that our
field is Q𝑝 or R.

Theorem 3.14.5. Let 𝑝 be a prime or 8.

(1) p𝑎, 𝑏𝑐q𝑝 “ p𝑎, 𝑏q𝑝 ¨ p𝑎, 𝑐q𝑝.
(2) If p𝑎, 𝑏q𝑝 “ 1 for all invertible 𝑏, then 𝑎 is a square.

Remark 3.14.6. We may view 𝑘ˆ{p𝑘ˆq2 as an F2-vector space, where we change from multiplicative
notation in 𝑘ˆ{p𝑘ˆq2 to additive notation for vector addition.

Then Theorem 3.14.5 exactly says that for 𝑘 “ Q𝑝 or 𝑘 “ R, p𝑎, 𝑏q ÞÑ p𝑎, 𝑏q𝑝 P t1,´1u » F2

defines a non-degenerate symmetric bilinear form on the vector space 𝑘ˆ{p𝑘ˆq2 (which we note is
finite-dimensional over F2, of dimension 1 for 𝑘 “ R, 2 for 𝑘 “ Q𝑝 and 𝑝 ‰ 2, and 3 for Q2).

3.15. Consequences for quadratic forms. For this subsection, we will assume Theorem 3.14.5,
leaving its proof (and a detailed description of how to compute with the Hilbert symbol) to S3.16.

Let 𝑘 “ Q𝑝 or 𝑘 “ R; in the latter case, the reader should understand 𝑝 below as a stand-in for
8. As in Remark 3.14.2 binary8 quadratic form 𝑞, we let 𝜀p𝑞q P t1,´1u be 1 if 𝑞 represents 1 and
´1 otherwise. So if 𝑞 “ 𝑎𝑥2 ` 𝑏𝑦2, then 𝜀p𝑞q “ p𝑎, 𝑏q𝑝.

8 We remind that this means that its underlying quadratic space has dimension 2.
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Proposition 3.15.1. Let 𝑞 be a non-degenerate binary quadratic form with discriminant discp𝑞q.
Then 𝑞 represents 𝜆 P 𝑘ˆ if and only if:

p´discp𝑞q, 𝜆q𝑝 “ 𝜀p𝑞q.

Proof. That 𝑞 represents 𝜆 is equivalent to saying that 1
𝜆𝑞 represents 1. Diagonalizing 𝑞 so that

𝑞p𝑥, 𝑦q “ 𝑎𝑥2`𝑏𝑦2, we see that this is equivalent to having p 𝑎𝜆 ,
𝑏
𝜆q𝑝 “ 1. For convenience, we replace

this expression by p𝜆𝑎, 𝜆𝑏q𝑝, which is justified by the equality 𝜆 “ 1
𝜆 P 𝑘

ˆ{p𝑘ˆq2.
Applying the bilinearity Theorem 3.14.5 (1) of the Hilbert symbol repeatedly, we compute:

p𝜆𝑎, 𝜆𝑏q𝑝 “ p𝜆, 𝜆q𝑝p𝜆, 𝑏q𝑝p𝑎, 𝜆q𝑝p𝑎, 𝑏q𝑝 “ p´1, 𝜆q2𝑝p𝜆, 𝜆q𝑝p𝑏, 𝜆q𝑝p𝑎, 𝜆q𝑝p𝑎, 𝑏q𝑝 “
´

p´1, 𝜆q𝑝p𝜆, 𝜆q𝑝

¯´

p´1, 𝜆q𝑝p𝑏, 𝜆q𝑝p𝑎, 𝜆q𝑝

¯

p𝑎, 𝑏q𝑝 “ p´𝜆, 𝜆q𝑝p´𝑎𝑏, 𝜆q𝑝p𝑎, 𝑏q𝑝.

Observing that p´𝜆, 𝜆q𝑝 “ 1 by Proposition 3.14.3 (4), we see that:

p𝜆𝑎, 𝜆𝑏q𝑝 “ p´discp𝑞q, 𝜆q𝑝 ¨ 𝜀p𝑞q.

This exactly means that 𝜀p𝑞q “ p´discp𝑞q, 𝜆q𝑝 if and only if 𝑞 represents 𝜆, as desired.
�

Remark 3.15.2. Here are some sanity tests to make sure that Proposition 3.15.1 accords with reality.
First of all, for 𝜆 “ 1, this formula says that 𝑞 represents 1 if and only if p´discp𝑞q, 1q𝑝 “ 𝜀p𝑞q,

but since 1 is a square, we see that p´discp𝑞q, 1q𝑝 “ 1, so this is equivalent to saying 𝜀p𝑞q “ 1, as
desired.

Next, if 𝑞 is the hyperbolic plane, we have discp𝑞q “ ´1 and 𝜀p𝑞q “ 1, so Proposition 3.15.1 says
that 𝑞 represents 𝜆 if and only if p1, 𝜆q𝑝 “ 1. As above p1, 𝜆q𝑝 “ 1 for all 𝜆, so this says that the
hyperbolic plane represents every value, which is obviously true.

Corollary 3.15.3. Non-degenerate binary quadratic forms 𝑞1 and 𝑞2 are equivalent if and only if
discp𝑞1q “ discp𝑞2q and 𝜀p𝑞1q “ 𝜀p𝑞2q.

Proof. Diagonalize 𝑞1 as 𝑎𝑥2` 𝑏𝑦2. By Proposition 2.12.1, 𝑞1 and 𝑞2 represent the same values, and
therefore 𝑞2 represents 𝑎 as well. By Proposition 2.9.7, 𝑞2 can be diagonalized as 𝑎𝑥2 ` 𝑏1𝑦2. We
now see that:

𝑎𝑏1 “ discp𝑞2q “ discp𝑞1q “ 𝑎𝑏 mod p𝑘1q2

so that changing 𝑏1 by a square we can take 𝑏1 “ 𝑏 as desired.9

�

Corollary 3.15.4. If 𝑞 is a non-degenerate binary quadratic form other than the hyperbolic plane,
then 𝑞 represents exactly half of the elements of the finite set 𝑘ˆ{p𝑘ˆq2.

Proof. By Exercise 2.27, ´discp𝑞q P p𝑘ˆq2 if and only 𝑞 is the hyperbolic plane. Therefore, if 𝑞 is not
the hyperbolic plane, then p´discp𝑞q,´q : p𝑘ˆ{p𝑘ˆq2q Ñ t1,´1u is a non-trivial homomorphism by
Theorem 3.14.5 (2), and 𝜆 is represented by 𝑞 if and only if it lies in the appropriate coset of this
homomorphism.

�

9 This argument implies over a general field of characteristic ‰ 2 that two non-degenerate binary quadratic forms
of the same discriminant and representing the same values are equivalent. Note that this is not true in rank ě 3.
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Exercise 3.7. For 𝑘 “ R, verify each of the above statements by hand (note that the Hilbert symbol
for R is explicitly described in Proposition 3.16.1 below).

Corollary 3.15.5. Any non-degenerate ternary quadratic form 𝑞 represents every 𝜆 P 𝑘ˆ{p𝑘ˆq2

except possibly 𝜆 “ ´discp𝑞q.

Proof. We diagonalize 𝑞 as 𝑞p𝑥, 𝑦, 𝑧q “ 𝑎𝑥2 ` 𝑏𝑦2 ` 𝑐𝑧2 for 𝑎, 𝑏, 𝑐 P 𝑘ˆ.
Fix 𝜆 ‰ ´discp𝑞q. By Corollary 2.10.3, it suffices to show that 𝑞𝜆 :“ 𝑞1´𝑞2 “ 𝑎𝑥2`𝑏𝑦2`𝑐𝑧2´𝜆𝑤2

is isotropic.
Observe that the forms 𝑞1p𝑥, 𝑦q :“ 𝑎𝑥2 ` 𝑏𝑦2 and 𝑞2p𝑧, 𝑤q “ ´𝑐𝑧

2 ` 𝜆𝑤2 have different discrim-
inants by assumption on 𝜆. Note that we can assume that discp𝑞1q and discp𝑞2q are each not ´1,
since otherwise one of these forms is the hyperbolic plane, which obviously would imply that 𝑞𝜆 is
isotropic.

Therefore, ´discp𝑞1q and ´discp𝑞2q are linearly independent when regarded as elements of the
F2-vector space 𝑘ˆ{p𝑘ˆq2, since they are distinct non-zero vectors in a F2-vector space. Therefore,
by Theorem 3.14.5 (2), there exists 𝜂 P 𝑘ˆ with p´ discp𝑞1q, 𝜂q𝑝 “ 𝜀p𝑞1q and p´discp𝑞2q, 𝜂q𝑝 “ 𝜀p𝑞2q.
Indeed, in the perspective of Remark 3.14.6, we are given linearly independent vectors and a non-
degenerate bilinear form, so we can find a vector that pairs to these vectors in any specified way.

But then 𝑞1p𝜂q ´ 𝑞2p𝜂q “ 0, so the form 𝑎𝑥2 ` 𝑏𝑦2 ` 𝑐𝑧2 ´ 𝜆𝑤2 is isotropic, giving the claim.
�

In the special case that 𝑘 “ Q𝑝 (i.e., 𝑘 ‰ R), we moreover obtain the following results.

Corollary 3.15.6. Any quadratic form 𝑞 over 𝑘 “ Q𝑝 of rank ě 5 is isotropic.

Proof. We can write 𝑞 “ 𝑞1`𝑞2`𝑞3 where 𝑞1 has rank 3, 𝑞2 has rank 2 and 𝑞3 is otherwise arbitrary.
By Corollary 3.15.5, 𝑞1 represents every value in 𝑘ˆ{p𝑘ˆq2 except possibly 1 (namely, ´discp𝑞1q).

Therefore, since 𝑘 ‰ R so that |𝑘ˆ{p𝑘ˆq2| ą 2, by Corollary 3.15.4 there exists 𝜂 in 𝑘ˆ that is
represented by both 𝑞1 and ´𝑞2, meaning that 𝑞1 ` 𝑞2–and therefore 𝑞 itself–is isotropic.

�

Corollary 3.15.7. For 𝑘 “ Q𝑝, any form of rank ě 4 represents every 𝜆 P 𝑘.

Proof. Immediate from Corollary 3.15.6 and Corollary 2.10.3.
�

3.16. We now will give explicit formulae for the Hilbert symbol. We will deduce Theorem 3.14.5
from these explicit formulae. We separate into cases of increasing difficulty: 𝑘 “ R, 𝑘 “ Q𝑝 with
𝑝 ‰ 2, and Q2.

Proposition 3.16.1. For 𝑎, 𝑏 P Rˆ, p𝑎, 𝑏q8 “ 1 unless 𝑎 and 𝑏 are both negative.

Proof. This says that 𝑎𝑥2 ` 𝑏𝑦2 represents 1 unless 𝑎 and 𝑏 are both negative, which is clear.
�

In order to compute the Hilbert symbol for Q𝑝, it is convenient to pass through the tame symbol.
This is a rule that takes 𝑎, 𝑏 P Qˆ𝑝 and produces Tame𝑝p𝑎, 𝑏q P Fˆ𝑝 .

To define the tame symbol, note that for 𝑎, 𝑏 P Qˆ𝑝 , we have 𝑎𝑣𝑝p𝑏q

𝑏𝑣𝑝p𝑎q
P Zˆ𝑝 , since its valuation is 0.

Therefore, we may reduce it to p𝑎
𝑣𝑝p𝑏q

𝑏𝑣𝑝p𝑎q
q P Fˆ𝑝 . Then we define:

Tame𝑝p𝑎, 𝑏q :“ p´1q𝑣𝑝p𝑎q¨𝑣𝑝p𝑏q ¨ p
𝑎𝑣𝑝p𝑏q

𝑏𝑣𝑝p𝑎q
q P Fˆ𝑝 .
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Observe that the tame symbol is bilinear, i.e., we have:

Tame𝑝p𝑎𝑎
1, 𝑏q “ Tame𝑝p𝑎, 𝑏q ¨ Tame𝑝p𝑎

1, 𝑏q P Fˆ𝑝 and

Tame𝑝p𝑎, 𝑏𝑏
1q “ Tame𝑝p𝑎, 𝑏q ¨ Tame𝑝p𝑎, 𝑏

1q P Fˆ𝑝 .

Proposition 3.16.2. If 𝑝 is an odd prime, then:

p𝑎, 𝑏q𝑝 “

ˆ

Tame𝑝p𝑎, 𝑏q

𝑝

˙

. (3.8)

Proof. First, we analyze how the tame symbol of 𝑎 and 𝑏 changes when 𝑎 is multiplied by 𝑝2. By
definition, this is computed as:

´

`𝑝𝑣𝑝p𝑏q

𝑏

˘

¯2
¨ Tame𝑝p𝑎, 𝑏q.

Therefore, when we apply the Legendre symbol, this does not change the resulting value, i.e., the
right hand side of (3.8) does not change under this operation.

By Proposition 3.14.3 (5), the right hand side does not change under this operation either.
Now observe that the right hand side of (3.8) is symmetric under switching 𝑎 and 𝑏: indeed,

switching 𝑎 and 𝑏 has the effect of inverting the tame symbol in Fˆ𝑝 , and the Legendre symbol is
immune to this change.

Therefore, we reduce to studying three cases: 1) 𝑣𝑝p𝑎q “ 𝑣𝑝p𝑏q “ 0, 2) 𝑣𝑝p𝑎q “ 0, 𝑣𝑝p𝑏q “ 1, and
3) 𝑣𝑝p𝑎q “ 𝑣𝑝p𝑏q “ 1.

Case 1. 𝑣𝑝p𝑎q “ 𝑣𝑝p𝑏q “ 0.
In this case, we see that the tame symbol of 𝑎 and 𝑏 is 1. Therefore, we need to show that their

Hilbert symbol is as well, i.e., that 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2 represents 1.
By Proposition 3.13.1, we can solve 𝑎𝑥2` 𝑏𝑦2 “ 1 over F𝑝, say with p𝑥, 𝑦q “ p𝛼, 𝛽q. Choose a lift

𝛼 P Z𝑝 of 𝛼. We see that the polynomial 𝑏𝑡2 ` p𝑎𝛼2 ´ 1q satisfies the hypotheses of Hensel’s lemma

and therefore there exists a unique lift 𝛽 of 𝛽 that is a solution to the equation 𝑏𝛽2 ` 𝑎𝛼2 ´ 1 “ 0,
as desired.

Case 2. 𝑣𝑝p𝑎q “ 0, 𝑣𝑝p𝑏q “ 1.
We find Tame𝑝p𝑎, 𝑏q “ 𝑎, so the right hand side of (3.8) is the Legendre symbol of 𝑎.
To compare with the left hand side: note that if p𝑥, 𝑦q P Q2

𝑝 then 𝑣𝑝p𝑎𝑥
2`𝑏𝑦2q “ mint𝑣𝑝p𝑎𝑥

2q, 𝑣𝑝p𝑏𝑥
2qu.

Indeed, since 𝑣𝑝p𝑎𝑥
2q P 2Z and 𝑣𝑝p𝑏𝑥

2q R 2Z, so these numbers are not equal. Therefore, if
𝑎𝑥2 ` 𝑏𝑦2 “ 1, then 0 “ mint𝑣𝑝p𝑎𝑥

2q, 𝑣𝑝p𝑏𝑦
2qu “ mint2𝑣𝑝p𝑥q, 1 ` 2𝑣𝑝p𝑦qu, meaning that 𝑥 and

𝑦 are 𝑝-adic integers with 𝑥 a 𝑝-adic unit.
Therefore, we can reduce an equation 𝑎𝑥2` 𝑏𝑦2 “ 1 modulo 𝑝 to see that 𝑎 must be a quadratic

residue. The converse direction follows from Corollary 3.10.4.

Case 3. 𝑣𝑝p𝑎q “ 𝑣𝑝p𝑏q “ 1.
By Proposition 3.14.3 (6), we have p𝑎, 𝑏q𝑝 “ p𝑎,´𝑎𝑏q𝑝. Noting that 𝑣𝑝p´𝑎𝑏q P 2Z, Case (2) applies

and we see that:

p𝑎,´𝑎𝑏q𝑝 “

ˆ

Tame𝑝p𝑎,´𝑎𝑏q

𝑝

˙

.

We then compute that:
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Tame𝑝p𝑎,´𝑎𝑏q “
𝑎2

´𝑎𝑏
“ ´

𝑎

𝑏
“ Tame𝑝p𝑎, 𝑏q

giving the desired result.
�

It remains to treat the case of Q2.

For 𝑎 P Qˆ2 , let 𝜛p𝑎q :“ p2´𝑣2p𝑎q𝑎q2´1
8 P Z{2Z. That is, for 𝑎 P Zˆ2 we have:

#

𝜛p𝑎q “ 0 if 𝑎 “ 1,´1 mod 8Z2

𝜛p𝑎q “ 1 if 𝑎 “ 3, 5 mod 8Z2

and for general 𝑎 P Qˆ2 we have 𝜛p𝑎q “ 𝜛p2´𝑣2p𝑎q𝑎q.

We also set 𝜗p𝑎q “ 2´𝑣2p𝑎q𝑎´1
2 P Z{2Z. So again, 𝜗p𝑎q “ 𝜗p2´𝑣2p𝑎q𝑎q, and for 𝑎 P Zˆ2 we have

𝜗p𝑎q “ 0 if 𝑎 “ 1 mod 4 and 𝜗p𝑎q “ 1 if 𝑎 “ 3 mod 4.

Proposition 3.16.3. For all 𝑎, 𝑏 P Qˆ2 , we have:

p𝑎, 𝑏q2 “ p´1q𝜛p𝑎q𝑣2p𝑏q`𝑣2p𝑎q𝜛p𝑏q`𝜗p𝑎q𝜗p𝑏q. (3.9)

Proof. As in the proof of Proposition 3.16.2, we reduce to the cases 1) 𝑣2p𝑎q “ 𝑣2p𝑏q “ 0, 2)
𝑣2p𝑎q “ 0, 𝑣2p𝑏q “ 1, and 3) 𝑣2p𝑎q “ 𝑣2p𝑏q “ 1.

Case 1. 𝑣2p𝑎q “ 𝑣2p𝑏q “ 0.
In this case, we see that the right hand side of (3.9) is 1 unless 𝑎 “ 𝑏 “ 3 mod 4Z2.
We treat separately the cases i) where 𝑎 (or 𝑏) is 1 modulo 8, ii) 𝑎 (or 𝑏) is 5 modulo 8, and iii)

𝑎 and 𝑏 are both 3 modulo 4.

Subcase 1. 𝑎 “ 1 mod 8Z2.
Then by Corollary 3.12.2, 𝑎 is a square in Q2, so 𝑎𝑥2 ` 𝑏𝑦2 represents 1.

Subcase 2. 𝑎 “ 5 mod 8Z2.
In this case, 𝑎` 4𝑏 “ 1 mod 8 and therefore is a square in Q2, meaning that 𝑎𝑥2` 𝑏𝑦2 represents

a square and therefore represents 1.

Subcase 3. 𝑎 “ 𝑏 “ 3 mod 4Z2.
Suppose 𝑎𝑥2 ` 𝑏𝑦2 “ 1, 𝑥, 𝑦 P Q2. Let 𝑛 :“ maxt0,´𝑣2p𝑥q,´𝑣2p𝑦qu.
Then we have:

𝑎p2𝑛𝑥q2 ` 𝑏p2𝑛𝑦q2 “ 4𝑛

as an equation in Z2.
If 𝑛 “ 0 so that 𝑥, 𝑦 P Z2, this equation gives 3𝑥2 ` 3𝑦2 “ 1 mod 4, which isn’t possible since

𝜆2 P t0, 1u for 𝜆 P Z{4Z.
If 𝑛 ą 0, then up to change of variables we can assume 𝑛 “ ´𝑣2p𝑥q, in which case 2𝑛𝑥 P Zˆ2 ,

so 𝑎p2𝑛𝑥q2 ` 𝑏p2𝑛𝑦q2 “ 3` 3p2𝑛𝑦q2 “ 0 mod 4. Now observe that p2𝑛𝑦q2 can only reduce to 0 or 1
modulo 4Z2, and neither of these provides a solution to the given equation.

Case 2. 𝑣2p𝑎q “ 0, 𝑣2p𝑏q “ 1.

Let 𝑏 “ 2𝑐 with 𝑐 P Zˆ2 . Then we need to show that p𝑎, 𝑏q2 “ p´1q𝜛p𝑎q`𝜗p𝑎q𝜗p𝑐q.
We note that, as in Case 2 in the proof of Proposition 3.16.2, any solution to 𝑎𝑥2` 𝑏𝑦2 “ 1 must

have 𝑥, 𝑦 P Z2.
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Therefore, if 𝑎𝑥2 ` 2𝑐𝑦2 “ 1 does not have a solution in Z{8Z, then p𝑎, 𝑏q2 “ ´1.
Note that any solution to this equation in Z{8Z must have 𝑥 “ 1 mod 2, so the first term is

𝑎` 2𝑐𝑦2. From here, one readily sees that there are no solutions in the cases:

‚ 𝑎 “ 3 mod 8 and 𝑐 “ 1 mod 4
‚ 𝑎 “ 5 mod 8
‚ 𝑎 “ 7 mod 8 and 𝑐 “ 3 mod 4

We compute the left hand side of (3.9) in these cases as:

‚ p´1q1`1¨0 “ ´1
‚ p´1q1`0¨1 “ ´1
‚ p´1q0`1¨1 “ ´1

as desired.
We now treat the remaining cases:

Subcase 1. If 𝑎 “ 1 mod 8, then 𝑎 is a square so p𝑎, 𝑏q2 “ 1 “ p´1q0`0¨𝜗p𝑐q.

Subcase 2. If 𝑎 “ 3 mod 8 and 𝑐 “ 3 mod 4, then we need to show that p𝑎, 𝑏q2 “ 1 “ p´1q1`1¨1.
We note that:

𝑎` 𝑏 “ 𝑎` 2𝑐 “ 3` 6 “ 1 mod 8

and therefore 𝑎` 𝑏 is a square in Z2, so that 𝑎𝑥2 ` 𝑏𝑦2 represents a square and therefore 1.

Subcase 3. If 𝑎 “ 7 mod 8 and 𝑐 “ 1 mod 4, then we need to show that p𝑎, 𝑏q2 “ 1 “ p´1q0`1¨0.
We see that 𝑎` 𝑏 “ 1 mod 8, so as above, we deduce that p𝑎, 𝑏q2 “ 1.

Case 3. 𝑣2p𝑎q “ 𝑣2p𝑏q “ 1.
As in Case 3 for the proof of Proposition 3.16.2, we have p𝑎, 𝑏q2 “ p𝑎,´𝑎𝑏q2, and we note that

𝑣2p´𝑎𝑏q is even so we can compute this Hilbert symbol using Case 2 as:

p𝑎,´𝑎𝑏q2 “ p´1q𝜛p´𝑎𝑏q`𝜗p𝑎q𝜗p´𝑎𝑏q.

Observe that p´1q𝜗p𝑎q𝜗p´𝑎𝑏q “ p´1q𝜗p𝑎q𝜗p𝑏q. Moreover, it is easy to check that we have:

p´1q𝜛p´𝑎𝑏q “ p´1q𝜛p𝑎q ¨ p´1q𝜛p𝑏q.

Therefore, we obtain:

p𝑎, 𝑏q2 “ p𝑎,´𝑎𝑏q2 “ p´1q𝜛p𝑎q`𝜛p𝑏q`𝜗p𝑎q𝜗p𝑏q.

as desired.
�

Exercise 3.8. Deduce Theorem 3.14.5 from Propositions 3.16.1, 3.16.2 and 3.16.3.

3.17. Hasse-Minkowski invariant. Let 𝑘 “ Q𝑝 or 𝑘 “ R. As always, if 𝑘 “ R, e.g. a Hilbert
symbol p´,´q𝑝 should be interpreted with 𝑝 “ 8.

Theorem 3.17.1. There is a unique invariant 𝜀𝑝p𝑞q P t1,´1u defined for every non-degenerate
quadratic form 𝑞 over 𝑘 such that:

‚ 𝜀𝑝p𝑞q “ 1 if 𝑞 has rank 1.
‚ 𝜀𝑝p𝑞1 ` 𝑞2q “ 𝜀𝑝p𝑞1q𝜀𝑝p𝑞2q ¨ pdiscp𝑞1q, discp𝑞2qq𝑝.
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Remark 3.17.2. This result is proved in elementary ways in [Ser] and [Cas]. We choose not to prove
it here because a proper argument would require too much of a digression on Brauer groups. This is
justified because Corollary 3.17.4 below gives an algorithm on how to compute it; the only question
is well-definedness.

Remark 3.17.3. We call this invariant the Hasse-Minkowski invariant of 𝑞.

Corollary 3.17.4. For 𝑞 diagonalized as 𝑞p𝑥1, . . . , 𝑥𝑛q “
ř

𝑖 𝑎𝑖𝑥
2
𝑖 , we have:

𝜀𝑝p𝑞q “
ź

𝑖ă𝑗

p𝑎𝑖, 𝑎𝑗q𝑝.

Exercise 3.9. Deduce the corollary from Theorem 3.17.1.

3.18. Using the Hasse-Minkowski invariant, we can complete the description of S3.15 describing
when a quadratic form 𝑞 over 𝑘 “ Q𝑝 represents some 𝜆 P Q𝑝.

Proposition 3.18.1. A quadratic form 𝑞 over Q𝑝 represents 0 ‰ 𝜆 if and only if one of the
following results holds:

‚ rankp𝑞q “ 1 and 𝜆 “ discp𝑞q P 𝑘ˆ{p𝑘ˆq2.
‚ rankp𝑞q “ 2 and p´discp𝑞q, 𝜆q “ 𝜀𝑝p𝑞q.
‚ rankp𝑞q “ 3 and either 𝜆 ‰ ´discp𝑞q or 𝜆 “ ´discp𝑞q and p´ discp𝑞q,´1q𝑝 “ 𝜀𝑝p𝑞q.
‚ rankp𝑞q ě 4.

Proof. The case of rank 1 is obvious: it is true over any field. The case of rank 2 is treated in
Corollary 3.15.3, and the case of rank 4 is treated in Corollary 3.15.7. The case of rankp𝑞q “ 3 and
𝜆 ‰ ´discp𝑞q is treated in Corollary 3.15.5.

This leaves us to show that a non-degenerate ternary form 𝑞 respresents ´discp𝑞q if and only if
p´discp𝑞q,´1q𝑝 “ 𝜀𝑝p𝑞q.

Let 𝑞p𝑥, 𝑦, 𝑧q “ 𝑎𝑥2 ` 𝑏𝑦2 ` 𝑐𝑧2. That 𝑞 represents ´discp𝑞q “ ´𝑎𝑏𝑐 is equivalent to saying
that 𝑞p𝑥, 𝑦, 𝑧, 𝑤q “ 𝑎𝑥2 ` 𝑏𝑦2 ` 𝑐𝑧2 ` 𝑎𝑏𝑐𝑤2 is isotropic, which in turn is equivalent to saying that
𝑞1p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2 and 𝑞2p𝑧, 𝑤q “ ´𝑐𝑧

2 ´ 𝑎𝑏𝑐𝑤2 represent a common value.
Note that discp𝑞1q “ discp𝑞2q. Therefore, by Corollary 3.15.3, saying that 𝑞1 and 𝑞2 represent a

common value is equivalent to:

p𝑎, 𝑏q𝑝 “ 𝜀𝑝p𝑞1q “ 𝜀𝑝p𝑞2q “ p´𝑎𝑏𝑐,´𝑐q𝑝.

Using Theorem 3.14.5, we find:

p´𝑎𝑏𝑐,´𝑐q𝑝 “ p´𝑎𝑏𝑐, 𝑐q𝑝 ¨ p´𝑎𝑏𝑐,´1q𝑝.

Moreover, by Proposition 3.14.3 (6), we have p´𝑎𝑏𝑐, 𝑐q “ p𝑎𝑏, 𝑐q “ p𝑎, 𝑐q ¨ p𝑏, 𝑐q, so that the above is
equivalent to:

𝜀𝑝p𝑞q “ p𝑎, 𝑏q𝑝p𝑎, 𝑐q𝑝p𝑏, 𝑐q𝑝 “ p´𝑎𝑏𝑐,´1q𝑝 “ p´discp𝑞q,´1q𝑝

as desired.
�

Corollary 3.18.2. For 𝑘 “ Q𝑝, two non-degenerate quadratic forms 𝑞1 and 𝑞2 over 𝑘 are equivalent
if and only if discp𝑞1q “ discp𝑞2q and 𝜀𝑝p𝑞1q “ 𝜀𝑝p𝑞2q.
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Proof. By Proposition 3.18.1, two quadratic forms 𝑞1 and 𝑞2 with the same discriminant and Hasse-
Minkowski invariant represent the same values. Choose some 𝜆 that they both represent.

Then 𝑞1 “ 𝜆𝑥2 ` 𝑞11 and 𝑞2 “ 𝜆𝑥2 ` 𝑞12 by our usual method. Then we have:

discp𝑞11q “ 𝜆 discp𝑞1q “ 𝜆 discp𝑞2q “ discp𝑞12q P 𝑘
ˆ{p𝑘ˆq2

and 𝜀𝑝p𝑞
1
1q “ 𝜀𝑝p𝑞1qpdiscp𝑞11q, 𝜆q𝑝 “ 𝜀𝑝p𝑞2qpdiscp𝑞12q, 𝜆q𝑝 “ 𝜀𝑝p𝑞

1
2q

so we obtain the result by induction.
�

Remark 3.18.3. As a consequence, we obtain the following nice interpretation of the Hasse-Minkowski
invariant: 𝑞 has 𝜀𝑝p𝑞q “ 1 if and only if 𝑞 is equivalent to a form:

𝑥21 ` . . .` 𝑥2𝑛´1 ` 𝑑𝑥2𝑛.

Indeed, this is clearly only possible with 𝑑 “ discp𝑞q, and in that case, we see that this form has
the same discriminant as 𝑞, and it obviously has 𝜀𝑝 “ 1.

4. The Hasse principle

4.1. The goal for this section is to prove the following theorem.

Theorem 4.1.1 (Hasse principle). A non-degenerate quadratic form 𝑞 over Q represents a value
𝜆 P Q if and only if the extension of scalars 𝑞Q𝑝 represents 𝜆 P Q Ď Q𝑝 for every prime 𝑝, and 𝑞R
represents 𝜆.

4.2. We will prove Theorem 4.1.1 by treating different ranks 𝑛 of 𝑞 separately.

Exercise 4.1. Deduce the 𝑛 “ 1 case of Theorem 4.1.1 from the discussion of Example 2.4.3 (4).

We will give two proofs of the 𝑛 “ 2 case below, one from [Cas] using Minkowski’s geometry of
numbers, and a second from [Ser] that is more direct.

4.3. Geometry of numbers. We now give a quick crash course in Minkowski’s geometry of
numbers, following [Cas] Chapter 5.

Definition 4.3.1. A lattice is an abelian group Λ isomorphic to Z𝑛 for some integer 𝑛, i.e., it is a
finitely generated torsion-free abelian group. The integer 𝑛 is called the rank of Λ.

A metrized lattice is a pair pΛ, 𝑞Rq of a lattice Λ and a positive-definite quadratic form 𝑞R defined
on ΛR Ď Λb

Z
R.

Remark 4.3.2 (Discriminants). Let pΛ, 𝑞Rq be a metrized lattice. Let 𝑒1, . . . , 𝑒𝑛 be a basis of Λ.
Then we can associate to this datum the matrix:

𝐴 “

¨

˚

˚

˚

˝

1
2𝐵𝑞Rp𝑒1, 𝑒1q

1
2𝐵𝑞Rp𝑒2, 𝑒1q . . . 1

2𝐵𝑞Rp𝑒𝑛, 𝑒1q
1
2𝐵𝑞Rp𝑒1, 𝑒2q

1
2𝐵𝑞Rp𝑒2, 𝑒2q . . . 1

2𝐵𝑞Rp𝑒𝑛, 𝑒2q
...

...
...

...
1
2𝐵𝑞Rp𝑒1, 𝑒𝑛q

1
2𝐵𝑞Rp𝑒2, 𝑒𝑛q . . . 1

2𝐵𝑞Rp𝑒𝑛, 𝑒𝑛q

˛

‹

‹

‹

‚

.

As in Exercise 2.9, a change of basis corresponding to a matrix 𝑆 P 𝐺𝐿𝑛pZq changes 𝐴 by:

𝐴 ÞÑ 𝑆𝑇𝐴𝑆.

Because detp𝑆q P Zˆ “ t1,´1u, we see that disc
`

pΛ, 𝑞Rq
˘

:“ detp𝐴q P Rˆ is well-defined.
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Remark 4.3.3. Because 𝑞R is assumed to be a positive-definite quadratic space, pΛR, 𝑞Rq is isomor-
phic to pR𝑛, 𝑥21 ` . . .` 𝑥2𝑛q. We can therefore talk about open sets in ΛR and volumes of such open
sets, since these notions do not depend on the given isomorphism (i.e., they are invariants of R𝑛

under the action of the orthogonal group for the form 𝑥21 ` . . .` 𝑥2𝑛).

Remark 4.3.4. The discriminant in the sense above refines discp𝑞Rq P Rˆ{pRˆq2 “ t1,´1u, and
therefore we see that (because 𝑞R is assumed positive definite) that disc

`

pΛ, 𝑞Rq
˘

ą 0.

Remark 4.3.5. If 𝑉 is a finite-dimensional vector space over R, we say that a subset 𝑈 of 𝑉 is
convex if 𝑥, 𝑦 P 𝑈 implies that 𝑡𝑥 ` p1 ´ 𝑡q𝑦 P 𝑈 for all 𝑡 P r0, 1s. We say that 𝑈 is symmetric if
𝑥 P 𝑈 implies that ´𝑥 P 𝑈 .

Theorem 4.3.6 (Minkowski’s theorem). Let pΛ, 𝑞Rq be a metrized lattice of rank 𝑛 and let 𝑈 Ď ΛR
be a convex symmetric open set with:

volp𝑈q ą 2𝑛 ¨
b

disc
`

pΛ, 𝑞Rq
˘

.

Then 𝑈 contains a non-zero point of Λ.

Proof. For convenience, we use the language of measure theory.
Note that 𝑇 :“ ΛR{Λ inherits a canonical measure 𝜇𝑇 , where the measure of a “small” connected

subset 𝑇 is by definition the measure of a connected component of the inverse image in ΛR.
Indeed, one can choose a fundamental domain 𝐹 in ΛR for the action of Λ and restrict the usual

measure on ΛR. E.g., choosing a basis 𝑒1, . . . , 𝑒𝑛 for Λ, we can choose 𝐹 to be:

t𝑥 “
ÿ

𝑥𝑖𝑒𝑖 P ΛR, 𝑥𝑖 P R | 0 ď 𝑥𝑖 ă 1u.

Clearly 𝜇 is an additive measure on the torus 𝑇 , i.e., 𝜇p𝑥`𝑉 q “ 𝜇p𝑉 q for every open set 𝑉 Ď 𝑇
and 𝑥 P 𝑇 .

We claim:

𝜇p𝑇 q “
b

disc
`

pΛ, 𝑞Rq
˘

. (4.1)

Indeed, choose an orthonormal basis 𝑓1, . . . , 𝑓𝑛 of ΛR, and define the matrix 𝐵 P 𝑀𝑛pRq to have
𝑖th column the vectors 𝑒𝑖 written in the basis 𝑓1, . . . , 𝑓𝑛. By the usual characterization of volumes
in terms of determinants, we have:

|detp𝐵q| “ volp𝐹 q “ 𝜇p𝑇 q.

But for 𝐴 as in Remark 4.3.2, we obviously have 𝐵𝑇𝐵 “ 𝐴, and therefore:

disc
`

pΛ, 𝑞Rq
˘

“ detp𝐴q “ detp𝐵𝑇𝐵q “ detp𝐵q2

as was claimed in (4.1).
Let 𝑝 denote the quotient map ΛR Ñ 𝑇 . Define the function:

𝜒 : 𝑇 Ñ RY t8u
by letting 𝜒p𝑥q be the number of points in 1

2𝑈 X 𝑝´1p𝑥q.10 Note that 𝜒 is a measurable function.
Then we have:

10One can prevent this function from possibly taking the value 8 by intersecting 𝑈 with a large disc around 0,
but it’s not a big deal.
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ż

𝑇
𝜒p𝑥q𝑑𝜇p𝑥q “ volp

1

2
𝑈q “

1

2𝑛
volp𝑈q ą disc

`

pΛ, 𝑞Rq
˘

“ 𝜇p𝑇 q.

Therefore, 𝜒p𝑥q ą 1 for some 𝑥 P 𝑇 . Since 𝜒 takes integer values, we must have 𝜒p𝑥q ě 2, and
therefore there exist distinct points 𝑦, 𝑧 P 1

2𝑈 with 𝑝p𝑦q “ 𝑝p𝑧q “ 𝑥. Then we have:

0 ‰ 𝑦 ´ 𝑧 “
1

2
p2𝑦q `

1

2
p´2𝑧q P 𝑈

by symmetry and convexity of 𝑈 , and also 𝑦 ´ 𝑧 P Λ since 𝑝p𝑦 ´ 𝑧q “ 𝑝p𝑦q ´ 𝑝p𝑧q “ 0.
Therefore, 𝑦 ´ 𝑧 is a non-zero point of ΛX 𝑈 , as claimed.

�

Exercise 4.2. For pΛ, 𝑞Rq a metrized lattice and Λ1 Ď Λ a subgroup of index 𝑛 ă 8, prove that:

disc
`

pΛ1, 𝑞Rq
˘

“ 𝑛2 disc
`

pΛ, 𝑞Rq
˘

.

4.4. Application of geometry of numbers to the Hasse principle. The above theorem can
be used to prove Theorem 4.1.1 in the 𝑛 “ 2 case in general: we refer to [Cas] S6.4 where this is
effected. However, to simplify the explanation given in [Cas], we will only give the argument in a
special case (that at least shows how things are done, and we’ll treat the general 𝑛 “ 2 case by a
simpler method following [Ser] in S4.6).

First, note that any binary quadratic form 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2 is equivalent to one where
𝑣𝑝p𝑎q, 𝑣𝑝p𝑏q P t0, 1u for every prime 𝑝. Indeed, multiplying 𝑎 and 𝑏 by squares, we easily put them
into this form.

Let 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2 be a binary quadratic form with 𝑎 and 𝑏 square-free as above, and,
moreover assuming: (1) 𝑎, 𝑏 P Z relatively prime, (2) 𝑎, 𝑏 odd, and (3) 𝑎 ` 𝑏 “ 0 mod 4. We will
prove that if 𝑞 represents 1 in every Q𝑝 then it does so in Q.

For each prime 𝑝 dividing 𝑎, the fact that 𝑎𝑥2` 𝑏𝑦2 represents 1 means that we can choose some
𝑟𝑝 P Z with 𝑏𝑟2𝑝 “ 1, and similarly for each prime 𝑝 dividing 𝑏, we can choose some 𝑟𝑝 P Z with

𝑎𝑟2𝑝 “ 1. Indeed, this follows e.g. from Proposition 3.16.2.

Then define Λ Ď Z3 as consisting of the triples p𝑥, 𝑦, 𝑧q P Z3 with:

$

’

’

’

&

’

’

’

%

𝑦 “ 𝑟𝑝𝑧 if 𝑝 | 𝑎

𝑥 “ 𝑟𝑝𝑧 if 𝑝 | 𝑏

𝑥 “ 𝑦 mod 2

2 | 𝑧.

We consider Λ as a metrized lattice by embedding Z3 into R3 in the usual way. By Exercise 4.2,
we have discpΛq “ p2𝑎𝑏q4.

Observe that for p𝑥, 𝑦, 𝑧q P Λ and 𝑝 a prime dividing 𝑎, we have:

𝑎𝑥2 ` 𝑏𝑦2 “ 𝑏𝑟2𝑝𝑧
2 “ 𝑧2 mod 𝑝

and similarly for primes dividing 𝑏. Moreover, we have:

𝑎𝑥2 ` 𝑏𝑦2 “ 0 “ 𝑧2 mod 4

where the first equality follows because 𝑏 “ ´𝑎 mod 4, so 𝑎𝑥2`𝑏𝑦2 “ 𝑎𝑥2´𝑎𝑦2 “ 𝑎p𝑥´𝑦qp𝑥`𝑦q “
0 mod 4 because 𝑥´ 𝑦 “ 0 mod 4.
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Therefore, by the Chinese remainder theorem and the square-free assumption of 𝑎 and 𝑏, we
have:

𝑎𝑥2 ` 𝑏𝑦2 “ 𝑧2 mod 4|𝑎𝑏|. (4.2)

Now define:

𝑈 “ tp𝑥, 𝑦, 𝑧q P R3 | |𝑎|𝑥2 ` |𝑏|𝑦2 ` 𝑧2 ă 4|𝑎𝑏|.u

Then 𝑈 is obviously convex and symmetric, and moreover, we find:

volp𝑈q “
4

3
𝜋
p4|𝑎𝑏|q

3
2

a

|𝑎|
a

|𝑏|
“ 23 ¨

𝜋

3
4|𝑎𝑏| ą 23 ¨ 4|𝑎𝑏| “ 23 discpΛq.

Therefore, Minkowski’s theorem guarantees the existence of non-zero p𝑥, 𝑦, 𝑧q in Λ and 𝑈 . Then
we have:

𝑎𝑥2 ` 𝑏𝑦2 ´ 𝑧2 P 4|𝑎𝑏|Z
by (4.2), but lying in 𝑈 implies that:

|𝑎𝑥2 ` 𝑏𝑦2 ´ 𝑧2| ď |𝑎|𝑥2 ` |𝑏|𝑦2 ` 𝑧2 ă 4|𝑎𝑏|

and therefore we must have 𝑎𝑥2 ` 𝑏𝑦2 “ 𝑧2 as desired.

4.5. Digression: Fermat and Legendre’s theorems. We now digress temporarily to prove two
classical results.

Theorem 4.5.1 (Fermat’s theorem). An odd prime 𝑝 can be written as the sum of two squares
𝑝 “ 𝑥2 ` 𝑦2 (𝑥, 𝑦 P Z) if and only if 𝑝 “ 1 mod 4.

Proof. Necessity follows from congruences mod 4. For sufficiency, suppose 𝑝 “ 1 mod 4. In this
case, we can choose an integer 𝑟 with 𝑟2 “ ´1 mod 𝑝.

Define the lattice Λ Ď Z2 to consist of those p𝑥, 𝑦q with 𝑦 “ 𝑟𝑥 mod 𝑝. Note that for p𝑥, 𝑦q P Λ,
we have:

𝑥2 ` 𝑦2 “ 𝑥2 ` 𝑟2𝑥2 “ 0 mod 𝑝.

Moreover, observe that the discriminant of the metrized latticed Λ is 𝑝2.
Define 𝑈 Ď R2 to be the disc:

tp𝑥, 𝑦q P R2 | 𝑥2 ` 𝑦2 ă 2𝑝.u

Then the area of 𝑈 is 2𝑝 ¨ 𝜋.
Now observing that:

2𝑝 ¨ 𝜋 ą 4𝑝

because 𝜋 ą 2, Minkowski’s theorem applies, and we deduce the existence of p𝑥, 𝑦q ‰ p0, 0q in 𝑈XΛ.
But then 𝑝 | 𝑥2 ` 𝑦2 and 0 ă 𝑥2 ` 𝑦2 ă 2𝑝, so we must have 𝑥2 ` 𝑦2 “ 𝑝.

�

Theorem 4.5.2 (Legendre’s theorem). Any integer 𝑛 ě 0 can be written as the sum of four squares:

𝑛 “ 𝑥2 ` 𝑦2 ` 𝑧2 ` 𝑤2, 𝑥, 𝑦, 𝑧, 𝑤 P Z.
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Proof. First, observe that it suffices to treat the case where 𝑝 is a prime. Indeed, it is a easy,
elementary identity to verify that the product of numbers that are each the sum of four squares
is again of the same form (one uses the norm form on the quaternions to actually reconstruct this
identity in practice).

By Proposition 3.13.1, we can find integers 𝑟 and 𝑠 with 𝑟2 ` 𝑠2 “ ´1 mod 𝑝.
We then define the lattice:

Λ “ tp𝑥, 𝑦, 𝑧, 𝑤q P Z4 | 𝑧 “ p𝑟𝑥` 𝑠𝑦q mod 𝑝, 𝑤 “ p𝑟𝑥´ 𝑠𝑦q mod 𝑝u.

Then for p𝑥, 𝑦, 𝑧, 𝑤q P Λ, observe that:

𝑥2 ` 𝑦2 ` 𝑧2 ` 𝑤2 “ 𝑥2 ` 𝑦2 ` p𝑟𝑥` 𝑠𝑦q2 ` p𝑟𝑥´ 𝑠𝑦q2 “ 𝑥2 ` 𝑦2 ` p𝑟2 ` 𝑠2qp𝑥2 ` 𝑦2q “ 0 mod 𝑝.

Observe that Λ has discriminant 𝑝4.
Now let 𝑈 Ď R4 be the disc tp𝑥, 𝑦, 𝑧, 𝑤q P R | 𝑥2 ` 𝑦2 ` 𝑧2 ` 𝑤2 ă 2𝑝u of radius

?
2𝑝. We recall

that in R4, the disc of radius 1 has volume 𝜋2

2 . Therefore, 𝑈 has volume 2𝜋2𝑝2.

Now, because 𝜋2 ą 8, we have:

2𝜋2𝑝2 ą 24𝑝2

and therefore Minkowski’s theorem applies. Clearly any non-zero vector in ΛX𝑈 solves our equation,
giving the desired result.

�

4.6. Hasse-Minkowski for 𝑛 “ 2. We now prove the Hasse principle for binary quadratic forms
following [Ser].

Proof of Theorem 4.1.1 for binary forms. Let 𝑞p𝑥, 𝑦q “ 𝑎𝑥2 ` 𝑏𝑦2. Up to rescaling, it suffices to
show that 𝑞 represents 1 if and only if p𝑎, 𝑏q𝑝 “ 1 for all 𝑝 and p𝑎, 𝑏q8 “ 1. As in S4.4, we can
assume 𝑎 and 𝑏 are (possibly negative) square-free integers. Without loss of generality, we can
assume |𝑎| ě |𝑏|.

We proceed by induction on |𝑎| ` |𝑏|.
The base case is |𝑎| ` |𝑏| “ 2, i.e., |𝑎| “ |𝑏| “ 1. Then we must have 𝑎 “ 1 or 𝑏 “ 1, since

otherwise 𝑎 “ 𝑏 “ ´1 and p𝑎, 𝑏q8 “ ´1, and the result is clear.
We now perform the inductive step. We can assume |𝑎| ą 1.
We first claim that 𝑏 is a square in Z{𝑎Z.
By the Chinese remainder theorem and by the assumption that 𝑎 is square-free, it suffices to

show that if 𝑝 is a prime dividing 𝑎, then 𝑏 is a square mod 𝑝. If 𝑝 “ 2, this is clear, since everything
is a square in Z{2Z.

Therefore, let 𝑝 be an odd prime dividing 𝑎. If 𝑝 divides 𝑏, then 𝑏 “ 0 mod 𝑝 and we’re done.
Otherwise, 𝑏 is a unit in Z𝑝, and therefore p𝑎, 𝑏q𝑝 “ 1 implies that 𝑏 is a square by Proposition
3.16.2.

That 𝑏 is a square in Z{𝑎Z means that we can find 𝑠, 𝑡 P Z such that:

𝑡2 ´ 𝑏 “ 𝑠𝑎.

Certainly we can choose 𝑡 with 0 ď 𝑡 ď |𝑎|
2 .

We claim that for 𝑝 “ 8 or 𝑝 a prime number,11 we have:

11 Not to be confused with our earlier use of 𝑝.
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p𝑏, 𝑠q𝑝 “ 1. (4.3)

Indeed, first observe that p𝑏, 𝑡2 ´ 𝑏q𝑝 “ 1 because:

𝑏 ¨ p
1

𝑡
q2 ` p𝑡2 ´ 𝑏q ¨ p

1

𝑡
q2 “ 1.

Then we observe that:

p𝑏, 𝑠q𝑝 “ p𝑏,
𝑡2 ´ 𝑏

𝑎
q𝑝 “ p𝑏, 𝑎p𝑡

2 ´ 𝑏qq𝑝 “ p𝑏, 𝑎q𝑝p𝑏, 𝑡
2 ´ 𝑏q𝑝 “ 1 ¨ 1 “ 1.

Moreover, we have:

|𝑠| “ |
𝑡2 ´ 𝑏

𝑎
| ď

𝑡2

|𝑎|
`
|𝑏|

|𝑎|
ď
|𝑎|

4
` 1 ă |𝑎|.

where the last inequality holds because |𝑎| ě 2, and the first inequality holds because 𝑡 ď |𝑎|
2 and

|𝑏| ď |𝑎|.
Then |𝑎|` |𝑏| ą |𝑠|` |𝑏|, and therefore, since p𝑏, 𝑠q𝑝 “ 1 for all 𝑝, by induction there exist rational

numbers 𝑥 and 𝑦 such that:

𝑠𝑥2 ` 𝑏𝑦2 “ 1. (4.4)

In this case, we claim:

𝑎p𝑠𝑥q2 ` 𝑏p1´ 𝑡𝑦q2 “ p𝑡´ 𝑏𝑦q2 (4.5)

meaning that 𝑞 represents a square, giving the desired result. More precisely: if 𝑡 ´ 𝑏𝑦 ‰ 0, we’re
clearly done, and if 𝑡´𝑏𝑦 “ 0, then we have shown that 𝑞 is a hyperbolic and therefore it represents
1.12

To verify this algebra, we compute:

p𝑎𝑠qp𝑠𝑥2q ` 𝑏p1´ 𝑡𝑦q2 “ p𝑡2 ´ 𝑏qp1´ 𝑏𝑦2q ` 𝑏´ 2𝑏𝑦𝑡` 𝑏𝑡2𝑦2 “

𝑡2 ´ 𝑏´ 𝑏𝑡2𝑦2 ` 𝑏2𝑦2 ` 𝑏´ 2𝑏𝑦𝑡` 𝑏𝑡2𝑦2 “ 𝑡2 ` 𝑏2𝑦2 ´ 2𝑏𝑦𝑡 “ p𝑡´ 𝑏𝑦q2.

�

Remark 4.6.1. The end of the proof could be explained in the following more conceptual way. First,
for a field 𝑘 and fixed 𝑏 P 𝑘ˆ not a square, to say that 𝑎𝑥2`𝑏𝑦2 “ 1 is equivalent to 𝑎 “ p 1𝑥q

2´𝑏p 𝑦𝑥q
2,

and from here one easily finds that the solvability of this equation is equivalent to say that 𝑎 is a
norm for the extension 𝑘r

?
𝑏s of 𝑘. In this way, using the multiplicativity of the norm map, one

sees that the set of 𝑎 for which this equation is solvable forms a group under multiplication.
Now, in the notation of the proof, we could have instead said that the identity 𝑎𝑠 “ 𝑡2 ´ 𝑏 says

that 𝑎𝑠 is a norm, and the identity 𝑠𝑥2 ` 𝑏𝑦2 “ 1 says that 𝑠 is a norm, which in turn implies that
𝑠´1 is a norm, so this implies that 𝑎 “ 𝑎𝑠 ¨ 𝑠´1 is a norm, as desired. Indeed, the elementary but
random identity verified at the end of the argument translates to this argument.

By the same method, one could verify (4.3) more directly.

12To deduce that 𝑞 is hyperbolic, we need to be careful that in (4.5) we have 𝑠𝑥 and 1 ´ 𝑡𝑦 non-zero. But (4.4)
and the square-free assumption on 𝑏 force 𝑠𝑥 to be non-zero, giving the claim.
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4.7. Quadratic reciprocity. We will need to appeal to Gauss’s quadratic reciprocity law below.
We recall the statement and proof here.

Theorem 4.7.1. (1) For 𝑝 and 𝑞 distinct odd primes, we have:

ˆ

𝑝

𝑞

˙

“ p´1q
𝑝´1
2
¨
𝑞´1
2

ˆ

𝑞

𝑝

˙

.

(2) For 𝑝 an odd prime, we have:

ˆ

2

𝑝

˙

“ p´1q
𝑝2´1

8 .

Remark 4.7.2. We note that the complicated-looking expression p´1q
𝑝´1
2
¨
𝑞´1
2 produces the value 1

unless 𝑝 “ 𝑞 “ 3 mod 4, in which case it gives the value ´1.

Proof of Theorem 4.7.1 (1). We follow the elementary proof of [Ser].
Let F𝑝 denote an algebraic closure of F𝑝 in what follows.

Step 1. Here is the strategy of the proof below. We will write down the Gauss sum G P F𝑝, and

verify first G is a square root of p´1q
𝑞´1
2 ¨ 𝑞, and second that G lies in F𝑝 exactly when

´

𝑝
𝑞

¯

“ 1.

This means that p´1q
𝑞´1
2 ¨ 𝑞 is a quadratic residue modulo 𝑝 exactly when

´

𝑝
𝑞

¯

“ 1, so that:

1 “

˜

p´1q
𝑞´1
2 𝑞

𝑝

¸

¨

ˆ

𝑝

𝑞

˙

“

˜

p´1q
𝑞´1
2

𝑝

¸

ˆ

𝑞

𝑝

˙ˆ

𝑝

𝑞

˙

.

Then noting that13
´

´1
𝑝

¯

“ p´1q
𝑝´1
2 , we obtain the result.

Step 2. Let 𝜁𝑞 P F𝑝 be a solution to 𝑥𝑞 “ 1 other than 1; such a 𝜁𝑞 exists because 𝑥𝑞 ´ 1 is a
separable polynomial over F𝑝.

We define the Gauss sum G P F𝑝 as:

G “
ÿ

𝑥PFˆ𝑞

ˆ

𝑥

𝑞

˙

¨ 𝜁𝑥𝑞 .

Step 3. We claim that G2 “ p´1q
𝑞´1
2 𝑞.

Indeed, we compute:

G2 “
ÿ

𝑥,𝑦PFˆ𝑞

ˆ

𝑥

𝑞

˙ˆ

𝑦

𝑞

˙

𝜁𝑥`𝑦𝑞 “
ÿ

𝑥,𝑦PFˆ𝑞

ˆ

𝑥𝑦

𝑞

˙

𝜁𝑥`𝑦𝑞 “
ÿ

𝑧PFˆ𝑞

ˆ

𝑧

𝑞

˙

ÿ

𝑥PFˆ𝑞

𝜁𝑥`𝑥𝑧𝑞 .

Here we have applied the change of variables 𝑧 “ 𝑦
𝑥 , noting that:

ˆ 𝑦
𝑥

𝑝

˙

“

˜

𝑥
𝑦

𝑝

¸

“

ˆ

𝑥𝑦

𝑝

˙

.

13Proof: Under an isomorphism Fˆ𝑞 » Z{p𝑝 ´ 1qZ, clearly ´1 corresponds to 𝑝´1
2

, and this element is a multiple

of 2 if and only if 4 | 𝑝´ 1.
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Now observe that for 𝑧 ‰ ´1, 𝜁𝑥`𝑥𝑧𝑞 “ p𝜁𝑧`1𝑞 q𝑥 ranges exactly over the primitive 𝑞th roots of unity

in F𝑝. Because the sum of all the 𝑞th roots of unity is 0, this means that for 𝑧 ‰ 1 the corresponding
summand is ´1. Therefore, the above sum is:

ˆ

´1

𝑞

˙

ÿ

𝑥PFˆ𝑞

1`
ÿ

𝑧PF𝑞zt0,´1u

´

ˆ

𝑧

𝑞

˙

.

where the first term corresponds to 𝑧 “ ´1 and the rest corresponds to 𝑧 ‰ ´1. We note that
ř

𝑧PFˆ𝑞

´

𝑧
𝑞

¯

“ 0, since there are equal numbers of quadratic residues and non-residues, so the

second term above is
´

´1
𝑞

¯

. Clearly the first term sums to p𝑞 ´ 1q
´

´1
𝑞

¯

, giving the result.

Step 4. Next, we recall a general technique for checking if an element of F𝑝 lies in F𝑝.
For 𝑘 a field of characteristic 𝑝, note that by the binomial formula that Fr𝑝p𝑥q :“ 𝑥𝑝 is a

homomorphism.
Then we claim that 𝑥 P F𝑝 lies in F𝑝 if and only if 𝑥𝑝 “ 𝑥. Indeed, this is obviously satisfied for

elements of F𝑝, and for degree reasons there are at most 𝑝 roots of this polynomial.

Step 5. It remains to show that G lies in F𝑝 exactly when
´

𝑝
𝑞

¯

“ 1. It suffices to check when G is

fixed by the Frobenius in F𝑝.
We have:

Fr𝑝pGq “
ÿ

𝑥PFˆ𝑞

ˆ

𝑥

𝑞

˙𝑝

¨ 𝜁𝑝𝑥𝑞 “
ÿ

𝑥PFˆ𝑞

ˆ

𝑥

𝑞

˙

¨ 𝜁𝑝𝑥𝑞 “
ÿ

𝑥PFˆ𝑞

ˆ

𝑝´1𝑥

𝑞

˙

¨ 𝜁𝑥𝑞 “

ˆ

𝑝

𝑞

˙

G

as desired.
�

Proof of Theorem 4.7.1 (2). The strategy is similar to that of Theorem 4.7.1 (1): we find a conve-
nient expression for

?
2 P F𝑝 and then test by the Frobenius when it lies in F𝑝.

Let 𝜁8 P F𝑝 be a primitive 8th root of unity. We claim that 𝜁8 ` 𝜁´18 is a square root of 2.14

Indeed, we compute:

p𝜁8 ` 𝜁´18 q2 “ p𝜁28 ` 2` 𝜁´28 q.

Observing that 𝜁28 and 𝜁´28 are distinct square roots of ´1, their sum must be zero, giving the claim.
Now we observe that:

Fr𝑝p𝜁8 ` 𝜁´18 q “ 𝜁𝑝8 ` 𝜁´𝑝8

which equals 𝜁8`𝜁´18 if and only if 𝑝 “ 1,´1 mod 8. This is equivalent to requiring that p´1q
𝑝2´1

8 “

1.
�

14As a heuristic for this expression, note that over the complex numbers
?
2
2
` 𝑖 ¨

?
2
2

is visibly an 8th root of unity

𝜁8, and we have 𝜁8 ` 𝜁´1
8 “ 𝜁8 ` 𝜁8 “ 2Rep𝜁8q “

?
2.
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4.8. Global properties of the Hasse-Minkowski invariant. We have the following result,
which we will see is essentially a repackaging of the quadratic reciprocity law.

Proposition 4.8.1 (Hilbert reciprocity). Let 𝑎, 𝑏 P Qˆ.
For almost every15 prime 𝑝, we have:

p𝑎, 𝑏q𝑝 “ 1.

Moreover, we have:

p𝑎, 𝑏q8 ¨
ź

𝑝 prime

p𝑎, 𝑏q𝑝 “ 1.

Proof. For the first claim, note that if 𝑝 is an odd prime with 𝑣𝑝p𝑎q “ 𝑣𝑝p𝑏q “ 0, then Proposition
3.16.2 implies that p𝑎, 𝑏q𝑝 “ 1.

For the second part, we proceed by cases, applying Propositions 3.16.2 and 3.16.3 freely.

Case 1. 𝑎 “ 𝑝, 𝑏 “ 𝑞 are distinct odd prime numbers.
Then we have:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p𝑝, 𝑞q2 “ p´1q
𝑝´1
2

𝑞´1
2

p𝑝, 𝑞q𝑝 “
´

𝑞
𝑝

¯

p𝑝, 𝑞q𝑞 “
´

𝑝
𝑞

¯

p𝑝, 𝑞qℓ “ 1 if ℓ ‰ 2, 𝑝, 𝑞

p𝑝, 𝑞q8 “ 1.

Then Theorem 4.7.1 (1) immediately gives the claim.

Case 2. 𝑎 “ 𝑏 “ 𝑝 an odd prime number.
Then we have:

$

’

’

’

’

&

’

’

’

’

%

p𝑝, 𝑝q2 “ p´1qp
𝑝´1
2
q2 “ p´1q

𝑝´1
2

p𝑝, 𝑝q𝑝 “
´

´1
𝑝

¯

p𝑝, 𝑝qℓ “ 1 ifℓ ‰ 𝑝

p𝑝, 𝑝q8 “ 1

giving the claim.

Case 3. 𝑎 “ 𝑝 is an odd prime and 𝑏 “ 2.
Then we have:

$

’

’

&

’

’

%

p𝑝, 2q2 “ p´1q
𝑝2´1

8

p𝑝, 2q𝑝 “
´

2
𝑝

¯

p𝑝, 2qℓ “ 1 if ℓ ‰ 2, 𝑝.p𝑝, 2q8 “ 1.

Then Theorem 4.7.1 (2) gives the claim.

15This phrase means “all but finitely many.”
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Case 4. 𝑎 “ 𝑏 “ 2.
Then we have p2, 2q𝑝 “ 1 for 𝑝 prime and for 𝑝 “ 8 because:

2p
1

2
q2 ` 2p

1

2
q2 “ 1.

Case 5. 𝑎 “ 𝑝 is an odd prime and 𝑏 “ ´1.
Then we have:

$

’

’

’

’

&

’

’

’

’

%

p𝑝,´1q2 “ p´1q
𝑝´1
2

p𝑝,´1q𝑝 “
´

´1
𝑝

¯

p𝑝,´1qℓ “ 1 if ℓ ‰ 2, 𝑝

p𝑝,´1q8 “ 1

giving the result (one can alternatively reduce this case to Case 2).

Case 6. 𝑎 “ 2 and 𝑏 “ ´1.
Then we have p2,´1q𝑝 “ 1 for all 𝑝 prime and 𝑝 “ 8 because:

2 ¨ p1q2 ´ p12q “ 1.

Case 7. 𝑎 “ ´1 and 𝑏 “ ´1.
Then we have:

$

’

&

’

%

p´1,´1q2 “ ´1

p´1,´1qℓ “ 1 if ℓ ‰ 2

p´1,´1q8 “ ´1

giving the result.

Case 8. General case.
By the bimultiplicativity of the Hilbert symbol (Theorem 3.14.5 (1)), we reduce to the above

cases.
�

Remark 4.8.2. Hilbert’s form of the quadratic reciprocity law should be viewed as analogous to the
conclusion of Exercise 3.3.

Corollary 4.8.3. For any quadratic form 𝑞 over Q, we have:

𝜀8p𝑞q ¨
ź

𝑝 prime

𝜀𝑝p𝑞q “ 1.

Corollary 4.8.4. If 𝑞 is a non-degenerate binary quadratic form over Q, 𝑞 represents 𝜆 P Q if and
only if it represents it in each Q𝑝 and in R with possibly one exception.

Proof. Indeed, we have seen in Proposition 3.15.1 that 𝑞 represents 𝜆 in Q𝑝 (allowing 𝑝 “ 8 to
correspond to R) if and only if p´ discp𝑞q, 𝜆q𝑝 “ 𝜀p𝑞q.

Therefore, Hilbert reciprocity implies that if 𝑞 represents 𝜆 locally with one exception, then 𝑞
represents 𝜆 locally with no exceptions, and therefore, the Hasse principle for 𝑛 “ 2 implies that 𝑞
represents 𝜆 in Q.

�
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4.9. We now conclude the proof of the Hasse principle.

Lemma 4.9.1. Let 𝑆 be a finite set consisting of primes and possibly the symbol 8.
Suppose that we are given 𝑥𝑝 P Qˆ𝑝 for every 𝑝 P 𝑆 (where Q8 is understood as R).
Then there exists a prime ℓ and 𝑥 P Q such that:

𝑥 P 𝑥𝑝pQˆ𝑝 q2 for all 𝑝 P 𝑆

𝑥 P Zˆ𝑝 for all primes 𝑝 R 𝑆 Y tℓu.
(4.6)

Proof. We suppose 8 P 𝑆 for convenience (certainly it does not harm either our hypothesis or our
conclusion!). Let 𝜀 P t1,´1u be the sign of 𝑥8.

By Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime ℓ such that:

ℓ “ 𝜀 ¨ p𝑝´𝑣𝑝p𝑥q𝑥𝑝q ¨
ź

𝑞P𝑆 prime
𝑞‰𝑝

𝑞´𝑣𝑞p𝑥𝑞q mod 𝑝

for every odd prime 𝑝 in S, and for 𝑝 “ 2, we impose the same congruence but require it to hold
mod 𝑝3 “ 8.

We now define:

𝑥 “ 𝜀 ¨ ℓ ¨
ź

𝑞P𝑆 prime

𝑞𝑣𝑞p𝑥𝑞q P Q.

Clearly 𝑥 has no primes other than those in 𝑆 and ℓ divides the numerator or denominator of 𝑥,
so the second requirement of (4.6) holds for it.

We see that 𝑥 has the same sign as 𝑥8. Moreover, for 𝑝 P 𝑆 an odd prime, we have:

𝑥𝑥´1𝑝 P 1` 𝑝Z𝑝

and therefore is a square. For 𝑝 “ 2, we similarly find 𝑥𝑥´12 P 1 ` 8Z2, and again, therefore is a
square.

�

Completion of the proof of Theorem 4.1.1.

Case 1. To prove the 𝑛 “ 3 case of the Hasse principle, it suffices to show that any non-degenerate
form 𝑞 of rank 4 that is locally isotropic (i.e., isotropic over each Q𝑝 and R) is globally isotropic
(i.e., isotropic over R).

Let 𝑞 be such a form. Diagonalizing 𝑞 we see that we can write 𝑞 as the difference of two binary
quadratic forms 𝑞1 ´ 𝑞2.

Let 𝑆 be the set consisting of 2,8, and the (finite) set of primes 𝑝 with at least one of 𝑣𝑝pdiscp𝑞1qq
or 𝑣𝑝pdiscp𝑞2qq odd.

Because 𝑞 is locally isotropic, for every 𝑝 P 𝑆, we can find 𝛼𝑝, 𝛽𝑝 P Q𝑝 ˆ Q𝑝 (with Q𝑝 meaning
R for 𝑝 “ 8) not both the zero vector such that 𝑞1p𝛼𝑝q “ 𝑞2p𝛽𝑝q. We define 𝑥𝑝 to be the common
value 𝑞1p𝛼𝑝q “ 𝑞2p𝛽𝑝q.

We can take 𝑥𝑝 to be non-zero: indeed, e.g., if 𝛼𝑝 ‰ 0 and 𝑞1p𝛼𝑝q “ 0, then 𝑞1 is the hyperbolic
plane and therefore represents any non-zero value represented by 𝑞2p𝛽𝑝q.

Therefore, we can find 𝑥 P Qˆ associated with these 𝑥𝑝 as in Lemma 4.9.1. Let ℓ be defined as
in loc. cit.

Observe that 𝑞1 represents 𝑥 in R and in each Q𝑝, 𝑝 ‰ ℓ. Indeed, for 𝑝 P 𝑆 this follows because 𝑞1
represents 𝑥𝑝 and therefore every element of 𝑥𝑝pQˆ𝑝 q2. Then for 𝑝 R 𝑆, 𝑝 ‰ ℓ: by Proposition 3.15.1,
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we needs to show that p´discp𝑞1q, 𝑥𝑝q “ 1. Because 𝑝 R 𝑆, 𝑣𝑝pdiscp𝑞1qq is even, and therefore the
coset discp𝑞1q P Qˆ𝑝 {pQˆ𝑝 q2 is represented by an element of Zˆ𝑝 . Then because 𝑝 is odd (by virtue of

not being in 𝑆) and 𝑥𝑝 P Zˆ𝑝 , we obtain the required identity of Hilbert symbols from Proposition
3.16.2.

Now by Corollary 4.8.4, 𝑞1 represents 𝑥 over Q, say, 𝑞1p𝛼q “ 𝑥. By the same logic, we can find
𝛽 P QˆQ with 𝑞2p𝛽q “ 𝑥. Then 𝑞1p𝛼q ´ 𝑞2p𝛽q “ 0, proving that 𝑞 was isotropic.

Case 2. We now treat the 𝑛 ě 4 case of the Hasse principle.
Again, it suffices to show a non-degenerate rational form 𝑞 of rank ě 5 that is locally isotropic

is globally isotropic.
We again write 𝑞 “ 𝑞1 ´ 𝑞2, where 𝑞1 is a non-degenerate binary form and 𝑞2 is a form of rank

ě 3.
Let 𝑆 be set consisting of 8, 2, and that finite set of primes for which 𝑣𝑝pdiscp𝑞2qq is odd or

𝜀𝑝p𝑞2q “ ´1. Because 𝑞 is locally isotropic, we can find 𝑥𝑝 and 𝑦𝑝 vectors over Q𝑝 with 𝑞p𝑥𝑝q “
𝑞p𝑦𝑝q ‰ 0 for every 𝑝 P 𝑆.

By the Chinese remainder theorem, we can find 𝑥 P Q such that 𝑞1p𝑥q𝑞1p𝑥𝑝q
´1 P pQˆ𝑝 q2 for every

𝑝 P 𝑆.16

As before, it suffices to show that 𝑞2 represents 𝑞1p𝑥q over Q. By induction, it suffices to show
that 𝑞2 represents 𝑞1p𝑥q locally.

This is clear for 𝑝 P 𝑆, in particular, for 𝑝 “ 2 or 𝑝 “ 8. For all other primes 𝑝, we have:

discp𝑞2q P Zˆ𝑝 ¨ pQˆ𝑝 q2 Ď Qˆ𝑝 {pQˆ𝑝 q2

so that p´discp𝑞2q,´1q𝑝 “ 1 (by Proposition 3.16.2) and 𝜀𝑝p𝑞2q “ 1, and therefore we obtain that
𝑞2 represents every value over Q𝑝 by Proposition 3.18.1.

�

4.10. Three squares theorem. As an application, we now deduce the following result of Gauss.

Theorem 4.10.1. Any integer 𝑛 P Zě0 can be written as the sum 𝑥21`𝑥22`𝑥23, 𝑥𝑖 P Z, if and only
if 𝑥 is of the form 4𝑛p8𝑘 ` 7q.

Exercise 4.3. (1) Show that 𝑞p𝑥, 𝑦, 𝑧q “ 𝑥2 ` 𝑦2 ` 𝑧2 represents every 𝜆 P Q𝑝 for 𝑝 odd, and
represents 𝜆 P Q2 if and only if ´𝜆 P 22Z ¨ p1` 8Z2q.

(2) Deduce the rational version of Theorem 4.10.1 from the Hasse principle, i.e., the version in
which 𝑥1, 𝑥2, 𝑥3 are taken to be rational numbers instead of integers.

By Exercise 4.3, it suffices to pass from rational solutions to integral solutions. The following
result gives a way to do this in some cases.

Proposition 4.10.2 (Hasse-Davenport). Let Λ be a finite rank free abelian group equipped with an
integral quadratic form17 𝑞 : Λ Ñ Z.

Let ΛQ “ ΛbQ, and we abuse notation in letting 𝑞 : ΛQ Ñ Q denote the induced quadratic form.
Suppose that the quadratic form 𝑞 is anisotropic as a quadratic form over Q. Suppose moreover

that for every 𝑣 P ΛQ :“ ΛbQ, there exists 𝑤 P Λ with:

|𝑞p𝑣 ´ 𝑤q| ă 1.

16We emphasize that we do not need Lemma 4.9.1 here: we are not imposing any conditions away from the primes
in 𝑆.

17Since we’ve only spoken about quadratic forms on vector spaces before, this warrants an explanation: all this
means is that 𝑞p𝑛𝑣q “ 𝑛2𝑞p𝑣q for every 𝑛 P Z and 𝑣 P Λ.
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Then 𝑞 represents 𝜆 P Z by a vector in Λ if and only if 𝑞 represents 𝜆 with a vector in ΛQ.

Proof of Theorem 4.10.1. By Exercise 4.3, it suffices to see that 𝑞p𝑥, 𝑦, 𝑧q “ 𝑥2 ` 𝑦2 ` 𝑧2 satisfies
the hypotheses of Proposition 4.10.2.

Observe that 𝑞 is anisotropic over Q because it is so over R (by positive-definiteness).
Then for every p𝑥, 𝑦, 𝑧q P Q3, we can find p𝑥1, 𝑦1, 𝑧1q P Z3 with |𝑥 ´ 𝑥1| ď 1

2 , and similarly for 𝑦
and 𝑧. Then:

𝑞p𝑥´ 𝑥1, 𝑦 ´ 𝑦1, 𝑧 ´ 𝑧1q ď p𝑥´ 𝑥1q2 ` p𝑦 ´ 𝑦1q2 ` p𝑧 ´ 𝑧1q2 ď
1

4
`

1

4
`

1

4
ă 1

as desired.
�

Proof of Proposition 4.10.2. Here is the strategy of the proof: we start we some 𝑣 P ΛQ representing
𝜆 ‰ 0, and we need to find some 𝑣1 P Λ Ď ΛQ representing 𝜆. We know from (the proof of)
Proposition 2.14.2 that we can obtain any such 𝑣1 P ΛQ with 𝑞p𝑣1q “ 𝑞p𝑣q by acting on 𝑣 by
reflections. So we expect to find our 𝑣1 by such a process.

On to the actual argument:
Choose 𝑤 P Λ with |𝑞p𝑣´𝑤q| ă 1. If 𝑞p𝑣´𝑤q “ 0, then by the anisotropic assumption, we have

𝑣 “ 𝑤 and we are done.
Otherwise, since 𝑞p𝑣 ´𝑤q ‰ 0 we have the reflection 𝑠𝑣´𝑤 as in Example 2.13.1. So we define 𝑣1

as:

𝑣1 “ 𝑠𝑣´𝑤p𝑣q :“ 𝑣 ´
𝐵𝑞p𝑣, 𝑣 ´ 𝑤q

𝑞p𝑣 ´ 𝑤q
¨ p𝑣 ´ 𝑤q.

By Example 2.13.1, we have 𝑞p𝑣1q “ 𝑞p𝑣q.
We want to show that this process produces a vector in Λ after some number of iterations. To

this end, let 𝑛 be a positive integer such that 𝑛𝑣 P Λ Ď ΛQ. It suffices to show that:

𝑞p𝑣 ´ 𝑤q ¨ 𝑛 P Z (4.7)

and:

p𝑞p𝑣 ´ 𝑤q ¨ 𝑛q𝑣1 P Λ (4.8)

since by assumption, |𝑞p𝑣 ´ 𝑤q𝑛| ă 𝑛. Indeed, we then have a sequence of vectors 𝑣, 𝑣1, . . . with
𝑞p𝑣q “ 𝑞p𝑣1q “ . . ., and a strictly decreasing sequence of positive integers 𝑛, 𝑛1 :“ |𝑞p𝑣 ´ 𝑤q𝑛|, . . .
with 𝑛𝑣 P Λ, 𝑛1𝑣1 P Λ, etc., and eventually we must obtain an honest element of Λ.

For (4.7), we compute:

𝑞p𝑣 ´ 𝑤q𝑛 “ p𝑞p𝑣q ` 𝑞p𝑤q ´𝐵𝑞p𝑣, 𝑤qq𝑛 “ 𝑞p𝑣q𝑛` 𝑞p𝑤q𝑛´𝐵𝑞p𝑛𝑣,𝑤q.

Then 𝑞p𝑣q “ 𝜆 P Z, 𝑞p𝑤q P Z because 𝑤 P Λ, and 𝐵p𝑛𝑣,𝑤q P Z because 𝑛𝑣,𝑤 P Λ.
Then for (4.8), we expand:

p𝑞p𝑣 ´ 𝑤q ¨ 𝑛q𝑣1 “ p𝑞p𝑣 ´ 𝑤q ¨ 𝑛qp𝑣 ´
𝐵𝑞p𝑣, 𝑣 ´ 𝑤q

𝑞p𝑣 ´ 𝑤q
¨ p𝑣 ´ 𝑤qq “

`

𝑞p𝑣 ´ 𝑤q ´𝐵𝑞p𝑣, 𝑣 ´ 𝑤q
˘

𝑛𝑣 `𝐵𝑞p𝑛𝑣, 𝑣 ´ 𝑤q𝑤.

Because 𝑛𝑣 and 𝑤 lie in Λ, it suffices to see that each of our coefficients lie in Z.
For the first coefficient, we find:
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𝑞p𝑣 ´ 𝑤q ` 𝑞p𝑣q “ 𝑞p𝑤 ´ 𝑣q ` 𝑞p𝑣q “ 𝑞p𝑤q ´𝐵𝑞p𝑤 ´ 𝑣, 𝑣q “ 𝑞p𝑤q `𝐵𝑞p𝑣 ´ 𝑤, 𝑣q

so that 𝑞p𝑣 ´ 𝑤q ´𝐵𝑞p𝑣 ´ 𝑤, 𝑣q “ 𝑞p𝑤q ´ 𝑞p𝑣q “ 𝑞p𝑤q ´ 𝜆 P Z.
For the second coefficient, we see:

𝐵𝑞p𝑛𝑣, 𝑣 ´ 𝑤q “ 𝑛𝐵𝑞p𝑣, 𝑣q ´𝐵𝑞p𝑛𝑣,𝑤q

and the former term is 𝑛 ¨ 2𝑞p𝑣q P Z, and the latter term is integral because 𝑛𝑣,𝑤 P Λ.
�
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