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ABSTRACT. We prove the rank 1 case of a conjecture of Frenkel-Gaitsgory: critical level Kac-
Moody representations with regular central characters localize onto the affine Grassmannian. The
method uses an analogue in local geometric Langlands of the existence of Whittaker models for
most representations of G L2 over a non-Archimedean field.
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1. INTRODUCTION

1.1. More than a decade ago, Frenkel and Gaitsgory initiated an ambitious program to relate geo-
metric representation theory of (untwisted) affine Kac-Moody algebras at critical level to geometric
Langlands, following Beilinson-Drinfeld [BD1] and [BD2] and Feigin-Frenkel, e.g., [FF].

We refer the reader to [FG2] for an introduction to this circle of ideas. The introduction to [FG5]
and the work [Gai2] may be helpful supplements.

While Frenkel-Gaitsgory were extraordinarily successful in developing representation theory at
critical level (highlights include [FG1], [FG2], [FG3|, [FG6], [FG5], and [FG4]), their ambitious
program left many open problems. Most of these problems are dreams that are not easy to formulate
precisely.

In contrast, their conjecture on critical level localization for the affine Grassmannian is a concrete
representation theoretic problem. It remains the major such problem left open by their work. In
this paper, we prove the Frenkel-Gaitsgory localization conjecture for rank 1 groups.
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Below, we recall the context for and statement of the Frenkel-Gaitsgory conjecture, the progress
that they made on it, and outline the argument used in the present paper for G Lo.

1.2. Notation. In what follows, G denotes a split reductive group over a field k of characteristic 0.
We fix B € G a Borel subgroup with unipotent radical N and Cartan T'= B/N. We let G denote
the Langlands dual group to G, and similarly B and so on.

We let e.g. G(K) denote the algebraic loop group of G, which is a group indscheme of ind-
infinite type. We let G(O) < G(K) denote its arc subgroup and Grg := G(K)/G(O) the affine
Grassmannian. We refer to [BD1] for further discussion of these spaces and [Ras2| for definitions
of D-modules in this context.

We follow the notational convention that all categories are assumed derived; e.g., A—mod denotes
the DG (derived) category of A-modules. For € a DG category with a given t-structure, we let ev
denote the corresponding abelian category.

1.3. Affine Kac-Moody algebras. Before recalling the Frenkel-Gaitsgory conjecture, we need to
review the representation theory of affine Kac-Moody algebras at critical level.

1.4. Recall that for a level k, by which we mean an Ad-invariant symmetric bilinear form on g,
there is an associated central extension:

0=k —gr—0a((t) =g ®K((*)) - 0.

This extension is defined by a standard 2-cocycle that vanishes on g[[t]] := g®x k[[¢]]; in particular,
the embedding g[[t]] < ¢((¢)) canonically lifts to an embedding g[[t]] < gx-

1.5. By a representation of g, on a (classical) vector space V € Vect@7 we mean an action of the
Lie algebra g, such that every v € V is annihilated by ¢ g[[t]] for N » 0 and such that 1 € k < g,
acts by the identity. R

For instance, the vacuum module V, := indgﬁt”(/{:) is such a representation. Here ind denotes

induction, and we are abusing notation somewhat: we really mean to induce from k@®g|[¢]] the mod-
ule k on which k& acts by the identity and g[[t]] acts trivially; since we only consider representations
on which k € g, acts by the identity, we expect this does not cause confusion.

We denote the abelian category of representations of §. by g.—mod”. The appropriate DG
category g,—mod was defined in [FG4] §23; see [Gaib], [Rasb] Appendix A, or [Ras6] for other
expositions.

We recall the pitfall that the forgetful functor Oblv : g.—mod — Vect is not conservative, i.e., it
sends non-zero objects to zero.!

But one key advantage of g.—mod over other possible “derived categories” of g.-modules is that
it admits a level k action of G(K): see [Ras6] §11 for the construction and definitions.

1.6. We let U(g,) denote the (twisted) topological enveloping algebra of g, (with the central
element 1 € g, set to the identity). For our purposes, U(g,) is the pro-representation of g,:

liTILn indf,fg[[t]](k) € Pro(g,—mod”).

The underlying pro-vector space is naturally an (;)-algebra algebra in the sense of [Ras6] §3 by
construction, its discrete modules (in Vect”) are the same as (classical) representations of gy.

ISee [Ras5] §1.18 for some discussion of this point.
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1.7. Let D,(Grg) denote the DG category of k-twisted D-modules on Grg. There is a global
sections functor:

rindoh(Gry, —) : D.(Grg) — g, mod.
This functor is a morphism of categories acted on by G(K) and sends the skyscraper D-module
01 € Di(Grg) to the vacuum module V.

1.8. Affine Beilinson-Bernstein localization? Recall the finite-dimensional Beilinson-Bernstein
localization theorem:

Theorem 1.8.1 ([BB]). The functor:

I'(G/B,—) : D(G/B) — g—mod
is a t-exact equivalence of categories. Here D(G/B) is the DG category of D-modules and T'(G/B, —)
is the left D-module global sections functor; g-mody is the DG category of modules over U(g)®z(g) k
for Z(g) is the center of U(g) and Z(g) — k the restriction of the augmentation U(g) — k.

Almost as soon as Beilinson and Bernstein proved their localization theorem, there was a desire
for an affine analogue that would apply for Grg or the affine flag variety. Results soon emerged in
work of Kashiwara-Tanisaki, beginning with [KT] for so-called negative levels k.

The results of Kashiwara-Tanisaki suffice for applications to Kazhdan-Lusztig problems. How-
ever, their theorems are less satisfying than Theorem 1.8.1: they do not provide an equivalence of
categories, but only a fully faithful functor. Conceptually, this is necessarily the case because for
negative s, the center of U(g,) consists only of scalars, so it is not possible to define an analogue
of the category g-mody.?

As observed by Frenkel-Gaitsgory, this objection does not apply at critical level, as we recall
below.

1.9. Critical level representation theory. For the so-called critical value of k, the representa-
tion theory of the Kac-Moody algebra behaves quite differently from other levels. For completeness,
we recall that critical level is _71 times the Killing form. We let crit denote the corresponding sym-
metric bilinear form; in particular, we use gerit (resp. Verig) in place of g, (resp. V).

Theorem 1.9.1 (Feigin-Frenkel). (1) The (non-derived) center 3 of U(@erit) is canonically iso-
morphic to the commutative pro-algebra of functions on the ind-scheme Opgs of opers (on
the punctured disc) for the Langlands dual group G:

Opg = (f + B((1)))dt/N (K)
where N(K) € G(K) acts on §((t))dt by gauge transformations and f is a principal nilpotent
element with [p, f] = —f.

We recall that, as for the Kostant slice, Opg is (somewhat non-canonically) isomorphic
to an affine space that is infinite-dimensional in both ind and pro senses (like the affine
space corresponding to the k-vector space k((t))).

(2) The natural map:

3= Endﬁmrmodo(vmt)

2Howeve]r, see [Bei] for some speculations; the suggestion is that g.—mod should be considered not as decomposing
over the spectrum of its center but over a moduli of local systems on the punctured disc.
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1s surjective and fits into a commutative diagram:

3 3

-l

Fun(Opg) —— Fun(Opgg).

Here Opgg := (f + b[[t]])dt/N(O) is the scheme of regular opers, on the (non-punctured)
disc; we recall that the natural map Opgg — Opg is a closed embedding.

We refer to [FF] and [Fre] for proofs of most of these statements; the only exception is that the
map Fun(Opg) < 3 constructed using [FF] is an isomorphism, which is shown as [BD1] Theorem
3.7.73

We refer to [FG2] §1 and [BD1] §3 for an introduction to opers. We highlight, as in loc. cit.,

that Opg (resp. Opgg ) is a moduli space of de Rham G-local systems on the punctured (resp.
non-punctured disc) with extra structure.
Remark 1.9.2. The definition of opers here is slightly different from the original one used by
Beilinson-Drinfeld and rather follows the definition advocated by Gaitsgory. In this definition,
an isogeny of reductive groups induces an isomorphism on spaces of opers, unlike in [BD1]. For
G semisimple, the definition here coincides with the definition in [BD1] for the associated adjoint
group. We refer to [Bar] for a more geometric discussion.

1.10. Localization at critical level. The functor:

FIndCOh : Dcrit(GrG) - acritmed

fails to be an equivalence for two related reasons.

First, recall that T'"4°h(§,) = V... As for any skyscraper D-module, End(d;) = k, while by
Theorem 1.9.1, V..;; has a large endomorphism algebra. Worse still, V..;; has large self-Exts by
[FT] and [FG2] §8.

Moreover, there are central character restrictions on the essential image of I'™4Ch Say M e
Gerie-mod” s regular if I := Ker(3 — 3) acts on M trivially, and let ﬁmrmod?eg < Gerit—mod”
denote the corresponding subcategory (which is not closed under extensions). Then for any F €
D.it(Grg), the cohomology groups of T'4CN(Grg, F) € §erir—mod will be regular, for the same

reason as the analogous statement in the finite-dimensional setting.

1.11. In [FG2], Frenkel and Gaitsgory in effect proposed that these are the only obstructions. We
recall their conjecture now.

First, in [FG4] §23, an appropriate DG category gerie—mod,e, character was constructed: we
review the construction in §6. There is a canonical action of the symmetric monoidal DG category
QCoh(Opgg ) on Gerit—mod,ey commuting with the critical level G(K)-action.*

Next, recall that geometric Satake [MV1] gives an action of Rep(G) = QCoh(BG) on D.it(Grg)
by convolution.

3In fact, the mere existence of this map (and its good properties) is all we really need. That the map is an
isomorphism is nice, but not strictly necessary.

4There are actually important technical issues involving this G(K)-action that should probably be overlooked at
the level of an introduction; we refer to §1.22 and §6.10 for further discussion.
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Moreover, Opgg has a canonical G-bundle; indeed, Opgg is the moduli of G-local systems on

the formal disc D = Spec(k[[t]]) with extra structure, giving a map:

Opy? — LocSys(D) = BG.

In particular, there is a canonical symmetric monoidal functor:

Rep(G) — QCoh(Op?).

According to Beilinson-Drinfeld’s birth of opers theorem from [BD1], I''"dCh is a canonically

morphism of (G(K), Rep(G))-bimodule categories (c.f. §7).
Conjecture 1.11.1 (Frenkel-Gaitsgory, [FG2] Main conjecture 8.5.2). The induced functor:

FHecke : Dcrit(GrG) ®V QCOh(Opgg) - acritmedreg
Rep(G)

is a t-exact equivalence of DG categories.
We can now state:
Main Theorem (Thm. 7.14.1). Conjecture 1.11.1 is true for G of semisimple rank 1.

Corollary 1.11.1. For x € Opgg(k) a reqular oper (defined over k), let ﬁm-fmodf? denote the
abelian category of Gerit-modules on which 3 acts through its quotient 3 — 3 % k, and let §erie—mod,,
denote the appropriate DG category.

Then for G = G Lo, the functor:

Dcrit(GrG) ® Vect — acm’t medX

Rep(G)
induced by global sections is a t-exact equivalence, where Vect is a Rep(@)—module category via the
map Spec(k) = Opgg — BG.

Corollary 1.11.2. Let G = GLsy and let x1, X2 € Opgg(k‘) be two regular opers (defined over k).

Then any isomorphism of the underlying G-local systems of x1 and xa gives rise to an equivalence
of abelian categories:

’g\crit 7m0d§1 = acm’t 7m0d§32-
Remark 1.11.3. We highlight a wrong perspective on Corollary 1.11.2; this remark may safely be
skipped.

For G = PG Lo, one can show that the group scheme Aut of automorphisms of the formal disc
acts transitively on Opgg, giving rise to an elementary construction of equivalences of categories
as in Corollary 1.11.2 in this case.

However, these are not the equivalences produced by Corollary 1.11.2. First, at the level of DG
categories, the equivalences using the action of Aut are not G(K)-equivariant: the G(K)-actions
differ via the action of Aut on G(K). In contrast, the equivalences produced using Corollary 1.11.1
are manifestly G(K)-equivariant.

Concretely, this implies that for a k-point g € G(K), if g-Vepip == indgAcgzt(g[[t]D(k) and g- Vi =
(9 - Verit) ®;.4 k, then Corollary 1.11.2 maps ¢ - Verity, t0 g Vepig yo. For v € Aut and x2 = v+ x1,
the resulting isomorphism produced using v (not Corollary 1.11.2) rather sends g - Ve, to
Y(9) - Veritxs-
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In addition, one can see that the equivalences produced using the Aut action depend on isomor-
phisms of underlying G 3-bundles of regular opers (in this PGLs case), not merely the underlying

G-bundles.

1.12. Viewpoints. We refer to the introduction and §2 of [FG6] for a discussion of Conjecture
1.11.1 and its consequences. We highlight some ways of thinking about it here.

e For the representation theorist, Theorem 7.14.1 provides an affine analogue of Beilinson-
Bernstein similar to their original result, c.f. the discussion in §1.8. The equivalences of
Corollary 1.11.2 provide analogues of translation functors at critical level. By Theorem
1.13.1, the content of Theorem 7.14.1 amounts to a structure theorem for regular ge,;:-
modules (for g = sly).

e For the number theorist, Theorem 7.14.1 provides a first non-trivial test of Frenkel-Gaitsgory’s
proposal [FG2] for local geometric Langlands beyond Iwahori invariants.

Roughly, Frenkel-Gaitsgory propose that for o a de Rham G-local system on the punc-
tured disc, there should be an associated DG category €, with an action of G(K).> This
construction should mirror the usual local Langlands correspondence, leading to many ex-
pected properties of this assignment, c.f. [Gai2].

A striking part of their proposal does not have an arithmetic counterpart. For x an oper
with underlying local system o, Frenkel-Gaitsgory propose C, = gerii—mody, € G(K )—mod.yit,
where we use similar notation to Corollary 1.11.1. We remark that Frenkel-Zhu [FZ] and
Arinkin [Ari] have shown that any such o admits an oper structure (assuming, to simplify
the discussion, that o is a field-valued point).

In particular, one expects equivalences as in Corollary 1.11.2; at least on the correspond-
ing derived categories.

Our results provide the first verification beyond Iwahori invariants of their ideas.

Remark 1.12.1. We have nothing to offer to the combinatorics of representations. The previous
results of Frenkel-Gaitsgory suffice® to treat problems of Kazhdan-Lusztig nature, c.f. [AF].

1.13. Previously known results. Frenkel-Gaitsgory were able to show the following results, valid
for any reductive G. )

We let I = G(O) x¢ B be the Iwahori subgroup of G(O) and I = G(O) x¢ N its prounipotent
radical.

Theorem 1.13.1. The functor THeke is fully faithful, preserves compact objects, and is an equiv-
alence on I-equivariant categories. Moreover, the restriction of I Hecke 1 the I-equivariant category

Deit(Grg)! ® QCoh(Opgg) is t-exact.
Rep(G)

Remark 1.13.2. The fully faithfulness is [FG2] Theorem 8.7.1; we give a simpler proof of this result
in Appendix B. The existence of the continuous right adjoint Loc®® is proved as in [FG4] §23.5-6.
The equivalence on I-equivariant categories and t-exactness of the functor is Theorem 1.7 of [FG6].”

5Most invariantly, this action should have critical level, which is (slightly non-canonically) equivalent to level 0.

6Up to mild central character restrictions coming from [FG4]. These restrictions are understood among experts
to be inessential.

"The results we cite here are not formulated in exactly the given form in the cited works. For the purposes of the
introduction, we ignore this issue and address these gaps in the body of the paper.
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1.14. Methods. Below, we outline the proof of Theorem 7.14.1. However, to motivate this, we
highlight a methodological point.

Across their works at critical level, Frenkel and Gaitsgory use remarkably little about actual
critical level representations. Indeed, they rely primarily on Feigin and Frenkel’s early results, some
basic properties of Wakimoto modules, and the Kac-Kazhdan theorem.

But using the action of G(K) on g.ri+—mod and constructions/results from geometric Langlands,
Frenkel and Gaitsgory were able to prove deep results about representations at critical level; see
e.g. [FG4].

In other words, their works highlight an important methodological point: the theory of group
actions on categories provides a bridge:

Group actions
Geometry and higher on categories
{ representation theory of } AN AAAAAAAAAAAS {

groups

Representation theory
of Lie algebras

For loop groups in particular, a great deal was known at the time about G(O) and Iwahori
invariants: see e.g. [MV1], [AB], [ABG], and [ABB™].

More recently, Whittaker invariants have been added to the list: see [Ras5]. These can be used
to simplify many arguments from Frenkel-Gaitsgory, as e.g. in Appendix B.

1.15. As we outline below, our methods are in keeping with the above. The main new idea and
starting point of the present paper, Theorem 5.1.1, is exactly about the higher representation theory
of PGLy(K).

1.16. Group actions on categories inherently involve derived categories. Therefore, one has the
striking fact that although Corollary 1.11.2 is about abelian categories (of modules!), the proof we
give involves sophisticated homological methods and careful analysis of objects in degree —oo in
various DG categories.

1.17. Sketch of the proof. We now give the Platonic ideal of the proof of the main theorem.

1.18. First, one readily reduces to proving Conjecture 1.11.1 for any G of semisimple rank 1; for
us, it is convenient to focus on G = PGLo.

1.19. The following result is one of the key new ideas of this paper:

Theorem (Thm. 5.1.1). Let G = PGL2 and let C be acted on by G(K) (perhaps with level k).
Then C is generated undez‘ the action of G(K) by its Whittaker category Whit(C) = CNE)Y gnd

its I -equivariant category CL.

The relation to the equivalence part of the Frenkel-Gaitsgory conjecture is immediate: By fully
faithfulness of THeke (Theorem 1.13.1), Theorem 7.14.1 is reduced to showing essential surjectivity.
Applying Theorem 5.1.1 to the essential image of THe?k® one immediately obtains Theorem 7.14.1
from Theorem 1.13.1 and:

Theorem (Thm. 8.3.1). For any reductive G, the functor THe*® induces an equivalence on Whit-
taker categories.

The latter result is an essentially immediate consequence of the affine Skryabin theorem from [Rasb]
and the classical work [FGV].
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1.20. Theorem 5.1.1 warrants some further discussion.

First, this result mirrors the fact that for PG Ly over a local, non-Archmidean field, irreducible
representations admit Whittaker models, or else are one of the two 1-dimensional characters trivial
on the image of SLs.

We now give an intentionally informal heuristic for Theorem 5.1.1 that may safely be skipped.

For general reductive G and € € G(K)-mod.it, let ¢’ < € be the subcategory generated under
the G(K)-action by Whit(C).

Assuming some form of local geometric Langlands, one expects that the local Langlands pa-

o

rameters of C/€" to consist only of those o € LocSysx(D) that lift to a point of LocSys p(@) at
which the map LocSysp(D) — LocSyss(D) is singular; here P is some parabolic subgroup of G
and D = Spec(k((t))) is the formal punctured disc.

For G = SLs, the only parabolic we need to consider is the Borel B. Then o € LocSysj; is the
data of an extension:

0—-(L,V)—(E, V)= (LY, V)—0

(£,V) a line bundle with connection on the punctured disc (and £Y equipped with the dual
connection to that of £). At such a point, the cokernel of the map of tangent spaces induced by

LocSysB(ﬁ) — LocSyst(ﬁ) is:

Hjp(D, (8/6)0) = Hip(D, (LY, V)E2).

This group will vanish unless (£, V)®? is trivial, i.e., unless (&,V) € LocSysG(i) or its quadratic
twist has unipotent monodromy.

It is expected that for D € G(K)-mod..;; with local Langlands parameters having unipotent
monodromy (resp. up to twist by a 1-dimensional character) is generated under the G(K)-action
by its Iwahori invariants (resp. its Iwahori invariants twisted by a suitable character of I trivial on
D).

This justifies that for G = PGLsg, one should expect C/C" above to be generated by its I-
invariants. (And in fact, following the above reasoning, one can refine Theorem 5.1.1 to show that
C is even generated by Whit(C) and its invariants with respect to the Iwahori subgroup of SLs(K).)

1.21. The argument we provide for Theorem 5.1.1 is novel. Its decategorified version gives a new
proof of the corresponding result in usual harmonic analysis.

We use the perspective of [Rasb] on Whittaker categories, which allows us to study the Whittaker
construction via (finite-dimensional!) algebraic groups. (We summarize the most relevant parts of
[Rash] in §5.2.)

In §3, we introduce a new technique in the finite-dimensional settings suggested by [Ras5], which
we call Whittaker inflation. In that context, Theorem 3.4.1 shows that subcategories generated
under group actions by Whittaker invariants are large in a suitable sense. These ideas apply for a
general reductive group G, and have counterparts in the decategorified setting.

In §5, we introduce a method of descent that is specific for PG Ly. Combined with the results of
83, descent immediately gives Theorem 5.1.1.

1.22. For clarity, we highlight that there is one technical issue in the above argument: there is
not an a priori G(K)-action on ﬁcmfmodmg, so the above argument does not apply as is. Instead,
there is a closely related but inequivalent category, ﬁc,«irmodregmawe, with an evident G(K)-action
(coming from [Ras6]). We refer to §6.10 for a more technical discussion of this point.
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This distinction makes the second half of the paper more technical, and requires finer analysis
than was suggested in §1.19.

1.23. The t-exactness in Theorem 7.14.1 is proved by another instance of the descent argument
highlighted above. The details are in §10, with some auxiliary support in §11.

1.24. Finally, we highlight that the vast majority of the intermediate results in this paper apply to
general reductive groups G. In particular, this includes the results of §3, which are a key ingredient
in the proof of Theorem 7.14.1.

The descent arguments discussed above are where we use that G = PG Lo; here the key input is
that every element in the Lie algebra g = sl is either regular or 0. The situation strongly suggests
that there should be some (more complicated) generalization of the descent method that applies
for higher rank groups as well.

1.25. Structure of this paper. The first part of the paper is purely geometric, primarily involving
monoidal categories of D-modules on algebraic groups.

In §3, we introduce the inflation method discussed above. In §4, we provide some refinements
of these ideas that are needed later in the paper; this section includes some results on Whittaker
models for the finite-dimensional group G that are of independent interest.

In §5, we prove our theorem on the existence of Whittaker models for most categorical represen-
tations of PGLy(K) and introduce the descent argument discussed above.

1.26. The second part of the paper applies the above material to critical level Kac-Moody repre-
sentations.

In §6, we introduce the DG category gerit—mod,eq following [FG4]. To study this DG category
using group actions, we import the main results from [Ras6] here.

In §7, we recall in detail the key constructions from the formulation of Conjecture 1.11.1. We
formulate three lemmas from which we deduce our main result, Theorem 7.14.1.

The proofs of these lemmas occupy §9-11. Roughly, §9 is devoted to showing that the functor
IHecke js essentially surjective, while §10 is devoted to showing that it is t-exact. The final sec-
tion, §11, provides additional technical support related to the distinction between ﬁmrmodreg and
ﬁcm’t*mOdreg,naive-

Finally, §8 collects results on the behavior of I'He°k® on Iwahori and Whittaker equivariant cate-
gories; the former results are due to Frenkel-Gaitsgory [FG6], while the latter are original.

1.27. There are two appendices.

In Appendix A, we compare our construction of the global sections functor to the more classical
one used by Kashiwara-Tanisaki, Beilinson-Drinfeld and Frenkel-Gaitsgory.

In Appendix B, we reprove the Frenkel-Gaitsgory theorem that T'Heke is fully faithful.

1.28. Acknowledgements. We thank Dima Arinkin, Sasha Beilinson, Dario Beraldo, David Ben-
Zvi, Roman Bezrukavnikov, Justin Campbell, Vladimir Drinfeld, Gurbir Dhillon, Ivan Mirkovic,
and David Yang for their encouragement and for helpful conversations related to this material.

We especially thank Dennis Gaitsgory for sharing many inspiring ideas on Kac-Moody algebras
and loop group actions over the years. In particular, the crucial idea of using Heisenberg groups to
prove Theorem 3.4.1 was inspired by his work [Gai3] §2.

2. PRELIMINARY MATERIAL

2.1. In this section, we collect some notation and constructions that will be used throughout the
paper.
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2.2. Asin §1.2, we always work over a field k of characteristic 0.

2.3. Reductive groups. Throughout the paper, G denotes a split reductive group, B denotes a
fixed Borel with unipotent radical N and Cartan 7' = B/N.

We let A = Hom(T', G,,) be the lattice of weights of T" and Hom(G,,,, T') the lattice of coweights.
Let p € A ® Q be the half sum of positive roots and p € A ® Q be the half sum of positive coroots.
We denote the pairing between A and A by (—, —).

We let e.g. g denote the Lie algebra of G, b the Lie algebra of B, and so on.

We let G denote the Langlands dual group to G, considered as an algebraic group over k. It
naturally comes equipped with a choice Borel B with radical N and Cartan 7' = B /N .

2.4. Higher categories. Following standard conventions in the area, we freely use Lurie’s theory
[Lurl] [Lur2] of higher category theory. To simplify the terminology, we use category to mean
(00, 1)-category.

2.5. DG categories. We let DGCat,,,; denote the symmetric monoidal category of presentable
(in particular, cocomplete) DG categories, referring to [GR3] Chapter I for more details. As in loc.
cit., the binary product underlying this symmetric monoidal structure is denoted ®. We recall that
Vect € DGCat,yp is the unit for this tensor product.

2.6. For A € Alg(DGCatcont) an algebra in this symmetric monoidal category, we typically write
A-mod for A-mod(DGCat,pt), i-€., the category of modules for A in DGCatpp-

2.7. For € a DG category and F,G € €, we use the notation Home(F,G) to denote the cor-
responding object of Vect, as distinguished from the corresponding oo-groupoid Home(F,G) =
Q®Home (T, 9).

2.8. For €,D objects of a 2-category (i.e., (meaning: (00,2)-category) C, we use the notation
Hom¢(C, D) € Cat to denote the corresponding category of maps.

When C is enriched over DGCat,ynt, we use the same notation for the DG category of maps. E.g.,
this applies for C = DGCaty,; or C = A-mod for A as above.

2.9. We use the notation (—)" to denote duals of dualizable objects in symmetric monoidal cat-
egories. In particular, for € € DGCat,p; dualizable in the sense of [GR3], we let €V € DGCatcont
denote the corresponding dual category.

2.10. For a DG category € with t-structure, we use cohomological notation: €S denotes the
connective objects and €>° denotes the coconnective objects. We let €% = €S0 n =0 denote the
heart of the t-structure.

2.11. Classical objects. Where we wish to say that an object lives in some traditional (1,1)-
category, we often refer to it as classical. So e.g., a classical vector space refers to an object of
Vect”, while a classical (ind)scheme is being distinguished from a DG (ind)scheme.

2.12. D-modules. For an indscheme S of ind-finite type, we let D(S) denote the DG category
of D-modules on S as defined in [GR3]. For a map f : S — T, we let f' and f«,dr denote the
corresponding D-module functors.

We recall that for S an indscheme of possibly infinite type, there are two categories of D-modules,
denoted D*(S) and D'(S). We refer to [Ras2] for the definitions in this setting.

2.13. Group actions on categories. We briefly recall some constructions from the theory of
group actions on categories.
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2.14. Suppose H is a Tate group indscheme in the sense of [Ras6] §7, i.e., H is a group indscheme
that admits a group subscheme K < H such that H/K is an indscheme of ind-finite type.

We recall from [Ras2] the category D*(H) is canonically monoidal. By definition, we let H-mod
denote the category D*(H)-mod and refer to objects of this category as categories with a strong
H-action. We typically omit the adjective strong; where we refer only to an H-action, we mean a
strong H-action.

For C € H-mod and F € D*(H), we let F x — : € — € denote the (convolution) functor defined
by the action.

2.15. For € € H-mod, we have the invariants category and coinvariants categories:

CH .= Homy; oq(Vect, @), €Cg:=Vect ® C.
D*(H)

Here Vect is given the trivial H-action.

We let Oblv : € — @ denote the forgetful functor. Recall from [Ber] §2 and §4 that if H is
a group scheme with prounipotent tail, then Oblv : €7 — € admits a continuous right adjoint
Av, = AvH that is functorial in €. The composition Oblv Av, : € — € is given by convolution with
the constant D-module ky € D*(H).

More generally, as in [Ber| §2.5.4, for any character ¢y : H — G,, we may form the twisted
invariants and coinvariants categories:

GH’¢, GH#, .

We use similar notation to the above, though (for H a group scheme) we often write AvEY — AvY
to emphasize the character.

H
2.16. For € with a right H-action and D with a left H-action, we let CQD denote the H-invariants
for the induced diagonal action on C® D.

2.17. Given a central extension H of H by a torus T and an element A € t¥, we have a category
H-mod) of categories acted on by H with level A, and such that for A = 0 we have H-mody =
H-mod. We refer to [Ras6] §11.3 and [Ras5] §1.30 for definitions.

For H = G(K) the loop group, ad-invariant symmetric bilinear forms x : g ® g — k define the
above data, c.f. loc. cit. In particular, we obtain G(K)-mod, for any k.

In the presence of a level, we can form invariants and coinvariants for group indschemes H’
equipped with a map H' — H and a trivialization® of the corresponding central extension of H’.

For instance, for H = G(K), this applies to N(K) and G(O), or any subgroup of either. Indeed,
the Kac-Moody extension is canonically trivialized over each of these subgroups.

Where the level is obviously implied, we sometimes allow ourselves simply to refer to H-actions,
H -equivariant functors, and so on.

2.18.  We recall from [Ras6] that for H as above, there is a canonical category h—mod of modules
for the Lie algebra h of H and a canonical action of H on h—mod. We remind that if H is not of
finite type, the forgetful functor h—mod — Vect is not conservative.

One has similar reasoning in the presence of a level. For instance, we have a canonical object
gx—mod € G(K)-mod,. We refer to [Ras6] §11 for further discussion.

80ne can do better: the important thing is to have a specified action of H' on Vect with the given level.
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2.19. We will sometimes reference the theory of weak actions of Tate group indschemes. We let
H-mod,eqr denote the category of DG categories with weak H-actions, defined as in [Ras6] §7. We
use the notation € — ¢Hw @ H,w to denote weak invariants and coinvariants functors.

2.20. We will frequently reference compatibilities between t-structures and group actions. We refer
to [Rasb] Appendix B and [Ras6] §10 for definitions and basic results.

2.21. Finally, we end with informal remarks.

The theory of loop group actions on DG categories, especially weak actions, is somewhat involved
to set up, c.f. [Ras6]. With that said, as a black box, the theory is fairly intuitive to use and provides
quite useful insights.

Therefore, we hope that the sometimes frequent references to [Ras6] and the more formal parts
(e.g., Appendix B) of [Ras5] will not cause the reader too much indigestion.

3. WHITTAKER INFLATION

3.1. The main result of this section is Theorem 3.4.1, which is one of the key innovations of this
paper. For higher jet groups G, (see below) of a reductive group G, this result precisely measures
how much information is lost by the corresponding analogues of the Whittaker model.

The proof uses some constructions with Heisenberg group actions on categories, which we recall
here. This material is a categorical version of the usual representation theory of Heisenberg groups
over finite fields. Similar ideas were used in [Gai3], though the application was of different nature
there.

3.2. For H an algebraic group and n > 1, we let H, denote the algebraic group of maps from
Spec(k[[t]]/t™) to H. In particular, H; = H.

Let {e; € n};ez,, be Chevalley generators of n indexed by Z¢ the set of simple roots. Let ¢ : N,, —
G, be defined as the composition:

Ny — Nn/[Nv N]n = H (Ga)n T € o (Ga)n = (Ga) 6]? k[[t]]/tn -G,

iEIG

where the last map is induced by the functional:
k[[)/8" — &

Z a;t' — an_1.

For the remainder of this section, we assume that n is at least 2. The main result of this section
answers the question: for € € G,,—mod, how much information do the invariants ¢V»¥ remember
about C?

3.3. Asn > 2, we have a homomorphism:

g®Ga_’Gn

(€ € g) — exp(t"1¢).
This map realizes g ® G, as a normal subgroup of G,. Note that the adjoint action of G, on this
normal subgroup is given by:

(3.3.1)

ev adjoint
G,—G = g
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If € is acted on by G,, it is thus acted on by g ® G, by restriction, or using Fourier transform,
|

by D(g") equipped with the ®-tensor product. (We omit the tensoring with G, because we are not
concerned with the additive structure on g" here.)
Fix a symmetric, linear G-equivariant identification x : g ~ g¥ for the remainder of this section.

!
Therefore, € is acted on by D(g) with its ®monoidal structure. In particular, for S a scheme
mapping to g, we may form C|s := C®pq) D(S).

Define C¢q as Clg,,, Where grey S g is the subset of regular elements. We have adjoint functors:

j! C2 ereg :j*,dR
with the right adjoint j. 4r being fully faithful: indeed, these properties are inherited from the
corresponding situation j' : D(g) & D(greg) : js.ar for j : greg — ¢ the embedding.
Because g,y < g is closed under the adjoint action of &, and since G, acts on g =~ g through
the adjoint action of G, it follows that €, is acted on by G, so that the comparison functors with
C are Gp-equivariant.

3.4. Main theorem. We have g ® G, n N, = n® G,, and under the Fourier transform picture
above, we have:

eﬂ@Ga:¢|ﬂ®Ga o~ e|f+b-

Here f a principal nilpotent whose image in g/b ~ n" is ¢|ngq, -
In particular, because f + b S gyeq, it follows that CNn¥ ~ 67{\275’¢. The following result states
that this is the only loss in (NN, 1)-invariants.

Theorem 3.4.1. The functor:

Cr—CNn,Y
G -mod,cg ——— DGCatcont

is conservative, where G, -mod;.q S G-mod is the full subcategory consisting of C with Ccq = C.
Here are some consequences.

Corollary 3.4.2. For every C e G,—mod, the convolution functor:

DGy ® eVnv e
Hvn
is fully faithful with essential image Creq. Here Hyy, o = D(Gn)N"XN”’(w’*‘Z’) is the appropriate
Hecke category for the pair (Gr, (Np,)).

Proof. Note that this functor is G,-equivariant and that its essential image factors through G,, (by
the above analysis). Therefore, by Theorem 3.4.1, it suffices to show that it is an equivalence on
(Ny, v)-invariants, which is clear.

O

Corollary 3.4.3. Observe that D(Gp)reqg admits a unique monoidal structure such that the local-
ization functor D(Gp) — D(Gy)reg is monoidal.

Then D(Gp)req and Hn, 5 (as defined in the previous corollary) are Morita equivalent, with
bimodule D(G,)N»Y defining this equivalence.

The remainder of this section is devoted to the proof of Theorem 3.4.1.
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3.5. Example: n = 2 case. First, we prove Theorem 3.4.1 in the n = 2 case. This case is simpler
than the general case, and contains one of the main ideas in the proof of the general case.
Note that by Fourier transform along g ® G, < G2, an action of G3 on € is equivalent to the
|

datum of G on €, and an action of (D(g),®) on C as an object of G-mod (where G acts on D(g)
by the adjoint action). In the sheaf of categories language [Gai6], we obtain:

Go—mod ~ ShVCat/(g/G)dR.

The functor of (Na,1))-invariants then corresponds to global sections of the sheaf of categories
over (f+b/N)4g, i.e., the de Rham space of the Kostant slice. Recall that the Kostant slice f+b/N
is an affine scheme and maps smoothly to g/G with image greq/G.

As the Kostant slice is a scheme (not a stack), [Gai6] Theorem 2.6.3 implies that (f +b/N)4p is
1-affine. In particular, its global sections functor is conservative.

Therefore, it suffices to note that pullback of sheaves of categories along the map (f +b/N)sr —
(greg/G)ar is conservative. However, in the diagram:

f+b/N Oreg/G

| |

(f + b/]V)dR — (greg/G)dR

pullback for sheaves of categories along the vertical maps is conservative for formal reasons (e.g.,
write de Rham as the quotient by the infinitesimal groupoid), and conservativeness of pullback along
the upper arrow follows from descent of sheaves of categories along smooth (or more generally fppf)
covers, c.f. [Gai6] Theorem 1.5.2. This implies that pullback along the bottom arrow is conservative
as well.

Remark 3.5.1. It follows from the above analysis that the Hecke algebra Ho (in the notation of
Corollary 3.4.2) is equivalent to D-modules on the group scheme of regular centralizers.

3.6. Heisenberg groups. We will deduce the general case of Theorem 3.4.1 from the representa-
tion theory of Heisenberg groups, which we digress to discuss now.

Let V' be a finite-dimensional vector space. In the following discussion, we do not distinguish
between V' and the additive group scheme V ®; G,.

Let H = H(V) denote the corresponding Heisenberg group; by definition, H is the semidirect
product:

Vix (VY x Gy)
where V acts on V'V x G, via:

v (A0) = (et AW), WA eV x VY x G,

Remark 3.6.1. Note that H only depends on the symplectic vector space W =V x V'V not on the
choice of polarization V' < W. But the above presentation is convenient for our purposes.

Fourier
)~

3.7. Observe that G, < H is central. In particular, D(A! D(G,) maps centrally to H,
!

where we use D(A!) to indicate that we consider the ®-monoidal structure and D(G,) to indicate
the convolution monoidal structure.

Let H-mod,.;, & H-mod denote the subcategory where D(A') acts through its localization
D(AN0), i.e., where all Fourier coefficients are non-zero.
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Theorem 3.7.1. The functor:

H-mod,eg adii D(AM0)-mod

s an equivalence.
Corollary 3.7.2. The functor of V-invariants is conservative on H-mod,.,.

Proof of Theorem 3.7.1. Note that by duality, V acts on V x Al; explicitly, this is given by the
formula:

v (w,c) = (w—c-v,c)
By Fourier transform along V¥ x G, € H, we see that an H-action on C is equivalent to giving a
|

V-action on € (where V is given its natural additive structure), and an additional (D(V x Al), ®)-
action on € in the category V—mod.

Using the sheaf of categories language [Gai6], this is equivalent to the data of a sheaf of categories
on (Var x ALp)/Vag, where we are quotienting using the above action. The corresponding object
of H-mod lies in H-mod,.4 if and only if the sheaf of categories is pushed forward from:

(Var x Agp\0)/Var = Agp)\0.
Therefore, we obtain an equivalence of the above type. Geometrically, this equivalence is given
by taking global sections of a sheaf of categories, which for (Vg x A}l r)/Var corresponds to taking

(strong) V-invariants for the corresponding H-module category.
O

3.8. Proof of Theorem 3.4.1. We now return to the setting of Theorem 3.4.1. The remainder of
this section is devoted to the proof of this result.

In what follows, for b a nilpotent Lie algebra, we let exp(h) denote the corresponding unipotent
algebraic group.

Let N} = exp(t" ™n[[t]]/t"n[[t]]) = N, for 1 < m < n. For example, for m = 1 we recover the
group n® G, < G,.

We will show by induction on m that the functor of (N},)-invariants is conservative on
Grp—mod,¢g.

3.9. As a base case, we first show the claim for m = 1.

Here the assertion follows by the argument of §3.5. Indeed, we have a homomorphism Gy — G,
which identifies G € G2, G, and g® G, < G9, GG,,. Restricting along this homomorphism, we obtain
that t-invariants for N - N! € N, is conservative, and a fortiori, (N}, ¢)-invariants is as well.

3.10. 'We” now observe that the above argument extends to treat any m < 5
In this case, the subalgebra t"~™g[[t]]/t"g[[t]] < ¢[[t]]/t"o[[t]] = Lie(G,) is abelian. Clearly this
subalgebra is normal; the adjoint action of GG, on it is given via the representation:

G = G — Lie(Gyn) = ol[t]]/t™a[[t]) "= £*~g[[t]] /"o [[1]].

9The arguments in §3.10 and §3.14 are not needed in the case g = sl2, which is what we use for our application to
the localization theorem. Indeed, for g = slz, in the argument in §3.13, one only needs to consider (in the notation of
loc. cit.) r = 1, in which case g1, = t is abelian, hence the last equation in (3.13.1) holds for trivial reasons. Given
that equality, the rest of the argument goes through for m > 2.
In other words, the reader who is only interested in Theorem 7.14.1 can safely skip §3.10 and §3.14.
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We therefore have a homomorphism:

G o " g[t]]/t"0[[t]] ® Ga — G

whose restriction to G, is the identity and whose restriction to t"~"g[[t]]/t"g[[t]] ® G, is the
exponential of the embedding t"~™g[[t]]/t"a[[t]] — a[[t]]/t"a[[t]]-

Considering € as a category acted on by G,, x t"~™g[[t]]/t"g[[t]] via the above map and Fourier
transforming as in Example 3.5, we can view this action as the data of making € into a sheaf
of categories on (g[[t]]/t™g[[t]])ar/Gn.ar- Here we have identified the dual of (t"~™g[[t]]/t"g[[t]])
with g[[¢]]/t"g[[t]] via the pairing (&1, &2) — Res(t™ "k (&1, &2)dt) (for k as above).

Define:

(al[t1]/¢" allt]D)reg = ollt11/t™ 8l [t]] X g Breg-

By the regularity assumption on C, the above sheaf of categories is pushed-forward from:

(allt]]/t™ al[t]Dreg.ar/Gn.ar-

Then (N,*,)-invariants correspond to global sections of (f + b[[t]]/t"b[[t]])ar With coefficients
in the above sheaf of categories. As the map:

(f + oI/ ollE]]) — (ollE/E" ol[t]])req/ Gim

is a smooth cover (as it is obtained by applying jets to a smooth cover), the same is true of:

(f + bllel/e™e[e]]) — (allel]/t™ ol[t]])req/Gin-

As f + b[[t]]/t™b[[t]] is a scheme, the reasoning of §3.5 gives us the desired result.

3.11. In §3.14, we will give a separate argument to treat the case n = 2m — 1; of course, this is
only possible for n odd. The argument is not complicated, but a little involved to set up, so we
postpone the argument for the moment.

Combined with §3.10, this gives the result for all m < "TH

3.12. We now perform the induction; we assume the conservativeness for m — 1 and show it for
our given m < n. By the inductive hypothesis as established above (though postponed in one case
to §3.14), we may assume m > 22,

We will give the argument here by another inductive argument. As above, let g = @;gs be the
principal grading defined by the coweight p : G,, — G% of the adjoint group G of G. So for
example, e; € g1 and n = @g>19s. For r = 1, let n>p = D=1 gs.

Now define:

N = exp (£ [[E] + s [[E]]/4M [ [H]]) < NS N,

We will show by descending induction on r > 1 that (N ", )-invariants is conservative. Note that
this result is clear from our hypothesis on m for r » 0, since then ns, = 0 and N;;"" = N™~ L
Moreover, a proof for all r implies the next step in the induction with respect to m, since N,;' 1o
N, so would complete the proof of Theorem 3.4.1.
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3.13. For r > 1, assume the conservativeness (in the regular setting) of (N, " o+l ¥)-invariants; we
will deduce it for N;;"". The idea is to make a Heisenberg group act on (NTT "1 y)-invariants so
that invariants with respect to a Lagrangian gives (N;, ", 1)-invariants.

Step 1. Define ho < Lie(G,) = g[[t]]/t"g[[t]] as

t"™ gy . @ Lie(N™").
Observe that hg is a Lie subalgebra. Indeed:
[tmflgl_“tn m+1 [ ]
[t g1y, " ns,] < £ ln, and (3.13.1)
-2

[t grp, " e ] < 7 2g([t]] < " g[[2]]
where the last embedding uses the assumption m > %2

[¢]1] < ¢*[[2]],

In the same way, we see that'? Lie(Ny"" ™) is a normal Lie subalgebra of g, and that for £ € by

and ¢ € Lie(N;"" 1), 4 ([¢, ]) = 0.
Moreover, b is nilpotent, so exponentiates to a group Hy < G,.'' Combining this with the

above, we see that Hy acts on (Ny," TH, 1)-invariants for any category with an action of G,,.

Step 2. Let g}_, < gi1—r denote Ad?fﬁl(gr). Observe that the pairing:

V(=19 @91 —k (3.13.2)
induces a perfect pairing between g, and g _,. Indeed, the diagram:

id@Ad} id®Ad;
gr®gr—)gr®gl r—>gr®g r

w R
(=D l_“(_’_)
k

commutes'?, and Ad?f : gr — g—, is an isomorphism by sly-representation theory.
Define b(, < by as:

1), @ Lie(N).
Again, b, integrates to a group H).

Step 3. Finally, recall that the adjoint action of Hy fixes Ny" R Hjy and preserves its character
1 to G,. Let K < NI pe the kernel of 1. clearly K is normal in Hy.

One immediately observes that H := H|)/K is a Heisenberg group. The central G, is induced by
the map:

Gy =Nt /K - H)/K = H.
The vector space defining the Heisenberg group is t"~™g,, and its dual is embedded as t™ g} =
H|/K.

10The same is true for  instead of  + 1, but the statement with the character is not.

1 The embedding exponentiates because ho < n + ta[[t]]/t"a[[t]], i.c., the Lie algebra of a unipotent subgroup of
G,,. Here we use that m > 2.

2proof: write ¢(—) as k(f, —) and use Ad-invariance of .
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Now observe that our Heisenberg group H acts on eV for any C acted on by G, with its
central G, acting through the exponential character. Now the result follows from Corollary 3.7.2.

3.14. As above, it remains to show the result in the special case that n = 2m — 1 for some m > 2.
We do so below.

Step 1. We need some auxiliary constructions.

Let £ € greg be a k-point (i.e., a regular element of g in the usual sense). Let 3¢ < g denote the
centralizer of £.

Then g/3¢ carries an alternating form:

(Sola ¢2)§ = "i(fv [9017 ()02]) = ﬁ([é? ()01]7 902)
The second equality holds as x is G-invariant, and shows that (—, —)¢ descends to g/3¢. Moreover,
as k is non-degenerate, we see from the last expression that (—,—)¢ is non-degenerate on g/3¢,
hence symplectic.

Step 2. In the above setting, suppose that & lies in the Kostant slice f + b.

In this case, we claim that the composition n < g — g/3¢ is injective, and that n < g/3¢ is
Lagrangian with respect to the symplectic form (—, —)e.

Indeed, it is standard that 3¢ nn = 0 (this is the infinitesimal version of the freeness of the action
of N on f +b), giving the injectivity.

We now claim that n is isotropic for the above form. For ¢1, p2 € n, we have:

(01, 02)e = k(& [1, p2])

by definition; we claim this inner product is zero. Let g = @sgs be the principal grading of g,
i.e., the grading defined by the coweight p : G,, — G. Then [e1,¢2] € [n,n] = @205, while
e f+b< @Ps>_19s. By invariance of k, for 5 € ¢s, P € gr, we have m(ﬁ @) =0 unless r + s = 0,
giving the claim.

Finally, 2dim(n) + dim(3¢) = dim(n) + dim(n™) + dim(t) = dim(g), so n S g/3¢ is in fact
Lagrangian.
Step 3. Next, we observe that the above generalizes to the scheme-theoretic situation in which we
allow ¢ to vary.

More precisely, let W = 0®0q,.,

carries a subbundle 3 < W of regular centralizers; e.g., the fiber of 3 at £ € g(k) is 3¢.
The quotient:

be the constant vector bundle on g,., with fiber g. This bundle

W = W/g
is a vector bundle on g,cy. Our earlier construction defines a symplectic form on W. Moreover,
after pulling back along the embedding 7 : f 4 b < g,4, the constant bundle with fiber n defines a
Lagrangian subbundle of the vector bundle i*(W).

Step 4. We now record some general results in the above setting.

Let S be a scheme of finite type and let W be a symplectic vector bundle on S. We denote the
total space of W by the same notation.

Define the Heisenberg group scheme H = H(W) over S as the extension:

0->Ggs—>H—->W—0
where H =W xg G, g as a scheme, and the group law is given by the formula:
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1
§(w1’w2)), (wi, Ai) €W x5 Gy 5

where the term (w1, ws) denotes the symplectic pairing.

(wl, )\1) . (wg,)\g) = (w1 + w9, A1 + Ay +

Ezample 3.14.1. For example, if S = Spec(k) and W =W =V x V'V with the evident symplectic
form, then the above recovers the Heisenberg group denoted H (V) earlier.

In the general setting above, let BgH = S/H denote classifying space of the group scheme H. By
a (strong) action of H(W) on a category, we mean a sheaf of categories on (BgH)4pr; by 1-affineness
of Sgr and of the morphism Hyr — Sgr ([Gai6] Theorem 2.6.3), this data is equivalent to that
of a module category for D(H) € Alg(D(S)-mod) with its natural convolution monoidal structure.
We denote the corresponding 2-category by JH{—mod.

As when working over a point, we have a subcategory }-mod;., S H-mod: Fourier transform

!
for the central G, g S H makes any object of H—mod into a (D(S x Al),®) module category, and
we ask that this action factors through D(S x (A'\0)).

Lemma 3.14.2. Suppose N € W is a Lagrangian subbundle. Then the functor of strong N-invariants
defines an equivalence:

H-mod,ey — D(S x (AM\0))-mod.

Proof. In the case where W admits a Lagrangian splitting W = N x NV, the same argument as
over a point applies.

Etale locally, such a splitting exists: indeed, étale locally, W admits Darboux coordinates (as a
torsor for a smooth group scheme is étale locally trivial), and then by the Bruhat decomposition
for the Lagrangian Grassmannian, N admits a complement after a further Zariski localization.

Therefore, we obtain the result by étale descent for sheaves of categories on Syg, see [Gai6]
Corollary 1.5.4.

O

We also need a mild extension of the above.
Suppose we are given a vector bundle W on S equipped with an epimorphism 7 : W — W. We
form the group scheme 9{ H xw W i.e., the pullback of the extension H of W to W. We can

again speak of (strong) J-C—actloms7 we deﬁne regularity as for H, i.e., with respect to the central
Gy.

Lemma 3.14.3. Suppose N € W is a Lagrangian subbundle, and suppose we are given a lift N — W
of this embedding over w. In particular, we obtain an embedding of the additive group scheme N
into K. N

Then the functor of (strong) N-invariants is conservative on H-mody.g.

Proof. As in the proof of Lemma 3.14.2, we are reduced by Zariski descent to the case where S is
affine. N N
In this case, the embedding N < W extends to a map W — W splitting the projection (because
W/N is a vector bundle). This gives a map H — ¥ splitting the canonical projection that is
the identity on the centrally embedded G, g, and which is compatible with embeddings from N.
Therefore, the result in this case follows from Lemma 3.14.2.
O
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We remark that W inherits an alternating form from W, and K may be interpreted as a degenerate
version of a Heisenberg group scheme.

Step 5. We can now conclude the argument. We remind that we have assumed n = 2m — 1 for some
m = 2.
We have the following extension of Lie algebras, which is between abelian Lie algebras:

0 — e g [e]]fengl[e] —> - g[[e]) /¢ gl[E] —> " gl[A1] /47 g[[¢]] — .

t1/t"g[[t]] tmg[[t]]/¢"g[[2]] g

Here we write g to emphasize we are considering the abelian Lie algebra with vector space g.
As an extension of vector spaces, the above has an obvious splitting (£ € g) — t"7"&, so we see
that the corresponding Lie algebra is a Heisenberg Lie algebra for the degenerate alternating form:

g®g — " g[[t]]/t"el[t] = t"al[t]]/t" o[ [t]]
(&1, &) — [, "]

Passing to algebraic groups, we see that an action of exp(t™ 'g[[t]]/t"¢[[t]]) on € amounts to
the following data. First, performing a Fourier transform along the central exp(t™g[[t]]/t"g[[t]]) =
"g([t]]/t"g[[t]] ® Gq, we obtain a sheaf of categories on:

(e g[e1/t"al[E]) " )ar ~ (al[E1)/£" ™ o[[t])ar = (a[[e]1/¢™ " ol[t]])ar
where the ~ is constructed as in §3.10; we denote the sheaf of categories corresponding to C by
C. The remaining data encoding the full exp(t™'g[[t]]/t"a[[t]])-action amounts to an action of a

degenerate Heisenberg group 3 on C. In detail: form a constant vector bundle on (g[[¢]]/t™ 'g[[t]])
with fiber g, and equip it with the (degenerate) alternating form whose fiber at ¢ € (g[[t]]/t™ 'g[[t]])
is:

(w1, 2) € g x g = K([£(0), 1], p2)

where £(0) indicates the image of £ in g obtained by ¢ +— 0. The corresponding Heisenberg group
scheme H defined by this data acts strongly on C.

In these terms, C¥% ¥ is calculated as global sections of C on (f+b[[t]]/t™o[[t]])ar; by §3.10,
the assignment (€ € Gy,—mod,¢q) — eV LY is conservative.

Now observe that the constant vector bundle N on f + b[[¢]]/t™ 'b[[t]] with fiber n satisfies
the assumptions of Lemma 3.14.3 by Step 3, where the notation of Step 3 matches that of Lemma
3.14.3 (up to pulling back from greq or f + b). We obtain CN7 ¥ by passing to invariants for this
Lagrangian subbundle; by Lemma 3.14.3, that functor is conservative, giving the claim.

4. CONVOLUTION FOR FINITE WHITTAKER CATEGORIES

4.1. In this section, we extend the results from §3. These extensions are given in §4.7. This material
plays technical roles in §10 and §11. The reader may safely skip this section on a first read and
refer back where necessary.
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Key roles are played by Theorems 4.2.1 and 4.3.1. The author finds these results to be of inde-
pendent interest.'3

4.2. Main result. The first main result of this section is the following:

Theorem 4.2.1. For anyn = 1 and any € € G,,-mod, the convolution functor:

D(G)N Y ® eV _, @
admits a left adjoint. Here D(Gp)N =Y is the equivariant category for the action of N, on Gy on
the right.
Moreover, this left adjoint is isomorphic to the composition:

coact[—2 dim Gy, | Avﬂ]:r”’_w ®ide

Nn
e D(G,) ® € D(G,)Nm=¥ @ Nn¥,
(Because of the diagonal Ny,-equivariance and by unipotence of Ny, the functor AViV"’_w ®ide[2dim N, |
may be replaced by Ava™ ™ @ Avi™¥[2dim N,,] or idp,) ® AvE™T¥[2dim N,].)

The proof bifurcates into the cases n = 2 and n = 1. In the former case, the argument is quite
similar to the proof of Theorem 3.4.1.

4.3. Reformulation. First, we begin with a somewhat more convenient formulation of Theorem
4.2.1.

Theorem 4.3.1. Let n>1 and let € € G,, x Gy,-mod. Then the left adjoint to:**

Ny No,(t,—16) Oblv. oAN, AVES™  Aq
e n ny\¥, N e no___= 5 G n

is defined, where A : G, — G, x G, is the diagonal embedding. For convenience, we denote this
left adjoint by Av, Y
Moreover, the canonical natural transformation:

AvPTY - Av®T¥[2dim N, € Hompgcat,,,, (G2F, @V XN:(¥:=v))

18 an equivalence.

Remark 4.3.2. In the case n = 1 and € = D(G) € G x G-mod, Theorem 4.3.1 is [BBM| Theorem
1.5 (2). However, even in the n = 1 case, the result is new e.g. for € = D(G ® G).

Remark 4.3.3. In §6, we will only need the n > 1 case of Theorem 4.2.1. We include the proof in
the n = 1 case only for the sake of completeness.

Proof that Theorem 4.3.1 implies Theorem 4.2.1. Suppose C € G,,—mod is given. We form D(G,)®
Ce G, x Gp,—mod. By Theorem 4.3.1 (and changing 1 by a sign), the map:

Avicn Gn

X — _ v Np, ~
(D(G,) ®€)Nn Nn,(=v9) _ D(G) Nt g ey OV, pa )& e —E s D(G,) & € = €.

BFor instance, using Theorem 4.3.1 and standard arguments (relying on [Ras3]), one obtains geometric proofs of
[Gin] Theorem 1.6.3 (similarly, Proposition 3.1.2). In particular, these arguments show that the ¢-exactness from loc.
cit. Theorem 1.6.3 applies as well in the f-adic context in characteristic p (using Artin-Schreier sheaves instead of
exponential D-modules, and needing no special reference to [Ras3] because “non-holonomic” objects are meaningless
here).

HMNote that (1, —1) restricted to the diagonal AN,, is the trivial character.
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By definition, the resulting functor is the convolution functor, so that convolution functor admits
a left adjoint. We similarly obtain the formula for the left adjoint in Theorem 4.2.1.
O

Below we prove Theorem 4.3.1, splitting it up into different cases.

4.4. Proof of Theorem 4.3.1 for n = 2. We freely use the notation and observations from §3.5.
As in loc. cit., we have:

G9 x Go—mod ~ ShVCat/ng/Gdeng/GdR'

Let € € G2 x Ga—mod, and let C denote the corresponding sheaf of categories on g4r/Gar * 94r/Gdr-
The following commutative diagram provides a dictionary between these two perspectives:

EN2x N, (¥,=9) L((f +6)ar/Nar x (—f + b)ar/Nar, C)
CAN2 ~ T((b x b+ A™g)ar/Nar, C)
CA%2 ~ T(A™gqr/Gar, C).

The averaging functor @N2*N2:(¥:=¥) _, @AG2 ¢orresponds to !-pullback and then #-pushforward
(in the D-module sense, which tautologically adapts to sheaves of categories on de Rham stacks)
along the correspondence:

/(f + b)/K
A
(f +B)/N x (=f+b)/N g/G.

The left map A~ is a closed embedding because the Kostant slice (f + b)/N is an affine scheme,
so l-pullback along it admits a left adjoint. The right map is smooth, so !-pullback along it equals
s-pullback up to shift; in particular, the relevant #-pushforward admits a left adjoint.

This shows that our *-averaging functor admits a left adjoint in this case. That the comparison
map Av, LN AV*’7¢[2 dim Nj| effects this isomorphism follows from the above analysis.

4.5. Proof of Theorem 4.3.1 for n > 2. The argument proceeds as in the proof of Theorem
3.4.1; we use the notation from that proof in what follows.

First, observe that it is equivalent to show that the left adjoint Av;ﬁ = AV!N"’¢ to Av*A
@Nnx14 _, @A(GH) ig defined, with the natural map Avf — Avff [2dim N,,] being an isomorphism;
indeed, AvLCGn factors as:

(Gn) |

Noxiw AVe™ N X1 AN, Ny x N, (1),—1)) AP AG
EHVnxds ,(e n X1, ) n — @V ny (Y, > @ n

and the first functor admits the fully faithful left adjoint Oblv.

By induction on m, we will show that the appropriate left adjoint AV!N’T’w : QAGn _, N X1¥ g
defined, and that the natural map AV!N:Ln’w — Avpn Y [2dim N"] is an equivalence.

As in the proof of Theorem 3.4.1, the base case m = 1 is a consequence of the n = 2 case proved
in §3.5. Moreover, as in §3.10, essentially the same argument applies for m < 5. As in §3.14, the
natural generalization of Lemma 4.5.1 vector bundles with alternating bilinear forms allows us to
deduce the special case where n = 2m — 1; we omit the details, which are quite similar to §3.14.
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Now in what follows, we assume m > ”T” By descending induction on 7, we will show that
the appropriate left adjoint AV!N"’ VL @AGK _, eNR XL g defined, and that the natural map

m,r

AV Y o Avi™ T Y[2dim Ny s an equivalence. The base case 7 » 0 amounts to the inductive
hypothesis for m — 1.
To perform the induction, we use the following observation.

Lemma 4.5.1. Let V be a finite-dimensional vector space over k and let H = H(V') be the associated
Heisenberg group, as in §3.6.

Let € € H-mod¢q4. Then the functor AVZ @YY — @Y is an equivalence.

Moreover, if we (appropriately) denote the inverse functor AV!Vv , then the natural map AV!Vv —
AvY ' [2dim V] is an equivalence.

Proof. Immediate from the proof of Theorem 3.7.1.
O

The relevant Heisenberg group is constructed as follows. Here we use notation parallel to the
proof of Theorem 3.4.1, but the meanings are different in the present context.

Define b as Lie(N;,"" x 1) + A(#™ 1g1_,) € Lie(Gy, x G,,). Define b) similarly, but with g}_,. in
place of gi—, (in the notation of §3.13).

As in the proof of Theorem 3.4.1, these are nilpotent Lie subalgebras of Lie(G,, x Gy,), and there
are associated unipotent subgroups H) < Hy < G,, x G,. And again by the same argument as in
loc. cit., (NJ"1 x 1) € Hy is normal, and its character is stabilized by the adjoint action of Ho.
We again let K = (Ni" 1 x 1) denote the kernel of the character and H := H|/K; again, H is a
Heisenberg group.

By induction, we have a !-averaging functor:

Nm,'r+1

Avym
which evidently lifts to invariants for the additive subgroup A(g)_,) € H. By Lemma 4.5.1, we

m,r+1 . m,r+1
V= AV [2dim N @AG L N XLy

m,r+1 ’ m,T . . . . . .
can l-average (CNr ' <LyAlgL-r) — @V 1% and this coincides with x-averaging up to suitable

m,r+1 / ~ m,r
shift (and moreover, the resulting functor gives an equivalence (€» ’ XL A@-,) =, @Na"" XLy,
This gives the claim.

4.6. Proof of Theorem 4.3.1 for n = 1. Let B~ be a Borel opposed to B with radical N~.
Step 1. We have the functor:

U - EAG Oblv oAB- Avy ENTXNT-AT
This functor admits the left adjoint:
= . N XNT-AT Oblv AR~ Av, EAG

with Avy = Av,[2dim G/B~] by properness of G/B~.
Recall from [MV2] that the counit map E¥ — id splits. Indeed, as in loc. cit., ¥ is computed
as convolution with the Springer sheaf in D(G)*4¢ = D(AG\(G x G)/AG), and by an argument

in loc. cit. using the decomposition theorem, the Springer sheaf admits the skyscraper sheaf at
Ad
1e G/ G as a summand.

In particular, every F € C2C is a summand of an object of the form Z(F7).
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Step 2. Next, we recall a key result of [BBM]. Theorem 1.1 (1) of loc. cit. implies that we can
l-average N~ -equivariant objects to be (IV,)-equivariant, and this !-average coincides with the
x-averaging after shift by 2dim N. (Note that the authors work in the setting of perverse sheaves,
but their argument works in this generality: c.f. the proof of [Ras5|] Theorem 2.7.1.)

Applying this for G x G instead, we see that for F e €N *N" (or Fe N *N"AT) we can form

AV!(w’fw) F e @NxN.(¥,»=¥) "and the natural map:

AV F o AV F4 dim N

is an isomorphism.

Step 3. Now suppose that F e N *N7AT We claim that Av}l“_w JF coincides with Av?p’_w =(9F);
in particular, the latter term is defined.
By base-change, Av, Y =(F) should be computed as follows. We have a functor:

. - CN G AN
Av) = Av,[2dimG/B™]: D(N\G) ® € - D(N\G)®C = C~".

~ N B~
Also, F defines an object J (i.e., wy\oXIF) in D(N\G) ® €. Finally, the recipe says that to compute
Avib’_w =(7F), we should form Avi(F) € AN and then further l-average to CN*N:.(¥:—¥),

Observe that F carries a canonical Bruhat filtration. More precisely, for w an element of the Weyl

Pl
group W, let i,, denote the locally closed embedding N\NwB~ «— N\G. Let F* € D(N\NwB~) ® C
be the object induced by F, so F is filtered with subquotients iy,  4r(F").

Let N¥ = N n Ady(B™). Then D(N\NwB™) % € ~ CANY since NwB™ = NA; B, where
N* maps to B~ via Ad,-1. The object F¥ is then'® w - F, which we note is equivariant for
Aday(N™ x N™-AT) 2 N¥ x N 2 ANY.

Then observe that up to cohomological shift, Aviiy . r(T") is obtained by #-averaging
w - F from ANY to AN, since Av, is l-averaging from B~ to G, and therefore coincides with
x-averaging up to shift.

Now for w # 1, recall that the character 1 is non-trivial on N nAd,, (N ™). Therefore, !-averaging
to (N x N, (¢, —1))-equivariance vanishes on CV“*N" In particular, this !-averaging is defined.
(The same applies for x-averaging.)

This vanishing implies:

€ GAN

Av!JVXN,(’lb,*’lZJ) E(:}') — AV!NXN,(%*@Z’) :}'1

B
(Here 1 € W is the unit in the Weyl group.) We note that ' = OblvF € € = D(NB~) ® C. Since
this last l-averaging is defined by [BBM] Theorem 1.1 (1), we obtain the result.

Step 4. We have now shown Av?b’_lb F is defined for F € CAG. All that is left is to check that the
natural map:

Av!w’w F — Av¥Y F[2dim N|
is an isomorphism.

We may assume F = =G for G € @V *N-AT n this case, the assertion is a straightforward
verification in the above argument.

I5Here g - J is by definition §, * F, and we are using the diagonal action of G on C.
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4.7. Application: construction of resolutions. For the remainder of the section, we assume
n = 2.

For C e GG;,—mod, let j! : € 2 Creg @ Jx,ar be as in §3.3.

For € = D(G,), let 61 € D(G,) be the skyscraper D-module at the identity, and let §;% :=
j*,de!(él). Note that for any € € G,,~mod, the convolution functor §;°/ * — is isomorphic to js 4rJ’
as endofunctors of C.

Lemma 4.7.1. 617 lies in the full subcategory of D(Gy) generated by the essential image of the
functor:

D(Gn)Nny_wv"" X D(Gn)Nnyd}y'i' N D(Gn)Nn7_¢ ®D(Gn)Nn7’l/} — D(Gn)
under finite colimits and direct summands. Here the first factor D(G,)N»~% has invariants taken

on the right, D(G,,)N"¥ has invariants on the left, and both terms are considered with their natural
t-structures.

Proof. Suppose € € G,—mod. By Theorem 4.2.1, the convolution functor:

D(Gn)Nnv_w ® @Nnﬂﬁ N e
admits a left adjoint. Moreover, this left adjoint is a morphism in G,—mod (where a priori, it is
lax). Passing to (N,, ¥ )-invariants, we see that the functor:

Hy, .4 ® eNn¥ _, eNnY
admits a left adjoint that is a morphism of Hy;, y-module categories (for Hy, , as in Corollary
3.4.2).
By the above remarks and [Gai6] Corollary C.2.3, the morphism:

D(Gn)Nn’iw ® ehmv D(Gn)Nn77w ® @Nns¥
Hvp,p

admits a monadic (discontinuous!) right adjoint. By Corollary 3.4.2, the right hand side maps
isomorphically onto C.4.

Let conv : D(G,)N»~% @ @¥»¥ — € denote the convolution functor, let conv? denote its
(discontinuous!) right adjoint, and let T = conv o conv’ : € — € denote the corresponding monad.
Clearly conv factors through C,.4, and conv’to J«,dr is the right adjoint to the corresponding functor
D(Gp)Nm¥ @ CNn¥ — €,y

Therefore, the monadic conclusion above shows that for any F € C,cq j*édR C, the geometric
realization |T*(F)| € € maps isomorphically onto F.

We now specialize to the case € = D(G,,) and F = §;°9. Note that ;Y is holonomic in D(G,,)
and therefore compact. Therefore, as:

519 = |T*(87°9)| = coLim |T°(67)|<r

(for | — |<, the usual partial geometric realization, i.e., the colimit over AZ)), we obtain that 6;“
is a direct summand of |7*(6;Y)|<, for some r.

We conclude in noting that 7' is left t-exact up to shift as conv is both left and right t-exact up
to shift. Any object of D(G,)N» =% ® D(Gp)VN¥ = D(G, x Gp)Ne*Nn(=¥:%) hounded cohomolog-
ically bounded from below lies in the full subcategory generated by the image of D(G,,)VNm =%+ x
D(G,)Nm¥+ | so we obtain the claim.

O
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We obtain the following result, which is a sort of effective version of Theorem 3.4.1.

Corollary 4.7.2. Suppose that n = 2 and C € Gy,-mod. Then for any F € Cpey, F lies in the full
subcategory of C generated under finite colimits and direct summands by the essential image of the
convolution functor:

D(Gp)Nm ¥ @ eln? — e
Moreover, if C has a t-structure compatible with the action of G, on it, and if F € Cpeg N CT,
then F lies in the full subcategory of C generated under finite colimits and direct summands by the
essential tmage of the convolution functor:

D(G)V 0 x @t D(G) VT @ @V s )

Proof. Suppose G1 € D(G,)N»~%+ and Gy € D(G,,)N»%*, with conventions for the actions as in
Lemma 4.7.1. Then Gy xF € C?N”’w, S0 G1 * Go » F € C lies in the essential image of the convolution
functor.

Moreover, in the presence of a t-structure on € as in the second part of the assertion, Go * F €
CNn:+ and Gy «Gox F € CF lies in the essential image of the functor considered in the second part.

Now we obtain the result by Lemma 4.7.1.
O

Corollary 4.7.3. For any C € G,—mod, the functor Av;ﬁ’_lb : C — D(Gp)N¥ ® € restricts to a
conservative functor on Ceq.

Proof. Let F € C¢y, and assume F is non-zero. We need to show that Av, ’_w(ff) # 0.

By Corollary 4.7.2, there exists G € D(G,)V»¥ with G+ F # 0 in €N»¥. As D(G,)V"¥ is
compactly generated, we may assume that G is compact.

Note that D(G),)V"¥ is canonically dual as a DG category to D(G,,)N» =¥, Let DG : D(Gp,)VN % —
Vect denote the functor dual to the compact object G (explicitly, this functor is given as Hom out
of the Verdier dual to §).

Then the convolution §* F may be calculated by forming AvY ™% (F) € D(G,,)VN»% @ €¥n¥ and
then applying DG ® iden,.s. In particular, we deduce that AvY ™% (F) is non-zero. As AvL ™Y ()

coincides with Av}p’_w(ff) up to shift, we obtain the claim.

O

5. MOST PG Ly-REPRESENTATIONS ARE GENERIC

5.1.  'We now prove the following result.
Theorem 5.1.1. Let G = PGLy and let € be acted on by G(K) with level k. Then € is generated
under the action of G(K) by Whit(€) and €1 where I = G(K) is the radical of the Iwahori subgroup.

That is, any subcategory of © that is closed under colimits, contains Whit(C) and Gi, and is closed
under the G(K) action is C itself.

Remark 5.1.2. This result is reminiscent of the existence of Whittaker models for those irreducible
smooth representations of GLsy over a locally compact non-Archimedean field with non-trivial re-
striction to SLs. )

However, in Theorem 5.1.1, I cannot!'® be replaced by G(K): this can be seen by applying
Bezrukavnikov’s theory [Bez| to local systems with non-trivial unipotent monodromy (c.f. with

16However, I can be strengthened somewhat: one can take invariants with respect to the Iwahori subgroup of
SL2(K), i.e., the canonical degree 2 cover of Iwahori.
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the ideas of [AG1] in the spherical setting). Note that such local systems are outside the scope of
arithmetic Langlands because they are not semisimple.

5.2. Review of adolescent Whittaker theory. We prove Theorem 5.1.1 using the theory of
[Rasb] §2. For convenience, we review this here.

Let G be an adjoint!” group and let € € G(K)-mod, be acted on by G(K) with some level . We
use the notation of §3. Let K,, € G(O) € G(K) denote the nth congruence subgroup and observe
that G,, acts on CKn,

For n > 0, define WhitS"(€) := (CK»)Nn:¥ There is a natural functor Whit<"*1(€) — Whit<"(€):

F > AVER (< (1) » )
and which is denoted L;%n 41 in loc. cit.

Theorem 5.2.1 ([Rasb] Theorem 2.7.1). The functor L;%nﬂ admits a left adjoint iy pi1). This left
adjoint is given by convolution with some D-module on G(K).
Moreover, there is a natural equivalence:

colim Whit<"(€) => Whit(€) € DGCat on.

Nylp,n+1,!
The structural functors WhitS™(C) — Whit(€) are left adjoint to the natural functors Avin (O ey *
—) : Whit(€) — WhitS™(C). In particular, every object F € Whit(€) is canonically a colimit (in C)
of objects Fy, with d5ny * F € Whit<"(C).

5.3. Proof of Theorem 5.1.1. We can now prove the main theorem of this section. Below,
G = PGLs. )

Let @' < € be a G(K)-subcategory containing Whit(C) and €/, and we wish to show that €’ = €.

Recall that @ = colim,, %" € DGCatons. Therefore, it suffices to show that € contains €&~ for
all n > 1. We do this by induction on n.

In the base case n = 1, recall that for any D acted on by'® G, D is the minimal cocomplete
subcategory of itself closed under the G-action and containing D*V: indeed, this follows from the
main theorem of [BZGO].!Y Applying this to D = €51, we find that €1 can be generated from €!
using the action of G < G(K).

Now suppose the claim is true for n, and let us show it for n 4+ 1. Note that n + 1 > 2, so we
may apply the methods of §3 to C%»+1 with its canonical G, 1-action. In the notation of loc. cit.,
we have adjoint functors:

j! : GKnJrl = (GK7L+1)reg :j*,dR-
Note that (€Kn+1),., < € by Corollary 3.7.2, as Whit<"*1(€) = (CKn+1)Nn+1.¥ < @/ by hypothesis
on €’ (and Theorem 5.2.1).
Therefore, it suffices to show that Ker(j') € €. Then we observe that g,., = g\0 for g = sls, so
(in the notation of §3.3), Ker(j') = C&n+1]y = @%X» as we have the short exact sequence:

1 ->9g®Gy — Kpy1 — Ky — 1

1TThis is only for the convenience of using the action of p(t) € G(K) on C. In fact, [Ras5] uses different indexing
conventions than we use here, and which are better adapted to a general reductive group.

18Finite-dimensionad7 and here arbitrary reductive is fine.

190r it follows from usual Beilinson-Bernstein localization theory: by reduction to the case D = D(G), one finds
that D" is a colocalization of (D™)™"* and then use conservativeness of weak invariants ([Gai6] Theorem 2.2.2).
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But €%~ < @ by induction.

Remark 5.3.1. The above is the descent method discussed in the introduction. As this argument
plays a key role in the paper, we reiterate the idea: with notation as above, for € € G(K)-mod,,
Ker(AvEn : @Xnt1 — @En) is the category (CKn+1),., understood in the sense of §3.3 for the
corresponding Gy,+1-action. By Theorem 3.4.1 and Theorem 5.2.1, this kernel may therefore be
functorially described in terms of the Whittaker model for C.

One can then try to verify some property of objects of € as follows:

(1) Reduce to showing the property for objects in C%» for some n.

(2) Use the Whittaker model and the above observations to inductively reduce to the n = 1
case. .

(3) Use [BZGO] to reduce the n = 1 case to a property of objects in €.

6. KAC-MOODY MODULES WITH CENTRAL CHARACTER

6.1. In this section, we study categories of critical level Kac-Moody representations with central
character restrictions. We refer back to §1.9 for a review of standard notation at critical level.
First, for reductive G and any n > 0, we will introduce a certain category:

gcrit*mOdordn,naz’ve € DGCateont

with a critical level G(K)-action.

In the above, the subscript ord,, indicates that we look at g..;-modules on which the center 3
acts through a certain standard quotient 3 — 3,, and in a suitable derived sense. Equivalently,
under Feigin-Frenkel, these can be thought of as representations scheme-theoretically supported on
Opén < Opg, where Opé" are opers with singularity of order < n, c.f. [BD1] §3.8 or [FG2] §1.

For n = 0, 30 = 3. Here the central character condition is the regularity assumption from §1.10,
so we use the notation reg in place of ordy.

In the spirit of [Ras6], the subscript naive indicates that this is not the best derived category to
consider. For instance, ﬁcm-tfmodordn’mwe is not compactly generated. And for n = 0, the analogue
of Conjecture 1.11.1 fails for it.

Following [FG4] §23, we introduce a somewhat better renormalized category gerit—modorq,, - This
category will have a forgetful functor:

gcm’t*mOdordn - gcritmedordn ,naive

that is t-exact for suitable t-structures and an equivalence on eventually coconnective subcategories.

However, this renormalization procedure is somewhat subtle, and there are many basic questions
about gerit—modeyq, that I do not know how to answer. For instance, I cannot generally show that
there is a G(K)-action on geri—modeyq, compatible with the forgetful functor above. We refer to
§6.10 for further discussion.

The material of this section is technical. Proposition 6.6.1 and Lemma 6.9.3 are the key points.
After understanding the statements of these results, the reader should be equipped to move on to
future sections.

Finally, we highlight that the material of this section relies on [Ras6] §11 and extends the material
from loc. cit.

6.2. Notation at critical level. As in [Ras6] §11, we use the following notation. We refer to
[FG2] §1 for background on opers.
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First, Opg denotes the indscheme of G-opers on the punctured disc. We let Opgn < Opg denote
the subscheme of opers with singularities of order < n.
We remind that Opé” is affine for every n; we let 3,, denote the corresponding algebra of functions,

SO Opén = Spec(3,,). We remind that 3, is a polynomial algebra in infinitely many variables.

!

We let 3 denote the commutative ®-algebra lim, 3, € ProVect”, the limit being taken in
ProVect”; we refer to [Ras6] for the terminology on topological algebras used here. We remark
that Ops = Spf(3).

By Feigin-Frenkel (see [FF] and [BD1] §3), 3 naturally identifies with U(g¢yit), the twisted topo-
logical enveloping algebra of erit-

We let Vg == indf,‘;;if[t]](k) € Geri—mod”.

6.3. Naive categories. We begin with some preliminary notations.
First, if A € CoAlg(DGCatcypnt) and M (resp. N) is a right (resp. left) comodule for A, we let:

A
M® N e DGCateont

denote the cotensor product of these comodules. By definition, this means we regard A as an algebra
in the opposite category DGCat.? , and form the usual tensor product there. This cotensor product
may be calculated as a totalization in DGCatcop:

MEN = Tot (M@N:;M@A@Ng’...).

Next, for S a reasonable indscheme in the sense of [Ras6] §6, recall that we have the compactly
generated DG category IndCoh*(S) € DGCat,ypt. This construction is covariantly functorial in S. In
particular, if S is a reasonable indscheme that is strict,>® IndCoh*(S) is canonically a cocommutative
coalgebra in DGCat,opt.

6.4. Note that Ops is a strict, reasonable indscheme. By [Ras6] Theorem 11.18.1, gerie—mod €
G(K)-modc; is canonically an IndCoh™(Opx)-comodule (in G(K)-modc ).
For n > 0, define:

N . - IndCoh*(Opg)
gcrit_mOdordn,naive := IndCoh (Opén) ® gcrit_mOd € G(K)_mOdcrit-

Let ,, denote the embedding Opén — Opg. We abuse notation in letting iy, x : ﬁmrmodordmnawe —
N IndCoh*(Op)
gcrit—mod denote the functor z",ﬂi“h ® idg, ., mod- By [Ras6] Lemma 6.17.1-2, this functor
IndCoh* (Op)

admits a continuous right adjoint ., ® idg,, ,;-mod, Which we also denote i, Note that (.

and 4}, are (by construction) morphisms of IndCoh*(Opz)-module categories.
Similarly, for m > n, we have a natural adjunction:

. ~ ~ K]
Inm,* - gcritmedordn,nawe - gcritmedordm,nawe “lnm

*
n,m

is a finitely presented

with ip s« = %% © inmx. Note that i, ,,+ actually admits a left adjoint ¢
adjoint; this follows because the closed embedding iy, : Opé" — Opém
regular embedding.

as well as a right

208ee loc. cit. for the definition. The relevance here is that this condition implies e.g. that the natural functor
IndCoh*(S) ® IndCoh*(S) — IndCoh*(S x ) is an equivalence.
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Remark 6.4.1. For a reasonable indscheme S, we let IndCoh'(S) denote the dual DG category to
IndCoh*(S); this construction is contravariantly functorial in S. For strict S, IndCoh'(S) is therefore
a symmetric monoidal category.

In these terms, we can reformulate the above definition (to use monoidal categories instead of
“comonoidal” categories):

Gcrit—mModord,, naive = H0m|ndCoh!(opG),mod(|ndC0h!(Opén),@mrmOd)-

6.5. We record what symmetries the above construction provides.

As indicated above, there is an evident critical level G(K )-action on §erit—modord,, naive-

Moreover, gerit—mModord,, naive is an IndCoh* (Opé")—comodule category, or equivalently, an IndCoh' (Opé")—
module category. Because Opgn is the spectrum of a polynomial algebra (on infinitely many gener-

ators), the natural symmetric monoidal functor QCoh(Opé") — IndCoh!(OpE”) is an equivalence.
Therefore, we may as well regard §erit—mModord,, naive 8 equipped with a QCoh(Opé")-action com-
muting with the critical level G(K)-action.
In our notation, we regard G(K) as acting on the left on gerit—modord,, naive by convolution —*—,
and we regard QCoh(Opé") as acting on the right by an action functor:
— ® —

Op%n

~ < ~
gcritmedordn,naive ® QCOh (Opén) gcritmedordn ,naive-

6.6. The following result summarizes the basic properties of the above construction.

Proposition 6.6.1. (1) The functor iy s : Berit—MO0dord, naive — Gerit—mod is comonadic, and in
particular, conservative.
(2) Berit—modord,, naive admits a unique t-structure for which iy s is t-exact.
(8) The natural map:

. . g
CT():‘)7/1>1£LI1 bnminm,x > Inln s

s an isomorphism.
(4) The natural functor:

C(.)hm Gerit 7m0dordn,naive - gcritmed € DGcatcont
nzzn,m,*

s an equivalence.

Proof. Let A® = colim, A", i.e., the ind-finite type indscheme version of infinite-dimensional affine
space. Using standard choices of coordinates on Op, one find an isomorphism Opg = Opgn x A%
so that the diagram:

commutes.
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We then have:?!

R IndCoh* (A%) -
Homlndcohg(Am)fmod (Vect, gerig—mod) = Vect ® Gerit-mod — GeritMOdord,, naive € G(K)-modepit.

Take A = IndCoh!(Aoo) as a monoidal category. Note that the monoidal product:

! ~ !
~®—: A®A > IndCoh' (A% x A®) 25 IndCoh!(A%) = A
admits a left adjoint AP that is a morphism of A-bimodule categories (by the projection
formula). It is easy to see in this setting that for any A-module category M, the action functor:

act : AQM —- M

admits a continuous left adjoint act’ that is a morphism of A-module categories, where the left
hand side is regarded as an A-module via the action on the first factor. It follows that for any pair
of A-module categories M, N, the cosimplicial category:

HomDGcatcom (M, N) =3 HomDGcatcont (.A ® M, N) 3 ...
satisfies the comonadic Beck-Chevalley conditions.?? Applying this for M = Vect and N' = §eriy—mod,
we obtain (1).
Next, we show (4). We calculate:

COhIIl gcritmedordn,nai’Ue = h'Hl gcritmedordn,naive =
MNyin,m, % Nyl m
- IndCoh*(Op) R
lim (IndCoh*(Opan) ® gmrmod) _
n

lim Tot (IndCoh*(Opé") ® IndCoh*(Op=)®* ®§mrmod> =
Tot hm(lndcoh*(opgn) ® IndCoh* (Op)®* ® ﬁm-t—mod) il
Tot ((nm IndCoh*(Op5")) ® IndCoh* (Op¢;)®* ® Geriemod) =

Tot (IndCoh*(Opé)) ® IndCoh*(Op)®* ®ﬁm-rmod) =
IndCoh* (Op)
IndCoh*(Op) ® gerit—mod = geris—mod

as desired; here the only non-trivial manipulations are the first, which expresses that a colimit
in DGCatgy,: under left adjoints is canonically isomorphic to the limit under right adjoints, and
the one labeled x, where the limit past tensor products is justified because we are tensoring with
compactly generated, hence dualizable, DG categories.

We deduce (3) immediately from (4) and [Gai4] Lemma 1.3.6.

It remains to show (2). Given (1), a standard argument reduces us to checking that i, 4., is left
t-exact.

By the above Beck-Chevalley analysis, zn*z; may be calculated by applying the composition:

210f course, IndCoh'(A®) and IndCoh* (A%) coincide with usual IndCoh as A% is locally of finite type. We include
the notation to clarify whether this category is being viewed as an algebra or coalgebra in DGCatcont-

22800 [Lur2] §4.7.6 or [Gai6] §C for background on the Beck-Chevalley theory; our terminology here is taken from
the latter source. We especially note [Gai6] Lemma C.2.2, which is essentially dual to the present assertion.
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coact mipdCoh®id
= 5

gerit—mod —— IndCoh*(Opg) ® Gerit—mod IndCoh™ (A*) ® gerit—mod

and then applying the right adjoint to this composition; here 7 : Ops — A® denotes the projection.
It suffices to show the composition is t-exact (for the tensor product t-structure on the right hand
side); we will show each of the functors appearing here is t-exact. The functor coact is t-exact by
[Ras6] Lemma 11.13.1. Then mindCoh is t_exact because  is affine, and similarly for 7!"ch @ id by
[Ras5] Lemma B.6.2.

O
6.7. We continue our study of gerit—modord,, naive-

Lemma 6.7.1. Suppose F € Gerit—mod”. Then the adjunction map HO(ip 410 (F)) > F e Gerit—mod”
is @ monomorphism with image the mazximal submodule of F on which 3 acts through 3y,.

enh
Proof. The forgetful functor g..;;—mod — Vect admits a unique lift g,;;—mod OBV, |ndCoh* (Ope)

3-modyen 2% Vect with Oblve™ a morphism of IndCoh*(Op)-comodule categories. By [Ras6]

Lemma 11.13.1, Oblv®™ is t-exact, and on the hearts of the t-structure corresponds to restriction
of modules along the homomorphism 3 < U(g¢rit)-

As Oblv*™ is a map of IndCoh*(Ops)-comodule categories, it intertwines zn*z'n with the similar
functor on IndCoh*(Opg). It is clear that H? of that functor extracts the maximal submodule on
which 3 acts through 3,,, giving the claim.

O

Corollary 6.7.2. The map ﬁcrit—modgdn naive ’g\m-t—modv is fully faithful. Its essential image is

the full subcategory of the target consisting of modules on which 3 acts through 3.
Proof. Immediate from Lemma 6.7.1 and Proposition 6.6.1 (1).

6.8. We use the notation:

P = liéantm € Pro(ﬁcrit—modo) < Pro(@erit)-

Here the limit is over the natural structure maps Verit m+1 — Verit,m, and we emphasize that the
limit occurs in the pro-category (or rather, in either pro-category). We remark that the pro-object
P corepresents the forgetful functor Oblv : g..;—mod — Vect: this is clear of its restriction to
gerit—mod ™, and then the claim follows generally as the objects Verit,m are compact in Gerit—mod.

Clearly Oblv(?P) € Pro(Vect?) is U(@erit); its C;)—algebra structure may be seen using [Ras6] Propo-
sition 3.7.1.

For m > 0, let Vo, m € Gerit—mod.”

ord, ,naive

~ V) ~ 0 .

gcmtimOdordn,naive < gcrz‘tmed , 1.€., Vordn,m = Vcrit,m/ln-
Define:

denote the minimal quotient of V. », lying in

T ~ Q ~
ipordn = hrgn Vordn,m € Pro(gcritmedordmnawe) = Pro(gcritmedordn,naive)

to be the corresponding pro-object; we again emphasize that the displayed limit occurs in the
pro-category.
There is an evident canonical morphism:

P = ipsPora, € Pro(ﬁm-rmodv) < Pro(@erit)-
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+

ode maive): Pord, corepresents the composition.:
oy

Lemma 6.8.1. As an object of Pro(gerit—mod
+ nk o~ Oblv
ord, ,naive > Gerit ~modt —- Vect.

+
ordy, ,naive’

gerit—mod

More precisely, for F € gerit—mod the composite map:

. . —om
I—IO—mPfo(acm’t*mOdordn,naive) (fPordn s &r) - HO_mPro(gm.t ~mod) (Zn,*ipordna ln,*g:) >

I—IoimPro(ﬁcritfmod) (?7 Zn,*?) = Oblv(zn,*?)

s an isomorphism.

Proof.

=0
ordy, ,naive
=—r

Then we claim that for any r > 0, § is compact as an object of the category fjcrifmodordn naive”
Indeed, this is standard from Proposition 6.6.1 (1)-(2): see the proof of [Ras6] Lemma 6.11.2.

+
ord,, ,naive’

Step 1. First, suppose G € gerii—mod has the property that 4, .5 is compact in gerir—mod.

Step 2. Suppose G as above, and let F € g.;;—mod Then we claim that the natural map:

CT(r)LgIT? Hom’ﬁCMt*mOdordm,naive (vamv* 9’ Zn:m:*gj) - I—Io—mﬁcrit*mOd (Zn7* 9’ /Ln’*?) (68 1)
is an isomorphism.
Indeed, we have:
colim Homﬁmrmodordm,nam (tn,m, %G, inmF) =

mzn
. .1 . Step 1
CWQL];I%] —Hom/g\critmedordn,naive ( ) Zn,mzn,m,*?) -

Prop. 6.6.1 (3)

. .
Hom/g\c'r‘itfmc’dordn,naive (97 Cr(?lell’;’Ln 2n7mzn,m,*?)

K . .
Hom; 9, Zﬁzn,*?) = I—Io_maw“fmod (Zn,*ga 'Ln,*gj)-

gcrit*mOdordn ,naive (

We remark that if F is in cohomological degrees > —r, then each ’L'nmlnm*(f_f) is as well (because
the functors iy, ,, » are t-exact); this justifies the reference to Step 1. We also note that the composite
identification here is easily seen to be given by the map considered above.

Step 3. Next, recall the functors iy, ,, from §6.4. We claim that i, ,, (Verit,m) = Vord,,m- Clearly the
right hand side is the top (= degree 0) cohomology of the left hand side, so this amounts to arguing
that the lower cohomology groups vanish.

As in the argument for Lemma 6.7.1, we have a commutative diagram:%>

ifm
gcrit_mOdordm,naive > gcrit_mOdordn,naive

L |

n,m

IndCoh*(Opgm) —————> IndCoh* (Opén).

23To be explicit, we remind that by the definition from [Ras6] §6, IndCoh*(Opg") is Ind(Coh(Opg")). As Ops"
is the spectrum of a (infinitely generated) polynomial algebra, Coh(Opg”) = Perf(Opé"). Therefore, IndCoh™® in the
bottom row may be replaced by the more familiar QCoh. The functor 4% ,, in that bottom row is then the standard

pullback functor.
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enh

(from the proof
) ] ) ) . S . <n IndCoh*(Ope)
of Lemma 6.7.1) and the evident identification IndCoh™(Opg") = IndCoh™(Op3")

IndCoh*(Op), and similarly for m. These vertical arrows are t-exact and conservative on bounded

below subcategories as this is true for Oblve™”.
The functor iy ,, : Gcrit—mMOdord,, naive — Gerit—MOdord,, naive 1S easily?* seen to be left t-exact

up to shift. Therefore, it suffices to see that the underlying object of IndCoh*(Opén) defined by
i;’fbm(ch,m) lies in cohomological degree 0.

The vertical arrows are the natural restriction maps, and arise from Oblv

This follows from the commutativity of the above diagram and the fact that V.. mm € IndCoh*(OpS™)

G
defines a flat sheaf by [FG2] Lemma 7.2.2 (which is based on [EF]).

Step 4. We now deduce the claim.

In what follows, we consider V., as an object of ﬁmfmodQQ

ordy,,naive’ Ve let im,*chﬁm denote
the corresponding object of Ferir—mod” .

T + .
For F € gerit modordmnaive, we calculate:

Step 3

I—Io_mPro(acTit*mOdordn,naive) (CPOI‘dn ’ 3') = C%l}lI’gl I—Io—macr‘itmedordn,nu.ive (Vordnvm’ 3()

ch’tma EF) = colim Homj (ch't,ma in,m,*gj) =

COhm Hom m=n gcTit*mOdordm,naive

-3k
m>=n gc'rit*mOdordn,naive (/Ln’m
Step 2

CT21>1I7{1 CTC.)>11,’£LH —Hom/g\critmedordr,naive (Zm,T,*VCTit,ma ’Ln’r’*g:)

CT(T)LI>H7{1 Homﬁu»irmOd (im,*Vcrit,ma in,*?) = —HomPro(ﬁm.irmod) (?7 im*f}?)

as desired.
O

In what follows, we let Oblv : §erit—mO0dord,, naive — Vect denote the forgetful functor considered
above, i.e., Oblv i, .

+

ordy, naive 1s the bounded below derived

Corollary 6.8.2. The (non-cocomplete) DG category gerit—mod
category of its heart.

Proof. Note that U(gerit)ord, = Oblv(Pora,) € Pro(Vecto) by construction. Therefore, the result
follows from [Ras6] Proposition 3.7.1.
O

~ +
It follows that ge.+—mod ord,, naive

Frenkel-Gaitsgory, e.g. in [FG2] §23.

identifies with the similar category considered in the works of

24For one, it is (non-canonically) isomorphic to z'nm up to shift. Alternatively, in,m,+i% . is calculated as the
composition:

~ coact * <m ~ Zn‘mﬁ*ln,m®‘d
gcritmedordm,naive —— IndCoh (Opé )®gcrit7m0dordm,naive e

FIndCoh(opém’7)®id

~

* m -~
|ndC0h (OPG“ )@gcritfmc’dordm,naive gc'ritmedordm,naive

giving the claim by considering the standard finite Koszul filtration on the endofunctor in,m,« iy m of IndCoh*(Opg™).
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6.9. Renormalization. We now introduce a renormalized version of the above categories following
[FG4] §23.
Define ﬁm-tfmodgrdn C Gerit—mOodord,, naive as the full subcategory of objects F such that 4, «(F)

is compact in geri—mod. By Proposition 6.6.1 and the similar fact for geri—mod, gerie—mody <

+

g07'1'1‘/7moclordn ,naive’

Ezample 6.9.1. For m > n, Koszul resolutions for the finitely presented regular embedding Opé” —
Opém imply that the functors lem and iy ,, map Gerig-modg g t0 Gerip—modg g .

Ezample 6.9.2. The objects Vq.q, m lie in ﬁmrmodgrdn. Indeed, for 0 < m < n, in«Vord,m =
Verit,m, clearly giving the claim in this case. In general, for m > n, we have iy, Verit m = Vord, m
as in Step 3 from the proof of Lemma 6.8.1, clearly giving the claim.

<0

Define gepit-modord, = Ind(Gerie—mods,y ). Define a t-structure on geris—moderq,, by taking geri—mods, d,

<0
ordn,naive”

We have a canonical functor p : gerit—modera, — ﬁcmfmodordmmwez this is the unique continuous
functor with p|§mrmod§rd" the canonical embedding.

to be generated under colimits by objects in geri—modS.q N Feris—mod

Lemma 6.9.3 (C.f. [FG4] §23.2.2). The functor p is t-ezact and induces an equivalence on eventually
coconnective subcategories.

Proof.

Step 1. We collect some observations we will need later.

Note that for any m, Vg, m € ﬁcritfmodgrdn C Gerit—modgrq,, lies in the heart of the t-structure;
indeed, it is connective by definition, and it is clear that any object in ﬁm-tfmodgrdn that is cocon-
nective in gerit—mModord,, naive 1 also coconnective in gerir—modoyd,, -

In addition, the canonical map Vi, m+1 — Vord,,m is an epimorphism in ﬁc,,itfmod?rdn. Indeed,
it suffices to show that the (homotopy) kernel of this map is in cohomological degree 0, and the

above logic applies just as well to see this.

Step 2. Define Oblv : gerit—modyrq, — Vect as Oblv op. We claim that Oblv |ﬁ

vative and t-exact.

Suppose J € ﬁmrmodi%n with Oblv(F) = 0; it suffices to show that H°(F) = 0. To this
end, it suffices to show that any morphism 1 : § — F is nullhomotopic for a connective object
9 € ﬁcm»tfmodgrdn.

Note that the top cohomology group H%(§) is finitely generated as a module over U (§erit), say
by vi,...,ony € H"(G). By Lemma 6.8.1, for each i = 1,..., N we can find m; » 0 and a map
o : Vord, m; — 9 such that H Y(;) maps the vacuum vector in Vord,,,m; t0 v;.

Let o : @Y, Vord, m; — G be the induced map; « is surjective on H° by design, so Coker(a) is in
cohomological degrees < —1. It follows that § — JF is nullhomotopic if and only if its composition
with o is. Therefore, it suffices to show that any map V.q,, ,» — J is nullhomotopic.

The map:

1S conser-
crit*mOd;dn

HO (Hom’\cntimodordn (Vordnﬂn? ?)) = Hom

8 (Vord,m, H*(F)) —

acritmedgrdn
(Vordn,m+17 HO (S'r)) = HO (Homﬁ
is injective by Step 1. But we have:

Hom (Vord, m+1s CT")) € Vect”

~ v -
gc”'tfmodordn crit mOdordn

colim Homﬁ
m

(Vord,,m,F) = Oblv(F) =0

crit*mOdordn
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by Lemma 6.8.1 (and compactness of V4, ), giving the claim.

Step 3. We now show t-exactness of p. Right t-exactness follows immediately from the construction,

so we show left t-exactness.
Let m > n be fixed. It what follows, we regard Vs m as an object of geris—modG,q S Gerit-MOdord,, naive-
As r = m varies, we have natural maps:

% . - % ~ c
. Zn,r+12m,r+1,*<Vcrit,m) - 'anlm,r,*vcrit,m — ... mevcm't,m € gcrit*mOdordn-

We claim that for F € gerie—modorq,, , the natural map:

COEHI I—Io—mﬁcrit*mOdordn (i;klyrim,T,*VCTit,mv 3:) - @@Cnrmod (Vcrit,ma Zn,*p(‘?)) (691)
is an isomorphism. Indeed, both sides commute with colimits in & by compactness, so we are
reduced to the case where F € ﬁcrirmodgrdn. For such ¥, the claim follows from (6.8.1).

Now suppose that F € ﬁmrmodi%n. As each object Z';'fmim,r,*ch,m is connective in ﬁmt*mOdordn,
(6.9.1) implies that Homg .. mod (Veritm, in«p(F)) € Vect®?. As the objects Verit,m generate geri—mod
under colimits, this implies that i, »p(F) lies in ﬁcritfmodw, i.e., ipxp is left t-exact.

Finally, as i, « is t-exact and conservative by Proposition 6.6.1, p itself must be left t-exact.

Step 4. Finally, we show that p induces an equivalence on eventually coconnective subcategories.
By t-exactness of p, we have a commutative diagram:

P +

ordy ,naive

~ + ~
gcm't*mOdordn gerit—mod

~

Vect™
with the diagonal arrows being the forgetful functors. Each of these functors is conservative.
Moreover, the forgetful functor geri—modggd, — Vect is corepresented by the pro-object:

llygl Vordn,m € Pro(gcritmedgrdn) < Pro(gcritmedordn)

Indeed, this follows immediately from Lemma 6.8.1 and compactness of V4, m € Gerit—modord,, -

Applying Lemma 6.8.1 again, we see that p : ﬁcritfmod;dn — Gerit—mod A, naive

pro-left adjoints to the forgetful functors in the above diagram. Therefore, it induces an equivalence

intertwines the

on the corresponding (;))—algebras, so we obtain the claim from [Ras6] Proposition 3.7.1.
O

Remark 6.9.4. Unlike g..;+—mod, we are not aware of an explicit description of compact generators of
’gfcritfmodordn. For instance, does ’@jmrmodordn admit compact generators that admit weakly G(O)-
equivariant structures? Does it admit compact generators lying in ﬁcmfmod?rdn? (For G = PGLy
and n = 0, the answer to both questions is yes by Theorem 7.14.1.)

This general issue is closely related to the technical problems highlighted in §6.10.

6.10. Equivariant renormalization. We now highlight a technical problem: there is not an ev-
ident critical level G(K)-action on gerit~modyrq, - (Similarly, we cannot construct a weak G(K)-
action in the sense of [Ras6].)

Conjecture 6.10.1. For any F € D* .(G(K)) compact, define a functor:

crit

XF * Berit *mOdordn — Yerit 7m0dordn
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C

ord, 8 calculated as the composition:

whose restriction to geri—mod

o + T o
- Herit 7m0dordn,naive Herit mOd

+
ordy, ,naive

+
ordy,

c

ordp, S Yerit 7m0dordn .

gerit—mod ~ gerit—mod

Then we conjecture that x5 is left t-exact up to shift.

Remark 6.10.1. Assuming Conjecture 6.10.1 if K is prounipotent, say, then we obtain ﬁm-rmodgdn c

Gerit—Modorq, as the essential image of X5y - Without assuming the conjecture, we are not otherwise

aware of a good definition of 'g\cmfmodgdn.

Remark 6.10.2. In the language of [Ras6] §4.4, the above conjecture asserts that the functor Fx — :
@crit*mOdordn,naive - @critmedordn,naive renormalizes.

Remark 6.10.3. Suppose Conjecture 6.10.1 holds for a reductive group G and an integer n > 0.
Then there exists a unique critical level G(K)-action on gerit—modeg, such that:

e The functor p upgrades to a morphism of categories with critical level G(K)-actions.
e The (critical level) G(K)-action on gepit—moderg,, is strongly compatible with the ¢-structure
in the sense of [Ras6] §10.12.

Indeed, this is essentially immediate from [Ras6] Lemma 8.16.4.

Remark 6.10.4. The technical issue associated with the above conjecture appears implicitly in
[FG4].

In §4.1.4 of loc. cit., Frenkel and Gaitsgory suggest a definition of ﬁmrmodgdn (adapted to
their particular setting). But their definition is not clearly a good one: for example, it is not clear
that their category carries the expected Hecke symmetries. This issue is discussed somewhat in the
remark in that same section. Related to that discussion, Main Theorem 2 from loc. cit. in effect
verifies the above conjecture in a special case.

Combined with our proof of Theorem 6.10.5, it may be fair to expect verifying Conjecture 6.10.1
in a given instance requires substantial input from local geometric Langlands.

As an immediate consequence of our main theorem, Theorem 7.14.1, we may deduce:
Theorem 6.10.5. Suppose G = PG Ly and n = 0. Then Conjecture 6.10.1 holds.

Conversely, if we a priori knew Theorem 6.10.5, then the proof that the functor in Theorem 7.14.1
is an equivalence could be substantially simplified: the proof of Lemma 7.17.1 would be applicable
and would directly give the essential surjectivity of I'#ke (c.f. the outline from §1.17).

7. THE LOCALIZATION THEOREM

7.1.  This section begins our study of the Frenkel-Gaitsgory conjecture.

First, we recall the constructions underlying the Frenkel-Gaitsgory localization conjecture, follow-
ing [FG2]. We include more attention to derived issues than loc. cit., so our discussion distinguishes
between naive and renormalized categories of regular Kac-Moody modules.

We then formulate our main result, Theorem 7.14.1.

Next, we recall the main results of Frenkel-Gaitsgory. We include some details on how to deduce
the corresponding results in the DG framework from the exact results that they showed.

Finally, in §7.17, we formulate three lemmas from which we deduce Theorem 7.14.1. The proofs
of these lemmas occupy the remainder of the section.
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7.2. Regular Kac-Moody representations. In the setting of §6, for n = 0, we prefer the nota-
tion reg to ordg. So we let:

gcritmedreg,naive = gcritmedordo ,naive

gcm't*mOd'reg = gcm’tmedordo

We highlight that the subscript reg is being used in a completely different way than it was in
§3. In the Kac-Moody context, this terminology rather follows [FG1]. (We believe that this point
should not cause confusion in navigating the paper.)

Finally, we let Vi.;; := Vg ¢t denote the critical level vacuum representation.

7.3. Notation regarding geometric Satake. Let H,,, = Dcm‘t(Grg)G(O), considered as a monoidal
category via convolution. Recall that for any C € G(K)-mod.;, there is a canonical action of
Hspn on CG(9) coming from the identifications Hsph = Endg(K)-mod,,s (Derit(Gra)) and eGO) =
Hom¢(x)-mod,,+: (Perit(Gra), €).

In particular, Hpp, acts canonically on Depit(Grg) = Derit(G(K))

Next, recall that there is a canonical monoidal functor Rep(@) — Hgpp. This functor is char-
acterized by the fact that it is t-exact and the monoidal equivalence on abelian categories defined
by [MV1]. As in [GL], this functor is actually more naturally defined when the critical twisting is
included, unlike in [MV1].

We refer to the above functor as the geometric Satake functor and denote it by V' +— Sy.

In what follows, whenever we consider D..;(Grg) as a Rep(G)-module category, it is via this
construction.

crit

G(0).

7.4. The canonical torsor. Let 'Popréeg denote the canonical G-bundle on OpTGveg ; by definition, it

corresponds to the forgetful map OpTGveg — LocSyss(D) = BG.

We obtain a symmetric monoidal functor Rep(G) — QCoh(Opg-eg ). We denote this functor V —
prop’“ .,- Note that for V' e Rep(G)Y finite-dimensional, propmg is a vector bundle on Opgg .
G
reg A

&
Throughout this section, whenever we consider QCoh(Op,,”) as a Rep(G)-module category, it is

via this construction.

7.5. Hecke D-modules. Define DHECke”(Grg) as:

crit

D?rjgkea(GrG) = Derit(Grg) ® QCOh(Opgg).
Rep(G)

Hecke;
crit

(Grg) is canonically a D (G(K)) ® QCoh(Op's?)-module category.

By construction, D, o

Remark 7.5.1. The above may be considered as a variant of the category:
DIk (Grg) == Deir(Grg) ®  Vect
Rep(G)

that is suitably parametrized by regular opers. The category D!Heke(Grg) is the category of Hecke

crit
eigenobjects in D.;+(Grg); its Iwahori equivariant subcategory was studied in detail in [ABB™].
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7.6. There is a natural functor:

ind"kes Dy (Grg) — Dhoe ™ (Grg)

defined as the composition:

Derit(Gr) = Derit(Grg) ® _ Rep(G) = Derir(Gre) ®  QCoh(Opl?) = DI (Grg).
Rep(G3) Rep(CY)

Because because Op~? a = BG is affine, Rep(G) — QCoh(Opreg ) admits a continuous, conserva-

tive, right adjoint that is a morphism of Rep(G)-module categories. By functoriality, the same is
true of ind™e*%: we denote this right adjoint by Oblveckes
In particular, we deduce that Di{;ike’ (Grg) is compactly generated with compact generators of

the form ind"e®s (F) for F € D¢ (Grg) compact.

7.7. The DG category Dgigkeﬁ (Grg) carries a canonical ¢-structure that plays an important role.

We construct the t-structure by setting connective objects to be generated under colimits by
objects of the form indHeCkeé(fr’ ) for F € Depiy(Grg)<V.

By construction, the composition OblvHekes jnqHeckes . D¢vit(Grg) — Derit(Grg) is given by
convolution with a spherical D-module in the heart of the ¢-structure, namely, the object corre-
sponding under Satake to functions on Py,res (considered as an object of Rep(G) in the obvious

G
way). Therefore, by [Gail] (or [FG2| §8.4), this monad is t-exact on Dt (Grg).
One deduces by standard methods that Oblvi®*® and ind"e% are t-exact. In particular, be-

cause Oblve®s ig t-exact, conservative, and G(K)-equivariant, we find that the ¢-structure on
Heckeé
cmt

§10.12.

(Grg) is strongly compatible with the (critical level) G(K)-action in the sense of [Ras6]

7.8. In §7.9-7.12, following Frenkel-Gaitsgory, we will construct canonical global sections functors:

DHQckez (GrG)

crit

Hecke,naive
FHecke

~ JZEPN
gcm't*mOdreg > gcrit*mOdreg,naive

that are our central objects of study.

7.9. The Hecke property of the vacuum representation. The construction of global sections
functors as above is based on the following crucial construction of Beilinson-Drinfeld.

Theorem 7.9.1 (Beilinson-Drinfeld). For th € Gerit modmg < QGerit—MOdreg naive € G(K)-moderit
the vacuum representation and V € Rep(G ) finite-dimensional, the convolution Sy * Ve €

G(0)

Qerit modreg naive li€s in the heart of the t-structure.
Moreover, there is a canonical isomorphism:

/BV 8V *cht —’ cht O® VfP reg € gcmt mOdre(g )@
pe’

ForV,W € Rep(G)" finite-dimensional, the following diagram in Geri modre(go) 24

commutes:

G(0)

< gcmt mOdreg naive



40 SAM RASKIN

Sw Py Bw
8VV * SV * VCT‘it SW * Vcrit @eg V?Opr'eg VCT‘Zt ® W? 're_q @ V? 'reg
O & a OpG O &
Bwev H
Swev * Verit Verit. @ (WV)p req
Opgg Pa

Here the left isomorphism comes from geometric Satake.

We refer to [BD1] §5.5-6 and [Rasl] for proofs and further discussion.

7.10. Let us reformulate the Hecke property more categorically.

For any € € G(K)-modyit, Rep(G) acts on CG(O) via the monoidal functor Rep(@) — Hopp —
CG(O) where the first functor is the geometric Satake functor.

For € = gerit—mO0dreg naive, We also have an action of Rep(G) on Gcrit—MOdreg naive via the (sym-
metric) monoidal functor Rep(G) — QCoh(Opreg ) defined by ﬂ’opgeg. By construction, this action
commutes with the G(K)-action.

G(0)

reg naive is canonically a Rep(é)—bimodule category.

Therefore, ge.;+—mod

Corollary 7.10.1. There is a unique morphism:

A : Rep(G) — Gerit-mod ¢o) ¢ Rep(G)-bimod

reg, naive

of Rep(G)-bimodule categories sending the trivial representation k € Rep(G) to Ve and such that
for any finite-dimensional representation V € Rep(G)Q, the isomorphism:

SV *Vcrit = )\(V® k) = A(k(@ V) = Vcrit ® VTPO reg
Opgeg Pa

is the wsomorphism By of Theorem 7.9.1.

Proof. Suppose H; € Hj are affine algebraic groups with Ho/H; affine, and let € € Rep(Hz)-mod.
Then the functor:

HomRep(Hg)fmod(Rep(Hl)a e) —C

of evaluation on the trivial representation is monadic, with the corresponding monad on € being
given by Fun(Hs/H;) € ComAIg(Rep(Hg))
We apply the above to H; = G dlagonally embedded into Hy = G x G. We then have Fun((G x

G)/G) = Fun(G) € Rep(G x G)¥, where we consider G as equipped with its left and right G-
G(0)

actions. We are trying to show that V.. € @erit— modreg naive admits a unique Fun(é)—module

structure satisfying the stated compatibility. In particular, this structure corresponds to certain
G(0),0

regnaive’ SO there are no homotopical issues.
b

maps in the abelian category ger;—mod

From here, the claim is standard. For example, for V a finite-dimensional representation of G,
we have a map py : V® VY — Fun(G) of G-bimodules. The composition of yy- with the action
map for the Fun(@)—module structure on V..;+ is given by the map:

25This construction extends for Ha/H; quasi-affine as well as long as Fun(Ha/H;) is replaced by the (derived)
global sections T'(Hz/H1, O, /5, )-
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SV *Vcrit @e VﬁP\z) reg
OpG‘ g9 PG

~ 8y *8yv * Vi = Syguy * Verip — Vet

where the first isomorphism is induced by Sy v and the second isomorphism and the last map is
induced by the pairing V®VY — k € Rep(G) (for k the trivial representation). It is straightforward
from Theorem 7.9.1 that this defines an action of Fun(G) as desired.

[l

7.11. Construction of the naive functor. For any € € G(K)-mod., we have a canonical
identification:

HomG(K)fmodcm-t(Dcm't(GrG)a e) = GG(O)

given by evaluation on 7 € Dcm‘t(Grg)G(o). (Explicitly, the functor D..;+(Grg) — € corresponding
to an object F € CG(9) ig given by convolution with F)

For € = ﬁcritfmodreg’mwe and V..; € ﬁcrit*mOdreg,nawe, we denote the corresponding functor
by I"”dCOh(Grg, —) : Derit(Grg) = Gerit—modyeg naive- Note that the composition with the forgetful
functor gerit—modyegnaive — Geri—mod is the usual (IndCoh-)global sections functor by Appendix
A.

Now observe that Derit(Grg) and gerit—modyegnaive are each D . (G(K)) ® Rep(G)-module
categories. We claim that Corollary 7.10.1 naturally upgrades I'"d¢°h(Grq, —) to a morphism of
D . (G(K)) ® Rep(G)-module categories. ]

Indeed, suppose more generally that C is a D* . (G(K)) ® Rep(G)-module category. We then
have:

Hom )«

crit

(G (K))®Rep(é)*m0d(Dcrit(GrG)ﬂ G) = HomRep(G) blmod(Rep(é) HomG(K)—modcm‘t (Dcrit(GrG’)7 (‘3)) =
HomRep(G’)fbimod(Rep(G) )

Therefore, Corollary 7.10.1 has the claimed effect.
Because the action of Rep(G) on Gerit—mModyeg naive comes from an action of QCoh(Opreg ), we
obtain an induced functor:

DI (Grg) = Cm(Grg)R (?G)QCoh(OpTeg) — Gerit—MOyegnaive € Dy (G(K))®QCoh(Op?)-mod.
ep

In what follows, we denote?® this functor by:

FHecke,nawe _ FHecke,nawe(GrG’ _).

7.12. Construction of the renormalized functor. Next, we construct a functor I'Heke valued
In Gerit—MOdyey.
First, we need the following observation.

26 A comment on the notation:
Hecke3

We use Hecke; rather than Hecke in D,
Hecke;
crit

(Grg) to distinguish this category from D% (Grg). But the global

DHecke

sections functor is defined only on D (Grg), not on D5:°(Grg), so we simplify the notation here by omitting

the subscript 3.
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Lemma 7.12.1. Suppose H is a Tate group indschenme, K < H is a polarization (i.e., a compact
open subgroup with H/K ind-proper). Let F € D(H/K) be compact. Then for any C € H-mod, the
functor:

Fx—:CK S0

admits a continuous Tight adjoint.

Proof. Let DF € D(H/K) denote the Verdier dual to &, and let invDF € D(K\H) denote the
pullback along the inversion map. As in [FG2| Proposition 22.10.1, the functor:

invDF « —: @ — K
canonically identifies with the desired right adjoint.
Alternatively, we may write convolution as a composition:

K
DH)YE el - DH)®eC - C
and each of these functors admits a continuous right adjoint (the former because K is a group

scheme, and the latter because H/K is ind-proper). This formally implies the claim.
]

By Lemma 7.12.1, the global sections functor poI'"™<°" (Grg, —) : Depiy(Grg) — Gerit—MOdreg naive

preserves compact objects; indeed, it is given as convolution with V..;; € ﬁcm'tfmode(o), which is
compact.
Therefore, the functor TN (Grg, —) maps Depit(Grg)© to Geris—modS

reg*
From §7.6, we deduce that THeckemaive mapg compact objects in Dgigkeﬁ

We now define:

(Grg) into ’g\cmfmodieg.

Heck Heck Hecke ~
ek = TR (Grg, —) : Doy = Gerit-Modyeq

as the ind-extension of:

I-\Hecke,naive | Hocke; . DHecke:,

(Graye * Perit(Gr))” = Berir-modyg.

D

crit

7.13. By abuse of notation, we let T'"4°"(Grg, —) denote the induced functor I'Hecke o inqtieckes
so we have a commutative diagram:

FIndCoh (GI”G _)
gcritmedreg

Dcrit (GI'G)

p
FIndCOh(Grg,— l
acrit*mOdreg,naive-
(This abuse is mild because of Corollary 7.15.2 below.)
7.14. Main result. We can now state the main theorem of this paper in its precise form.

Theorem 7.14.1. For G of semisimple rank 1, the functor T is g t-ezact equivalence.

In the remainder of this section, we review some general results of Frenkel-Gaitsgory on I'Hecke
and then formulate some intermediate results in this case from which we will deduce Theorem
7.14.1. The proofs of those intermediate results occupy the remainder of the paper.
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7.15. Review of some results of Frenkel-Gaitsgory. The following exactness result was es-
sentially shown in [FG1].

Theorem 7.15.1 ([FG1], Theorem 1.2). The functor:

FIndCOh(Grg, _) _ FHecke,naive dHeckeé

oin : Dcm’t(GrG) — Berit 7m0dreg,naive

15 t-ezact.
There is something to do to properly deduce this from the Frenkel-Gaitsgory result, so we include
a few comments.

Because D.it(Grg) is compactly generated and compact objects are closed under truncations, it

suffices to show that compact objects in D+ (Grg) lying in the heart of the ¢-structure map into

~ Q
gC”timOdreg,naive :

By Proposition 6.6.1, we are reduced to verifying this result after composing with the functor
acritmedreg,naive - acritmed-

By Lemma 9.2.2, for F € D¢t(Grg) compact, '€ (Grg, F) = F * Vit € Gerie-mod is even-
tually coconnective. Therefore, it suffices to show that when considered as an object of Vect,
r'ndCoh(Grq, F) lies in Vect".

Now the result follows from [FG1] Theorem 1.2 and the comparison results of Appendix A.

Corollary 7.15.2. The functor T4 (Grg, —) : Depit(Grg) — Gcrit—mModyeg is t-ezact.

27,28

Proof. For F € Dm't(Grg)Q compact and hence, compact in D (Grg), r'ndCoh(Grq, F) is compact
in ’gjmt*modmg by construction, so lies in ﬁmpmod;g. Therefore, by Theorem 7.15.1, we deduce

that I''ndCeh(Grg, F) € ﬁcrirmod?eg.
Because Dm-t(Grg)O is compactly generated and our t-structures are compatible with filtered
colimits, we obtain the claim.

0

Corollary 7.15.3. The functor T'Hecke . DHeCkeé(Grg) — Gerit—MOdyeq is Tight t-ezact.

crit
Proof. By construction, ng;ke& (Grg)=Y is generated under colimits by objects of the form indeckes (F)

for F € Depit(Grg)<Y. Then pIHecke(indHeckes (7)) — TIndCoh Gy, F) lies in degrees < 0 by Theorem
7.15.1, so T'Hecke(indHeckes (3)) Jies in degrees < 0 and we obtain the claim.
U

2Ty fact, that F'"dc°h(Grg, —) as a functor Derit (Grc)o — Vect coincides with the standard global sections functor
is one of the easier results in Appendix A; it is shown directly in §A.9.

28Formaully7 [FG1] Theorem 1.2 only asserts that the non-derived global sections functor is exact on DCTit(Grg)O,
not exactly that higher cohomology groups vanish. As the argument is missing in the literature, we indicate the
details here.

For any formally smooth Rg-indscheme S of ind-finite type, we claim that if H°T"™h (S —): D(S)¥ — Vect® is
exact, then I (S —): D(S) — Vect is t-exact, and similarly for twisted D-modules.

Indeed, we are reduced to showing that the restriction to D(S)" is t-exact. This category is the bounded below
derived category of its heart by [Ras5] Lemma 5.4.3 and the corresponding assertion for finite type schemes. Therefore,
it suffices to show that ['""°"(S, —) is the derived functor of H°T'""<" (S, —), or equivalently, that T'""°"(S, —) a priori
maps injective objects in D(S)? into Vect®.

Formal smoothness of S implies that ind : IndCoh(S) — D(S) is t-exact, so its t-exact right adjoint Oblv : D(S) —
IndCoh(S) preserves injective objects. Therefore, we are reduced to showing that I'“"(S, —) maps injective objects
in IndCoh(S)? into Vect®.

As S is a classical indscheme by [GR2], an argument along the lines of the proof of [Ras5] Lemma 5.4.3 reduces us to
the corresponding assertion for finite type classical schemes. As IndCoh(S)¥ = QCoh(S)Y with """ corresponding
to I', the assertion here is standard.
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7.16. Fully faithfulness. Next, we review the fully faithfulness of T'Hek¢ which was essentially
shown in [FG2] Theorem 8.7.1. For the sake of completeness, we include the reduction to a calcu-
lation performed in [FG2].

Theorem 7.16.1 (Modified Frenkel-Gaitsgory). For any reductive G, the functor T'Heke s fully
faithful.

This result can be deduced from [FG2] Theorem 8.7.1. As the argument in loc. cit. is quite
involved, we present a simpler one in Appendix B based on the ideas of the current paper (especially
the use of Whittaker categories).

7.17. Intermediate results. We now formulate three results whose proofs we defer to subsequent
sections.

For each of the following results, we assume G has semisimple rank 1; we do not do not know
how to prove any of these lemmas for GLs.

Lemma 7.17.1. Let ac,,itfchTdmg,mm c ﬁmpmodreg,nawe be the full subcategory generated by

~ +
Gerit -mod

reg naive under colimits.

Then the essential image of [Heckenaive 106 4 ’g\cmfmodreg,nawe and generates it under colimits.
Lemma 7.17.2. The functor THecke:naive 4o ¢_opqet,

Lemma 7.17.3. For every K < G(O) a compact open subgroup, the composition:
Heck Heck THecke
D, %(Grg)X — D, % (Grg) —— Berit—Modyeg
1s left t-exact up to shift.

Assuming these results, let us show Theorem 7.14.1.
Proof of Theorem 7.14.1.

Step 1. First, we show that THecke ig ¢-exact.
Hecke;

By Theorem 7.15.1 and the definition of the ¢-structure on D, °(Grg), IHecke is right t-exact.
To see left t-exactness, it suffices to see that for any compact open subgroup K < G(O),

[Hecke| is left t-exact. Indeed, for any J e DHeCke"(Grg), F = colimg Oblv AvE (F),

Heckejy crit

Dcrit (GI‘(;)K
and Oblv Avf is left t-exact by the discussion of §7.7.
By Lemma 7.17.3, FHeCke] is left t-exact up to shift. Because p : ﬁcriﬁmod;’eg —

Heckez’
Dc'r'it (GI‘G)K
ﬁmtfmod;reg naive 18 @ t-exact equivalence, it suffices to see that p o I‘HECke\ DRk (G K is left t-
) crit G
exact. But this is immediate from Lemma 7.17.2.
Step 2. By Theorem 7.16.1, it suffices to show that T'Heke i essentially surjective.
First, the composition:
Heck FHecke,naive ~ =0
Dcrezi eé(GrG) gcrit*mOdreg,’naive T gcritfmod?e%,naive (7'17'1)

generates the target under colimits. Indeed, the first functor generates under colimits by Lemma

. . . . ~ . ~ >
7.17.1, and the second functor is essentially surjective because geri—mod;eg naive cOntains geri4—mod ;e[;’n aive
by definition.

29This is a technical distinction. It may perfectly well be the case that ﬁcrit:—n?o—amg,mwe coincides with
Gerit—mOodyeg naive.- But we do not see an argument and do not need to consider this question for the application
to Theorem 7.14.1.
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By the previous step, if we identify 'g\m-tfmodfeog naive With 'g\critfmodfe% via p, then (7.17.1) factors
Hecke >0 . .. . Heck
through D ., *(Grg)?", where it coincides with I"¢¢| pHeskes (G 200
It therefore follows that the essential image of [Hecke contains ﬁmrmodiog. Because ﬁm-tfmodreg

+

reg» We deduce that the essential

is compactly generated with compact objects lying in ge.;—mod

image of I'ecke ig all of Gerjt—mModyeg-
O

8. EQUIVARIANT CATEGORIES

FHecke,naive FHecke

8.1. In this section, we collect some results about and in the presence of I and
Whittaker invariants. These results will be used to establish the results formulated in §7.17.

We emphasize that we have nothing new to say about I -invariants; our proofs here consist only
of references to [FG6].

Remark 8.1.1. All of the results of this section are valid for a general reductive group G.

8.2. Iwahori equivariance. The main result in this setting is the following.

Theorem 8.2.1 (Frenkel-Gaitsgory, [FG6] Theorem 1.7). The functor THeckenaive jndyces g t-exact
equivalence:

Hecke; I+ =~ - I+
Dcm’t (GrG) — Herit 7m0dreg,naive

on eventually coconnective I-equivariant categories.

Proof. Because our setting is slightly different from that of [FG6], especially as regards derived
categories and derived functors, we indicate the deduction from the results of loc. cit.
First, we show t-exactness. By [FG6] Lemma 3.6 and Proposition 3.18, every object ¥ € D_ .,
Sjgkeﬁ((}rg)l 'Y admitting a finite fil-
tration with subquotients of the form indfeckes (%,j)@opggj{i,j for F;; € nggkeﬁ((}rg)] Y and
Q
J’C@j € QCOh(Ova)
We then have:

can be written as a filtered colimit F = colim; &F; for F; € D

FHecke,naive(indHeck% (SFi,j) ® , g—fi,j) _ FIndCOh(Grg, S:i,j) ® :Hz',j-
Py Opg?

By loc. cit. Proposition 3.17, T'"°"(Grg, F; ;) is flat as an 3-module, so the displayed tensor product
is concentrated in cohomological degree 0. This shows that I'Heckenaive(F) g in degree 0 as well,
providing the t-exactness.

Next, observe that fully faithfulness follows from Theorem 7.16.1.

Finally, we show essential surjectivity. By [FG6] Theorem 1.7, Lemma 3.6, Proposition 3.17, and
IRV

regnaive CAI be written as a filtered colimit § = colim; §; with

Proposition 3.18, any G € geri—mod
G; € ﬁmrmodi’eimwe and such that §; admits a finite filtration with associated graded terms of
the form:

FIndCOh(GrG, g) ® K
Opgzg
for G e Dm-t((}r(;)f’QQ and H € QCoh(OpTGeg)@ (and where we are using the notation of §6.5), and
where the displayed (derived) tensor product is concentrated in cohomological degree 0. Clearly

Hecke; (GI‘

G)I,Q?
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each associated graded term lies in the essential image of [Heckenaive 54 G does as Well. This implies

the essential image of [Heckenaive qntaing Gerit— mod?’ so all of Gerit— mod?’

T‘Bg naive’ reg naive"

d
We include one other result in a similar spirit.

Proposition 8.2.2. The functor:

Hecke Hecke T ~
r |DHecke5(GrG) : D 3(Grg)! — Gerit—Modycg

crit
18 t-exact.
Proof. By Corollary 7.15.3, the functor is right t-exact. Therefore we need to show left t-exactness.

By Theorem 8.2.1, it suffices to show that objects in pHe
tive objects.

Suppose F e D

eck
oy (Gr(;)I ¥ map to eventually coconnec-

Hecke;
crit

(Grg)fp. As in the proof of Theorem 8.2.1, the results of [FG6] imply that
F can be written as a filtered colimit F = colim; F; for F; € Dgz‘;ke"(Grg)I Y admitting a finite
filtration with subquotients of the form ind"e (F; ; )®0ppee I for Fij and 3 ; as in the proof
of Theorem 8.2.1.

Therefore, we are reduced to showing that:

N (Grg, F) ®  H € Gerit-MOdyeg (8.2.1)
Opréeg
is eventually coconnective for any F € Dei;(Grg)!"¥ and H e QCoh(OpTszg ).
If F is compact, then T'ndCoh (Grg, ) € Gerit—mod,q is compact by construction of the functor. In
particular, this object is eventually coconnective. By Theorem 8.2.1, we deduce F'”dc°h(Grg, F) e
@crirmodj?eg in this case. As the t-structures are compatible with filtered colimits, and every object

of Derit(Grg)h? is a filtered colimit of objects in D (Grg)hY that are compact in Dt (Grg),
we obtain the claim for general F and H being the structure sheaf.

Now if H is coherent,?® then because Opgeg = Spec(3) with 3 an (infinite) polynomial algebra,
JH is perfect. Therefore, the object (8.2.1) is eventually coconnective for general F and coherent
H. Applying Theorem 8.2.1 again, we deduce that (8.2.1) lies in the heart of the ¢-structure under
these same assumptions. Finally, the general case follows as any H € QCoh(Opreg )Y is a filtered

colimit of coherent objects.
O

8.3. Whittaker equivariance. We now study the behavior of T'Hecke:naive ypder the Whittaker
functor, following [Rasb] and [Ras6].
Our main result is the following.

Theorem 8.3.1. (1) The functor THeckenaive ypdyces an equivalence:

Whlt( Heckeé (G G’)) i’ Whit(acrit*mOdreg,naive)'

crit

(2) For n >0, the functor:

pHeckesnaive . Whit<1 (D1 (Grg)) — Whit"(§erie-m0dreg naive)

crit

30I.e., H corresponds to a finitely presented 3-module.
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is a t-exact equivalence for the natural’' t-structures on both sides.

We will verify the above result in what follows after recalling some results on Whittaker categories
in this setting.

8.4. We recall the following result, which appears as [Ras6] Theorem 11.19.1 and is an enhancement
of the affine Skryabin theorem [Ras5] Theorem 5.1.1.

Theorem 8.4.1. There is a canonical equivalence of IndCoh®(Op)-comodule categories:

Whit(gerit—-mod) ~ IndCoh*(Op).
Under this equivalence, the full subcategory (c.f. §5.2) WhitS"™(gerit—mod) S Whit(geri¢—mod) iden-
tifies with the full subcategory IndCohgp§m(Opé) < IndCoh*(Opg) generated under colimits by
G

pushforwards from QCoh(Ops) ~ IndCoh*(Opém) — IndCoh*(Opg).

Corollary 8.4.2. For any n, there is a canonical equivalence of QCoh(Opé”)—module categories:

Wh it(acrit -modoq,, ,naive) ~ QCoh (Opém) .

Moreover, for any positive m with m = n, the embedding:

Wh itgm (acrit *mOdordn ,naive) — Wh it(@crit 7m0d0rdn ,naive)

s an equivalence.

Proof. By [Rasb] Theorem 2.1.1 (or its refinement Theorem 2.7.1, which we recalled above as

C—Whit(C
Theorem 5.2.1), the functor G(K)-modcyi Lo Whit(©),
categories that commutes with limits and colimits.
Therefore, from the definitions, we have:

DGCatcopt is a morphism of DGCat,y,-module

IndCoh*(Op) "
Whit(’g\critimOdordn,naive) = |ndC0h*(Op§n) ® ¢ Whit(ﬁcm’rmod) h :'8'4'1

IndCoh* (Opg)
IndCoh*(OpS™)  ® " IndCoh* (Opg;) =~ IndCoh* (OpE") ~ QCoh(OpE™).

The stabilization of adolescent Whittaker models is proved similarly. For m positive, we have:

R IndCoh*(Opy) R 8.4,
Whit<" (§orit-m0dord, naive) = INdCoh*(OpS™)  ®  Whit<" (Gorse-mod) * =
< IndCoh* (Op¢)
IndCoh*(Opg") ® IndCohgpgm(Opé) =

. <n |ndcoh*(0pé) " % <n <n
IndCoh (Opé ) ® IndCoh™(Op) = IndCoh (Opé ) ~ QCOh(OpE ).

The functor at the end of the second line is indeed fully faithful because IndCohgpgm(Opé) —
G

IndCoh™(Opy) is fully faithful (by definition) and admits a right adjoint that is a morphism of
IndCoh™(Op)-module categories. Clearly this functor is essentially surjective for m > n.

0

31We remind that Whit<" is defined as equivariance against a character for a compact open subgroup. For our two
categories, the ¢-structures are compatible with the G(K)-action, so there are natural ¢-structures on such equivariant
categories.
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8.5. Before proceeding, we recall that for € € G(K)-mod.;, the functor:

Whit(e) 22, @ Avx, 6(0)

admits a left adjoint, which we denote Av}p in what follows. That this left adjoint is defined is the
special case n = 0, m = o of [Ras5] Theorem 2.7.1.

8.6. 'We now recall the following result.

Theorem 8.6.1 (Frenkel-Gaitsgory-Vilonen, [FGV]). The composition:
=\ Ve8y G(0) AV?LJ .
Rep(G) — > Jlsph = Dcm‘t(GrG) I Wh|t(Dcr7§t(GrG))

s an equivalence.

Remark 8.6.2. Formally, the setting of [FGV] is somewhat different. We refer to [Gai7] for the
necessary comparison results.

8.7.  We now can prove the main result on Whittaker categories.

Proof of Theorem 8.3.1. We begin with (1). We first construct some equivalence, and then we show
that I'Heckenaive i quces the corresponding functor.
By Corollary 8.4.2 (for n = 0), we have:

Whit(@crit_mOdreg,naive) =~ QCOh(OpTG'eg)-
Moreover, as Whittaker invariants coincide with coinvariants by [Rasb] Theorem 2.1.1, we can
calculate:

Whit(Dy 5 (Grg)) = Whit(Derit(Grg))  ®  QCoh(Opls?).
Rep(G)
By Theorem 8.6.1, Whit(D..;t(Grg)) identifies canonically with Rep(G) as a Rep(G)-module cate-
gory. Therefore, we obtain:

Whit(Dg,5 (Grg)) = Rep(G)  ® QCoh(Opjs?) = QCoh(Opjs?).
Rep(G)

We now show that I'Heckemaive jpduces the evident equivalence on Whittaker categories. By
construction, ['Hecke:naive ig 5 morphism of QCoh(OpTGEQ )-module categories. Therefore, it suffices to
show that it sends the structure sheaf Oopgg to itself.

This follows from the following diagram, which is commutative by functoriality:

FHecke,naive ~ G(O
Dcrit(GrG)G(O) gC”AtimOdre(g,)LaiUe
Ava lAV'w \
. ]_‘*Hecke,naive N
Whlt(Dcrit<GrG)) Whlt(gcritmedregmaive) — QC0h<Opgg)~

By construction of the equivalence of Theorem 8.4.1, the diagonal arrow in the diagram above
is the Drinfeld-Sokolov functor W. Therefore, if we consider the § D-module §; € Dcm‘t(GI‘G')G(O)
supported at the origin 1 € Grg, apply Hecke induction and the above diagram, we find:

IwHecke,naive(AV;/) indHeCke"’ 51) _ \II(F'“dC"h(Grg, 51)) _ \P(Vcrit)-
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Hecke;
crit

Clearly Av! ind"e? 6, e Whit(D (Grg)) corresponds to Oopes € QCoh(Opy,”

U(Verit) corresponds to the structure sheaf Oopgg by design.

). Moreover,

We now verify (2). For n > 0, we have natural functors:

Whit=" (D5 (Grg)) — Whit( Dy (Gr))

. ~ o (8.7.1)
Whltsn(gcritmedreg,naive) - Wh|t(gcrit7m0dreg,naive)

as in Theorem 5.2.1, and that we claim are equivalences. In the second case, this assertion is part

of Corollary 8.4.2. In the first case, this follows from the fact that:

WhitS! (Derit(Grg)) — Whit(Derit (Gre))
is an equivalence; see [Ras4] Theorem 7.3.1 for a stronger assertion.
It now follows by functoriality and (1) that THecke:naive jg an equivalence on Whit<" for all n > 0.
Finally, we need to show that I'Heckenaive js + exact on WhitS" for all n.
In [Rash], the functors:

tnnt11[—2(p, p)] : WhitS™(Gerig—mod) — Whit<"*1(g.;,-mod)
were shown to be t-exact. Moreover, by the proof of the affine Skryabin theorem Theorem 8.4.1,
the resulting ¢-structure on Whit(geri+—mod) identifies with the canonical one on IndCoh*(Op;). We
deduce parallel results for gepit—modyeg naive it place of gerie—mod in the setting of Corollary 8.4.2.
Similarly, the functors:

b s 11[=2(5, p)] : Whit<"(D oyt (Grg)) — Whit<"" (D4 (Grer))

are t-exact. The resulting t-structure on Whit(D.;t(Grg)) identifies with the canonical one on

Rep(G) under Theorem 8.6.1; indeed, the geometric Satake functor Rep(G) — Iy, is t-exact by
construction, and Av?p is t-exact by [Ras5] Remark B.7.1. As Oblv!eks is t-exact, we obtain similar

Hecke
results for D, *(Grg).

Finally, we deduce t-exactness. Indeed, we have equivalences:

Whitgn(DSﬂigkea(GrG)) = QCOh(Opgg) = Whitgn(’g\critmedreg,naive)

with the ¢-structures on the left and right hand sides corresponding to the canonical ¢-structure on
QCoh(Opgg ), and the composition being given by I'Heckenaive,

O
8.8. Exactness of renormalized global sections. We will also need the following parallel to
Proposition 8.2.2.

Proposition 8.8.1. (1) For any n = 1, the functor:

Hecke;

[Hecke| : WhitS" (D7 (G1g)) — Berit—M0dyeg

Whit<" (DI (Grgy))

18 t-ezact.
(2) More generally, suppose G € Derit(G(K)) has the following properties:
e For m » 0, G is right K,,-equivariant (where K,, < G(O) is the mth congruence
subgroup).
o There exists a Kp,-stable closed subscheme S € G(K) such that G is supported on S.
e As an object of D(S/Ky,), G is eventually coconnective.
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Then for every F € WhitS”(DHeCkea (Grg))*, THeke(Grg, G * F) € Gerig-mod.,

crit reg-

Proof. We begin with (1).

As above, we have a t-exact equivalence:

Whit=" (D% (Grg)) ~ QCoh(Op?). (8.8.1)

As Opgeg is the spectrum of a polynomial algebra (however infinitely generated), we deduce

that every object of Whitgn(Dg?;ke"(Grlrg))QQ is a filtered colimit of objects that are compact in

Whit<" (Dgfz;ke”((}rg)), hence in D(Ijzgkes((}rg).
By construction, 'k maps compact objects to compact objects, and in particular maps

compact objects to ﬁm-rmod;;g. By Theorem 8.3.1, we deduce that it maps compact objects of
Whit<n(DHeckes

crit
Whits" (Dgigke”((}rg))@ is a filtered colimit of such (by the above), we obtain the result.

We now proceed to (2). We begin by noting that our assumptions imply that for any C €
G(K)-mod.;+ equipped with a t-structure that is strongly compatible with the G(K)-action (in
the sense of [Ras6] §10.12), the functor G — : € — € is left t-exact up to shift (see the proof of
Lemma 9.2.2 below). This is the key property we will use about §. By [Ras6] Lemma 10.14.1, this
property is true for € = g..;—mod.

Next, if F is the object corresponding under (8.8.1) to the structure sheaf on Opgg , then F =

ind!eckes (§,.) for 6, € Whit<" (D (Grg))¥ ~ Rep(G)¥ corresponding to the trivial representation
(by construction of (8.8.1)). Therefore, I'Hecke(Grg, G « F) = TN (Grg, G+ 6,). As G* 4, €
D¢rit(Grg) is eventually coconnective by the above, the resulting object of ﬁcrirmod,ﬂeg is eventually
coconnective as well by Corollary 7.15.2.

We deduce from (8.8.1) that for F € Whit<"(D.i;(Grg)) compact, T'Heke(Grg, GxF) is eventually
coconnective. We claim that in fact there is a universal integer r such that for compact F lying in
Whit<" (D¢ (Grg))=?, we have:

(Grg)) that lie in the heart of the ¢-structure into ﬁcmfmodf?eg. As every object of

rHecke(Gra, G« F) € Gere-mod= "

reg

Indeed, choose 7 such that G * — maps Geri—mod=Y into Gerir—mod>~". As we know the above
object is eventually coconnective, it suffices to verify the boundedness after applying p. Then the
resulting object is G » THecke.naive(Gr ) which lies in degrees > —r by construction of r and
Theorem 8.3.1.

Finally, the same claim for general (possibly non-compact) F € Whit<"(D,.;(Grg))Z° follows by
the same argument as in (1): such J is a filtered colimit of objects of Whit<"(Deit(Grg))>" that
are compact in WhitS" (D (Grg)).

O

9. GENERATION UNDER COLIMITS

9.1. In this section, we prove Lemma 7.17.1.

9.2. Preliminary observations. We begin with the following basic result.

Lemma 9.2.1. The subcategory @critmedreg,naive c acrit*mOdreg,naive 5 a D:rit(G(K))'SmeOdUle
category.
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Proof. By definition of §erit—modyeg naive; we need to show that for F € D* ..(G(K)), the functor
+

reg,naive

—

. ~ .
into gcritmedreg,naive- As D

crit

(G(K)) is compactly generated, we are

+
reg,naive

Fx — maps geris—mod
reduced to the case where J is compact. In that case, we claim that F * — maps geri;—mod
into itself.

Indeed, this follows from Lemma 9.2.2 and the observation that the action of G(K') on gerit—modyeg naive
is strongly compatible with the t-structure; the latter claim reduces via Lemma 6.9.3 to the same

claim for g..;+—mod, which is shown as [Ras6] Lemma 10.14.1 (3).
]

Above, we used the following result.

Lemma 9.2.2. Let H be a Tate group indscheme with prounipotent tail acting strongly on C €
DGCateont- Suppose C is equipped with a t-structure strongly compatible with the H-action in the
sense of [Ras6] §10.12. Then for any F € D*(H) compact, the functor F« —: C — C is left t-exact
up to shift.

Proof. Because J is compact and H has a prounipotent tail, F € D*(H)X ~ D(H/K) for some
prounipotent compact open subgroup K < H. Again because JF is compact, as an object of D(H/K),
it is supported on a closed subscheme S € H/K. By [DG], F has a bounded resolution by compact
objects of the form ind(i!"4<°h(G)) for i : S — H/K the embedding, G € IndCoh(S) compact, and
ind the functor of (right) D-module induction. Therefore, we may consider F of this form.

The functor F » — then factors as:

Ko,w
AvE jindCoh (g QY_
@ Vi GK Oblv GK’w * (9) e

where e indicates the appropriate relative convolution functor IndCoh(H /K)&o/KwgekKow —
IndCoh(H /Kj) ® CKow — €.

As the H-action on € is compatible with the t-structure, €% < @ is closed under truncations;
it follows that AvE is left t-exact. By [Ras6] §10.13, €% has a canonical t-structure for which
Obly : €K — KW is t-exact. Finally, the functor of convolution with G is left t-exact by [Ras6]
Proposition 10.16.1.32

O

Corollary 9.2.3. [Hecke,naive factors through amtfm\onreg,mm.

Proof. By §7.6, it suffices to show ['ndCoh — pHeckenaive o i qHecke £y otorg through Gcrit—MOdreg naive-

This functor is given by convolution with V.;; € ﬁmrmodz gnaive < Gcrit—MOdreg naive, SO the claim
follows from Lemma 9.2.1.

O
Corollary 9.2.4. Let K < G(O) be a prounipotent®® group subscheme. Then ﬁcmm 1s the

K K,+
reg,naive reg,naive”

reg,naive

subcategory of Gerit—mod generated under colimits by geri—mod

Proof. We have a commutative diagram:

32There is a polarizability assumption at this point in loc. cit that we have omitted here. This assumption is only
needed in loc. cit. to deduce a stronger result. The beginning of that argument from loc. cit. is all that is needed here,
and for that the polarizability is not needed. (Regardless, we only apply this result to G(K), which is polarizable.)
33This assumption can be omitted, but the argument requires some additional details.
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. q .
gcmt mOdreg naive Oerit mOdreg,nawe

AVi{ l lAvf

gcrzt mOd C—)gcmt mOd

reg natve reg, naive*

The top and right functors generate under colimits, so the same is true of their composition. This
implies that the bottom arrow generates under colimits, as desired.
O

9.3. Proof for PGLs. To simplify the discussion, we first assume G = PGLo. We indicate the
necessary modifications for general G of semisimple rank 1 in §9.4.

By construction, T'Heckenaive jg o G(K)-equivariant functor (at critical level). In particular, the
subcategory of acmfm\o“dmgmm generated under colimits by its essential image is closed under the
G(K)-action.

Therefore, by Theorem 5.1.1, to prove Lemma 7.17.1 it suffices to show that the essential im-

age of THecke.naive containg Gopi— modreg naive ad Whit(gerit—modyeg naive). The former follows from

Theorem 8.2.1, while the latter follows from Theorem 8.3.1.34

9.4. Generalization to groups of semisimple rank 1. We briefly indicate the argument for
general G of semisimple rank 1.
First, for ¢ : G; — G2 an isogeny of reductive groups, the natural functor:

Heckez (G Gl) Hecke;, (G Gz)

cmt cmt

is an equivalence. Indeed, this follows as:

Dcrit(GrGl) ®V Rep(GZ) - DCT’it(Ger)
Rep(G1)

and:

Opreg Opreg

are equivalences (the latter being a consequence of Remark 1.9.2).
In particular, one deduces that G(K) acts (with critical level) on Dleckes (Grg) through G*4(K)

crit
(e.g., it is easy to see directly that the action is trivial for G a torus). The same is evidently true
for the action on gerit—mModyeg naive. Moreover, [Heckenaive i Gad([()_equivariant.

Next, one observes that the Whittaker category with respect to the G (K) action coincides
with the Whittaker category for the G(K) action, and similarly for the radical of Iwahori. For later
reference, we also highlight that for n > 0, the invariants for the nth subgroup of G(K) coincide
with the similar invariants for the G®(K)-action.

Finally, we observe that for G of semisimple rank 1, G = PGLs, so we can apply the above
observations and Theorem 5.1.1.

34n the latter case, it is shown that THecke:maive oyan induces an equivalence on Whittaker categories with
chrirmodreg,mm,67 i.e., the distinction with ﬁcnrmodmg,naive is not necessary for the Whittaker part of the ar-
gument.
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10. EXACTNESS
10.1. In this section, we prove Lemma 7.17.2. The main idea is Proposition 10.4.1.

10.2. t-structures on quotient categories. We will need the following construction.

Suppose € € DGCat,yt is equipped with a t-structure that is compatible with filtered colimits.
Let iy : Cg — C be a fully faithful functor admitting a continuous right adjoint i*. We suppose the
full subcategory Cg < C is closed under truncation functors for the t-structure; in particular, Gy
admits a unique ¢- structure for which i, is t-exact.

Define € as Ker(i' : @ — €y). We denote the embedding of Cinto € by 74. This embedding admits
a left adjoint F — Coker(i4i'F — F), which we denote by j* : € — C.

Lemma 10.2.1. Suppose that the functor j.j* : € — C is left t-exact. Then there is a unique
t-structure on € such that j* : € — € is t-exact.

Remark 10.2.2. The hypothesis of the lemma is equivalent to the assertion that for F € €%, the map
HO(i4i'F) — F is a monomorphism in the abelian category €V. In turn, this assertion is well-known
to be equivalent to ey cev being closed under subobjects.

Proof of Lemma 10.2.1. Define €9 < € as the full subcategory of F € ¢ with j«(F) € €0, Define
€<0 C C as the left orthogonal to e>0.

The functor j* : € — e maps <0 ¢o (<O immediately from the definition, and maps € to >0
by our assumption that js j* is left t-exact.

In particular, for F € €, j*7705,(F) € €>0 and j*7<9j,(F) € €<0. As j*j.(F) = F, we see that
we have in fact defined a t-structure on €. By the previous paragraph, the functor j* is t-exact as
desired.

O

10.3. Subobjects in equivariant categories. To apply the previous material, we use the fol-
lowing result.

Proposition 10.3.1. Suppose H is a connected, affine algebraic group acting strongly on € € DGCateont-
Suppose that C is equipped with a t-structure compatible with the H-action.

Then the functor CHY — CY s fully faithful and the resulting subcategory is closed under sub-
objects.

Proof. In what follows, we let ¢« : Spec(k) — H denote the unit for the group structure and we let
H:=H \1 the complementary open with embedding j : H— H.

We let 61 = teqr(k) € D( ) denote the § D-module on G supported at 1 € H, and we let
kg € D(H) (resp. ky € D(H)) denote the constant D-module (i.e., the *-dR pullback of k €
D(Spec(k)) = Vect).

Step 1. We begin with reductions.
First, that C#Y — €% is fully faithful for H connected is well-known.3?
By Remark 10.2.2, it suffices to show that for F € €7:% the map:

35We recall the argument for the reader’s convenience. For F € €% we need to show that F — Avi Oblv(¥)
gives an isomorphism after applying H°. Moreover, it suffices to do so after applying Oblv.

The resulting map is obtained by (H-equivariant) convolution with the canonical map kg — ki * kg € D(H)®.
Under the identification D(H)™ = Vect with k € Vect corresponding to kr € D(H)™, the resulting map corresponds
to k — I'qr(H, kr). Because H is connected (hence, geometrically connected), this map is an isomorphism in degree
0, giving the claim.
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Oblv AvEl(F) - F

induces a monomorphism on H?, or equivalently, the (homotopy) cokernel of this map is coconnec-
tive. As the above map is obtained by convolution with the map kg — 61 € D(H), it suffices to
show that convolution with its cokernel, which is j1(ky)[1], is left t-exact.

Step 2. Let F € D(H) be given. Suppose the functor F x — : D(H) — D(H) is left t-exact. We
claim that the functor ¥ » —: € — C is left t-exact.

Indeed, by definition of the ¢-structure on € being compatible with the H-action, the functor
coact : € —> D(H)®C is t-exact up to shift. The functor coact is H-equivariant for the H-action on
D(H)®C on the first factor alone. Moreover, coact is conservative: its composition with !-restriction
along the origin Spec(k) < H is the identity functor for C.

Therefore, the claim follows from [Rasb] Lemma B.6.2.

Step 3. By Step 2, we are reduced to showing that convolution with j(ky)[1] defines a left t-exact
functor D(H) — D(H). By the reasoning of Step 1, it is equivalent to say that the essential image
of the functor D(H)"Y = Vect” < D(H)Y is closed under subobjects, which is evident: a sub

D-module of a constant one is itself constant.
O

10.4. An exactness criterion. We begin with a scheme for checking that a functor between
categories with (finite jets into) PG Le-actions is t-exact.

Proposition 10.4.1. Let G = PGLy and let G, be as in §3.2.
Let C,D € G,,-mod be equipped with t-structures compatible with the G, -actions.
Suppose F : C — D is a Gp-equivariant functor.
Then F is left t-exact if and only if the functors:

eN — DN n=1
eg®Ga — ‘Dg@Ga n > 2
are left t-exact, where g ® G, is embedded into G, via (3.3.1).

eNnt — DNn¥ gpg {

Below, we give the proofs separately for n = 1 and n > 2. We remark that in both cases, the
“only if” direction is obvious.

Proof of Proposition 10.4.1 for n = 1. As we will see, in this case we only need the action of the
Borel B=T x N = G,, x G, of G = PGLs.

G

Define C as Ker(C A, @Ca). The embedding C < C admits a left adjoint calculated as
F +— Coker(Oblv Av&e(F) — ). By Lemma 10.2.1 and Proposition 10.3.1, € admits a unique ¢-
structure such that this functor € — € is t-exact. .

The action functor act : D(G,,) ® € — € maps D(G,,) ® C%¥ into €, and the resulting functor
is an equivalence (by Fourier transforming, c.f. [Ber]). We claim that this equivalence is t-exact,
where D(G,,) ® €% is given the tensor product t-structure.

To verify this, we will need the following commutative diagram:

D(G,) ® G 2 e
lidD(Gm>®Oblv (10.4.1)

D(Gp)®C D(Gp) ®€
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with morphisms as follows. The top arrow is induced by the action functor from above. The left
arrow is idg,, tensored with the embedding €C«¥ — e (< @). For the right arrow, note that cce
is closed under the Gg-action, and the corresponding coaction functor coact : (GRRN D(G,) ®C
composed with the Fourier transform D(G,) ~ D(A!) (tensored with ide) maps into D(AM\0) ® €;
we have identified A\0 with G,, here. Finally, the bottom arrow is the unique map of D(G,,)-
comodule categories whose composition with T'qr(Gy, —) ® idg is act (the action functor for the
G,,-action on G), here D(G,,) is a coalgebra in DGCat,y,; via diagonal pushforwards, and both sides

are considered as cofree comodules coinduced from €. (That the diagram commutes is immediate.)
Now in (10.4.1), the bottom arrow is t-exact by [Ras5] Lemma B.6.2. By [Rasb] Lemma B.6.2,
the left arrow is t-exact because CGe¥ — € is (as this functor coincides with the composition
€Ge? s @ — € of t-exact functors). The right functor is ¢-exact because the t-structure on € is
compatible with the G,-action. As the vertical arrows are fully faithful and the bottom arrow is an
equivalence, we obtain that the top arrow is a t-exact equivalence as well.
We can now conclude the argument. By assumption and [Ras5] Lemma B.6.2, the functor:

C~ D(Gp) ®CY - D(G,,) @ D% ~ D

is left t-exact.
Suppose F € €%, Then Oblv AvSe(F) e €G>0 50 F(Oblv AvPae(F)) € DC=0 Moreover,
defining;:

F := Coker(Oblv Av&e(F) — F) e C
we have F € €20 by definition of the t-structure on €. Therefore, F(fr’) e D>0. Because the
embedding D — D is left t-exact (being right adjoint to a t-exact functor), we obtain:

Oblv Avée F(F), Coker(Oblv AvSe F(F) — F(F)) e DY
implying F(F) € D=0,
O

Proof of Proposition 10.4.1 for n = 2. Let C,¢y < C be defined as in §3.3. The embedding €.y — C
admits a left adjoint j' as in loc. cit. Moreover, because G = PG Ly, the argument from §5.3 shows
that Ker(j') = €9®®a. Applying Lemma 10.2.1 and Proposition 10.3.1, we find that C,, admits a
unique t-structure for which j' is t-exact.

By Theorem 4.2.1, the convolution functor:

D(Gp)N¥ @ ey e
admits a left adjoint Av]"™¥ = Av{""¥[2dim N, ]. By [Ras5] Lemma B.6.1, Av]" Y[~ dim N,,] =
AvY Y [dim N,] is t-exact.
Because the above convolution functor factors through €.y, Av, Ve - D(Gn)Nn’w ® CNn¥

¥

coincides with Av, " j*,de!. By the above, we find that Av, ¥ ojx,dr is t-exact. Moreover, by

Corollary 4.7.3, Av, Y Ojx,dR s conservative.
Therefore, as:

D(Gn)Nnﬂl} ® eNn7'¢ id@F, D(Gn)Nnﬂr/) ® DNn7¢

is left t-exact by assumption and [Rasb] Lemma B.6.2, the resulting functor Creg — Dreg is left
t-exact.
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As C9®Ca _, Dy, is left t-exact by assumption, the argument concludes as in the n = 1 case.
O

10.5. Exactness of T'Heckenaive  We can now show t-exactness.

Proof of Lemma 7.17.2. For simplicity, we take G = PG Lo; the argument for general G of semisim-
ple rank 1 follows by the considerations of §9.4.

By Corollary 7.15.3, it remains to show left t-exactness. It suffices to show that for every n > 1,
the functor:

Hecke,naive , yHecke; K, ~ K
r : Dcrit (GrG) e gcrit*mOdreZ,nawe

is left t-exact; here K,, € G(O) is the nth congruence subgroup. We show this by induction on n.
First, we treat the n = 1 case. By Proposition 10.4.1, it suffices to show (left) t-exactness for the
corresponding functors:

Heck o R o
D o eé(Grg)I — gmrmodI

crit reg,naive
Whit<1 (DHeCkeé (GI'G)) - Whitsl (’g\critmedregmaive)

crit
These results follow from Theorems 8.2.1 and 8.3.1.
We now proceed by induction; we suppose the result is true for n > 1 and deduce it for n + 1.

By Proposition 10.4.1, it suffices to show that the functors:

Hecke;
crit

D Kn
reg,naive

Whit<" (D% (Gr)) — Whit="*! (§erir—m0deg naive)

crit

(GTG)Kn - ’g\critmed
are (left) t-exact. The former is the inductive hypothesis and the latter is Theorem 8.3.1.

11. THE RENORMALIZED CATEGORY

11.1. In this section, we prove Lemma 7.17.3. The argument is quite similar to the proof of Lemma
7.17.2.

11.2. A boundedness criterion. The following result is a cousin of Proposition 10.4.1.

Proposition 11.2.1. Let G = PGLy and let G, be as in §3.2.

Let C € G,,—mod be equipped with a t-structure compatible with the G, -action. Suppose that D
is equipped with a t-structure compatible with filtered colimits. Suppose F' : € — D € DGCateont i
given.

Then F is left t-exact up to shift if and only if:

F|GN n=1
F|€g®@a n 2 2
is left t-exact up to shift, and F(G+ F) e Dt for every:

Ge D(G,)T, FeNnvt,

Remark 11.2.2. We emphasize that there is no assumption here that G, acts on D, in contrast to
Proposition 10.4.1.
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Remark 11.2.3. The “only if” direction of Proposition 11.2.1 is clear, as G — : C — € is left t-exact
up to shift for G e D(G,)™.

Proof of Proposition 11.2.1 for n = 1. As the t-structures on € and D are compatible with filtered
colimits, F' is left t-exact up to shift if and only if F(C*) € D*. We verify the result in this form.
Suppose F € C*. Then Oblv AvY F e €N+, so by assumption F(Oblv AvY F) e D*. Therefore,
setting F := Coker(Oblv AvY F — 7). it suffices to show that F(F) e D*.
As in the proof of Proposition 10.4.1 (for n = 1), F is in the essential image of the fully faithful,

t-exact convolution functor D(T) ® CN¥ — €. Therefore, it suffices to show that the composition:

D(T)®eN* e L D

is left t-exact up to shift. For convenience, in what follows, we identify F with the correpsonding
object of D(T) ® CN:¥.

For this, we observe that any object F € D(T)®€N¥ lies in the full subcategory of D(T)® CN¥
generated under finite colimits and direct summands by objects of the form Dy (I(T, —) ®id)(F),
where Dy € D(T)" is the sheaf of differential operators; c.f. Lemma 11.2.4 below. Then by [Ras5]
Lemma B.6.2, for F € D(T) ® €N, we have:

(I(T, —) ®id)(F) € N+,

Therefore, by assumption, F(Dy « (I'(T, —) ® id)(F)) € DT, so we find that the same is true of
F(F).
U

Above, we used the following result.

Lemma 11.2.4. Let S be a smooth affine scheme (over Spec(k)).

As is standard, let Oblv : D(S) — IndCoh(S) 2 QCoh(S) denote the “right” D-module forgetful
functor from [GR3] and let ind : QCoh(S) — D(S) denote its left adjoint. Let Dg = ind(Og) €
D(S)¥. Let T'(S,—) : D(S) — Vect denote the composition of Oblv with the usual global sections
functor on QCoh(S).

Then for any C € DGCateont and any F € D(S) ® C, F lies in the full subcategory of D(S) ® C
generated under finite colimits and direct summands by objects of the form.:

Ds X (T'(S, —) ®ide)(F).

Proof. As S is affine, D(S % .S) is compactly generated by objects of the form DgX]Dg. As Agp «(ws)
is compact and connective, it lies in the full subcategory generated under finite colimits and direct
summands by objects of the form Dg[X] Dg.

Identifying D(S x S) in the usual way with Endpgcat.,,, (D(S5)) (c.f. [GR3]), the object Agp «(ws)
corresponds to the identity functor, while Dg [xX] Dg corresponds to Dg ® I'(S, —).

Therefore, id p(g)ge lies in the full subcategory of Endpgcat,,,, (D(S) ® €) generated under finite
colimits and direct summands by endofunctors of the form (Dg ®I'(S, —)) ® ide. Applying such a

resolution to the object F, we obtain the claim.
O

We now turn to the higher n case.
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Proof of Proposition 11.2.1 for n > 2. Suppose ¥ € C*. Then Oblv Avi®Ce F ¢ @I®Ca+ g4 by
assumption F(Oblv Avi®®e F) € DT Therefore, setting F := Coker(Oblv AvI®®s F — F), it suffices
to show that F(F) € DF.

As G = PGLo, Fe Creq, hence in CF .. Now the claim follows as in the n = 1 case from our

reg-*
assumption and Corollary 4.7.2.
O

11.3. Boundedness of T'He?k®, We now boundedness of the non-naive version of the Hecke global
sections functor.

Proof of Lemma 7.17.3. We again assume G = PG Lo for simplicity, referring to §9.4 for indications
on general G of semisimple rank 1.

It suffices to show the result for K being the nth congruence subgroup of G(O) for some n > 1.
We proceed by induction on n.

For e DHeCke"(Grg)j o+, THecke (Grg, F) € Gerie—mod,,: this follows from Proposition 8.2.2.

crit reg:

Next, suppose that § € D(G)" and F € Whitgl(Dgigkeﬁ(Grg))+. Then THeke(Grg, G« F) €
crit-mod,,, by Proposition 8.8.1.

Therefore, Proposition 11.2.1 implies the n = 1 case of the claim.

We now suppose the result is true for some n and deduce it for n + 1. The inductive hypothesis

states that THeke(Grg, GxF) is eventually coconnective for F e pheckes (Grg)®n*, while Proposition

crit
8.8.1 implies the result if F € Whit<"+1(Dg:z§keé(Grg))+. Therefore, Proposition 11.2.1 gives the
result for general F € DHeCkeZ(GrG)KnH,f

crit

0

APPENDIX A. THE GLOBAL SECTIONS FUNCTOR

A.1. Let x be a level for g. In this appendix, we define a global sections functor:

I(G(K), —) : DE(G(K)) — gx—mod ® §— 42 .crit~mod.

Moreover, we show the following basic property:
Proposition A.1.1. The functor I'(G(K), —) is t-exact for the natural t-structure on D*(G(K)).

To define both I' and the “natural” t-structure mentioned above, there is an implicit choice of
compact open subgroup of G(K) (or rather, its Tate extension) that goes into the definitions. For
definiteness, we choose G(O) in what follows.

Abelian categorically, this construction is well-known from [AG2]. Our setup is a little different
from loc. cit., so we indicate basic definitions and properties. We compare our construction to theirs
in Proposition A.10.1.

A.2. Definition of the functor. By [Ras6] §11.9, we have a canonical isomorphism:

~ v A
gr—mod” >~ g_ . o.ri—mod.

Here the left hand side is the dual in DGCatp¢. This isomorphism depends (mildly) on our choice
G(O) of compact open subgroup of G(K). This isomorphism is a refinement of the usual semi-
infinite cohomology construction; more precisely, by loc. cit., the pairing:

8xmod ® §— x4 2.crie-mod — Vect
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is calculated by tensoring Kac-Moody representations and then taking semi-infinite cohomology for
the diagonal action.

In addition, by [Ras6] §8, we have a level x G(K)-action on g,—mod.

Therefore, we obtain a functor:

D(G(K)) — EndpCateon: (Gx-mod) ~ gx-mod @ §—x+2.crit-mod.
By definition, the resulting functor is I'(G(K), —).

A.3. Definition of the t-structure. The choice of G(O) also defines a t-structure on D} (G(K)):
we write D*(G(K)) as colim,, D, (G(K)/K,) under =-pullback functors; the structure functors are
t-exact up to shift by smoothness of the structure maps, so there is a unique t-structure such that
the pullback functor 7 [~ dim G(0)/K,] : Du(G(K)/K,) — D} (G(K)) is t-exact for all n.

A.4. t-exactness. Below, we prove Proposition A.1.1.

A.5. Because compact objects in D}(G(K)) are bounded in the ¢-structure and closed under
truncations, it suffices to show that for ¥ € D*(G(K))” compact in D*(G(K)), I'(G(K),F) €
(§x—mod ® G t2.crie-mod) ¥

We fix such an J in what follows.

A.6. Because J is compact, there exists a positive integer r such that F is K,-equivariant on the
right. Moreover, by compactness again, J is supported on some closed subscheme S < G(K'), which
we may assume is preserved under the right K,-action.

Note that S is necessarily affine as G(K) is ind-affine. We have S = lim S/K,, .+, so by Noetherian
approximation, S/K, . is affine for some r’ > 0. Up to replacing r by r + 1/, we may assume S/K,
itself is affine.

A.7. For any two integers mi, ms > 0, we have:

Ho—mﬁn*mOd®ﬁ—n+2»crirm0d (Vﬁvml V_kt2.critym, N(G(K),9)) =
I‘IO_HI@K,mOd (Vﬁ,ml T * ]D)V—H+2-crit,m2)-
by definition of T'. Here D : (g_x12.crit—mod®)? ~ g,—mod® is the isomorphism defined by the
(semi-infinite) duality g,—mod ~ g,~mod" used above.

To see that I'(G(K),J) is in degrees > 0, it suffices to see that the above complex is in degrees
> 0 for all mq, mso. Moreover, it suffices to check this for all sufficiently large m1, mo; we will do so
for mq,mg = r.

Then to see that I'(G(K), ) is in degree 0, it suffices to show that when we pass to the limits
mq, mg — o0 (using the standard structure maps between our modules as we vary these parameters),
we obtain a complex in degree 0. In fact, we will see that already F * F * DV _, 1 9.crit,m, is in the
heart of the t-structure (for mg > r), which clearly suffices.

A.8. By [Ras6] Lemma 9.17.1, DV_, 9.crit.ms = Vi m, [dim G(O)/Kp, | = Vi, [me - dim G].

We then have F * V., = [ (G(K)/K,,T); here we have descended F by K,-equivariance to
a D-module on G(K)/K, and then we have calculated its IndCoh-global sections.

Putting these together, we find:

I—IO_HG,ifmod (Vn,ml ’ I * va{,mg) =

Homg oq(Viemy s T * Vi p[ma - dim G — (mg —r) dim G]) =
Homg —oq(Vimy, T * Vi p[r - dim GY).
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By Lemma 9.2.2 (and [Ras6] Proposition 10.16.1), FxV, ,. € g,—mod*. Moreover, by §A.9 below,
F « V., maps under the forgetful functor to Vect to I'"CN(G(K)/K,,F) € Vect (i.e., descend F to
G(K)/K, and take IndCoh-global sections).

As F e D*(G(K))Y, when we consider F as an object of D, (G(K)/K,), it lies in cohomological
degree dim(G(0)/K,;) = r-dim G. Therefore, the same is true when we forget to IndCoh(G(K)/K,),
as that forgetful functor is t-exact (c.f. [GR3]). Finally, as F is supported on an affine subscheme
of G(K)/K, by construction, T'""4“h(G(K)/K,,F) is in cohomological degree r - diim G.

Combining this with the above, we find that F x V. ,[r - dim G]) € 8.—mod”. This gives the
desired claims, proving Proposition A.1.1 modulo the above assertion.

A.9. Above, we needed the following observation.

Suppose F € D} (G(K))%r. We claim that Oblv(F = V,;,) = TN (G(K)/K,, F) € Vect, where
we implicitly descend F to G(K)/K, through equivariance.

To simplify the notation, we omit the level x and work with a general Tate group indscheme H
and a compact open subgroup K. (Then the level may easily be reincorporated in a standard way
by taking H to be the Tate extension of G(K), c.f. [Ras6] §11.3.)

For any C € H-mod,,cqr, suppose G € €% and F € D(H/K). As in [Ras6] §8, D(H/K) is canon-
ically isomorphic to IndCoh™(H /K)pny, with Hz the formal completion of H along K. Moreover,
the functor Obly : @k¥ — CKw admits a left adjoint, which we denote by Av{’.

Then we claim that we have isomorphisms:

A

HK,’LU K7w
78 AvE(G) = Oblv(F) ¥ gee
functorial in F and G (i.e., an isomorphism of functors D(H/K) ® €% — @). Here for the convo-

A

H}w
lution on the left, we regard F as an object of IndCoh™(H ). as above. The notation %" means
we convolve (in the setting of weak actions) over Hf;, and similarly on the right hand side. Then

A

w H ,w
AVP(S) = wira e+ G and T 5" wyre i = OBIV(T), s0 we obtain the claim.

Now taking € = Vect and § = k the trivial representation in Vect® ¥ = Rep(K), we obtain:

F  ind (k) = Oblv(F) « k € Vect.
The right hand side calculates T'"4CM(F /K, Oblv(JF)) as desired.
A.10. Comparison with Arkhipov-Gaitsgory. To conclude, we observe that our construction
above recovers the one given by Arkhipov-Gaitsgory.
More precisely, D*(G(K))” manifestly coincides with the abelian category denoted D-mod(G((t)))
in §6.10 of [AG2], and similarly with a level x included (which they discuss only in passing).
Below, we outline the proof of the following comparison result.

Proposition A.10.1. The functor:

—

F(G(K)7 _) : D:(G<K))® - (aﬁmed ®ﬁ—n+2~crit7m0d)© =gXx g(n,—fi-‘rQ-cm’t) 7m0d®
constructed above coincides with the one constructed in [AG2].

Proof.

Step 1. Define CDOg . € Vect as I'(G(K), g (0)), where dg(0) € Dii(G(K)) is the #-pullback of
(51 € D,{(Grg).
As dg(0) € D*(G(K))?, CDOg, € Vect”.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION AT THE CRITICAL LEVEL FOR GL» 61

The object d¢(o) manifestly upgrades to a factorization algebra in the factorization category with
fiber D} (G(K)) (defined using the standard unital factorization structure on G(K), c.f. [Ras4] §2).
Therefore, by [BD2], CDOg . has a natural vertex algebra structure.

Note that CDOg , has commuting g, and g 2.crit-actions.

There is a tautological map Fun(G(0)) — CDOg, € Vect”, which is compatible with factor-
ization and is a morphism of g[[¢]]-bimodules. Regarding CDOg ., as a g,-module, we obtain an
induced map:

ind%r. (Fun(G(0))) — CDOg, € Vect”.

In [AG2], a natural vertex algebra structure is defined on the left hand side. We claim that this
map is an isomorphism of vertex algebras.

Indeed, the construction of the vertex algebra structure from [AG2] exactly uses factorization
geometry, showing that the map above is a map of vertex algebras.

This map is an isomorphism because both sides have standard filtrations and the map is an
isomorphism at the associated graded level.

Step 2. Next, [AG2] constructs a g4 2.crit-action on indg'f[t]] (Fun(G(0))). We claim that the above
isomorphism is an isomorphism of §_ t9..ri-modules as well.

We regard both sides as objects of:
)(? = anmed ®/g\—m+2-cm’t7m0d = EndDGCatCDm (anmed)
0)

(/g\n*mOd ® @—n+2~cm’t*m0d

By construction, CDOg ,, corresponds to the endofunctor Oblvy Avf : gx—mod — g,—mod.

By [Ras6] Theorem 9.16.1, the functor:

’g\nmed—F - ﬁ,fmod
corresponding to an object:
M e (/gj’f*mOd ® ﬁ—/€+2~crit7m0d)©

is the functor:

N = C% (a((1)), allt]]: M ® N).
Here the right hand side is the functor of G(O)-integrable semi-infinite cohomology, which is defined
because M ® N is a Kac-Moody module with level 2 - crit.
By [AG2] Theorem 5.5, we have:

C% (a(()):sl[#]): indf (Fun(G(0))) ® N) = Obly AvE ¥ ()

as desired. (More precisely, one needs to upgrade [AG2] a bit; this is done in [FG2] Lemma 22.6.2,
where we note that the definition of convolution in loc. cit. involves tensoring and forming semi-
infinite cohomology.)

This gives the desired isomorphism of modules with two commuting Kac-Moody symmetries;
this isomorphism is readily seen to coincide with the one constructed earlier.

Step 3. The functor:

I(G(K), =) : DE(G(K)) — 8x-mod ® §—x+2.crit-mod

K
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canonically upgrades to a functor between factorization categories. This induces a canonical mor-
phism of vertex algebras:

Vg,/@ ®Vg7—ﬁ+2-crit - CDOG,/«@ .
This map coincides with the one constructed in [AG2]; indeed, both are given by acting on the
unit vector 1 € Fun(G(0O)) < CDOg, using the Kac-Moody action, and we have shown that our
Kac-Moody action coincides with the one in [AG2].

Step 4. Now suppose F € D*(G(K))V. By construction, I'(G(K),F) € Vect” carries an action of
gr and of Fun(G(K)) (considered as a topological algebra).

These two actions coincide with the ones considered in [AG2]. Indeed, this is tautological for
Fun(G(K)).

For g., we are reduced to showing that for K,, < G(O) the nth congruence subgroup and
F e D.(G(K)/K,)?, the two actions of g, on H(I'(G(K)/K,,F)) coincide.

This is a general assertion about Tate Lie algebras: for H a Tate group indscheme and S a
classical indscheme with an action of H, the above logic defines T'"4°h(S —) : D(S) — h-mod,
and we claim that 3 € D(S)", this action of h on HT(S, ) coincides with the standard one. This
can be checked element by element in b, so reduces to the case where b is 1-dimensional. There it
follows by the construction of the comparison results in [GR1].

Step 5. Because g (o) is the unit object in the unital factorization category DJ;(G(K)) (see [Ras4]
§2), [BD2] Proposition 8.14.1 shows that I upgrades to a functor:

I'(G(K),—) : D¥(G(K)) — CDOg,, —mod2<t,
Here we use the notation from [BD2|, and are not distinguishing in the notation between our
factorization algebra and its fiber at a point.
Comparing with the construction in [AG2] and applying Step 4, we find that on abelian categories
that the functor:

Di(G(K))® — CDOg,, ~mod™t¥ ~ indgf[t]] (Fun(G(0)))-mod?aet-¥

coincides with the one constructed in loc. cit.
Now the assertion follows from Step 3.

Corollary A.10.2. For every F € D*(G(K))Y compact, the functor:

F*—:g.modT — g, mod™"
coincides with the similarly-named functor constructed in [FG2] §22.

Proof. By construction of I'(G(K), —), the following diagram commutes:

R G(K),—)®id . R .
Di(G(K))® gffmodr((K&i> 8x-mod ® §—+2.crit-mod & g,—mod
— lid®<—,—>
g.—mod.

By [Ras6] Theorem 9.16.1, this means that for M € g,~—mod™, we have:

C (a((1)), a[[t]; T(G(K), F) ® M) € §mod.
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Here we tensor and use the diagonal action mixing the level —x + 2 - crit action on I'(G(K), F) and
the given level x action on M, and then we form the semi-infinite cochain complex, which retains
a level r action from the corresponding action on I'(G(K), ).
By Proposition A.10.1, the latter amounts to the definition of convolution given in [FG2] §22.5
(see also loc. cit. §22.7).
O

One can similarly show that this isomorphism is compatible with the associativity isomorphisms
constructed in loc. cit. §22.9.

APPENDIX B. FULLY FAITHFULNESS

B.1. In this appendix, we present a different proof of Theorem 7.16.1 (fully faithfulness of T'Hecke)

than the one given in [FG2].
B.2.  We have the following general criterion.
Proposition B.2.1. Suppose C; € G(K)-mod..ix are given for i = 1,2. Suppose that each C; is
equipped with a t-structure such that:
e The t-structure that is strongly compatible with the G(K)-action.
e The functor AV}ZJ : G,L.G(O) — Whit(C;) is t-exact for Av?p as in §8.5. Here Whit(C;) is equipped
with the t-structure coming from [Rasb] Theorem 2.7.1 and §B.7.

e The functor Av;ﬂ : C?(O)’O — Whit(C;) is conservative.

Suppose that F : C; — Co € G(K)—modit is given. We suppose that the induced functor GlG(O) —

eC(0)
(0)+

Then if the induced functor Whit(C1) — Whit(Cz) is a t-ezact equivalence, the functor (i’? —
G(0),+
Cy

15 t-exact.

is as well.

Proof. For i = 1,2, the functor AV;’Z’ : @Z-G(O)’Jr — Whit(C;)* is t-exact and conservative by assump-

tion. Moreover, this functor admits the right adjoint Avf(o) . By [Ras6] Lemma 3.7.2, the functor
G?(O)’+ — Whit(€;)™ is comonadic.

Being G(K)-equivariant, the functor F' intertwines the comonads Av;p AVE @ on Whit(€C;) and
Whit(@y). Therefore, as we have assumed F induces an equivalence Whit(C;)™ = Whit(G2)*, we

obtain the result.
O

B.3. We now deduce the following result.
Corollary B.3.1. The functor:

Hecke,naive ., yHecke; G(0),+ ~ G(0),+
r : Dcm’t (GI‘(;) @+ gC”‘timOdreg,naive

s a t-exact equivalence.

Hecke;
crit

Proof. We apply Proposition B.2.1 with €¢; = D
[Heckenaive Tt remains to check the hypotheses.
Both t-structures are strongly compatible with ¢-structures by [Ras6].
The functor AV:’Z’ . Deyit(Grg)9©) — Whit(Derit(Grg)) is t-exact and an equivalence (in par-
ticular, conservati\}e) on the hearts of the ¢-structures by Theorem 8.6.1. We deduce the same for
D% (Gre) by §7.6-7.7.

crit

(GI‘G), e2 = acrit*mOdreg,naivea and F' =
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The functor Av}b ¢ Berir—mod©©) Whit(geriz—mod) is t-exact by [Rasb] Theorem 7.2.1. We
immediately deduce the same for gerit—mod,eg naive- The functor:

G(0),@

~ o~ Cor.8.4.2
AV?Z) : gcrit_mOdregynaive i \Nh|t(gcrit_mOdreg,naive)QQ o= QCOh(()I);;g)QQ
is an equivalence by [FG1] Theorem 5.3.

. ; . Heck
Finally, THeckenaive yegtricted to D,y

Whit(DHeCkeé(Grg)) by Theorem 8.3.1.

crit

(Grg)¢©) is t-exact by Theorem 8.2.1, and similarly for

O
B.4. We now prove Theorem 7.16.1. The reductions follow [FG2]; only the last step differs.
Proof of Theorem 7.16.1.
Step 1. Recall from §7.6 that DIke(Grg) is compactly generated by objects of the form indHeckes ()
for F € Deyit(Grg) compact. Moreover, I'Hek® preserves compact objects by construction. Therefore,
it suffices to show that the map:

(indHecke5 (3') , indHecke3 (9 ) ) N HO_IH

gcrit*mOdreg

Hom Hecke; (FIndCOh (3')’ FIndCOh (9))

D.,; °(Grg)
is an equivalence for F,G € D,,;;(Grg) compact.

Ag TndCoh (F) € fjmt—modﬁeg c ’g\cm—modjeg, it suffices to show that if we apply p, then the
induced map:

indHeckeé (3:)7 indHecke3 (9)) — Hom» (FlndCoh (9)7 FIndCoh(g))

Hom
dom gcrit*mOdreg,naive

Hecke
crit § (GYG) (

is an equivalence.
We will show this below with the weaker assumption that G € D.;+(Grg)™.

D

Step 2. By Lemma 7.12.1 (and its proof), we can rewrite the above terms as:

Hom _secke, (ind™ekes (§,), ind™ekes (iny D(F) « §)) —

Dc'rit (GrG)G(O)
Hom. 4E©) (FlndCoh ((51),F|ndC°h(inVD(?) * 9))

Gerit—MOd,.. o haive
Noting that all the terms that appear here are eventually coconnective in the relevant t-structures,
the claim follows from Corollary B.3.1.
g
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