
ON THE DUNDAS-GOODWILLIE-MCCARTHY THEOREM

SAM RASKIN

Abstract. We give a modern presentation of the Dundas-Goodwillie-McCarthy theorem identify-
ing relative 𝐾-theory and topological cyclic homology for nilpotent ring extensions.
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1. Introduction

1.1. This paper proves the following theorem of Dundas-Goodwillie-McCarthy, relating 𝐾-theory
and topological cyclic homology TC:

Theorem 1.1.1 ([DGM] Theorem 7.2.2.1). For 𝐵 Ñ 𝐴 a morphism of connective E1-ring spectra
such that 𝜋0p𝐵q Ñ 𝜋0p𝐴q is surjective with kernel a nilpotent ideal, the cyclotomic trace map
𝐾 Ñ TC induces an equivalence of spectra:

Kerp𝐾p𝐵q Ñ 𝐾p𝐴qq Ñ KerpTCp𝐵q Ñ TCp𝐴qq.

Here we use E1 to refer to the appropriate notion of associative algebra in the homotopical
setting; 𝐴8 and highly structured are common synonyms. We refer to [NS] for an introduction to
topological cyclic homology.

As we discuss at greater length below in S1.5, one of the main purposes of this note is to
simplify the original arguments of Dundas-Goodwillie-McCarthy through systematic use of Lurie’s
8-categorical methods (c.f. [Lur1] and [Lur2]) and using the recent ideas of Nikolaus-Scholze.

Remark 1.1.2. Theorem [DGM] has a long history. To the extent that cyclic homology is an avatar
for de Rham (or crystalline) cohomology, its origin is in [Blo].

Goodwillie proved a rationalized version of Theorem 1.1.1 in [Goo1]. The connection between 𝐾-
theory and topological Hochschild homology was first proved in [DM1] and [DM2]; see also [SSW].
The cyclotomic trace1 was constructed in [BHM] (though see [BGT] for a simpler construction). A
𝑝-adic version of Theorem 1.1.1 was proved in [McC]. Lindenstrauss-McCarthy proved the theorem
for split square-zero extensions (and usual rings) in [LM].

Date: July 18, 2018.
1We remind that this is a natural map 𝐾p𝐴q Ñ TCp𝐴q for any E1-algebra 𝐴. More generally, this map is defined

for any essentially small stable category C (and in particular is Morita invariant).
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For more recent developments, see [CMM] and its application in [BMS] S7.

Remark 1.1.3. It is not immediately clear how to deduce Goodwillie’s rationalized version [Goo1] of
Theorem 1.1.1 from Theorem 1.1.1 (because TC does not generally commute with tensor products).
Our Theorem 5.15.1 provides the relevant comparison.

Similarly, Beilinson [Bei] proved a rationalized version of Theorem 1.1.1 in a 𝑝-adic setting: we
refer to loc. cit. for the formulation. Again, Beilinson’s theorem does not obviously follow from
Dundas-Goodwillie-McCarthy. Forthcoming work of Ben Antieau, Akhil Mathew, and Thomas
Nikolaus explains the deduction of Beilinson’s theorem from Theorem 1.1.1.

1.2. Outline of the argument. The proof of Theorem 1.1.1 is quite striking: one shows that
the cyclotomic trace induces an isomorphism on Goodwillie derivatives, and then formally deduces
Theorem 1.1.1 from structural properties of the functors 𝐾-theory and TC.

Let us explain what we mean here in more detail. Fix a connective E1-algebra 𝐴. Then for any
𝐴-bimodule 𝑀 , we can form the split square-zero extension 𝐴 ‘𝑀 and take its 𝐾-theory. The
induced functor 𝐴–bimod Ñ Sp is not additive for a stupid reason: it does not map 0 to 0. But
even the less naive functor 𝑀 ÞÑ Kerp𝐾p𝐴‘𝑀q Ñ 𝐾p𝐴qq is not additive. Goodwillie’s derivative
construction stabilizes this latter construction to produce a new functor that does commute with
direct sums, and in fact, all colimits. This Goodwillie derivative of 𝐾-theory is often called stable
𝐾-theory, and was first studied by Waldhausen in [Wal].

The theorem [DM1] of Dundas-McCarthy in fact identifies stable 𝐾-theory up to a cohomological
shift with the functor THHp𝐴,´q : 𝐴–bimod Ñ Sp. Here THH denotes topological Hochschild
homology (which is possible meaning of Hochschild homology in the setting of spectra).

The same constructions may be applied to TC. One again shows that “stable TC” coincides with
THH up to shift, and that this identification is compatible with the cyclotomic trace; in particular,
the cyclotomic trace induces an isomorphism on Goodwillie derivatives. (The former result is due
to Hesselholt [Hes1], while the compatibility with the cyclotomic trace map seems to be due to
[LM] S11.)

The structural properties we referred to are results about 𝐾-theory and TC commuting with
certain colimits and limits and having some cohomological boundedness properties. The key point
is that these structural properties are features of the two functors considered separately.

To reiterate: we are proving a theorem about the fiber of the cyclotomic trace map 𝐾 Ñ TC,
which looks like a quite subtle object, it suffices to know its Goodwillie derivative and certain
structural properties of 𝐾-theory and TC independently.

1.3. The method for reducing Theorem 1.1.1 to its stabilized form is called Goodwillie calculus.
The interested reader may refer to [Goo2] for an overview of this subject, and [Lur2] S6 for a
thorough treatment of the subject; however, the present note is self-contained in terms of what we
use from Goodwillie calculus.

1.4. What do we need to know about 𝐾-theory and TC? There is a remarkable asymmetry
in how 𝐾-theory and TC are treated.

In the proof of Theorem 1.1.1, we essentially never calculate anything about 𝐾-theory. The
argument that its derivative is THH up to shift is quite soft (see the proof of Theorem 3.10.1).
Establishing sufficient structural properties of 𝐾-theory to obtain Theorem 1.1.1 for split square-
zero extensions is also not terribly difficult (and is contained in S3). For the general form of Theorem
1.1.1, some more subtle methods are needed to establish the necessary structural properties (see
Theorem 5.11.2).

In contrast, our knowledge of TC is based almost entirely around an explicit formula for TC in
the case of split square-zero extensions: see Theorem 4.10.1.
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This disparity indicates the well-established strength of Theorem 1.1.1 for 𝐾-theory calculations.

1.5. Comparison with [DGM]. The exposition here closely follows [DGM] at some points, but
departs from it in several notable respects.

First, our treatment of topological cyclic homology follows the recent work of [NS], which clarifies
the construction of TC. These notes assume some substantial familiarity with their approach to
TC, and we take Nikolaus and Scholze’s constructions as definitions. This allows us to circumvent
equivariant homotopy theory here (although we sometimes draw notation from that subject).

We also give a somewhat streamlined approach to Goodwillie’s calculus of functors in S2. In
particular, we avoid (or at least mask) the analysis of cubes that appears in [DGM] S7.2.1.2.

In addition, we use Lurie’s higher methods ([Lur1] and [Lur2]), which provide simpler homotopi-
cal foundations than those used in [DGM]. In particular, Lurie’s approach makes it routine to treat
E1-algebras more directly than in [DGM], where the authors avoid certain homotopy coherence
questions by reducing to simplicial algebras with some cost to the conceptual clarity. We treat gen-
eral connective E1-algebras on equal footing with classical (alias: discrete) rings, and have avoided
reducing problems to (non-topological) Hochschild homology for rings.

In particular, we use higher categorical methods to directly apply Goodwillie’s calculus to func-
tors from 𝐴-bimodules to spectra.

As a final difference with [DGM], which may be more neutral than an improvement, we have also
chosen to work in an abstract categorical setting where possible. That is, where possible we work
with (suitable) categories C that would be 𝐴–mod in cases of interest. This is not because it is so
important for applications to work in this generality, but because the author personally finds this
setting to be clarifying, and for the sake of diversifying the literature somewhat. Other expositions
tend to work directly with algebras and their modules, and the reader may readily find arguments
in that more familiar language in the literature.

1.6. Structure of these notes. In S2-4, we treat the split square-zero case of Theorem 1.1.1. In
S2, we explain how to reduce the theorem in this case to the comparison of derivatives and structural
properties of these functors. In S3 and 4, we prove the corresponding facts about 𝐾-theory and TC.

Finally, in S5, we axiomatize the additional structural facts about 𝐾-theory and TC needed for
the general form of Theorem 1.1.1, and then we establish these features.

1.7. Categorical notions. We systematically use higher category theory and higher algebra in
our treatment, following [Lur1] and [Lur2]. We find it convenient to avoid “higher” terminology
everywhere, so all terminology should be understood in its homotopical form: category means
p8, 1q-category, colimit means homotopy colimit, and so on. In this spirit, we refer to the stable
8-categories of [Lur2] simply as stable categories.

We let Gpd denote the category of (higher) groupoids, i.e., “spaces” in more standard homotopy-
theoretic language.

We casually use an equals sign between two objects in a category to indicate the presence of a
(hopefully) clear isomorphism.

1.8. For a category C and F,G P C, we let HomCpF,Gq P Gpd denote the groupoid of maps from F

to G.
For categories C and D, we let HompC,Dq denote the category of functors from C to D. More

generally, use Hom to indicate the category of functors in a 2-category (meaning p8, 2q-category).
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1.9. For C stable and F P C, we use the notations Fr1s and ΣF (resp. Fr´1s and ΩF) interchange-
ably, capriciously choosing between the two.

Following the above conventions, for 𝑓 : F Ñ G P C, we let Kerp𝑓q denote the homotopy kernel
(or fiber) of 𝑓 , and let Cokerp𝑓q denote the homotopy cokernel (or cofiber, or cone) of 𝑓 . Recall
that Kerp𝑓qr1s “ Cokerp𝑓q.

For a 𝑡-structure on C, we use cohomological notation: Cď0 Ď C are the connective objects, and
Cě0 are the coconnective objects. We let 𝜏ď𝑛 and 𝜏ě𝑛 denote the corresponding truncation functors.

1.10. Let StCat𝑐𝑜𝑛𝑡 denote the category of cocomplete2 stable categories under continuous3 exact
functors (i.e., functors commuting with all colimits).

We recall from [Lur2] S4.8 that StCat𝑐𝑜𝑛𝑡 has a symmetric monoidal structure b. The basic
property is that a functor C b D Ñ E P StCat𝑐𝑜𝑛𝑡 is equivalent to a functor C ˆ D Ñ E that
commutes with colimits in each variable separately. We denote the canonical (non-exact!) functor
CˆDÑ CbD by pF,Gq ÞÑ F b G.

We use this tensor product quite substantially. We refer the reader to [GR] Chapter I.1 for the
relevant background material.

1.11. We let Sp P StCat𝑐𝑜𝑛𝑡 denote the category of spectra, which we recall is the unit for the
symmetric monoidal structure on StCat𝑐𝑜𝑛𝑡. We let b : Sp ˆ Sp Ñ Sp denote the tensor (alias:
smash) product, and we let S P Sp denote the sphere spectrum. We have the standard adjunction
Σ8 : Gpd Õ Sp : Ω8.

For C a stable category and F,G P C, we let HomCpF,Gq denote the spectrum of maps from F to
G. We use HomCpF,Gq to mean the groupoid of maps in the category C, forgetting it was stable. In
other words, HomCpF,Gq “ Ω8HomCpF,Gq.

1.12. We say C P StCat𝑐𝑜𝑛𝑡 is dualizable if it is dualizable with respect to the above symmetric
monoidal structure. We let the dual category be denoted C_.

In this case, for any D P StCat𝑐𝑜𝑛𝑡 we have C_ bD
»
ÝÑ HomStCat𝑐𝑜𝑛𝑡pC,Dq. In particular, C_ “

HomStCat𝑐𝑜𝑛𝑡pC, Spq. Moreover, we see that there is an evaluation map EndStCat𝑐𝑜𝑛𝑡pCq “ Cb C_ Ñ

Sp P StCat𝑐𝑜𝑛𝑡, which we denote by trC and refer to as the trace.
For F P C a compact object, the functor (by fiat) HomCpF,´q : CÑ Sp commutes with colimits,

so defines an object of C_. We denote this object by DF.

Example 1.12.1. If C is compactly generated, then C is dualizable. Explicitly, if C𝑐 Ď C is the
(essentially small) subcategory of compact objects in C, then IndpC𝑐,𝑜𝑝q “ C_ (for Ind denoting
the ind-category), where the underlying functor C𝑐,𝑜𝑝 Ñ C_ is the map F ÞÑ DF above. (See [GR]
Chapter I.1 for more details.)

Example 1.12.2. For C “ 𝐴–mod in the above, note that 𝐴–mod is compactly generated by perfect
𝐴-modules, so 𝐴–mod is dualizable. Moreover, duality gives a contravariant equivalence between left
and right 𝐴-modules, so 𝐴–mod_ “ 𝐴𝑜𝑝–mod (modules over 𝐴 with the opposite multiplication).

One then obtains a standard (Morita-style) identification EndStCat𝑐𝑜𝑛𝑡p𝐴–modq “ 𝐴–mod b
𝐴𝑜𝑝–mod “ 𝐴–bimod. The trace map constructed above then corresponds to (topological) Hochschild
homology.

2We omit set-theoretic considerations. So cocomplete should be taken to mean presentable. Similarly, all functors
between accessible categories will themselves be assumed accessible (i.e., wherever this hypothesis is reasonable we
assume it). When we refer to commutation with all colimits, we mean small colimits.

3We say a functor is continuous if it commutes with filtered colimits.
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1.13. We frequently reference sifted colimits, which may not be familiar to all readers. We review
the theory briefly here, referring to [Lur1] S5.5.8 for proofs.

A category 𝐼 is sifted if it is non-empty and 𝐼 Ñ 𝐼ˆ 𝐼 is cofinal. A functor commutes with sifted
colimits if and only if it is continuous and commutes with geometric realizations (i.e., colimits of
simplicial diagrams). A functor 𝐹 commutes with all colimits if and only if it commutes with sifted
colimits and finite coproducts.

For C P StCat𝑐𝑜𝑛𝑡, the functors C
F ÞÑFb𝑛

ÝÝÝÝÝÑ Cb𝑛 are typical examples of functors that commute
with sifted colimits but not (outside obvious exceptional cases) general colimits.

1.14. Acknowledgements. These notes were written to supplement a talk I gave in the Arbeits-
gemeinschaft on topological cyclic homology at MFO in April 2018. I am grateful to the organizers
for the opportunity to learn this subject and to speak about it.

I also would like to thank Sasha Beilinson, Lars Hesselholt, Akhil Mathew, and Thomas Nikolaus
for helpful discussions on these subjects, for encouragement to write these notes, and for their
comments and corrections.

2. Goodwillie calculus

2.1. This goal for this section is to setup the proof of Theorem 1.1.1 in the split square-zero case.
We end the section by formulating Theorems 2.12.1 and 2.12.2, which are about 𝐾-theory and TC
respectively; although the proofs of these theorems are deferred to later sections, we deduce the
split square-zero case of Theorem 1.1.1 from them in S2.12.

However, most of this section is devoted to some formal vanishing results, allowing us to carry
out the strategy indicated in S1.2. Our main results here are Theorem 2.5.1 and Corollary 2.11.7;
the former is a toy model for the latter. The arguments are essentially the same in the two cases, but
Theorem 2.5.1 is technically simpler to formulate, and its proof essentially leads to the formulation
of the more technical Corollary 2.11.7.

Remark 2.1.1. We have sought a minimalist approach to this material and have omitted many
lovely aspects of Goodwillie’s theory here: most notably, higher derivatives, the Goodwillie tower,
and the analogy with calculus. This makes our treatment somewhat non-standard, and we refer
the reader to the extensive literature in this subject (for example, [Goo2] and [Lur2] S6) for a more
thorough approach.

Remark 2.1.2. The next comments are intended for the reader who wishes to tighten the connection
between this section and Goodwillie’s theory. Theorems 2.6.1 and 2.11.6, which provide hypotheses
for a functor to vanish, can be deduced from Goodwillie’s theory by standard methods. Indeed,
one would prove that the Goodwillie tower converges for functors satisfying these hypotheses (c.f.
Remark 2.11.3), and that the hypotheses imply that all higher Goodwillie derivatives vanish.

The methods we use below in proving these theorems are not so different from standard ones in
Goodwillie’s theory. However, the Goodwillie tower and higher derivatives take some work to set
up, so we prefer to circumvent these constructions.

2.2. A convention. The reader may safely skip the present discussion.
Throughout this section, we generally consider functors between stable categories (or their sub-

categories) commuting with sifted colimits. This choice is not at all because this assumption is
essential. These assumptions can be significantly relaxed, and we refer to [Lur2] S6 for an approach
with minimal hypotheses. Note, for example, that the discussion of S2.3 carries through as is if we
work with functors commuting with Zě0-indexed colimits.
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We include this hypothesis because the commutation with geometric realizations is essential
in our approach; the additional commutation with all filtered colimits is fairly minor; and the
commutation with sifted colimits motivates the discussion of S2.7.

2.3. The Goodwillie derivative. Suppose 𝜓 : C Ñ D is a functor between cocomplete stable
categories commuting with sifted colimits. The Goodwillie derivative B𝜓 : C Ñ D of 𝜓 is initial
among continuous exact functors receiving a natural transformation from 𝜓.

Remark 2.3.1. By [Lur2] Proposition 1.4.2.13, B𝜓 is calculated as follows.
First, observe that for any F P C, the morphisms 0 Ñ F Ñ 0 give a functorial direct sum

decomposition 𝜓pFq “ 𝜓𝑟𝑒𝑑pFq ‘ 𝜓p0q. Then 𝜓𝑟𝑒𝑑 is reduced, i.e., it takes 0 P C to 0 P D.
Then there is a canonical natural transformation Σ ˝ 𝜓𝑟𝑒𝑑 Ñ 𝜓𝑟𝑒𝑑 ˝ Σ, or equivalently, 𝜓𝑟𝑒𝑑 Ñ

Ω𝜓𝑟𝑒𝑑Σ. Finally, we have:

B𝜓 “ colim
´

𝜓𝑟𝑒𝑑 Ñ Ω𝜓𝑟𝑒𝑑Σ Ñ Ω2𝜓𝑟𝑒𝑑Σ
2 Ñ . . .

¯

We will actually use this construction in slightly more generality.

Variant 2.3.2. Suppose C is equipped with a 𝑡-structure compatible with filtered colimits and we
are given 𝜓 : Cď0 Ñ D commuting with sifted colimits. Then there is again a functor B𝜓 : CÑ D P

StCat𝑐𝑜𝑛𝑡 initial among functors commuting with colimits and receiving a natural transformation
𝜓 Ñ pB𝜓q|Cď0 .

To construct B𝜓 in this setup, note that 𝜓𝑟𝑒𝑑 makes sense as before, and then one has:

B𝜓pFq “ colim
𝑚

colim
𝑛ě𝑚

Ω𝑛𝜓𝑟𝑒𝑑pΣ
𝑛𝜏ď𝑚Fq

If the 𝑡-structure on C is right complete and 𝜓 : CÑ D commutes with sifted colimits, then B𝜓
in the previous sense coincides with Bp𝜓|Cď0q.

2.4. Notation. We let Alg denote the category of E1-algebras. We let Alg𝑐𝑜𝑛𝑛 Ď Alg denote the
subcategory of connective E1-algebras.

Recall that for 𝐴 P Alg and 𝑀 an 𝐴-bimodule, we can form the split square-zero extension
SqZerop𝐴,𝑀q P Alg, whose underlying spectrum is 𝐴‘𝑀 .

2.5. The following result is a first approximation to the main result of this section.

Theorem 2.5.1. Let Ψ : Alg𝑐𝑜𝑛𝑛 Ñ Sp be a functor.
Suppose that for every 𝐴 P Alg𝑐𝑜𝑛𝑛, the functor:

Ψ𝐴 : 𝐴–bimodď0 Ñ Sp

𝑀 ÞÑ ΨpSqZerop𝐴,𝑀qq

commutes with sifted colimits and has vanishing Goodwillie derivative. Suppose moreover that its
underlying reduced functor Ψ𝐴,𝑟𝑒𝑑 maps 𝐴–bimodď0 to Spď0.

Then for every 𝐴 P Alg𝑐𝑜𝑛𝑛 and 𝑀 P 𝐴–bimodď´1, the map ΨpSqZerop𝐴,𝑀qq Ñ Ψp𝐴q is an
isomorphism.

Remark 2.5.2. In this result, Sp may be replaced by any D P StCat𝑐𝑜𝑛𝑡 with a left separated
𝑡-structure.
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2.6. A categorical variant. We will deduce Theorem 2.5.1 from the following result.

Theorem 2.6.1. Let C and D be cocomplete stable categories equipped with 𝑡-structures compatible
with filtered colimits, and suppose the 𝑡-structure on D is left separated. Let 𝜓 : Cď0 Ñ Dď0 be a
reduced functor commuting with sifted colimits. Suppose that4 Bp𝜓pF‘´qq “ 0 for every F P Cď´1.

Then 𝜓pFq “ 0 for every F P Cď´1.

Proof that Theorem 2.6.1 implies Theorem 2.5.1. Fix 𝐴 P Alg𝑐𝑜𝑛𝑛 and define 𝜓 : 𝐴–bimodď0 Ñ Sp
as Ψ𝐴,𝑟𝑒𝑑. We claim that the hypotheses of Theorem 2.6.1 are satisfied.

There are explicit assumptions in Theorem 2.5.1 that 𝜓 commutes with sifted colimits and maps
into Spď0.

We need to show that for 𝑀 P 𝐴–bimodď´1, the Goodwillie derivative of 𝜓p𝑀 ‘ ´q is zero; in
fact, we will show this for 𝑀 P 𝐴–bimodď0. For 𝑀 “ 0, this is an assumption. In general, we have:

𝜓p𝑀 ‘´q ‘Ψp𝐴q “ ΨpSqZerop𝐴,𝑀 ‘´qq “ ΨpSqZeropSqZerop𝐴,𝑀q,´qq.

The latter functor has vanishing derivative by the hypothesis that the Goodwillie derivative of
ΨSqZerop𝐴,𝑀q vanishes.

�

Remark 2.6.2. Akhil Mathew communicated the following example to us, showing that Theorem
2.6.1 is sharp. Let C “ D “ F𝑝–mod be the categories of F𝑝-vector spaces for 𝑝 some prime. We will

construct a non-zero functor F𝑝–modď0 Ñ F𝑝–modď0 which satisfies the hypotheses of Theorem
2.6.1.

For 𝑉 P F𝑝–mod♡, let Symperfp𝑉 q denote the perfection of the symmetric algebra on 𝑉 , i.e.,
colim𝑛 Symp𝑉 q with Frobenius as structure maps. By [Lur2] Theorem 1.3.3.8, there is a unique
functor LSymperfp´q : F𝑝–modď0 Ñ F𝑝–modď0 commuting with sifted colimits and whose restric-

tion to F𝑝–mod♡ is Symperfp´q.

By [BS] Proposition 11.6, LSymperfp´q vanishes on F𝑝–modď´1; in particular, its Goodwillie
derivative vanishes. Then the evident formula:

LSymperfp𝑉 ‘𝑊 q “ LSymperfp𝑉 q b LSymperfp𝑊 q

implies that for every 𝑉 P F𝑝–modď0, the functor
`

𝑊 ÞÑ LSymperfp𝑉 ‘𝑊 q
˘

also has vanishing
Goodwillie derivative.

2.7. The bilinear obstruction to linearity. To prove Theorem 2.6.1, it is convenient to use the
following construction.

In the notation of loc. cit., note that 𝜓 commutes with all colimits if and only if it commutes
with pairwise direct sums (because 𝜓 is reduced and commutes with sifted colimits). Therefore, 𝐵𝜓
may be understood as the obstruction to 𝜓 commuting with all colimits.

For F,G P Cď0, define:

𝐵𝜓pF,Gq “ Cokerp𝜓pFq ‘ 𝜓pGq Ñ 𝜓pF ‘ Gqq P D.

Note that:

𝜓pF ‘ Gq “ 𝜓pFq ‘ 𝜓pGq ‘𝐵𝜓pF,Gq

because the composition:

4For clarity: the notation indicates the Goodwillie derivative of the functor G ÞÑ 𝜓pF ‘ Gq.
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𝜓pFq ‘ 𝜓pGq Ñ 𝜓pF ‘ Gq “ 𝜓pF ˆ Gq Ñ 𝜓pFq ˆ 𝜓pGq “ 𝜓pFq ‘ 𝜓pGq

is the identity.
Therefore, 𝜓 commutes with colimits if and only if 𝐵𝜓 “ 0.

2.8. Simplicial review. We will prove Theorem 2.6.1 using some standard simplicial methods.
Suppose F‚ is a simplicial object in C. We let |F‚| denote the geometric realization of this

simplicial diagram, i.e., the colimit.
Similarly, let |F‚|ď𝑛 denote the partial geometric realization colim

Δ𝑜𝑝
ď𝑛

F‚. Here Δď𝑛 ĎΔ is the full

subcategory of simplices of order ď 𝑛. Note that:

|F‚| “ colim
𝑛

|F‚|ď𝑛.

Finally, we recall (c.f. to the proof of the Dold-Kan theorem):

Lemma 2.8.1. For 𝑛 ě 0, Cokerp|F‚|ď𝑛 Ñ |F‚|ď𝑛`1q is a direct summand of F𝑛`1r𝑛` 1s.

2.9. Our main technique is the following.

Lemma 2.9.1. Suppose 𝜓 : Cď0 Ñ D commutes with sifted colimits. For every F P C, 𝜓pΣFq

admits an increasing filtration5 fil‚ 𝜓pΣFq such that:

‚ fil𝑖 𝜓pΣFq “ 0 for 𝑖 ă 0.
‚ For 𝑖 ě 0, gr𝑖 𝜓pΣFq is a direct summand of 𝜓pF‘𝑖qr𝑖s.
‚ More precisely, gr0 𝜓pΣFq “ 𝜓p0q, gr1p𝜓pΣFqq “ 𝜓𝑟𝑒𝑑pFqr1s, and gr2p𝜓pΣFqq “ 𝐵𝜓𝑟𝑒𝑑

pF,Fqr2s.

Proof. There is a canonical simplicial diagram:

. . .F ‘ F ÑÑÑ F Ñ 0

with geometric realization ΣF. (For example, this simplicial diagram is the Cech construction for
0 Ñ ΣF.)

Because 𝜓 commutes with geometric realizations, we have:

𝜓pΣFq “ |𝜓pF‘‚q|.

We then set fil𝑖 𝜓pΣFq “ |𝜓pF‘‚q|ď𝑖. This filtration tautologically satisfies the first property, and it
satisfies the second property by Lemma 2.8.1. The third property follows by refining Lemma 2.8.1
to identify exactly which summand occurs, which we omit here (see e.g. [Lur2] Lemma 1.2.4.17).

�

Remark 2.9.2. In the terminology of Goodwillie calculus, we generally have:

gr𝑖 𝜓pΣFq “ cr𝑖 𝜓pF, . . . ,Fqr𝑖s

where cr𝑖 𝜓 is the 𝑖th cross-product of 𝜓. (In particular, 𝐵𝜓 is non-standard notation for cr2 𝜓.)
However, we will not explicitly need the higher cross products.

As a first consequence, we obtain:

Corollary 2.9.3. Suppose that 𝜓 : Cď0 Ñ Dď0 is reduced and commutes with sifted colimits. Then
for every 𝑛 ě 0, 𝜓pCď´𝑛q Ď Dď´𝑛.

5For us, all filtrations are assumed exhaustive.
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Proof. By induction, it suffices to show 𝜓pCď´1q Ď Dď´1. Suppose F P Cď0; we need to show
𝜓pΣFq P Dď´1.

We use the filtration of Lemma 2.9.1. It suffices to show gr𝑖 𝜓pΣFq P Dď´1. Then gr0 𝜓pΣFq “ 0
as 𝜓 is reduced; and for 𝑖 ą 0, gr𝑖 𝜓pΣFq is a summand of 𝜓pF𝑖qr𝑖s, which is clearly in degrees
ď ´𝑖 ă 0.

�

2.10. We now prove Theorem 2.6.1.

Proof of Theorem 2.6.1. We will show by induction on 𝑛 that these hypotheses on 𝜓 force 𝜓pCď´1q Ď
Dď´𝑛. The case 𝑛 “ 1 is given by Corollary 2.9.3. In what follows, we assume the inductive hy-
pothesis for 𝑛 and deduce it for 𝑛` 1.

Step 1. First, we claim that for F P Cď´1, the functor:

𝐵𝜓pF,´qr´1s : Cď0 Ñ D

satisfies the hypotheses of Theorem 2.6.1.
Clearly this functor is reduced and commutes with sifted colimits.
Let us show that this functor maps Cď0 into Dď0. Fix G P Cď0. The reduced functor 𝐵𝜓p´,Gq

commutes with sifted colimits and maps Cď0 into Dď0. By Corollary 2.9.3, 𝐵𝜓pF,Gq P Dď´1, so
𝐵𝜓pF,Gqr´1s P Dď0 as desired.

Finally, note that for any F1 P Cď´1, the functor:

Ω𝐵𝜓pF,F
1 ‘´q : Cď0 Ñ D

has vanishing Goodwillie derivative, as it is a summand of the functor 𝜓pF ‘ F1 ‘´qr´1s.
Therefore, we may apply the inductive hypothesis to this functor. We obtain that 𝐵𝜓pF,´q maps

Cď´1 to Dď´𝑛´1. In particular, 𝐵𝜓pF,Fq P D
ď´𝑛´1.

Step 2. Next, we claim that:

CokerpΣ𝜓pFq Ñ 𝜓pΣFqq P Dď´𝑛´3.

Note that by the construction of Lemma 2.9.1, the map:

Σ𝜓pFq “ gr1 𝜓pΣFq “ fil1 𝜓pΣFq Ñ 𝜓pΣFq

is the canonical map used in the definition of the Goodwillie derivative. Therefore, it suffices to
show that gr𝑖 𝜓pΣFq P Dď´𝑛´3 for 𝑖 ě 2.

By induction, 𝜓pF𝑖q P Dď´𝑛 by induction. Therefore, gr𝑖 𝜓pΣFq P Dď´𝑛´𝑖. This gives the claim
for 𝑖 ě 3.

If 𝑖 “ 2, then gr𝑖 𝜓pΣFq “ 𝐵𝜓pF,Fqr2s, and by the previous step 𝐵𝜓pF,Fq P D
ď´𝑛´1 as needed.

Step 3. Finally, the previous step implies that for F P Cď´1, the map:

𝜓pFq Ñ Ω𝜓pΣFq

is an isomorphism on 𝐻´𝑛 (where this notation denotes the cohomology functor for the 𝑡-structure
on D).

More generally, for any 𝑚 ě 0, the functor Ω𝑚𝜓Σ𝑚 : Cď0 Ñ Dď0 satisfies our hypotheses, so we
find that Ω𝑚𝜓Σ𝑚pFq Ñ Ω𝑚`1𝜓pΣ𝑚`1Fq is an isomorphism on 𝐻´𝑛.

Finally, we obtain 𝐻´𝑛p𝜓pFqq
»
ÝÑ 𝐻´𝑛pB𝜓pFqq is an isomorphism. But of course, B𝜓 “ 0, so we

obtain 𝜓pFq P Dď´𝑛´1, providing the inductive step.
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�

2.11. Full vanishing results. We now wish to extend the above results to give vanishing for con-
nective objects. Throughout this section, C,D P StCat𝑐𝑜𝑛𝑡 are equipped with 𝑡-structures compatible
with filtered colimits.

The following definition is obviously quite natural in this context.

Definition 2.11.1. A functor 𝜓 : Cď0 Ñ Dď0 is extensible if there exists r𝜓 : Cď1 Ñ Dď1 commuting

with sifted colimits with r𝜓|Cď0 “ 𝜓.

It is convenient to introduce the following notion as well.

Definition 2.11.2. A functor 𝜓 : Cď0 Ñ Dď0 is pseudo-extensible if:

‚ 𝜓 is reduced and commutes with sifted colimits.
‚ Every 𝜙 in S𝜓 maps Cď0 Ñ Dď0, where S𝜓 Ď HompC,Dq is the minimal subgroupoid such

that 𝜓 P S𝜓 and such that for every F P Cď0 and 𝜙 P S𝜓, 𝐵𝜙pF,´qr´1s P S𝜓.

Remark 2.11.3. In standard terminology from Goodwillie calculus, one can show that if 𝜓 commutes
with sifted colimits, then 𝜓 is (-1)-analytic if and only if 𝜓r𝑛s is pseudo-extensible for some 𝑛.

Lemma 2.11.4. If 𝜓 : Cď0 Ñ Dď0 is extensible, then it is pseudo-extensible.

Proof. Clearly any 𝜙 P S𝜓 is extensible. Therefore, by induction we are reduced to showing that
for F P Cď0, 𝐵𝜓pF,´qr´1s maps Cď0 to Dď0.

Let r𝜓 : Cď1 Ñ Dď1 be as in the definition of extensibility. Clearly 𝐵
r𝜓

maps Cď1 ˆ Cď1 to Dď1,

so applying Corollary 2.9.3 once in each variable, we find 𝐵
r𝜓

maps Cď0 ˆ Cď0 to Dď´1. Here the

functor coincides with 𝐵𝜓, and incorporating the shift we get the claim.
�

The flexibility the next result affords is ultimately the reason we consider pseudo-extensible
functors here.

Lemma 2.11.5. In the above setting, suppose the 𝑡-structure on D is left complete. Let I be a

filtered category, and suppose we are given a diagram I𝑜𝑝
𝑖 ÞÑ𝜓𝑖
ÝÝÝÑ HompCď0,Dď0q of pseudo-extensible

functors. Suppose that for every 𝑛 there exists 𝑖 P I such that 𝜏ě´𝑛𝜓𝑗
»
ÝÑ 𝜏ě´𝑛𝜓𝑖 for all 𝑖Ñ 𝑗 P I.

Then the value-wise limit of functors 𝜓 “ lim𝑖PI𝑜𝑝 𝜓𝑖 is pseudo-extensible.

Proof. For F,G P Cď0, we have:

𝐵𝜓pF,Gq “ lim
𝑖
𝐵𝜓𝑖

pF,Gq

by definition of 𝐵´. Therefore, so we are reduced (by induction, say) to showing that 𝐵𝜓pF,Gq P
Dď´1.

Recall that left completeness and our stabilization hypotheses imply 𝜏ě´𝑛𝜓 “ 𝜏ě´𝑛𝜓𝑖 for 𝑖 in I

sufficiently large (depending on 𝑛). Therefore, 𝜏ě´𝑛𝜓 is reduced and commutes with sifted colimits
for every 𝑛, which implies the same for the functor 𝜓 (by left completeness of the 𝑡-structure on
D).

Similarly, we have 𝜏ě´𝑛lim
𝑖
𝐵𝜓𝑖

pF,Gq “ 𝜏ě´𝑛𝐵𝜓𝑖
pF,Gq for 𝑖 sufficiently large. So clearly𝐵𝜓pF,Gq P

Dď´1, since this is true for each 𝜓𝑖 by pseudo-extensibility.
�
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We now have the following result, which in the extensible case is just a rephrasing of Theorem
2.6.1.

Theorem 2.11.6. In the setting of Theorem 2.6.1, suppose 𝜓 is pseudo-extensible and Bp𝜓pF ‘´qq “
0 for every F P Cď0. Then 𝜓 maps Cď0 to XDď´𝑛.

Proof. First, we claim 𝜓pFq P Dď´1 for all F P Cď0. As in the proof of Theorem 2.6.1, it suffices to
show gr𝑖 𝜓pΣFq P Dď´3 for all 𝑖, and this is automatic for 𝑖 ě 3. For 𝑖 “ 2, we have gr2 𝜓pΣFq “

𝐵𝜓pF,Fqr2s, and 𝐵𝜓pF,Fq P D
ď´1 by pseudo-extensibility.

Next, observe that any 𝜙 P S𝜓 is pseudo-extensible, and by induction the Goodwillie derivatives
of the functors 𝜙pF ‘´q vanish for any F P Cď0. Therefore, by the above argument, every 𝜙 P S𝜓
maps Cď0 into Dď´1.

Finally, we see that 𝜓r´1s is pseudo-extensible, so by induction we obtain the result.
�

We immediately deduce the following.

Corollary 2.11.7. In the setting of Theorem 2.5.1, suppose that the functors Ψ𝐴,𝑟𝑒𝑑 : 𝐴–bimodď0 Ñ
Sp are pseudo-extensible.

Then Ψp𝐴‘𝑀q
»
ÝÑ Ψp𝐴q for any 𝑀 P 𝐴–bimodď0.

2.12. The split square-zero case of Theorem 1.1.1. The following two results will be shown
in S3 and S4 respectively.

Theorem 2.12.1. (1) For 𝐴 P Alg𝑐𝑜𝑛𝑛, the functor:

𝐴–bimodď0 Ñ Spď0

𝑀 ÞÑ 𝐾pSqZerop𝐴,𝑀qq

commutes with sifted colimits. Moreover, the underlying reduced functor is extensible in the
sense of S2.11.

(2) For 𝐴 P Alg𝑐𝑜𝑛𝑛, the Goodwillie derivative of the functor:

𝐴–bimodď0 Ñ Sp

𝑀 ÞÑ 𝐾p𝐴‘𝑀q

is canonically isomorphic to the functor 𝑀 ÞÑ THHp𝐴,𝑀qr1s.

Theorem 2.12.2. (1) For 𝐴 P Alg𝑐𝑜𝑛𝑛, the functor:

𝐴–bimodď0 Ñ Sp

𝑀 ÞÑ TCpSqZerop𝐴,𝑀qq

is pseudo-extensible in the sense of S2.11.
(2) For 𝐴 as above and 𝑀 P 𝐴–bimodď0:

TC𝑟𝑒𝑑pSqZerop𝐴,𝑀qq :“ KerpTCpSqZerop𝐴,𝑀qq Ñ TCp𝐴qq P Spď´1.

(3) The Goodwillie derivative of the above functor is canonically isomorphic to THHp𝐴,´qr1s.
Moreover, this isomorphism is compatible with the cyclotomic trace and the isomorphism of
Theorem 2.12.1.

Remark 2.12.3. Throughout these notes, 𝐾 denotes connective 𝐾-theory. Adapting [Bei] Lemma
2.3 to the setting of connective ring spectra justifies omitting negative 𝐾-groups.
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2.13. Let us assume the above theorems for now and deduce Theorem 1.1.1 in the split square-zero
case.

Define the functor:

Ψ𝐷𝐺𝑀 : Alg𝑐𝑜𝑛𝑛 Ñ Sp

𝐴 ÞÑ Cokerp𝐾p𝐴q Ñ TCp𝐴qq

where the map 𝐾p𝐴q Ñ TCp𝐴q is the cyclotomic trace map. It suffices to show Ψ𝐷𝐺𝑀 satisfies the
hypotheses of Theorem 2.5.1 and Corollary 2.11.7.

Ψ𝐷𝐺𝑀
𝑟𝑒𝑑 pSqZerop𝐴,´qq : 𝐴–bimodď0 Ñ Sp is pseudo-extensible by Theorem 2.12.1 (1) and Theo-

rem 2.12.2 (1) as this property is preserved under cokernels. Moreover, this functor maps into Spď0

by Theorem 2.12.2 (2) (c.f. Remark 2.12.3). Finally, its Goodwillie derivative vanishes by Theorem
2.12.1 (2) and Theorem 2.12.2 (3).

3. K-theory

3.1. In this section, we prove Theorem 2.12.1. It is convenient in working with 𝐾-theory to gen-
eralize to a categorical setting, and we do so in what follows.

3.2. Split square-zero extensions categorically. First, we interpret the theory of split square-
zero extensions in the categorical setting.

Suppose C P StCat𝑐𝑜𝑛𝑡 and 𝑇 : CÑ C P StCat𝑐𝑜𝑛𝑡 is a (continuous, exact) endomorphism.

Definition 3.2.1. SqZeropC, 𝑇 q is the category of pairs F P C and 𝜂 : F Ñ 𝑇 pFq a locally nilpotent
endomorphism, i.e., the colimit of the diagram:

F
𝜂
ÝÑ 𝑇 pFq

𝑇 p𝜂q
ÝÝÝÑ 𝑇 pFq

𝑇 2p𝜂q
ÝÝÝÑ . . .

is zero.

Proposition 3.2.2. Suppose 𝐴 P Alg and 𝑀 P 𝐴–bimod. Let 𝑇𝑀 :“ p𝑀 r1s b𝐴 ´q : 𝐴–mod Ñ
𝐴–mod. Then there is a canonical equivalence:

SqZerop𝐴,𝑀q–mod » SqZerop𝐴–mod, 𝑇𝑀 q

such that the diagram:

SqZerop𝐴,𝑀q–mod //

𝐴 b
SqZerop𝐴,𝑀q

´ ((

SqZerop𝐴–mod, 𝑇𝑀 q

pF,𝜂qÞÑFvv
𝐴–mod

commutes.

Proof. We construct the functor:

𝐹 : SqZerop𝐴,𝑀q–modÑ SqZerop𝐴–mod, 𝑇𝑀 q

as follows. Suppose 𝑁 P SqZerop𝐴,𝑀q–mod. We must have 𝐹 p𝑁q “ 𝐴 bSqZerop𝐴,𝑀q 𝑁 as objects
of 𝐴–mod; it remains to define the map 𝜂 (in the above notation). This map is the boundary for
the obvious exact triangle:

𝑇𝑀 p𝐹 p𝑁qqr´1s “𝑀 b
𝐴
𝐹 p𝑁q Ñ 𝑁 Ñ 𝐹 p𝑁q

`1
ÝÝÑ
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where 𝑁 is regarded as an 𝐴-module through the section 𝐴 Ñ SqZerop𝐴,𝑀q. In the case 𝑁 “

SqZerop𝐴,𝑀q, one sees that this triangle is split, so 𝜂 is 0; this implies in general that 𝜂 is locally
nilpotent.

Now observe that the diagram:

SqZerop𝐴,𝑀q–mod
𝐹 //

((

SqZerop𝐴–mod, 𝑇𝑀 q

pF,𝜂qÞÑKerp𝜂qvv
𝐴–mod

tautologically commutes, where the left arrow is restriction along the morphism 𝐴Ñ SqZerop𝐴,𝑀q.
To show that 𝐹 is an equivalence, it suffices to show that each of the above functors to 𝐴–mod

is monadic and the induced functor of monads is an isomorphism. The left functor is tautologically
monadic. The right functor admits the left adjoint F ÞÑ pF, 𝜂 “ 0q; it obviously commutes with
colimits and is conservative by local nilpotence of 𝜂. Recall that to check the induced map of
monads is an isomorphism, it is enough to see that 𝐹 is intertwined by the left adjoints to the
vertical arrows, which is evident.

Moreover, this equivalence also clearly makes the diagram from the proposition commute.
�

We also use the following observation.

Proposition 3.2.3. In the above setting, suppose that C is compactly generated. Then SqZeropC, 𝑇 q
is compactly generated. An object of SqZeropC, 𝑇 q is compact if and only if the underlying object of
C is.

Proof. Suppose pF, 𝜂Fq, pG, 𝜂Gq P SqZeropC, 𝑇 q. Note that:

HomSqZeropC,𝑇 q

`

pF, 𝜂Fq, pG, 𝜂Gq
˘

“ Eq
`

HomSqZeropC,𝑇 qpF,Gq Ñ HomSqZeropC,𝑇 qpF,Gq
˘

where the two maps in the equalizer are composition with 𝜂F and 𝜂G respectively. This implies that
if F is compact in C, then pF, 𝜂Fq is compact in SqZeropC, 𝑇 q (as colimits commutes with finite
limits in C).

We claim that SqZeropC, 𝑇 q is compactly generated by objects pF, 𝜂 “ 0q for F compact in C.
Indeed, suppose pG, 𝜂Gq P SqZeropC, 𝑇 q receives only the zero map from such objects. This implies
Kerp𝜂Gq “ 0, as:

HomSqZeropC,𝑇 q

`

pF, 0q, pG, 𝜂Gq
˘

“ HomCpF,Kerp𝜂Gqq.

Then local nilpotence of 𝜂G implies G “ 0, as desired.
�

3.3. Variant. Here is a sort of alternative to the square-zero extension construction above, which
is more convenient for our purposes.

Let C be a compactly generated stable category and let 𝑇 : C Ñ C P StCat𝑐𝑜𝑛𝑡 be an endo-
morphism. We define C𝑇 as IndpC𝑇,𝑐q where C𝑇,𝑐 is the category of pairs pF, 𝜂q with F P C𝑐 and
𝜂 : F Ñ 𝑇 pFq. We remark that there is no local nilpotence hypothesis here.

Example 3.3.1. For 𝑘 a field and C “ 𝑘–mod and 𝑇 “ id, there are natural identifications:
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SqZeropC, 𝑇 q “ Kerp𝑘r𝑡s–mod

𝑘p𝑡q b
𝑘r𝑡s
´

ÝÝÝÝÝÑ 𝑘p𝑡q–modq

C𝑇 “ Kerp𝑘r𝑡s–mod

𝑘r𝑡,𝑡´1s b
𝑘r𝑡s
´

ÝÝÝÝÝÝÝÝÑ 𝑘r𝑡, 𝑡´1s–modq.

3.4. We have the following compatibility in the above setting. Note that there is always a fully-
faithful functor SqZeropC, 𝑇 q Ñ C𝑇 preserving compact objects.

Lemma 3.4.1. For connective 𝐴 and 𝑀 P 𝐴–bimodď0, the natural functor:

SqZerop𝐴–mod, 𝑇𝑀 q Ñ 𝐴–mod𝑇𝑀

is an equivalence of categories.
In particular, 𝐴–mod𝑇𝑀 is canonically equivalent to SqZerop𝐴,𝑀q–mod.

Proof. It suffices to observe that for any F P 𝐴–mod𝑐, any map 𝜂 : F Ñ 𝑇𝑀 pFq is automatically
locally nilpotent as colim𝑛 𝑇

𝑛
𝑀 pFq “ 0 (since F is bounded above and 𝑇𝑀 “ 𝑀 b𝐴 ´r1s lowers

cohomological degrees by 1).
The second point follows from Proposition 3.2.2.

�

Remark 3.4.2. Note that there is no contradiction with Example 3.3.1: there idC “ 𝑇𝑘r´1s and 𝑘r´1s
is not connective.

3.5. Structural features of 𝐾-theory. We now prove the first point of Theorem 2.12.1.

Proof of Theorem 2.12.1 (1). To prove the extensibility, define:

r𝐾𝐴 : 𝐴–bimodď1 Ñ Spď0 Ď Sp

r𝐾𝐴p𝑀q :“ 𝐾p𝐴–mod𝑇𝑀 ,𝑐q.

For 𝑀 P 𝐴–bimodď0, note that r𝐾𝐴p𝑀q “ 𝐾pSqZerop𝐴,𝑀qq by Lemma 3.4.1. Therefore, we

need only to show that r𝐾𝐴 commutes with sifted colimits.
Let Projp𝐴q Ď 𝐴–mod𝑐 denote the full subcategory of (finitely-generated) projective 𝐴-modules,

i.e., the full subcategory of 𝐴–mod𝑐 consisting of summands of 𝐴‘𝑛 for some 𝑛 P Zě0. Let
Projp𝐴q𝑇𝑀 Ď 𝐴–mod𝑇𝑀 ,𝑐 be the full subcategory of pairs pF, 𝜂q with F P Projp𝐴q.

Note that Projp𝐴q𝑇𝑀 is an exact6 category. Standard7 arguments show that 𝐾pProjp𝐴q𝑇𝑀 q
»
ÝÑ

r𝐾𝐴p𝑀q, where the left hand side indicates Waldhausen 𝐾-theory of this exact category. (It is
essential that 𝑇𝑀 is right 𝑡-exact here.)

Because Ω8 : Spď0 Ñ Gpd commutes with sifted colimits (as follows from thinking of connective
spectra as group-like E8-monoids), it suffices to show that the functor:

Ω8 r𝐾𝐴 : 𝐴–bimodď1 Ñ Gpd

commutes with sifted colimits, or just as well, that Ω8´1 r𝐾𝐴 does. The latter is the geometric
realization of Waldhausen’s 𝑆‚ construction, so it suffices to show the individual terms of the 𝑆‚
construction commute with sifted colimits in 𝑀 here.

6In the higher categorical sense: see [Bar] for an introduction in this setup.
7See [Fon] for a general format for such problems. In particular, the main theorem of loc. cit. implies our present

claim. We thank Thomas Nikolaus for directing us to this reference.
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To simplify the notation, we explain why 𝑀 ÞÑ 𝑆2pProjp𝐴q
𝑇𝑀 q P Gpd commutes with sifted

colimits: the general case is the same with more notation.
First, recall that 𝑆2pProjp𝐴qq is the groupoid of data F1,F2 P Projp𝐴q and a map 𝑓 : F1 Ñ F2

with Cokerp𝑓q P Projp𝐴q Ď 𝐴–mod.
Then we similarly have:

𝑆2pProjp𝐴q
𝑇𝑀 q “ colim

p𝑓 :F1ÑF2qP𝑆2pProjp𝐴qq
Hom𝐴–modpF1, 𝑇𝑀 pF1qq ˆ

Hom𝐴–modpF1,𝑇𝑀 pF2qq

Hom𝐴–modpF2, 𝑇𝑀 pF2qq.

Therefore, it suffices to show that for every point p𝑓 : F1 Ñ F2q P 𝑆2pProjp𝐴qq, the above expression
commutes with sifted colimits in 𝑀 .

Note that:

Hom𝐴–modpF1, 𝑇𝑀 pF1qq ˆ
Hom𝐴–modpF1,𝑇𝑀 pF2qq

Hom𝐴–modpF2, 𝑇𝑀 pF2qq “

Ω8
´

Hom𝐴–modpF1, 𝑇𝑀 pF1qq ˆ
Hom𝐴–modpF1,𝑇𝑀 pF2qq

Hom𝐴–modpF2, 𝑇𝑀 pF2qq

¯

.

Before passing to Ω8, this expression clearly commutes with all colimits in 𝑀 : this follows from
compactness of the F𝑖 and the fact that 𝐴–mod is stable.

As Ω8 : Spď0 Ñ Gpd is conservative and commutes with sifted colimits, it suffices to show
that this fiber product lies in Spď0. Each term in the fiber product is connective because F𝑖 P

Projp𝐴q and 𝑇𝑀 pF𝑖q P 𝐴–modď0. Then the fiber product is connective because HompF2, 𝑇 pF2qq Ñ

HompF1, 𝑇 pF2qq is surjective on 𝐻0 (because Cokerp𝑓q P Projp𝐴q).
�

3.6. Derivative of 𝐾-theory. We now give the calculation of Goodwillie derivatives in an appro-
priate categorical setup.

3.7. For pC, 𝑇 q as in S3.3, let 𝐾Cp𝑇 q P Sp be the (connective) 𝐾-theory of C𝑇,𝑐.
We have the following easy result.

Lemma 3.7.1. For every compactly generated C, the functor 𝐾C : EndStCat𝑐𝑜𝑛𝑡pCq Ñ Sp commutes
with filtered colimits.

Proof. Clearly the functor 𝑇 ÞÑ C𝑇,𝑐 (as a functor to essentially small stable categories, say) com-
mutes with filtered colimits, so the result follows from the commutation of 𝐾-theory and filtered
colimits.

�

3.8. Note that 𝐾C has a little more functoriality.
Let StCat𝑐𝑔,𝑒𝑛𝑑𝑜 be the following 1-category.8 Objects are pairs pC, 𝑇 q with C a compactly gen-

erated stable category and 𝑇 : C Ñ C a functor commuting with colimits. Morphisms are lax
commuting diagrams:

C
𝑇 //

𝐹
��

C

𝐹
��

𝜀

t|
D

𝑇 1 //// D

8Meaning p8, 1q-category, of course; we are distinguishing here from an p8, 2q-category.
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(so 𝜀 : 𝐹𝑇 Ñ 𝑇 1𝐹 is a natural transformation) with 𝐹 preserving compact objects.9

Then pC, 𝑇 q ÞÑ 𝐾Cp𝑇 q upgrades to a functor out of StCat𝑐𝑔,𝑒𝑛𝑑𝑜. For a diagram as above, the
map 𝐾Cp𝑇 q Ñ 𝐾Dp𝑇

1q is induced by the functor:

C𝑇,𝑐 Ñ D𝑇 1,𝑐

pF, 𝜂 : F Ñ 𝑇 pFqq ÞÑ
`

𝐹 pFq, 𝐹 pFq
𝐹 p𝜂q
ÝÝÝÑ 𝐹𝑇 pFq

𝜀
ÝÑ 𝑇 1𝐹 pFq

˘

.

3.9. In the setting of S3.3, let B𝐾C denote the Goodwillie derivative of the functor𝐾C : EndStCat𝑐𝑜𝑛𝑡pCq Ñ

Sp; although 𝐾C does not commute with sifted colimits, the definition and construction of the Good-
willie derivative still apply (c.f. S2.2). Moreover, B𝐾C commutes with arbitrary colimits by Lemma
3.7.1.

3.10. By Lemma 3.4.1, the following result is a generalization of Theorem 2.12.1 (2).

Theorem 3.10.1. The functor B𝐾 is canonically isomorphic to the trace functor trC : EndpCq Ñ
Sp.

The proof of this result occupies the remainder of this section.

3.11. We will prove Theorem 3.10.1 using the following convenient characterization of B𝐾.
First, note that 𝐾pSpq has a canonical base-point, i.e., there’s a canonical map SÑ 𝐾pSpq P Sp

corresponding to the point of Ω8𝐾pSpq which is the class of the sphere spectrum. Similarly, we

have a canonical point of 𝐾SppidSpq defined by pS, idSq P Sp
idSp,𝑐.

We recall that the notation StCat𝑐𝑔,𝑒𝑛𝑑𝑜 introduced in S3.8.

Lemma 3.11.1. Suppose that we are given a functor Φ : StCat𝑐𝑔,𝑒𝑛𝑑𝑜 Ñ Sp, which we denote by
pC, 𝑇 q ÞÑ ΦCp𝑇 q. Suppose that we are given a base-point 𝑥 : SÑ ΦSppidSpq P Sp.

Suppose moreover that:

‚ For every C, the functor ΦCp´q commutes with colimits.
‚ The functor Φ is additive in the following sense. Abuse notation in writing 𝑇 for the
endofunctor of Homp∆1,Cq “ tF Ñ G P Cu sending F Ñ G to 𝑇 pFq Ñ 𝑇 pGq. Then we
suppose (using the notation of S3.3) that the map:

Homp∆1,Cq𝑇 Ñ Cˆ C

F

𝜂F
��

𝑓 // G

𝜂G
��

𝑇 pFq // 𝑇 pGq

ÞÑ
`

pF, 𝜂Fq, pCokerp𝑓q, 𝜂Cokerp𝑓qq
˘

induces an isomorphism ΦHompΔ1,Cqp𝑇 q
»
ÝÑ ΦCp𝑇 q ˆ ΦCp𝑇 q.

Then there is a unique natural transformation:

B𝐾Cp𝑇 q Ñ ΦCp𝑇 q

of functors StCat𝑐𝑔,𝑒𝑛𝑑𝑜 Ñ Sp equipped with a structure of based map when evaluated on pSp, idSpq.
In particular, pC, 𝑇 q ÞÑ B𝐾Cp𝑇 q is initial with respect to the above data.

9This does not completely define a structure of category, of course: we have not written compositions, never mind
higher data. But all of this data is implicit in the standard 2-categorical structure on StCat𝑐𝑜𝑛𝑡; we refer to [GR] for
the appropriate formalism, including how to properly define this category.
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Proof. Suppose pC, 𝑇 q P StCat𝑐𝑔,𝑒𝑛𝑑𝑜. By functoriality of Φ and using its base-point, we have a
canonical map:

HomStCat𝑐𝑔,𝑒𝑛𝑑𝑜
ppSp, idSpq, pC, 𝑇 qq “ C𝑇,𝑐,» Ñ HomSppΦSppidSpq,ΦCp𝑇 qq Ñ Ω8ΦCp𝑇 q P Gpd.

By additivity of Φ and the Waldhausen construction of 𝐾-theory, this map factors through a
canonical map from Ω8𝐾Cp𝑇 q, and by Lemma 3.11.2 this canonically upgrades to a map of spectra
𝐾Cp𝑇 q Ñ ΦCp𝑇 q. Finally, by definition of the Goodwillie derivative, this natural transformation
factors through B𝐾Cp𝑇 q Ñ ΦCp𝑇 q. Clearly this construction is natural in pC, 𝑇 q, giving the claim.

�

We used the following result in the course of the proof, which we explicitly record for clarity.

Lemma 3.11.2. For D stable and 𝐹,𝐺 : DÑ Sp exact functors, natural transformations between
𝐹 and 𝐺 are the same as natural transformations between the functors Ω8𝐹,Ω8𝐺 : D Ñ Gpd.
That is, the natural map:

HomHompD,Spqp𝐹,𝐺q Ñ HomHompD,GpdqpΩ
8𝐹,Ω8𝐺q

is an isomorphism.

Proof. We have:

HomHompD,Spqp𝐹,𝐺q “ lim
𝑛

HomHompD,Gpdq

`

Ω8p𝐹 r𝑛sq,Ω8p𝐺r𝑛sq
˘

.

Now observe that each of the structural maps in this limit is an isomorphism (as suspension is an
equivalence for both C and D).

�

3.12. We now prove Theorem 3.10.1.

Proof of Theorem 3.10.1. We verify that the functor pC, 𝑇 q ÞÑ trCp𝑇 q satisfies the same universal
property as in Lemma 3.11.1.

Step 1. First, note that there actually is a canonical such a functor out of StCat𝑐𝑔,𝑒𝑛𝑑𝑜: this follows
from the functoriality of traces discussed in S4 (and almost established in [KP] S1).

Clearly this functor commutes with colimits in 𝑇 . It is straightforward to check additivity; we
omit the verification here.

Moreover, trSppidSpq “ S P Sp, so there is a tautological base-point here.
It remains to show universality of the trace. So suppose that we are given Φ as in Lemma 3.11.1.

Step 2. We now make some preliminary constructions.
Fix pC, 𝑇 q P StCat𝑐𝑔,𝑒𝑛𝑑𝑜 and suppose F P C𝑐 compact. Then there is a canonical map:

𝜀F : HomCpF, 𝑇 pFqq Ñ C𝑇,𝑐,» Ñ Ω8ΦCp𝑇 q P Gpd

with the first map being obvious and the second map coming from Lemma 3.11.1.
Moreover, suppose that for some 𝑛 ě 0, we are given a diagram:

F0
𝛼0
ÝÑ . . .

𝛼𝑛´1
ÝÝÝÑ F𝑛

𝛼𝑛
ÝÝÑ 𝑇 pF0q

𝑇 p𝛼0q
ÝÝÝÑ . . .

𝑇 p𝛼𝑛´1q
ÝÝÝÝÝÑ 𝑇 pF𝑛q P C

with each F𝑖 compact. For each 𝑖, we have an induced map F𝑖 Ñ 𝑇 pF𝑖q, and we claim that
the induced point of Ω8ΦCp𝑇 q is canonically independent of 𝑖. More precisely, we have a simpli-
cial groupoid sending r𝑛s to the groupoid of diagrams as above, and we claim there is a natural
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transformation to the constant simplicial groupoid with value Ω8ΦCp𝑇 q that coincides with the
construction 𝜀F for 𝑛 “ 0. (The additivity of Φ is essential here.)

First, observe that for any F P C𝑐, 𝜀F is pointed (and even upgrades to a map of spectra) by
exactness of ΦCp´q. Under the above hypotheses, we may regard F𝑛 as a filtered object of C, and
the given data as a filtered map F𝑛 Ñ 𝑇 pF𝑛q. Clearly on associated graded, the induced maps:

CokerpF𝑖 Ñ F𝑖`1q Ñ Cokerp𝑇 pF𝑖q Ñ 𝑇 pF𝑖`1qq

are zero for all 𝑖 ě 0. Additivity (and the pointedness noted above) then implies that:

𝜀F𝑛p𝑇 p𝛼𝑛´1 . . . 𝑇 p𝛼0q𝛼𝑛qq “ 𝜀F0p𝛼𝑛 . . . 𝛼1𝛼0q.

This argument immediately upgrades to give the desired natural transformation of simplicial
groupoids; we omit the details. Moreover, we note that these constructions are natural in pC, 𝑇 q P
StCat𝑐𝑔,𝑒𝑛𝑑𝑜 in the obvious sense.

Step 3. Now fix C compactly generated and stable. Recall that C is dualizable in StCat𝑐𝑜𝑛𝑡, so:

Cb C_
»
ÝÑ EndStCat𝑐𝑜𝑛𝑡pCq.

Therefore, it is enough to give the natural transformation of the induced functors:

Cˆ C_ Ñ Sp.

The left hand side is IndpC𝑐 ˆ C𝑐,𝑜𝑝q, so it is enough to construct our natural transformation when
restricted to C𝑐 ˆ C𝑐,𝑜𝑝, i.e., for functors of the form G b DF for F,G P C𝑐.

Step 4. We have trCpG b DFq “ HomCpF,Gq. By Lemma 3.11.2, it suffices to construct natural
maps:

HomCpF,Gq Ñ ΦCpG b DFq P Gpd.
We have map of spectra:

HomCpF,Gq Ñ EndCpFq bHompF,Gq
»
ÝÑ HompF,EndCpFq b Gq “ HompF, pG b DFqpFqq.

Applying Ω8 and using the construction from Step 2, we obtain a map:

HomCpF,Gq Ñ Ω8ΦCpG b DFq.
This map is clearly natural in the variable G, only natural with respect to isomorphisms in the
variable F. I.e., we have constructed a natural transformation of functors C𝑐 ˆ C𝑐,𝑜𝑝,» Ñ Gpd.

Step 5. It remains to upgrade the above construction to a natural transformation of functors defined
on all of C𝑐 ˆ C𝑐,𝑜𝑝.

First, at a homotopically naive level, suppose we are given 𝑓 : F0 Ñ F1 and 𝑔 : F1 Ñ G. We a
priori obtain two points of Ω8ΦCpG b DF0q:

𝑔𝑓 P HomCpF0,Gq, HomCpF0,Gq Ñ Ω8ΦpG b DF0q

𝑓 P HomCpF1,Gq, HomCpF1,Gq Ñ Ω8ΦpG b DF1qΩ
8ΦpG b DF0q.

(3.12.1)

We claim that they are canonically identified.
We prove this by identifying both points with a third: we have a canonical map:

F1 “ Sb F1
𝑓b𝑔
ÝÝÑ HompF0,F1q b G “ pG b DF0qpF1q
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which (by Step 2) gives a point of Ω8Ω8ΦpG b DF0q.
It is tautological that this map coincides with the second map in (3.12.1). To identify it with the

first, we use the diagram:

F0
𝑓
ÝÑ F1

idF0
b𝑔

ÝÝÝÝÝÑ pG b DF0qpF0q Ñ pG b DF0qpF1q

and Step 2.
To upgrade this map to a homotopically correct one, one shows that we have a morphism of

the complete Segal spaces defined by C𝑐 ˆ C𝑐,𝑜𝑝 and Gpd respectively; obviously this uses the full
simplicial construction from Step 2. We leave the details to the reader.

�

4. Topological cyclic homology

4.1. In this section, we prove Theorem 2.12.2. We will deduce this result from an explicit calcula-
tion of TC for split square-zero extensions, see Theorem 4.10.1 below.

Remark 4.1.1. Throughout this section, if not otherwise mentioned, stable categories lie in StCat𝑐𝑜𝑛𝑡
and functors between stable categories are morphisms there (i.e., continuous exact functors).

4.2. Mea culpa and references. Throughout this section, we need various functoriality proper-
ties of traces. Unfortunately, these are not so well documented at the moment.

In S4.3, S4.4 and S4.7, we indicate what functoriality we require. This material (especially first
two of these sections), is well-known folklore that does not seem to quite have a convenient reference.

We do not feel so much guilt on this point for three reasons. First, some of this functoriality is
established in [KP] S1. Moreover, the constructions (especially Proposition 1.2.9) from loc. cit. can
be readily be generalized to provide the desired functoriality using Segal spaces.

Second, Thomas Nikolaus has forthcoming work [Nik] completely establishing the functoriality
we postulate here.

Finally, if we had chosen to work with algebras instead of categories (as is all we need in practice),
then one could make do with the methods of [NS]. But we have not used this approach here because
we find it to be not as well-suited as the categorical approach for the problems at hand.

4.3. Review of traces. Let C be dualizable in StCat𝑐𝑜𝑛𝑡. Then the trace functor:

trC : EndStCat𝑐𝑜𝑛𝑡pCq Ñ Sp

satisfies:

trCp𝑇𝑆q “ trCp𝑆𝑇 q

for 𝑆, 𝑇 P EndStCat𝑐𝑜𝑛𝑡pCq, and more generally:

trCp𝑇1 . . . 𝑇𝑛q “ trCp𝑇2 . . . 𝑇𝑛𝑇1q

for 𝑇1, . . . 𝑇𝑛 P EndStCat𝑐𝑜𝑛𝑡pCq. Here we are lazily writing an equals sign for an existence of canonical
isomorphism; and more functorially, we should work with a series of functors indexed by a cyclic
set.

In particular, there is a Z{𝑛-action on10 trCp𝑇
𝑛q for any 𝑇 . As a variant, we have a cyclic functor

with constant value trCpidCq and whose underlying simplicial functor is constant; this recovers the
usual BZ-action on THH.

10For clarity: throughout this section, e.g. 𝑇𝑛 denotes the 𝑛-fold composition of 𝑇 with itself (and not, say, the
𝑛-fold product of it with itself).
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Remark 4.3.1. Here we are using somewhat non-standard notation: we use BZ rather than 𝑆1 or
T to emphasize that the story is not at all transcendental. Note that in this perspective, the usual
homomorphism Z{𝑛 Ñ 𝑆1 “ BZ corresponds to the extension 0 Ñ Z 𝑛

ÝÑ Z Ñ Z{𝑛 of abelian
groups.

4.4. Next, recall the following additional functoriality of traces. Note that we have used some of
this material already in the proof of Theorem 2.12.1.

Suppose 𝑇 P EndpCq and 𝑆 P EndpDq. Suppose moreover that 𝜓 : CÑ D P StCat𝑐𝑜𝑛𝑡 is an exact
functor between dualizable stable categories that admits a continuous right adjoint, and that we
are given a natural transformation:

𝜓𝑇 Ñ 𝑆𝜓.

Then there is an induced map:

trCp𝑇 q Ñ trDp𝑆q

satisfying expected compatibilities.
Note that in such a case, for 𝑛 P Zą0 we also obtain a natural transformation:

𝜓𝑇𝑛 Ñ 𝑆𝜓𝑇𝑛´1 Ñ . . .Ñ 𝑆𝑛´1𝜓𝑇 Ñ 𝑆𝑛𝜓

and so a map:

trCp𝑇
𝑛q Ñ trDp𝑆

𝑛q.

By construction, this map is Z{𝑛-equivariant.

Example 4.4.1. Suppose C “ Sp and 𝑇 is the identity functor. Then a functor 𝜓 as above is
equivalent to a compact object F P D, and a natural transformation as above is equivalent to a
map 𝜂 : F Ñ 𝑆pFq. From this datum, the above constructs a canonical map:

trSppidSpq “ SÑ trDp𝑆q

i.e., it gives a point of Ω8 trDp𝑆q. For later use, we denote this point trFp𝜂q.
We remark that we have already seen this construction in Example 4.4.1.

4.5. Calculation of THH. Suppose that C P StCat𝑐𝑜𝑛𝑡 is dualizable and equipped with a contin-
uous endofunctor 𝑇 .

Proposition 4.5.1. There is a canonical BZ-equivariant isomorphism:

THHpCq
à

‘𝑛ą0 IndBZ
Z{𝑛 trCp𝑇

𝑛q
»
ÝÑ THHpSqZeropC, 𝑇 qq.

Here IndBZ
Z{𝑛 is the right adjoint induction functor from spectra with (naive) Z{𝑛-actions to spectra

with BZ-actions.

Proof. Here is the method.
Suppose D a dualizable stable category and we wish to calculate its Hochschild homology. Note

that D bD_
»
ÝÑ EndpDq, and the trace map on the right hand side corresponds to the canonical

pairing on the left hand side. Then we might try to calculate this tensor product in some explicit
terms, calculate what corresponds to the identity functor for D, and then apply the evaluation
functor. This will be our approach for D “ SqZeropC, 𝑇 q.
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We remark that some of the manipulations below may also be understood in terms of usual
square-zero extensions (using Proposition 3.2.2), and we encourage the reader to do the exercise of
translating.

Step 1. First, we claim that for any D P StCat𝑐𝑜𝑛𝑡, the functor:

SqZeropC, 𝑇 q bD
»
ÝÑ SqZeropCbD, 𝑇 b idDq (4.5.1)

is an equivalence. We will show both sides map to CbD monadically, and the induced morphism
of monads is an isomorphism.

Note that the functor SqZeropC, 𝑇 q
pF,𝜂qÞÑKerp𝜂q
ÝÝÝÝÝÝÝÝÑ C admits a left adjoint equipping an object of

C with the zero map to 𝑇 of itself. Moreover, the local nilpotence condition in the definition of
SqZeropC, 𝑇 q implies that this functor is conservative, and therefore (being continuous) monadic.
Note that the underlying monad on C sends F P C to F ‘ 𝑇 pFqr´1s “ Kerp0 : F Ñ 𝑇 pFqq.

Then we recall that monadicity is preserved under tensor products in StCat𝑐𝑜𝑛𝑡, so the left hand
side of (4.5.1) maps monadically to CbD. Moreover, applying the above to SqZeropCbD, 𝑇 b idDq,
we obtain that this category maps monadically to C bD. Then it is immediate to verify that the
functor in (4.5.1) intertwines these monadic functors and induces an equivalence of monads on
CbD, and therefore is an equivalence.

Step 2. Next, we claim that SqZeropC, 𝑇 q is dualizable with dual SqZeropC_, 𝑇_q. Here we recall
that a functor 𝑇 : CÑ C induces a dual functor 𝑇_ : C_ Ñ C_; explicitly, for 𝜆 P C_ “ HompC,Spq,
𝑇_p𝜆q “ 𝜆 ˝ 𝑇 .

First, we construct the evaluation map:

SqZeropC, 𝑇 q b SqZeropC_, 𝑇_q Ñ Sp.

It is equivalent to construct a functor:

SqZeropC, 𝑇 q ˆ SqZeropC_, 𝑇_q Ñ Sp

commuting with colimits in each variable separately. This pairing sends:

`

pF, 𝜂 : F Ñ 𝑇 pFqq, p𝜆, 𝜇 : 𝜆Ñ 𝜆𝑇 q
˘

to:

Eq
`

𝜆pFq
𝜆p𝜂q
Ñ
𝜇
𝜆𝑇 pFq

˘

.

Next, we define the coevaluation map:

SpÑ SqZeropC, 𝑇 q b SqZeropC_, 𝑇_q.

For this, it is helpful to realize the right hand side more explicitly using the previous step. Iteratively
applying the previous step, we obtain:

SqZeropC, 𝑇 q b SqZeropC_, 𝑇_q “ SqZeropCb SqZeropC_, 𝑇_q, 𝑇 b idq “

SqZero
`

Cb C_, p𝑇 b id_C q ˆ pidCb𝑇
_q
˘

.

Noting that C b C_
»
ÝÑ EndpCq by duality, we obtain that objects of the above tensor product

are the same as data:11

11A posteriori, we have SqZeropC, 𝑇 q b SqZeropC_, 𝑇_q
»
ÝÑ EndpSqZeropC, 𝑇 qq.
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𝑆
𝛼 //

𝛽
��

𝑆𝑇

𝑇𝑆

(4.5.2)

with:

colim
`

𝑆
𝛼
ÝÑ 𝑆𝑇

p´˝𝑇 qp𝛼q
ÝÝÝÝÝÝÑ 𝑆𝑇 2 . . .

˘

“ 0

colim
`

𝑆
𝛽
ÝÑ 𝑇𝑆

p𝑇˝´qp𝛽q
ÝÝÝÝÝÝÑ 𝑇 2𝑆 . . .

˘

“ 0.

Now our coevaluation map is specified by an object of the above tensor product (since it is a
continuous exact functor out of spectra). In the graphical display of (4.5.2), this object is:

‘𝑛ě0𝑇
𝑛 𝜋 //

𝜋

��

‘𝑛ě1𝑇
𝑛

‘𝑛ě1𝑇
𝑛

where 𝜋 denotes the natural projection.
To verify that this actually defines a duality datum, we should show that the composition:

SqZeropC, 𝑇 q
idb coev
ÝÝÝÝÝÑ SqZeropC, 𝑇 q b SqZeropC_, 𝑇_q b SqZeropC, 𝑇 q

evb id
ÝÝÝÝÑ SqZeropC, 𝑇 q

is isomorphic to the identity functor (by the symmetry of C and C_ here, this suffices).
This composition sends pF, 𝜂q P SqZeropC, 𝑇 q to:

F1 “ Eqp‘𝑛ě0𝑇
𝑛pFq

‘𝑛𝑇𝑛p𝜂q
Ñ
𝜋

‘𝑛ě1𝑇
𝑛pFqq

equipped with the map 𝜂1 : F1 Ñ 𝑇 pF1q induced by the natural projection from F1 to:

𝑇 pF1q “ Eqp‘𝑛ě1𝑇
𝑛pFq Ñ ‘𝑛ě2𝑇

𝑛pFqq.

We wish to construct a functorial isomorphism pF, 𝜂q » pF1, 𝜂1q.
First, we observe:12

Eqp‘𝑛ě0𝑇
𝑛pFq Ñ

id
‘𝑛ě0𝑇

𝑛pFqq “ Coeqp‘𝑛ě0𝑇
𝑛pFq Ñ ‘𝑛ě0𝑇

𝑛pFqqr´1s “

colim𝑛ě0 𝑇
𝑛pFqr´1s “ 0

Explicitly, the endofunctor of SqZeropC, 𝑇 q corresponding to the above data sends pF, 𝜂q to:

F
1 :“ Eq

`

𝑆pFq
𝑆p𝜂q
Ñ
𝛼

𝑆𝑇 pFq
˘

with 𝜂1 : F1 Ñ 𝑇 pF1q induced by taking equalizers along rows in the (appropriately commuting) diagram:

𝑆pFq
𝑆p𝜂q //
𝛼
//

𝛽

��

𝑆𝑇 pFq

𝛽

��
𝑇𝑆pFq

𝑇𝑆p𝜂q//
𝑇 p𝛼q
// 𝑇𝑆𝑇 pFq.

12Note the difference from the equalizer we aim to calculate: it is in indexing the second term in the equalizer.
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by local nilpotence of 𝜂. Therefore, the equalizer we are trying to calculate is:

Coker
`

Eqp0 Ñ Fq Ñ 0
˘

“ CokerpFr´1s Ñ 0q “ F.

The additional compatibility between 𝜂 and 𝜂1 is readily seen.

Step 3. We now obtain a formula for Hochschild homology as a bare spectrum by composing the
evaulation and coevaluation maps.

First, note that the evaluation map sends an object (4.5.2) to:

EqptrCp𝑆q
𝛼

Ñ
𝛽

trCp𝑆𝑇 q » trCp𝑇𝑆qq.

Indeed, this follows by identifying the two on “pure tensors” pF, 𝜂qb p𝜆, 𝜇q as in the construction
of the evaluation map.

We thus obtain:

THHpSqZeropC, 𝑇 qq
»
ÝÑ ‘

𝑛ě0
Eq

`

trCp𝑇
𝑛q

id
Ñ
𝜎𝑛

trCp𝑇
𝑛q
˘

(4.5.3)

where 𝜎𝑛 : trCp𝑇
𝑛q

»
ÝÑ trCp𝑇

𝑛q is the action of the generator of Z{𝑛 on this trace (c.f. S4.3).
We observe that the summand:

Eq
`

trCp𝑇
𝑛q

id
Ñ
𝜎𝑛

trCp𝑇
𝑛q
˘

is isomorphic as a spectrum to IndBZ
Z{𝑛 trCp𝑇

𝑛q.

Therefore, the left and right hand sides of (4.5.3) have natural BZ-actions. It remains to show
that isomorphism of (4.5.3) upgrades to a BZ-equivariant one.

Step 4. First, as a (slightly13) toy version of the problem, fix 𝑛 ą 0. We claim that the composition:

THHpSqZeropC, 𝑇 qq
(4.5.3)
ÝÝÝÝÑ Eq

`

trCp𝑇
𝑛q

id
Ñ
𝜎𝑛

trCp𝑇
𝑛q
˘

Ñ trCp𝑇
𝑛q

is Z{𝑛-equivariant, and that the induced map:

THHpSqZeropC, 𝑇 qq Ñ IndBZ
Z{𝑛 trCp𝑇

𝑛q “ Eq
`

trCp𝑇
𝑛q

id
Ñ
𝜎𝑛

trCp𝑇
𝑛q
˘

is the natural projection arising from (4.5.3).
Note that we have a natural functor:

Oblv : SqZeropC, 𝑇 q Ñ C

pF, 𝜂q ÞÑ F

that admits a continuous right adjoint.14 Moreover, there is a canonical natural transformation:

Oblv Ñ 𝑇 ˝Oblv (4.5.4)

that evaluates on pF, 𝜂q as the map 𝜂.
By S4.4, we obtain a natural Z{𝑛-equivariant map:

13If the right hand side were a product instead of a sum, what we explain here would be adequate. And in fact,
for our application we may assume trCp𝑇

𝑛
q P Spď´𝑛, which forces the direct sum and direct product to coincide.

14Explicitly, this right adjoint sends G P C to ‘𝑛ě0𝑇
𝑛
pGq equipped with the projection map ‘𝑛ě0𝑇

𝑛
pGq Ñ

𝑇 p‘𝑛ě0𝑇
𝑛
pGqq “ ‘𝑛ě1𝑇

𝑛
pGq.
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THHpSqZeropC, 𝑇 qq “ trSqZeropC,𝑇 qpidSqZeropC,𝑇 qq Ñ trCp𝑇
𝑛q.

It is straightforward to see that this map has the desired compatibilities with (4.5.3).

Step 5. Finally, we explain how to complete the argument. We do this using a general format for
THH (and traces more generally) to have gradings.15

Let ReppG𝑚q denote the symmetric monoidal category of Z-graded spectra with the convolution16

monoidal structure.17 A grading on D P StCat𝑐𝑜𝑛𝑡 is the datum of a category D𝑔𝑟 P StCat𝑐𝑜𝑛𝑡 (of
“graded objects in D”) equipped with ReppG𝑚q-module category structure and an isomorphism:

D𝑔𝑟 b
ReppG𝑚q

Sp
»
ÝÑ D.

Here we are using the symmetric monoidal functor ReppG𝑚q Ñ Sp of forgetting the grading.18

We claim that if D is dualizable and equipped with a grading, then THHpDq is naturally graded
spectrum.

Indeed, one can show19 that D𝑔𝑟 is automatically dualizable as a ReppG𝑚q-module category.
Therefore, we can take its THH (the trace of the identity) in this category to obtain an object:

THH{ReppG𝑚qpD
𝑔𝑟q P ReppG𝑚q.

Then by functoriality, this object maps to THHpDq under the forgetful functor ReppG𝑚q Ñ Sp,
i.e., it induces a grading on THHpDq. Moreover, this construction makes manifest functoriality of
traces in the graded setting, similar to S4.3; we do not spell out the details here.

We apply this to D “ SqZeropC, 𝑇 q. We set SqZeropC, 𝑇 q𝑔𝑟 to be the category whose objects are
collections F𝑛 P C for each 𝑛 P Z and equipped with maps 𝜂𝑛 : F𝑛 Ñ 𝑇 pF𝑛`1q that are locally
nilpotent in the sense that colim𝑛 𝑇

𝑛pF𝑛`𝑚q “ 0 for any 𝑚.
This category has an obvious action of ReppG𝑚q, and the functor:

SqZeropC, 𝑇 q𝑔𝑟 Ñ SqZeropCq
`

pF𝑛q𝑛PZ, p𝜂𝑛q𝑛PZ
˘

ÞÑ p‘𝑛F𝑛,‘𝑛𝜂𝑛q

naturally upgrades to an equivalence:

15The present discussion admits some natural extensions, which we highlight here.
First, there is a notion of graded cyclotomic spectrum, which is discussed in S5.18. (The key point is that the

Frobenius at 𝑝 multiplies degrees by 𝑝.) In particular, up to adapting [AMGR] to the graded setting, the present
discussion shows that THH of a graded object of StCat𝑐𝑜𝑛𝑡 is a graded cyclotomic spectrum.

Moreover, similar ideas may developed in the filtered setting.
16I.e., if F and G are spectra, then Fp𝑛q b Gp𝑚q “ pF b Gqp𝑛 ` 𝑚q, where e.g. Fp𝑛q indicates we consider F as

graded purely in degree 𝑛, on the left hand side b indicates our convolution monoidal structure, and on the right
hand side it indicates the usual tensor product.

17This category is readily seen to in fact be comodules over the (bi-E8) Hopf algebra Σ8Z.
18Here is another language for categorical gradings, which the reader may safely skip. We use some terminology

and notation that we do not wish to explain here.
Note that [Gai] Theorem 2.2.2 is true for spectra in the special case 𝐺 “ G𝑚: the proof from loc. cit. S7.2 works in

this setup. (This is closely related to G𝑚 being linearly reductive in any characteristic.)
The upshot is that a grading on D is equivalent to a weak G𝑚-action on D, where one recovers D𝑔𝑟 as DG𝑚,𝑤.
For example, in slightly imprecise terms, the relevant weak G𝑚-action on SqZeropC, 𝑇 q that we use below scales

the map 𝜂.
19E.g., using the previous footnote and standard techniques.
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SqZeropC, 𝑇 q𝑔𝑟 b
ReppG𝑚q

Sp
»
ÝÑ SqZeropC, 𝑇 q.

Then it is straightforward to verify that the grading on THHpSqZeropC, 𝑇 qq coming from the
above coincides with the grading appearing in (4.5.3).

Now note that the natural transformation (4.5.4) is graded of degree 1 in the natural sense.
Therefore, we can apply the method from the previous step to see that the degree 𝑛 part of
THHpSqZeropC, 𝑇 qq is BZ-equivariantly isomorphic to IndBZ

Z{𝑛 trCp𝑇
𝑛q, completing the argument.

�

4.6. Cyclotomic structure. In Proposition 4.5.1, for C dualizable and 𝑇 : CÑ C continuous and
exact, we calculated THHpSqZeropC, 𝑇 qq with its BZ-action. We now wish to describe its cyclotomic
structure.

4.7. First, we need some additional functoriality for traces. Fix 𝑝 a prime. Then we claim that
there is a Tate diagonal map:

∆𝑝 : trCp𝑇 q Ñ trCp𝑇
𝑝q𝑡Z{𝑝

functorial in 𝑇 (actually, satisfying functoriality as in S4.4, but we do not need this).

First, note that EndpCq
𝑇 ÞÑtrCp𝑇

𝑝q𝑡Z{𝑝
ÝÝÝÝÝÝÝÝÝÑ Sp is exact. The argument20 is standard, c.f. [NS] Propo-

sition III.1.1.
By Lemma 3.11.2, it suffices to construct the natural transformation of functors to Gpd obtained

by applying Ω8. Moreover, as 𝑇 ÞÑ trCp𝑇 q commutes with all colimits, it suffices to define the
restriction our natural transformation when restricted along:

Cˆ C_ Ñ Cb C_ “ EndpCq.

Now for pF, 𝜆q P C ˆ C_, the trace of the corresponding functor is 𝜆pFq, while the trace of its
𝑝-fold composition is 𝜆pFqb𝑝. Then we use the natural map:

Ω8𝜆pFq
»
ÝÑ

´

`

Ω8𝜆pFq
˘𝑝
¯ℎZ{𝑝

Ñ
`

Ω8𝜆pFqb𝑝
˘ℎZ{𝑝

“

Ω8𝜆pFqb𝑝,ℎZ{𝑝 Ñ Ω8𝜆pFqb𝑝,𝑡Z{𝑝.

Example 4.7.1. For C “ Sp, a functor 𝑇 of this type is necessarily the tensor product with some
spectrum. In this case, the Tate diagonal construction above recovers that of [NS] SIII.1.

Variant 4.7.2. Generalizing [NS] SIII.3, there is some additional functoriality. For example, for
𝑛 ą 0, the Tate diagonal map:

∆𝑝 : trCp𝑇
𝑛q Ñ trCp𝑇

𝑛𝑝q𝑡Z{𝑝

is naturally Z{𝑛-equivariant, where we use the natural pZ{𝑛𝑝q{pZ{𝑝q “ Z{𝑛-action on the right
hand side.

20We remark that this argument is a variant of the standard combinatorial proof of Fermat’s little theorem; see
Wikipedia for example.
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4.8. We now construct a cyclotomic structure on the BZ-spectrum:

‘
𝑛ě1

IndBZ
Z{𝑛 trCp𝑇

𝑛q.

We remark that a version of this construction appears in [LM] in a related context (but using the
formalism of equivariant homotopy theory).

For simplicity, we assume trCp𝑇
𝑛q P Spď0 for all 𝑛 so we are in the setting of [NS] (the general

non-connective setting can be treated following [AMGR]). So for every prime 𝑝, we need to construct
a suitable “Frobenius” map.

For any integer 𝑛, we have the Z{𝑛-equivariant Tate diagonal:

trCp𝑇
𝑛q Ñ trCp𝑇

𝑛𝑝q𝑡Z{𝑝.

We then induce to BZ-representations:

IndBZ
Z{𝑛 trCp𝑇

𝑛q Ñ IndBZ
Z{𝑛

`

trCp𝑇
𝑛𝑝q𝑡Z{𝑝

˘

and observe21 that there is a natural map:

IndBZ
Z{𝑛

`

trCp𝑇
𝑛𝑝q𝑡Z{𝑝

˘

Ñ
`

IndBZ
Z{𝑛𝑝 trCp𝑇

𝑛𝑝q
˘𝑡Z{𝑝

that is equivariant for the multiplication by 𝑝-map BZÑ BZ.
Composing the above morphisms and taking the direct sum over 𝑛, we obtain:

𝜙𝑝 : ‘
𝑛ě1

IndBZ
Z{𝑛 trCp𝑇

𝑛q Ñ ‘
𝑛ě1

`

IndBZ
Z{𝑛𝑝 trCp𝑇

𝑛𝑝q
˘𝑡Z{𝑝

which is again equivariant against 𝑝 : BZÑ BZ. By [NS], these maps over all 𝑝 define a cyclotomic
structure assuming connectivity. (And again, refining this construction somewhat gives a cyclotomic
structure in general, following [AMGR].)

Tracing the constructions, we have:

21To see this, suppose in generality that we are given:

𝐾 // 𝐻1

��

// 𝐺1

��
𝐾 // 𝐻2

// 𝐺2

where the rows are fiber sequences of groups, the maps 𝐻𝑖 Ñ 𝐺𝑖 are epimorphisms (i.e., surjective on 𝜋0), and 𝐾 is
a finite (discrete) group.

Then for 𝑉 a spectrum with a (naive)𝐻1-action, there is an obvious commuting diagram of spectra with 𝐺2-actions:

Ind𝐻2
𝐻1
p𝑉 qℎ𝐾 //

��

Ind𝐺2
𝐺1
p𝑉ℎ𝐾q

��
Ind𝐻2

𝐻1
p𝑉 qℎ𝐾 Ind𝐻2

𝐻1
p𝑉 ℎ𝐾

qoo

where the vertical maps come from norm maps for 𝐾.

We take 𝐾 “ Z{𝑝Ñ 𝐻1 “ Z{𝑛𝑝Ñ 𝐺1 “ Z{𝑝 and 𝐾 “ Z{𝑝Ñ 𝐻2 “ BZ 𝑝
ÝÑ 𝐺2 “ BZ as our rows, with the natural

maps relating them. Then the morphism in the top row of our diagram above is an isomorphism, since the functor
IndBZZ{𝑚 commutes with colimits for any 𝑚. Passing to kernels along the vertical arrows then gives the desired map.
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Lemma 4.8.1. This cyclotomic structure is the canonical one on:

THH𝑟𝑒𝑑pSqZeropC, 𝑇 qq :“ Ker
`

THHpSqZeropC, 𝑇 qq Ñ THHpCq
˘

under the isomorphism of Proposition 4.5.1.

4.9. Genuine fixed points. It is convenient to introduce the following notation.
For 𝑝 a prime, let trCp𝑇

𝑝qZ{𝑝 P Sp denote the genuine fixed points, which by definition is the fiber
product:

trCp𝑇
𝑝qZ{𝑝 //

��

trCp𝑇
𝑝qℎZ{𝑝

��
trCp𝑇 q

Δ𝑝 // trCp𝑇
𝑝q𝑡Z{𝑝.

More generally, for 𝑛 ě 1, we construct the genuine fixed points trCp𝑇
𝑛qZ{𝑛 as the iterated fiber

product:

trCp𝑇
𝑛qZ{𝑛 :“

trCp𝑇 q
ą

ś

𝑝|𝑛

𝑝 prime

trCp𝑇 𝑝q𝑡Z{𝑝

ź

𝑝|𝑛

𝑝 prime

trCp𝑇
𝑝qℎZ{𝑝 . . .

ą

ś

𝑝𝑑|𝑛

𝜛p𝑑q“𝑘

𝑝 prime

trCp𝑇 𝑝𝑑q𝑡Z{𝑝,ℎZ{𝑑

ź

𝑑|𝑛

𝜛p𝑑q“𝑘`1

trCp𝑇
𝑑qℎZ{𝑑 . . .

. . .
ą

ś

𝑝𝑑|𝑛

𝜛p𝑑q“𝜛p𝑛q´1

𝑝 prime

trCp𝑇 𝑝𝑑q𝑡Z{𝑝,ℎZ{𝑑

trCp𝑇
𝑛qℎZ{𝑛.

Here for 𝑑 P Zą0, we let 𝜛p𝑑q “
ř

𝑝 prime 𝑣𝑝p𝑑q. The structure maps in the above iterated fiber
product are constructed as follows. Going right we use the Tate diagonal maps:

trCp𝑇
𝑑qℎZ{𝑑 Ñ trCp𝑇

𝑝𝑑q𝑡Z{𝑝,ℎZ{𝑑

coming from Variant 4.7.2. And going left we simply use the canonical projection from invariants
to the Tate construction.

Note that for any 𝑑 | 𝑛, there is a canonical restriction map:

trCp𝑇
𝑛qZ{𝑛 Ñ trCp𝑇

𝑑qZ{𝑑.

Lemma 4.9.1. For any 𝑛 there is a canonical isomorphism:

trCp𝑇
𝑛qℎZ{𝑛

»
ÝÑ Ker

`

trCp𝑇
𝑛qZ{𝑛 Ñ lim

𝑑|𝑛
trCp𝑇

𝑑qZ{𝑑
˘

.

Proof. The limit on the right is calculated as an iterated fiber product as in the definition of trCp𝑇
𝑛q,

but where we omit the last fiber product in its definition. Therefore, the kernel we are trying to
compute coincides with:
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Ker
´

trCp𝑇
𝑛qℎZ{𝑛 Ñ

ź

𝑝𝑑|𝑛

𝜛p𝑑q“𝜛p𝑛q´1

𝑝 prime

trCp𝑇
𝑝𝑑q𝑡Z{𝑝,ℎZ{𝑑

¯

Note that on the right, 𝑝𝑑 is necessarily equal to 𝑛, so we can rewrite this expression as:

Ker
´

trCp𝑇
𝑛qℎZ{𝑛 Ñ

ź

𝑝|𝑛

𝑝 prime

trCp𝑇
𝑛q𝑡Z{𝑝,ℎZ{p𝑛{𝑝q

¯

.

Now we observe that for any 𝑉 P Spď0 with a (naive) Z{𝑛-action, the map:

𝑉 𝑡Z{𝑛 Ñ
ź

𝑝|𝑛

𝑝 prime

𝑉 𝑡Z{𝑝,ℎZ{p𝑛{𝑝q

is an isomorphism. Indeed, it is easy to see22 that:

𝑉 𝑡Z{𝑛 »
ÝÑ

ź

𝑝 prime

𝑉 𝑡Z{𝑝𝑣𝑝p𝑛q,ℎZ{p𝑛{𝑝𝑣𝑝p𝑛qq

for arbitrary 𝑉 , and in the connective case we can further apply [NS] Lemma II.4.1, which is a
version of the Tate orbit lemma.

Therefore, by our connectivity assumption on traces of powers of 𝑇 , we need to calculate:

Ker
´

trCp𝑇
𝑛qℎZ{𝑛 Ñ trCp𝑇

𝑛q𝑡Z{𝑛
¯

which is certainly trCp𝑇
𝑛qℎZ{𝑛.

�

4.10. Calculation of TC. We use the above as follows.

Theorem 4.10.1. Suppose that for every 𝑛 ą 0, trCp𝑇
𝑛q P Spď´𝑛.

Then there is a natural isomorphism:

TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq :“ Ker
`

TCpSqZeropC, 𝑇 qq Ñ TCpCq
˘ »
ÝÑ lim

𝑛
trCp𝑇

𝑛qZ{𝑛

where the limit is over positive integers ordered under divisibility.
In particular, TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq has a complete decreasing filtration indexed by positive inte-

gers under divisibility, and there is a canonical isomorphism:

gr𝑛 TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq
»
ÝÑ trCp𝑇

𝑛qℎZ{𝑛.

Remark 4.10.2. This result is implicit in [LM].

Proof of Theorem 4.10.1. By the Nikolaus-Scholze formula [NS] Corollary 1.5 for TC (using the
connectivity assumption of S4.8), we have:

TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq “ Eq
`

THH𝑟𝑒𝑑pSqZeropC, 𝑇 qqℎBZ Ñ
ź

𝑝 prime

THH𝑟𝑒𝑑pSqZeropC, 𝑇 qq𝑡Z{𝑝,ℎBZ
˘

.

22E.g., one notes that 𝑉 𝑡Z{𝑛 is 𝑛-adically complete and shows that 𝑉 𝑡Z{𝑝𝑣𝑝p𝑛q,ℎZ{p𝑛{𝑝𝑣𝑝p𝑛qq is its 𝑝-adic completion.
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Here we recall that on the right hand side, we are taking the residual BZ-action using the natural
isomorphism BZ “ CokerpZ{𝑝 Ñ BZq.23 We further recall that one map in the equalizer uses the
cyclotomic Frobenius, and the other uses the tautological projection from homotopy Z{𝑝-invariants
to the Tate construction.

Now under our assumption of increasing connectivity on the traces of powers of 𝑇 , we have:

THH𝑟𝑒𝑑pSqZeropC, 𝑇 q
Prop. 4.5.1

»
ÝÝÝÝÝÝÑ ‘

𝑛
IndBZ

Z{𝑛 trCp𝑇
𝑛q “

ź

𝑛

IndBZ
Z{𝑛 trCp𝑇

𝑛q. (4.10.1)

Therefore, we have:

THH𝑟𝑒𝑑pSqZeropC, 𝑇 qqℎBZ “
`

ź

𝑛

IndBZ
Z{𝑛 trCp𝑇

𝑛q
˘ℎBZ

“
ź

𝑛

IndBZ
Z{𝑛 trCp𝑇

𝑛qℎBZ “

ź

𝑛

IndBZ
Z{𝑛 trCp𝑇

𝑛qℎBZ “
ź

𝑛

trCp𝑇
𝑛qℎZ{𝑛.

For 𝑝 prime, we obtain:

THH𝑟𝑒𝑑pSqZeropC, 𝑇 qq𝑡Z{𝑝,ℎBZ “
ź

𝑛

`

IndBZ
Z{𝑛 trCp𝑇

𝑛q
˘𝑡Z{𝑝,ℎBZ

.

First, note that the factor 𝑛 vanishes if 𝑝 does not divide 𝑛. Indeed, in this case we have:

`

IndBZ
Z{𝑛 trCp𝑇

𝑛q
˘𝑡Z{𝑝,ℎBZ

“
`

IndBZ
Z{𝑝𝑛 Ind

Z{𝑝𝑛
Z{𝑛 trCp𝑇

𝑛q
˘𝑡Z{𝑝,ℎBZ

“

´

IndBZ
Z{𝑝𝑛

`

Ind
Z{𝑝𝑛
Z{𝑛 trCp𝑇

𝑛q
˘𝑡Z{𝑝

¯ℎBZ
“ 0.

And if 𝑝 does divide 𝑛, then we have:

IndBZ
Z{𝑛 trCp𝑇

𝑛q
˘𝑡Z{𝑝,ℎBZ

“ trCp𝑇
𝑛q𝑡Z{𝑝,ℎZ{p𝑛{𝑝q.

By Lemma 4.8.1, the Frobenius map at 𝑝 is given by the product over 𝑛 of the maps:

trCp𝑇
𝑛qℎZ{𝑛 Ñ trCp𝑇

𝑝𝑛q𝑡Z{𝑝,ℎZ{𝑛.

Now the fact that the equalizer above is the limit of genuine fixed points is formal from the
definition of genuine fixed points. Moreover, the associated graded term was already calculated in
Lemma 4.9.1.

�

Remark 4.10.3. The mild connectivity assumption that trCp𝑇
𝑛q P Spď0 for all 𝑛 played an inessential

role in our calculation of the cyclotomic structure on THHpSqZeropC, 𝑇 qq and in the definition of

genuine fixed points trCp𝑇
𝑛qZ{𝑛: it is straightforward to generalize to the non-connective setting

here. In other words, we were merely lazy there (the cost being our use of the Tate orbit lemma).
However, in the proof of the above theorem, the harsher assumption that the connectivity of

trCp𝑇
𝑛q tends to 8 with 𝑛 played an essential role above. Indeed, it was crucially used in (4.10.1),

which for example allowed us to compute the homotopy BZ-invariants termwise.

23Here we are taking the cokernel in the category of E8-groups. In a less commutative setting, it would be better

to note that there is a fiber sequence Z{𝑝 Ñ BZ 𝑝
ÝÑ BZ with the right map surjective on 𝜋0; this is the appropriate

notion of “group quotient” in the homotopical setting.



30 SAM RASKIN

4.11. Proof of the main theorem. We can now prove the main result of this section.

Proof of Theorem 2.12.2. For (essentially notational) convenience, we begin by ignoring the com-
patibility with 𝐾-theory but treating the general categorical setup, using Proposition 3.2.2.

As 𝑡-structures are used in Theorem 2.12.2, we define a 𝑡-structure on EndpCq by setting 𝑇 P
EndpCqď0 if trCp𝑇

𝑛q P Spď´𝑛 for every 𝑛 ą 0. Note that for 𝐴 a connective E1-algebra and 𝑀 P

𝐴–bimodď0, we have:24

𝑇𝑀 P Endp𝐴–modqď0

as 𝑇𝑀 :“𝑀 b𝐴 ´r1s gives so tr𝐴–modp𝑇
𝑛
𝑀 q “ THHp𝐴,𝑀b𝑛r𝑛sq.

Now first observe that the functor:

EndpCq Ñ Sp

𝑇 ÞÑ trCp𝑇
𝑛qℎZ{𝑛

commutes with sifted colimits. Indeed, 𝑇 ÞÑ 𝑇𝑛 commutes with sifted colimits (as composition of
functors commutes with colimits in each variable), and traces and coinvariants both commute with
all colimits.

Moreover, for 𝑛 ‰ 1, we claim that the Goodwillie derivative of this functor vanishes. Again, by
exactness of traces and coinvariants, it suffices to show this for the functor sending 𝑇 to its 𝑛-fold
self-composition 𝑇𝑛. Here it is straightforward25 to see that the natural map:

𝑇𝑛 Ñ ΩppΣ𝑇 q𝑛q “ ΩpΣ𝑛p𝑇𝑛qq “ Σ𝑛´1p𝑇𝑛q

is nullhomotopic (and naturally so in 𝑇 ).
Therefore, by Lemma 4.9.1 and induction, the functor:26

EndpCq Ñ Sp

𝑇 ÞÑ trCp𝑇
𝑛qZ{𝑛

commutes with sifted colimits, the canonical projection trCp𝑇
𝑛qZ{𝑛 Ñ trCp𝑇 q realizes the right hand

side as the Goodwillie derivative of the left hand side (as functors of 𝑇 ).
Next, observe that for 𝑇 P EndpCqď0, we have:

Ker
`

TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq Ñ trCp𝑇
𝑛!qZ{𝑛!

˘

P Spă´𝑛

by Theorem 4.10.1, as gr𝑚 TC𝑟𝑒𝑑pSqZeropC, 𝑇 qq “ trCp𝑇
𝑚qℎZ{𝑚 P Sp

ă´𝑛 for 𝑚 ą 𝑛. From here the
results are formal: by left completeness of the 𝑡-structure on Sp, we obtain Theorem 2.12.2 (2),
and similarly the identification of the Goodwillie derivative from Theorem 2.12.2 (3). Moreover,

Lemma 2.11.5 and the observation that each EndpCqď0
𝑇 ÞÑtrCp𝑇

𝑛qZ{𝑛
ÝÝÝÝÝÝÝÝÝÑ Sp is manifestly extensible

imply pseudo-extensibility of TC𝑟𝑒𝑑, i.e., Theorem 2.12.2 (1).
It now remains to show the compatibility with the cyclotomic trace from 𝐾-theory and the

identifications of Goodwillie derivatives. For this, we suppose that C is compactly generated. Recall
from S3.3 that in this case we have SqZeropC, 𝑇 q Ď C𝑇 , with this inclusion preserving compact
objects. We will show that the diagram:

24Here we are using the 𝑡-structure we just constructed. So in other words, there are more connective objects in
this 𝑡-structure than the usual one on Endp𝐴–modq “ 𝐴–bimod.

25See [Lur2] Proposition 6.1.3.4 for a statement in the general setting of Goodwillie calculus.
26Here we ask the reader to believe that Lemma 4.9.1 is true in the non-connective setting for appropriate definition

of genuine fixed points, or to read EndpCq as EndpCqď1.
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𝐾pSqZeropC, 𝑇 q𝑐q //

��

𝐾pC𝑇,𝑐q

��
TCpSqZeropC, 𝑇 qq // trCp𝑇 q

commutes, where the left vertical arrow is the cyclotomic trace map, and the bottom and right
arrows are maps to Goodwillie derivatives (using the above for TC and Theorem 3.10.1 for 𝐾-
theory). This suffices by Lemma 3.4.1.

Now observe that (by construction) the map TCpSqZeropC, 𝑇 qq Ñ trCp𝑇 q factors through THHpSqZeropC, 𝑇 q.
Hence, we can show the commutation of the above diagram with THH in place of TC, and the
Dennis trace replacing the cyclotomic trace.

By Lemma 3.11.2, it suffices to show the commutation of the above diagram functorially in 𝑇
after applying Ω8. Moreover, by Lemma 3.11.1, it suffices to show the commutation of the diagram:

SqZeropC, 𝑇 q𝑐,» //

��

Ω8𝐾pC𝑇,𝑐q

��
Ω8THHpSqZeropC, 𝑇 qq // Ω8 trCp𝑇 q.

Now suppose pF, 𝜂q P SqZeropC, 𝑇 q𝑐, i.e., F P C𝑐 and 𝜂 : F Ñ 𝑇 pFq is locally nilpotent. Recall that
Example 4.4.1 produced a point trFp𝜂q P Ω8 trCp𝑇 q, i.e., loc. cit. gave a map SqZeropC, 𝑇 q𝑐,» Ñ
Ω8 trCp𝑇 q. We claim that each leg of the above diagram identifies with this map.

For the upper leg of the diagram, this is tautological from the proof of Lemma 3.11.1.
We now treat the lower leg. The Dennis trace map applied to pF, 𝜂q produces a point of

Ω8THHpSqZeropC, 𝑇 qq, which (by definition of the Dennis trace) is trpF,𝜂qpidF,𝜂q in the notation of

Example 4.4.1. The proof of Proposition 4.5.1 shows that its image under Ω8 of the map:27

THHpSqZeropC, 𝑇 qq “ THHpCq
à

‘𝑛ą0 IndBZ
Z{𝑛 trCp𝑇

𝑛q Ñ ‘𝑛ě0 trCp𝑇
𝑛q

is ptrFpidFq, trFp𝜂q, trFp𝑇 p𝜂q𝜂q, . . .q (which genuinely gives a point of the direct sum by local nilpo-
tence). Clearly the projection of this point to trCp𝑇 q is trFp𝜂q.

�

5. Reduction to the split square-zero case

5.1. In this section, we prove the general form of Theorem 1.1.1.

5.2. We return to the general format of Theorem 2.5.1 and Corollary 2.11.7, letting Ψ : Alg𝑐𝑜𝑛𝑛 Ñ
Sp be a functor. Our present goal is to axiomatize when Ψ is constant along general nilpotent
extensions.

5.3. Square-zero extensions. We briefly review the theory of square-zero in the homotopical
setting.

Let 𝐴 P Alg be fixed, and let 𝑚 : 𝐴 b 𝐴 Ñ 𝐴 denote the multiplication. For 𝐼 P 𝐴–bimod, a
square-zero extension of 𝐴 by 𝐼 is by definition a morphism 𝛿 : Kerp𝑚q Ñ 𝐼r1s P 𝐴–bimod.

To obtain an algebra from such a datum, recall that 𝛿 is equivalent by adjunction to a morphism
𝐴Ñ SqZerop𝐴, 𝐼r1sq P Alg. We then set the underlying algebra of p𝐴, 𝐼, 𝛿q to be the fiber product:

27Note that we use a direct sum indexed by 𝑛 ě 0 in the last term; the 0-fold composition of 𝑇 with itself is the
identity functor, so the leading term here is THHpCq.
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𝐴 ˆ
SqZerop𝐴,𝐼r1sq

𝐴

where one of the structure morphisms is induced by 𝛿 and the other by the zero map 0 Ñ 𝐼r1s
(noting 𝐴 “ SqZerop𝐴, 0q). For example, for 𝛿 “ 0 we recover the split square-zero extension
SqZerop𝐴, 𝐼q.

This construction enhances to define a category AlgSqZero whose objects are data p𝐴, 𝐼, 𝛿q, and
where morphisms p𝐴1, 𝐼1, 𝛿1q Ñ p𝐴2, 𝐼2, 𝛿2q consist of a morphism 𝑓 : 𝐴1 Ñ 𝐴2 of algebras and a
commutative diagram of 𝐴1-bimodules:

Kerp𝑚1q

𝛿1
��

𝑓 // Kerp𝑚2q

𝛿2
��

𝐼1r1s // 𝐼2r1s.

We let AlgSqZero𝑐𝑜𝑛𝑛 be the full subcategory of AlgSqZero consisting of objects p𝐴, 𝐼, 𝛿q where 𝐴 P

Alg𝑐𝑜𝑛𝑛 and 𝐼 P 𝐴–bimodď0.

5.4. Notation. Throughout this section, for Ψ : Alg𝑐𝑜𝑛𝑛 Ñ Sp and 𝐵 Ñ 𝐴 a square-zero extension,
we will use the notation Ψp𝐵{𝐴q for KerpΨp𝐵q Ñ Ψp𝐴qq.

5.5. We now introduce the following hypotheses on our functor Ψ : Alg𝑐𝑜𝑛𝑛 Ñ Sp.

Definition 5.5.1. Ψ is convergent if for any 𝐴 P Alg𝑐𝑜𝑛𝑛, the natural morphism:

Ψp𝐴q Ñ lim
𝑛

Ψp𝜏ě´𝑛𝐴q

is an isomorphism.

Definition 5.5.2. Ψ infinitesimally commutes with sifted colimits if the functor:

AlgSqZero𝑐𝑜𝑛𝑛 Ñ Sp

p𝐵 Ñ 𝐴q ÞÑ Ψp𝐵{𝐴q

commutes with sifted colimits.

Proposition 5.5.3. Suppose that Ψ is convergent and infinitesimally commutes with sifted colimits.
Suppose moreover that Ψ is constant on split square-zero extensions, i.e., for every 𝐴 P Alg𝑐𝑜𝑛𝑛 and
𝑀 P 𝐴–bimodď0, the morphism ΨpSqZerop𝐴,𝑀q{𝐴q “ 0.

Then Ψ is infinitesimally constant, that is, for every 𝑓 : 𝐵 Ñ 𝐴 P Alg𝑐𝑜𝑛𝑛 with 𝐻0p𝐵q Ñ 𝐻0p𝐴q
surjective with nilpotent kernel, the map Ψp𝐵q Ñ Ψp𝐴q is an isomorphism.

Proof. First, suppose 𝐵 Ñ 𝐴 is a square-zero extension.
Note that if 𝐴 “ 𝑇 p𝑉 q is a free E1-algebra on 𝑉 “ S‘𝐽 for some set 𝐽 , then the then this

square-zero extension is necessarily a split square-zero extension. Indeed, Kerp𝑚q is then canonically
isomorphic to 𝑇 p𝑉 q b 𝑉 b 𝑇 p𝑉 q as a 𝑇 p𝑉 q-bimodule; in particular, it is free on 𝑉 . It follows that
for 𝐼 P 𝑇 p𝑉 q–bimod´1, any morphism Kerp𝑚q Ñ 𝐼r1s is necessarily nullhomotopic. In particular,

our hypothesis implies Ψp𝐵q
»
ÝÑ Ψp𝐴q for 𝐴 of this form.

In general, 𝐴 “ |𝐹‚| can be written as a geometric realization of free E1-algebras 𝐹𝑛 as above.28

28This follows from the formalism of [Lur1] S5.5.8, especially Lemma 5.5.8.14.
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Then 𝐵 “ |𝐹‚ˆ𝐴𝐵|, and each 𝐹𝑛ˆ𝐴𝐵 Ñ 𝐹𝑛 is a square-zero extension, and this is a simplicial
object of AlgSqZero𝑐𝑜𝑛𝑛 . Therefore, if Ψ infinitesimally commutes with sifted colimits, we have:

Ψp𝐵{𝐴q “ |Ψp𝐹‚ ˆ𝐴 𝐵{𝐹‚q| “ |0| “ 0.

This shows the result for general square-zero extensions.
Next, fix 𝐴. Recall (c.f. [Lur2] Corollary 7.4.1.28) that each morphism 𝜏ě´𝑛´1𝐴Ñ 𝜏ě´𝑛𝐴 admits

a structure of square-zero extension, so by the above is an isomorphism on Ψ. By convergence, we
then have:

Ψp𝐴q
»
ÝÑ lim

𝑛
Ψp𝜏ě´𝑛𝐴q

»
ÝÑ Ψp𝐻0p𝐴qq.

Then for 𝑓 : 𝐵 Ñ 𝐴 surjective with nilpotent kernel, we have Ψp𝐵q “ Ψp𝐻0p𝐵qq and Ψp𝐴q “
Ψp𝐻0p𝐴qq. Clearly 𝐻0p𝐵q Ñ 𝐻0p𝐴q is a composition of square-zero extensions, so we obtain the
result.

�

5.6. Application to Dundas-Goodwillie-McCarthy. Proposition 5.5.3 and the split square-
zero case of Theorem 1.1.1 reduce the general case of Theorem 1.1.1 to the following to results.

Theorem 5.6.1. The functors 𝐾,TC : Alg𝑐𝑜𝑛𝑛 Ñ Sp are convergent and infinitesimally commute
with sifted colimits.

We prove this result separately for 𝐾-theory and TC below.

5.7. 𝐾-theory. First, convergence of 𝐾-theory is simple: the description of 𝐾-theory as a group
completion makes it clear that 𝜏ě´𝑛´1𝐾p𝐴q “ 𝜏ě´𝑛´1𝐾p𝜏ě´𝑛𝐴q.

We will show 𝐾-theory infinitesimally commutes with sifted colimits essentially following [DGM].
The proof uses Volodin’s construction, which is an avatar of Milnor’s definition of 𝐾2 that we review
below.29

5.8. Volodin theory. Fix 𝐴 P Alg𝑐𝑜𝑛𝑛 in what follows. Recall that Projp𝐴q denotes the category of
projective 𝐴-modules, i.e., summands of 𝐴‘𝑛. Let Projp𝐴q» P Gpd denote the underlying groupoid
of this category. Direct sums make Projp𝐴q» into an E8-space, and we recall that Ω8𝐾p𝐴q is its
group completion.

Note that if once we invert 𝐴 P Projp𝐴q», we obtain a group. This motivates considering the
canonical map:

𝜒 “ 𝜒𝐴 : colim
𝑛ě0

Projp𝐴q» Ñ Ω8𝐾p𝐴q P Gpd

where the structure maps in this colimit are given by adding 𝐴 P Projp𝐴q. Note that the left hand
side does not necessarily admit an E8-structure, and this map is not at all an equivalence. However,
it is an isomorphism on 𝜋0.

Volodin’s construction will provide a convenient expression for fibp𝜒q (the fiber over 0 P Ω8𝐾p𝐴q).

29I do not feel like I understand this method so well. Perhaps there is a more conceptual approach.
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5.9. For 𝑛 ě 0, let 𝐺𝐿𝑛p𝐴q denote the group30 of automorphisms of 𝐴‘𝑛.
Consider 𝐴‘𝑛 as a filtered 𝐴-module in the standard way 0 Ñ 𝐴 Ñ 𝐴‘2 Ñ . . . Ñ 𝐴‘𝑛. Let

𝐵𝑛p𝐴q be the group of automorphisms of 𝐴‘𝑛 as a filtered 𝐴-module and let 𝑈𝑛p𝐴q denote the
kernel of the “symbol” map:31

𝐵𝑛p𝐴q Ñ
𝑛
ź

𝑖“1

𝐺𝐿1p𝐴q.

5.10. We will need some care about the functoriality of the above constructions.
Let fSet𝑖𝑛𝑗 denote the category of finite sets and injective maps between them. Then for any

𝐼 P fSet𝑖𝑛𝑗 , we have 𝐺𝐿𝐼p𝐴q :“ Autp𝐴‘𝐼q; and for 𝐼 ãÑ 𝐽 , we have a morphism 𝐺𝐿𝐼p𝐴q Ñ 𝐺𝐿𝐽p𝐴q

induced by the direct sum decomposition 𝐴‘𝐽 “ 𝐴‘𝐼 ‘𝐴‘𝐽z𝐼 .
Relatedly, we have a functor from fSet𝑖𝑛𝑗 Ñ Gpd sending 𝐼 to Projp𝐴q» for every 𝐼, and sending

a morphism 𝐼 ãÑ 𝐽 to the map Projp𝐴q»
´‘𝐴𝐽z𝐼

ÝÝÝÝÝÑ Projp𝐴q». Note that the source of the map 𝜒 is

obtained by taking the colimit of this construction along the map Zě0 𝑛ÞÑt1,...,𝑛u
ÝÝÝÝÝÝÝÑ fSet𝑖𝑛𝑗 . (And one

can show that the target is the colimit along fSet𝑖𝑛𝑗 , although we will not need this fact.)

The construction of 𝑈𝑛 depends also on a linear ordering, i.e., for 𝐼 P Δ𝑖𝑛𝑗
𝑎𝑢𝑔 a finite set with

a linear ordering, we have the group 𝑈𝐼p𝐴q functorial for injective order preserving maps, and
mapping naturally to mapping to 𝐺𝐿𝐼p𝐴q.

Moreover, the natural map:

B𝑈𝐼p𝐴q Ñ B𝐺𝐿𝐼p𝐴q Ñ Projp𝐴q» Ñ Ω8𝐾p𝐴q

is canonically constant with constant value 𝐴‘𝐼 . Indeed, this is clear from the Waldhausen realiza-
tion of 𝐾p𝐴q.

5.11. Putting the functoriality above together, let J denote the category (even poset) of pairs

𝐼 P Δ𝑖𝑛𝑗
𝑎𝑢𝑔 and an isomorphism 𝛼 : 𝐼 » t1, . . . , 𝑛u, where morphisms p𝐼, 𝛼q Ñ p𝐽, 𝛽q are order-

preserving maps 𝑓 : 𝐼 Ñ 𝐽 making the diagram:

𝐼

𝛼
��

𝑓 // 𝐽

𝛽
��

t1, . . . , 𝑛u �
� // t1, . . . ,𝑚u

commute, where the bottom arrow is the standard embedding.

Definition 5.11.1. The Volodin space Xp𝐴q is the groupoid colimp𝐼,𝛼qPJ B𝑈𝐼p𝐴q.

We claim the observations from S5.10 in effect equip Xp𝐴q with a canonical map to fibp𝜒q.
Indeed, note that J maps to Zě0 (using the isomorphism 𝛼 from the pair p𝐼, 𝛼q), inducing a map

to B𝑈𝐼p𝐴q Ñ B𝐺𝐿|𝐼|p𝐴q Ñ Projp𝐴q». On colimits, we obtain a map to colim𝑛ě0 Projp𝐴q, i.e., the
source of the map 𝜒. Then the Waldhausen realization of 𝐾-theory shows that the composite map
to Ω8𝐾p𝐴q is constant with value the base-point.

Theorem 5.11.2. The map Xp𝐴q Ñ fibp𝜒q is an equivalence.

Remark 5.11.3. The reader willing to take this result on faith may safely skip ahead to S5.12.

30Meaning group-like E1-groupoid.
31I.e., the 𝑖th factor takes the induced automorphism of gr𝑖𝐴

‘𝑛
“ 𝐴.
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Proof of Theorem 5.11.2 (sketch). This result is shown in [FOV] Proposition 2.6. We give some
indications of the ideas that go into it here.

Roughly, the construction works as follows. Note that Xp𝐴q is connected (since J is contractible,
admitting an initial object). Let St𝑑𝑒𝑟p𝐴q :“ ΩXp𝐴q be the derived Steinberg group of 𝐴, so Xp𝐴q “
colimp𝐼,𝛼qPJ 𝑈𝐼p𝐴q, the colimit being taken in the category Gp of group-like E1-groupoids. (It is

straightforward to see from this description that 𝜋0pSt𝑑𝑒𝑟p𝐴qq is the usual Steinberg group of 𝜋0p𝐴q,
which is the reason we use this terminology.)

In essence, the argument relating St𝑑𝑒𝑟p𝐴q and 𝐾p𝐴q imitates the classical argument relating the
Steinberg group and 𝐾2 of usual ring.

Step 1. First, suppose 𝐺 P Gp is a group (in the homotopy-theoretic sense).
By definition, a central extension of 𝐺 by an E2-group32 𝐴 is the data of a pointed map B𝐺 Ñ

B2𝐴. We frequently let 𝐸 denote the fiber of the map 𝐺 Ñ B𝐴, which clearly fits into a fiber
sequence of groups:

𝐴Ñ 𝐸 Ñ 𝐺.

We sometimes say 𝐴Ñ 𝐸 Ñ 𝐺 is a central extension to mean it arises by this procedure.

Step 2. We say 𝐺 is perfect if 𝜋0p𝐺q is perfect in the usual sense, i.e., its (non-derived) abelianization
is trivial. We claim that perfect 𝐺 admits a universal central extension, i.e., an initial central
extension.

Indeed, in this case Quillen’s plus construction33 implies that there is simply-connected 𝑌 P Gpd
with a map from B𝐺 realizing 𝑌 as the initial simply-connected space with a map from B𝐺 (indeed:
𝑌 “ pB𝐺q`). Clearly 𝑌 is initial for pointed maps as well. Then looping implies 𝐺 has a universal
central extension by Ω2𝑌 .

We denote the universal central extension by 𝐺𝑢𝑛𝑖𝑣 Ñ 𝐺 in this case.

Step 3. Next, we recall that there is a simple recognition principle for a central extension 𝐴 Ñ

𝐸 Ñ 𝐺 to be the universal one.
Namely, this is the case if and only if 𝐸 is an acyclic group, meaning that Σ8pB𝐸q “ 0 P Sp (or

equivalently, the group homology of 𝐸 is trivial).
Indeed, this is a slight rephrasing of a well-known feature of Quillen’s plus construction (see

[DGM] Theorem 3.1.1.7 for example).

Step 4. Now suppose 𝐺 is perfect and we are given a central extension:

𝐴Ñ 𝐻 Ñ 𝐺

with 𝐻 perfect as well. Then we claim the natural map 𝐻𝑢𝑛𝑖𝑣 Ñ 𝐺𝑢𝑛𝑖𝑣 is an isomorphism.
Indeed, let 𝐴𝑢𝑛𝑖𝑣𝐺 denote Kerp𝐺𝑢𝑛𝑖𝑣 Ñ 𝐺q. By universality, we have a canonical (pointed) map

B2𝐴𝑢𝑛𝑖𝑣𝐺 Ñ B2𝐴. Let 𝐹 denote its fiber. Note that 𝐹 receives a canonical map from B𝐻 with fiber
B𝐺𝑢𝑛𝑖𝑣.

We claim 𝐹 is simply-connected. Indeed, its 𝜋1 is a quotient of 𝜋0p𝐴q, so abelian, but also a
quotient of the perfect group 𝜋0p𝐻q, so trivial.

Therefore, 𝐹 defines a central extension:

Ω2𝐹 Ñ 𝐺𝑢𝑛𝑖𝑣 Ñ 𝐻

32Meaning a group-like E2-groupoid, i.e., a double loop space.
33See [Hoy] for a discussion in the higher categorical setting.
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which is the universal one by the recognition principle: 𝐺𝑢𝑛𝑖𝑣 is an acyclic group, being the universal
central extension for 𝐺.

Step 5. We now weaken the recognition principle given above (c.f. [DGM] Lemma 3.1.1.13).
Suppose we are given 𝑓 : 𝐸 Ñ 𝐺 surjective on 𝜋0 with 𝐺 perfect and 𝐸 an acyclic group, but

without assuming centrality of the extension. Observe that acyclicity of 𝐸 implies 𝐸 is perfect with

𝐸𝑢𝑛𝑖𝑣
»
ÝÑ 𝐸. Therefore, we obtain a map 𝐸𝑢𝑛𝑖𝑣 Ñ 𝐺𝑢𝑛𝑖𝑣, and we can ask when this map is an

isomorphism.
We claim that this is the case if we assume that for every 𝑔 P 𝐸, the induced (conjugation)

automorphism of Kerp𝑓q is trivial on 𝜋˚pKerp𝑓qq.
Indeed, we have the fiber sequence:

BKerp𝑓q Ñ B𝐸 Ñ B𝐺
with 𝜋1pB𝐸q “ 𝜋0p𝐸q acting trivially on 𝜋˚pBKerp𝑓qq “ 𝜋˚`1pKerp𝑓qq. A well-known obstruction
theoretic argument then shows that for every 𝑛 ě 0, the map 𝜏ď𝑛𝐸 Ñ 𝜏ď𝑛𝐺 factors as a composition
of central extensions:

𝜏ď𝑛𝐸 “ 𝐻0 Ñ 𝐻1 Ñ . . .Ñ 𝐻𝑟 Ñ 𝐻𝑟`1 “ 𝜏ď𝑛𝐺 P Gp.

The maps 𝐻𝑖 Ñ 𝐻𝑖`1 are surjective on 𝜋0 (being extensions), so each group 𝐻𝑖 is perfect. There-
fore, the previous step implies that each such map induces an isomorphism on universal central

extensions. We then obtain p𝜏ď𝑛𝐸q
𝑢𝑛𝑖𝑣 »

ÝÑ p𝜏ď𝑛𝐺q
𝑢𝑛𝑖𝑣.

Finally, it is clear that 𝐺𝑢𝑛𝑖𝑣 “ lim𝑛p𝜏ď𝑛𝐺q
𝑢𝑛𝑖𝑣 (and similarly for 𝐸), giving the claim.

Step 6. We now apply these methods to study St𝑑𝑒𝑟p𝐴q, leaving details to references.
First, an argument of Suslin [Sus] shows that St𝑑𝑒𝑟p𝐴q is an acyclic group. More precisely, he

shows that for any p𝐼, 𝛼q P J and 𝑟 ě 0, there is a map p𝐼, 𝛼q Ñ p𝐽, 𝛽q P J such that B𝑈𝐼p𝐴q Ñ
B𝑈𝐽p𝐴q is zero on homology groups 𝐻ď𝑟 with coefficients in some field. This immediately implies
the vanishing of such homology groups for Xp𝐴q “ BSt𝑑𝑒𝑟p𝐴q, which implies the vanishing for
integral coefficients, which gives our desired acyclicity.

(We remark that although Suslin formally treats classical algebras, his argument readily adapts
to the connective E1-setting.)

Step 7. Next, we would like to realize St𝑑𝑒𝑟p𝐴q as the universal central extension of something.
Let𝐺𝐿8p𝐴q :“ colim𝑛𝐺𝐿𝑛p𝐴q “ Ωpcolim𝑛 Projp𝐴qq. Although𝐺𝐿8p𝐴q is not perfect, it is not so

far: by Whitehead’s lemma, 𝜋0p𝐺𝐿8p𝐴qq has perfect derived group an (non-derived) abelianization
𝐾1p𝐴qp“ 𝐾1p𝜋0p𝐴qqq. Therefore, the kernel of the composition:

𝐺𝐿8p𝐴q Ñ Ω8`1𝐾p𝐴q
Ω𝜒
ÝÝÑ 𝜋0pΩ

8`1𝐾p𝐴qq “ 𝐾1p𝐴q

is perfect. Let us denote34 this kernel by 𝐺.
There is a natural map 𝑓 : St𝑑𝑒𝑟p𝐴q Ñ 𝐺 induced by our map from Xp𝐴q to the fiber of 𝜒. We

claim that this realizes St𝑑𝑒𝑟p𝐴q as the universal central extension of 𝐺.
Indeed, by acyclicity of St𝑑𝑒𝑟p𝐴q, it suffices to show that any 𝑔 P St𝑑𝑒𝑟p𝐴q acts trivially on

𝜋˚pKerp𝑓qq. This is a variant of the classical argument that the usual Steinberg group is a central
extension [Mil] Theorem 5.1, which we outline below (see also [FOV] S4 and [DGM] Lemma 3.1.3.4).

Let Jď𝑛 Ď J be the full subcategory of pairs p𝐼, 𝛼q with |𝐼| ď 𝑛. Let St𝑑𝑒𝑟𝑛 p𝐴q be colimJď𝑛 St𝑑𝑒𝑟𝑛 P

Gp.

34More standard notation would be 𝐸p𝐴q, but we have been using 𝐸 above for extensions.
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Note that St𝑑𝑒𝑟𝑛 p𝐴q has a canonical map to 𝐺𝐿𝑛p𝐴q, so acts on the spectrum 𝐴‘𝑛. Moreover, the
map St𝑑𝑒𝑟𝑛 p𝐴q Ñ St𝑛`1p𝐴q clearly factors through St𝑑𝑒𝑟𝑛 p𝐴qB Ω8𝐴‘𝑛.

Let 𝐾 1
𝑛 denote the kernel of the map St𝑑𝑒𝑟𝑛 p𝐴q Ñ 𝐺𝐿𝑛p𝐴q, and let 𝐾 1

𝑛` 1
2

denote KerpSt𝑑𝑒𝑟𝑛 p𝐴qB

Ω8𝐴‘𝑛 Ñ 𝐺𝐿𝑛`1p𝐴qq. Clearly the natural map 𝐾 1
𝑛 Ñ 𝐾 1

𝑛`1 factors through 𝐾 1

𝑛` 1
2

.

It is immediate to see that for 𝑥 P Ω8𝐴‘𝑛, the natural conjugation action on 𝐾 1

𝑛` 1
2

fixes the

image of 𝐾 1
𝑛, i.e., if we compose 𝜙 : 𝐾 1

𝑛 Ñ 𝐾 1

𝑛` 1
2

with this conjugation map, we obtain a map

canonically homotopic to 𝜙. This implies that the image of 𝑥 in 𝜋0pSt𝑑𝑒𝑟p𝐴qq acts by the identity
on the image of 𝜋˚p𝐾

1
𝑛q in colim𝑚 𝜋˚p𝐾

1
𝑚q “ 𝜋˚pKerpSt𝑑𝑒𝑟p𝐴q Ñ 𝐺𝐿8p𝐴qqq.

The same arguments apply if we replace e.g. 𝐾 1
𝑛 by 𝐾𝑛 :“ KerpSt𝑛p𝐴q Ñ 𝐺𝐿𝑛p𝐴q ˆ𝐺𝐿8p𝐴q 𝐺q.

Then colim𝑛𝐾𝑛 is the kernel of the map Stp𝐴q Ñ 𝐺𝐿8p𝐴q (by filteredness of the colimit here).
Then observe that 𝜋0pSt𝑑𝑒𝑟p𝐴qq is the usual Steinberg group of 𝜋0p𝐴q, and the above shows that

in the standard notation, 𝑥𝑖𝑗p𝛼q acts trivially on the image of 𝜋˚p𝐾𝑛q in 𝜋˚pSt𝑑𝑒𝑟p𝐴qq for 𝑖 ă 𝑗 and
𝑗 ą 𝑛. A similar argument shows the claim for 𝑥𝑗𝑖p𝛼q for such 𝑖 and 𝑗. Such elements then generate
the (usual) Steinberg group, completing the argument.

Step 8. Let 𝐺 be as above. By Quillen’s plus construction of 𝐾-theory, the plus construction of B𝐺
is Ω8𝜏ď´2𝐾p𝐴q.

Recall that the classifying space of the universal central extension of B𝐺 is the fiber of the
canonical map to the plus construction. Therefore, we have a diagram:

Xp𝐴q “ BSt𝑑𝑒𝑟p𝐴q // B𝐺 //

��

Ω8𝜏ď´2𝐾p𝐴q

��
B𝐺𝐿8p𝐴q //

��

Ω8𝜏ď´1𝐾p𝐴q

��
colim
𝑛

Projp𝐴q // Ω8𝐾p𝐴q

where the squares are all Cartesian and the top row is a fiber sequence, implying the theorem.
(In particular, the universal central extension St𝑑𝑒𝑟p𝐴q of 𝐺 is by Ω8`2𝐾p𝐴q, in analogy with the
classical definition of 𝐾2.)

�

5.12. Consequences. We now deduce the following.

Corollary 5.12.1. The functor:

Alg𝑐𝑜𝑛𝑛 Ñ Gpd

𝐴 ÞÑ fibp𝜒𝐴q

commutes with sifted colimits.

Proof. By Theorem 5.11.2, it suffices to show this for 𝐴 ÞÑ Xp𝐴q instead. We are reduced to showing
𝐴 ÞÑ B𝑈𝑛p𝐴q commutes with sifted colimits for every 𝑛, and then to 𝐴 ÞÑ 𝑈𝑛p𝐴q P Gpd. But 𝑈𝑛p𝐴q

is functorially isomorphic to 𝐴‘p
𝑛´1
2 q, which clearly commutes with sifted colimits in 𝐴.

�
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5.13. We now show 𝐾-theory infinitesimally commutes with sifted colimits.
For convenience, we use some notation from the proof of Theorem 5.11.2 and let St𝑑𝑒𝑟p𝐴q “

ΩXp𝐴q P Gp. By Theorem 5.11.2, for any 𝐴 P Alg𝑐𝑜𝑛𝑛 we have a canonical homomorphism
St𝑑𝑒𝑟p𝐴q Ñ 𝐺𝐿8p𝐴q with:

𝐺𝐿8p𝐴q{St𝑑𝑒𝑟p𝐴q “ Ω8`1𝐾p𝐴q

(where the quotient on the left is the usual geometric realization of the bar construction).
Similarly, we have:

Lemma 5.13.1. Let 𝐵 Ñ 𝐴 is a square-zero extension.
As in S5.4, we let St𝑑𝑒𝑟p𝐵{𝐴q :“ KerpSt𝑑𝑒𝑟p𝐵q Ñ St𝑑𝑒𝑟p𝐴qq, and similarly for 𝐾p𝐵{𝐴q and

𝐺𝐿8p𝐵{𝐴q.
Then:

𝐺𝐿8p𝐵{𝐴q{St𝑑𝑒𝑟p𝐵{𝐴q “ Ω8`1𝐾p𝐵{𝐴q.

Proof. We have the commutative diagram:

𝐺𝐿8p𝐵{𝐴q{St𝑑𝑒𝑟p𝐵{𝐴q //

��

BSt𝑑𝑒𝑟p𝐵{𝐴q //

��

B𝐺𝐿8p𝐵{𝐴q

��
Ω8`1𝐾p𝐵q //

��

BSt𝑑𝑒𝑟p𝐵q //

��

B𝐺𝐿8p𝐵q

��
Ω8`1𝐾p𝐴q // BSt𝑑𝑒𝑟p𝐴q // B𝐺𝐿8p𝐴q

with rows being fiber sequences. Moreover, because 𝜋0pSt𝑑𝑒𝑟p𝐵qq� 𝜋0pSt𝑑𝑒𝑟p𝐴qq and 𝜋0p𝐺𝐿8p𝐵qq�
𝜋0p𝐺𝐿8p𝐴qq (by the square-zero condition), the right two columns are also fiber sequences. This
gives the claim.

�

Now observe that the functor:

AlgSqZero𝑐𝑜𝑛𝑛 Ñ Gpd

p𝐵 Ñ 𝐴q ÞÑ 𝐺𝐿8p𝐵{𝐴q

commutes with sifted colimits. Indeed, the right hand side is isomorphic to infinite matrices with
coefficients in Ω8Kerp𝐵 Ñ 𝐴q, so is a direct sum of infinitely many copies of this functor. Therefore,
the claim follows from noting that p𝐵 Ñ 𝐴q ÞÑ Ω8Kerp𝐵 Ñ 𝐴q commutes with sifted colimits.

Mapping to St𝑑𝑒𝑟p𝐵{𝐴q obviously commutes with sifted colimits, so we obtain p𝐵 Ñ 𝐴q ÞÑ
Ω8`1𝐾p𝐵{𝐴q infinitesimally commutes with sifted colimits. Then the claim follows because 𝜋0pΩ

8𝐾p𝐵{𝐴qq “
0 and Ω8`1 : Spď´1 Ñ Gpd commutes with sifted colimits.

5.14. TC. We now show that TC is convergent and infinitesimally commutes with sifted colimits.

Notation 5.14.1. In what follows, for a spectrum 𝑉 we let 𝑉Q denote 𝑉 bQ.
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5.15. The following result, which also serves as a key consistency check with Goodwillie’s original
work on the subject [Goo1], is crucial.

Theorem 5.15.1. For 𝐵 Ñ 𝐴 P Alg𝑐𝑜𝑛𝑛 a square-zero extension, the natural map:

TCp𝐵{𝐴qQ Ñ TCp𝐵Q{𝐴Qq

is an isomorphism.

We will prove this result in what follows.

5.16. Notation. Let 𝑉 be a cyclotomic spectrum.
Let TC´p𝑉 q denote 𝑉 ℎBZ. Similarly, let TPp𝑉 q “ 𝑉 𝑡BZ be the periodic topological cyclic homology

of 𝑉 , where this notation indicates the Tate construction on the circle35 (see e.g. [NS] SI.4).
Let TP^p𝑉 q denote the profinite completion of TPp𝑉 q, that is:

TP^p𝑉 q :“ Coker
`

HomSppQ,TPp𝑉 qq Ñ TPp𝑉 q
˘

.

Recall that we have:

TCp𝑉 q “ EqpTC´p𝑉 q
can
Ñ
𝜙

TP^p𝑉 qq (5.16.1)

by [NS] II.4.3. Here can is the tautological map (lifting to TP itself), and 𝜙 is the cyclotomic
Frobenius map (which amalgamates Frobenius maps at all primes).

5.17. Construction of the meromorphic Frobenius. We have the following observation.

Lemma 5.17.1. Let 𝑉 be a spectrum with a (naive) BZ-action. Suppose p𝑉Qq𝑡BZ “ 0. Then there
is a canonical isomorphism:

p𝑉 ℎBZqQ
»
ÝÑ p𝑉 𝑡BZqQ ˆ p𝑉Qq

ℎBZ.

Proof. By definition of the Tate construction for BZ, we have a commutative diagram with exact
rows:

p𝑉ℎBZqQr1s //

��

p𝑉 ℎBZqQ //

��

p𝑉 𝑡BZqQ

��
p𝑉QqℎBZr1s // p𝑉Qq

ℎBZ // p𝑉Qq
𝑡BZ.

Clearly the left vertical map is an isomorphism, so the right square is Cartesian. Now our vanishing
hypothesis gives the result.

�

We now make the following definition following [Hes2].

Definition 5.17.2. A cyclotomic spectrum 𝑉 admits a meromorphic Frobenius if TPp𝑉 q is profinite36

and TPp𝑉Qq is profinite.

Remark 5.17.3. Note that TPp𝑉Qq being profinite is equivalent to vanishing, since a profinite and
rational spectrum is necessarily zero.

35We remind the reader of our notational convention from Remark 4.3.1.
36I.e., HompQ,TPp𝑉 qq “ 0, or equivalently, TPp𝑉 q

»
ÝÑ TP^p𝑉 q.
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Suppose 𝑉 admits a meromorphic Frobenius. We then have the canonical map:

𝜙𝑚𝑒𝑟 : TPp𝑉 qQ Ñ TPp𝑉 qQ
given as the composition:

TPp𝑉 qQ
Lem. 5.17.1
ÝÝÝÝÝÝÝÑ TC´p𝑉 qQ

𝜙bQ
ÝÝÝÑ TP^p𝑉 qQ “ TPp𝑉 qQ.

Lemma 5.17.4. Suppose 𝑉 is a cyclotomic spectrum that admits a meromorphic Frobenius. Then

TCp𝑉 qQ
»
ÝÑ TCp𝑉Qq if and only if id´𝜙𝑚𝑒𝑟 : TP^p𝑉 qQ Ñ TP^p𝑉 qQ is an isomorphism.

Proof. We clearly have:

Kerpid´𝜙𝑚𝑒𝑟q
»
ÝÑ Ker

`

TCp𝑉 qQ Ñ TCp𝑉Qq
˘

using Lemma 5.17.1.
�

Remark 5.17.5. THHpF𝑝q admits a meromorphic Frobenius with non-invertible id´𝜙𝑚𝑒𝑟: see [NS]
SIV.4.

5.18. Filtrations. We now give some sufficient hypotheses to test the invertibility of id´𝜙𝑚𝑒𝑟 in
the above setting.

Definition 5.18.1. A connectively filtered cyclotomic spectrum is a connective spectrum 𝑉 with
a complete37 filtration fil‚ 𝑉 by connective spectra, an action of BZ as a filtered spectrum, and
BZ-equivariant filtered Frobenius maps:

𝜙𝑝 : fil‚ Ñ fil𝑝¨‚ 𝑉
𝑡Z{𝑝

for every prime 𝑝. (As is standard, we are considering the residual38 BZ “ pBZq{pZ{𝑝q-action on
the right hand side.)

Remark 5.18.2. In the above, note that 𝑉 is a cyclotomic spectrum. Moreover, the notation indicates
that 𝜙𝑝 maps fil𝑛 𝑉 to fil𝑝𝑛 𝑉

𝑡Z{𝑝 for every 𝑝 and 𝑛. Similarly, gr‚ 𝑉 “ ‘𝑛 gr𝑛 𝑉 is also a graded
cyclotomic spectrum, which (similarly to the proof of Proposition 4.5.1) means 𝜙𝑝 : gr𝑛 𝑉 Ñ

gr𝑝𝑛 𝑉
𝑡Z{𝑝.

Remark 5.18.3. The non-connective version of the above notion may readily be extracted from
[AMGR].

Remark 5.18.4. A (non-connective) version of this notion appeared in [Bru] using the language of
equivariant homotopy theory.

Example 5.18.5. If 𝐴 is a filtered E1-algebra with fil𝑛𝐴 connective for all 𝑛, then the standard
filtration on THHp𝐴q upgrades to a structure of connectively filtered cyclotomic spectrum. Indeed,
this is a ready adaptation of the Nikolaus-Scholze construction (or follows from the functoriality of
traces outlined in S4.7). We have gr‚THHp𝐴q “ THHpgr‚𝐴q as (graded) cyclotomic spectra.

Proposition 5.18.6. Let 𝑉 be a connectively filtered cyclotomic spectrum such that:

‚ fil´1 𝑉
»
ÝÑ fil0 𝑉

»
ÝÑ . . .

»
ÝÑ 𝑉 .

37I.e., lim𝑛 fil´𝑛 𝑉 “ 0.
38The quotient notation is misleading here: it refers to the existence of the fiber sequence Z{𝑝Ñ BZ 𝑝

ÝÑ BZ (with
the right map of course surjective on 𝜋0).



ON THE DUNDAS-GOODWILLIE-MCCARTHY THEOREM 41

‚ For every 𝑛, fil´𝑚 𝑉 P Sp
ď´𝑛 for 𝑚 " 0.

‚ The cyclotomic spectrum gr‚ 𝑉 admits a meromorphic Frobenius.

Then TPp𝑉 q admits a meromorphic Frobenius with id´𝜙𝑚𝑒𝑟 : TPp𝑉 q b Q Ñ TPp𝑉 q b Q an
isomorphism.

From Lemma 5.17.4, we immediately deduce:

Corollary 5.18.7. In the setting of Proposition 5.18.6, TCp𝑉 q bQ »
ÝÑ TCp𝑉Qq.

Proof of Proposition 5.18.6.

Step 1. First, note that BZ-equivariance of the filtration on 𝑉 , TC´p𝑉 q and 𝑉ℎBZ inherit filtrations
as well. These filtrations are complete: for TC´p𝑉 q this is automatic, and for 𝑉ℎBZ this follows
because the filtration on 𝜏ě´𝑛𝑉ℎBZ is bounded from below for any 𝑛.

The norm map 𝑉ℎBZr1s Ñ TC´p𝑉 q is clearly filtered, so TPp𝑉 q also has a complete filtration.
Note that gr𝑛 TPp𝑉 q “ pgr𝑛 𝑉 q

𝑡BZ, and similarly for the other players. In particular, gr𝑖 TPp𝑉 q “ 0
for 𝑛 ě 0.

In particular, we see that HompQ,TPp𝑉 qq has a complete filtration with associated graded
HompQ, gr‚TPp𝑉 qq “ 0. The same logic applies for 𝑉Q, noting that the filtration is complete
for the same reason as for 𝑉ℎBZ. Therefore, we obtain HompQ, gr‚TPp𝑉Qqq “ 0 and deduce that 𝑉
admits a meromorphic Frobenius.

Step 2. Note that Lemma 5.17.1 applies just as well in the setting of (connectively) filtered cyclo-
tomic spectra. Therefore, the meromorphic Frobenius on TPp𝑉 qQ maps fil𝑛 TPp𝑉 qQ (“ pfil𝑛 TPp𝑉 qqQ)
to fil𝑝𝑛 TPp𝑉 qQ. Since fil´1 TPp𝑉 qQ “ TPp𝑉 qQ, we would be done if this filtration on TPp𝑉 qQ were
complete. But this is not typically true, so some additional argument is needed.

Step 3. Fix 𝑛, and assume 𝑚 is large enough that 𝜏ě´𝑛 fil´𝑚 𝑉 “ 0.
We claim 𝜙𝑚𝑒𝑟 : 𝜏ě´𝑛 TPp𝑉 qQ Ñ TPp𝑉 qQ is actually integral on fil´𝑚 𝑉 . That is, there are a

canonical maps 𝑓𝑛 : 𝜏ě´𝑛 fil´𝑚 TPp𝑉 q Ñ 𝜏ě´𝑛 fil´𝑚 TPp𝑉 q fitting into commutative diagrams:

𝜏ě´𝑛 fil´𝑚 TPp𝑉 q
𝑓𝑛 //

��

𝜏ě´𝑛 fil´𝑚 TPp𝑉 q

��
𝜏ě´𝑛 fil´𝑚 TPp𝑉 qQ

𝜙𝑚𝑒𝑟

// 𝜏ě´𝑛 fil´𝑚 TPp𝑉 q

and compatible in the natural sense as we suitably vary 𝑛 and 𝑚.
Indeed, our assumptions give fil´𝑚 𝑉ℎBZ P Sp

ď´𝑛, so fil´𝑚 𝑉
ℎBZ Ñ fil´𝑚 𝑉

𝑡BZ induces an isomor-
phism on 𝜏ě´𝑛. Now our map 𝑓𝑛 is induced by the cyclotomic Frobenius, noting that TPp𝑉 q “
TP^p𝑉 q as filtered spectra by assumption. It is immediate to see that 𝑓𝑛 fits into a commutative
diagram as above.

Step 4. Let TP^𝑝 p𝑉 q be the 𝑝-adic completion of TPp𝑉 q. Note that by construction, 𝑓𝑛 induces a

map 𝜏ě´𝑛 fil´𝑚 TPp𝑉 q Ñ 𝜏ě´𝑛 fil´𝑝𝑚 TP^𝑝 p𝑉 q.

In particular, 𝑓𝑛 itself maps through 𝜏ě´𝑛 fil´2𝑚 TPp𝑉 q. We deduce that id´𝑓𝑛 : 𝜏ě´𝑛 fil´𝑚 TPp𝑉 q Ñ
𝜏ě´𝑛 fil´𝑚 TPp𝑉 q is invertible (since the filtration on TPp𝑉 q is complete).

Because tensoring with Q is 𝑡-exact, the map id´𝜙𝑚𝑒𝑟 : 𝜏ě´𝑛 fil´𝑚 TPp𝑉 qQ Ñ 𝜏ě´𝑛 fil´𝑚 TPp𝑉 qQ
is an isomorphism. Since id´𝜙𝑚𝑒𝑟 was an isomorphism on all associated graded terms, we now de-
duce that it is an isomorphism after applying 𝜏ě´𝑛 for any 𝑛, and therefore is itself an isomorphism.

�
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5.19. To prove Theorem 5.15.1, it suffices (by Corollary 5.18.7) to show the following.

Lemma 5.19.1. For 𝐵 Ñ 𝐴 P Alg𝑐𝑜𝑛𝑛 a square-zero extension, THHp𝐵{𝐴q admits a filtration as
in Proposition 5.18.6.

Proof. Suppose 𝐵 is a square-zero extension of 𝐴 by 𝑀 P 𝐴–bimodď0. Note that 𝐵 admits a two-
step descending filtration with gr‚𝐵 “ SqZerop𝐴,𝑀q (more precisely: gr0 “ 𝐴 and gr´1 “𝑀).

As in Example 5.18.5, THHp𝐵{𝐴q is a connectively filtered cyclotomic spectrum with gr‚THHp𝐵{𝐴q “
THHpSqZerop𝐴,𝑀q{𝐴q. By connectivity of 𝐴 and 𝐵, we have fil´𝑛´1 THHp𝐵{𝐴q P Spď´𝑛. More-
over, it is clear that gr𝑖 THHp𝐵{𝐴q “ 0 for 𝑖 ě 0.

It remains to show that THHpSqZerop𝐴,𝑀q{𝐴q admits a meromorphic Frobenius. As in the
proof of Theorem 4.10.1, we have:

TPpSqZerop𝐴,𝑀q{𝐴q “
ź

𝑛ě1

THHp𝐴,𝑀 r1sb𝑛q𝑡Z{𝑛.

The Z{𝑛-Tate construction applied to connective spectra produces 𝑛-adically complete spectra,
showing that TPpSqZerop𝐴,𝑀q{𝐴q is profinite. We then have:

TP
`

pSqZerop𝐴,𝑀q{𝐴qQ
˘

“ TPpSqZerop𝐴Q,𝑀Qq{𝐴Qq

which is profinite by the above.
�

5.20. Sifted colimits. We now show:

Proposition 5.20.1. TC infinitesimally commutes with sifted colimits.

Proof. It suffices to show that the functors TCp´qQ and TCp´q{𝑝 infinitesimally commute with
sifted colimits, where 𝑝 varies over all primes. (Indeed, the functor Sp Ñ Sp of tensoring with
Q
À

‘𝑝S{𝑝 is continuous and conservative.)
In fact, the functor TCp´q{𝑝 : Alg𝑐𝑜𝑛𝑛 Ñ Sp (without relativization) commutes with sifted

colimits by [CMM] Corollary 2.15.39

Now for 𝐵 Ñ 𝐴 a square-zero extension, we have TCp𝐵{𝐴qQ “ TCp𝐵Q{𝐴Qq by Theorem 5.15.1.
Note that TC “ TC´ for rational ring spectra, so we have TCp𝐵Q{𝐴Qq “ TC´p𝐵Q{𝐴Qq. Finally, as
TPp𝐵Q{𝐴Qq “ 0 by Lemma 5.19.1, we have TC´p𝐵Q{𝐴Qq “ THHp𝐵Q{𝐴QqℎBZr1s, and this functor
manifestly commutes with sifted colimits.

�

5.21. Convergence. It remains to show that TC : Alg𝑐𝑜𝑛𝑛 Ñ Sp is convergent, which is straight-
forward.

Note that THH : Alg𝑐𝑜𝑛𝑛 Ñ Sp is convergent, since 𝜏ě´𝑛 THHp𝐴q
»
ÝÑ 𝜏ě´𝑛 THHp𝜏ě´𝑛𝐴q for

every 𝑛. We formally obtain convergence of TC´, since it is obtained as homotopy invariants from
THH.

Note that THHp´qℎBZ is convergent for the same reason as THH. Combined with the above, we
obtain that TP is convergent. This clearly implies that its profinite completion is convergent, so we
obtain the same property for TC from (5.16.1).

39In fact, it is clear from the proof that in Theorem 5.6.1, we only needed Ψ to infinitesimally commute with
geometric realizations, and here the argument is more elementary: see [CMM] Corollary 2.6.
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