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Abstract. The geometric Langlands program is distinguished in assigning spectral decompositions
to all representations, not only the irreducible ones. However, it is not even clear what is meant by
a spectral decomposition when one works with non-abelian reductive groups and with ramification.
The present work compares two notions, showing that one is a special case of the other.

More broadly, we study the moduli space of (possibly irregular) de Rham local systems from the
perspective of homological algebra. We show that, in spite of its infinite-dimensional nature, this
moduli space shares some of the nice features of an Artin stack.

Along the way, we give some apparently new, if unsurprising, results about the algebraic geometry
of the moduli space of connections, using Babbitt-Varadarajan’s reduction theory for differential
equations.
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1. Introduction

1.1. Local geometric Langlands. Let 𝑘 be a ground field of characteristic zero, let 𝐾 :“ 𝑘pp𝑡qq

for 𝑡 an indeterminate. Let
˝

𝒟 :“ Specp𝐾q be the (“formal”) punctured disc. Let 𝐺 be a split
reductive group over 𝑘, and let 𝐺̌ be a split reductive group over 𝑘 with root datum dual to that
of 𝐺.

Recall the format of local geometric Langlands from [FG1]: there it is suggested that, roughly
speaking, DG categories1 acted on (strongly) by the loop group 𝐺p𝐾q should be equivalent to

DG categories over the moduli space LocSys𝐺̌p
˝

𝒟q of de Rham local Langlands parameters, i.e., 𝐺̌-

bundles on
˝

𝒟 with connection. Note that we work allow irregular singularities in our local systems,
which by an old analogy is parallel to wild ramification in the arithmetic theory.

September 2015. Updated: June 10, 2016.
1Throughout this introduction, DG category means presentable (i.e., cocomplete plus a set theoretic condition)

DG category.
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1.2. Some remarks are in order.

‚ For the reader who is not completely comfortable with the translation from the arithmetic
theory:

A DG category acted on by 𝐺p𝐾q should be thought of as analogous to a smooth rep-
resentation. The basic example is the category of 𝐷-modules on a space acted on by 𝐺p𝐾q
(e.g., 𝐷-modules on the affine Grassmannian).

One can then think of a category over2 LocSys𝐺̌p
˝

𝒟q as something like a measure on the
space of Langlands parameters. Then this measure is measuring the spectral decomposition
of the corresponding smooth representation.

‚ This idea is quite appealing. One of the distinguishing features of geometric Langlands,
in contrast to the arithmetic theory, is the existence of geometric structures on the sets
of spectral parameters, which has led to the suggestion (c.f. [BD], [Gai4]) that pointwise
spectral descriptions should extend in families over these moduli spaces. The use of spec-
tral decompositions in families then allows to remove irreducibility hypotheses from the
analogous arithmetic questions.

‚ Such an equivalence is not expected to hold literally as is, morally because of the existence
of Arthur parameters in the arithmetic spectral theory.

However, some form of this conjecture may be true as is if we take tempered categories
acted on by 𝐺p𝐾q, c.f. [AG]. This notion warrants further study: one can make a number
of precise conjectures for which there are not obvious solutions.

‚ There are two main pieces of evidence for believing in such theory.
First, Beilinson long ago observed3 that Contou-Carrère’s construction of Cartier self-

duality of G𝑚p𝐾q implies a precise form of the conjecture for a torus.4

Second, (derived) geometric Satake (c.f. [MV], [FGV], [BF] and [AG]) and Bezrukavnikov’s
geometric affine Hecke theory (c.f. [AB], [Bez]) fit elegantly into this framework. They com-
pletely settle the questions over (the formal completion of) the locus of unramified connec-
tions and regular connections with unipotent monodromy respectively (and are instructive
about how to understand the temperedness issues).

‚ Local geometric Langlands is supposed to satisfy various compatibilities as in the arithmetic
theory, e.g. there should be a compatibilities with parabolic induction and with Whittaker
models.

2This paper is an attempt to understand the phrase “category over,” so we ask the reader to suspend disbelief
and accept that there is such a notion for the moment. The main feature is that one should have the ability to take
fibers at points.

3See e.g. [Bei] Proposition 1.4. (It is necessary here to find the published version of the article and not the
preprint.)

4More precisely, one should use Gaitsgory’s notion of (and results on) 1-affineness [Gai5], as will be discussed
later: see especially S1.27.
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More5 intriguing is the compatibility with Kac-Moody representations at the critical level:
this idea is implicit in [BD], and is explicitly proposed in [FG1]. There is nothing6 analogous
in the arithmetic theory, so this marks one of the major points of departure of geometric
Langlands from the usual theory of automorphic forms. Moreover, such a compatibility has
deep impliciations in representation theory that are of independent interest.

1.3. Local geometric Langlands? Though there are exceptions in special cases, local geometric
Langlands (for non-abelian 𝐺) essentially stalled out after Bezrukavnikov’s theory.

There may be many reasons for this: Bezrukavnikov’s theory invokes many brilliant constructions,
and perhaps no one has figured out how to extend these. But more fundamentally, there are serious
technical challenges when one reaches beyond Iwahori.

On the geometric side, for compact open subgroups 𝒦 Ď 𝐺p𝐾q smaller than Iwahori, the 𝒦-orbits
on 𝐺p𝐾q{𝒦 are not “combinatorial,” i.e., the orbits are not discretely parameterized. For starters,
this means one must handle non-holonomic 𝐷-modules. More seriously, this transition abandons
the comfort zone of classical geometric representation theory.

On the spectral side, recall that the formal completion of the locus of regular singular (de Rham)
local systems with unipotent monodromy is isomorphic to the formal completion of Ň{𝐺̌ Ď ǧ{𝐺̌

for Ň Ď ǧ the nilpotent cone. However, beyond this locus, LocSys𝐺̌p
˝

𝒟q is no longer an Artin stack,
and is not even finite type. So again, we find ourselves out our comfort zone.

This is to say the skeptic would not be rash in asking if there is any true local geometric
Langlands (which for starters would incorporate irregular singularities); nor to suggest that Iwahori
ramification is the limit of what is apparently just a geometric shadow of a much richer arithmetic
theory. If our interlocutor is right, then there is not much more to explore in geometric Langlands,
and the subject is nearing exhaustion.

1.4. But we remember Beilinson’s class field theory for de Rham local systems and draw some
resilience from it.

1.5. This paper is essentially an attempt to study how bad the geometry on the spectral side of
local geometric Langlands is.

The results are surprisingly positive: from the perspective of homological algebra, LocSys𝐺̌p
˝

𝒟q
has some the favorable features of an Artin stack.

In short summary, our main result compares two (a priori quite different, c.f. below) notions of

category over LocSys𝐺̌p
˝

𝒟q, showing that one is a special case of the other. We conjecture that the
two do coincide.

As a happy output of our methods, we also show that QCohpLocSys𝐺̌p
˝

𝒟qq is compactly generated
as a DG category, which comes as a bit of a surprise.

Remark 1.5.1. As we will discuss below, these results can be understood as a geometric strength-
ening of the simple observation that tangent spaces at field-valued points of LocSys are finite-
dimensional.

5This paragraph is included for the sake of completeness, but we explicitly note that it plays no role in what
follows. The reader unfamiliar with this idea does not need to follow it, and does not need to turn to [BD] and [FG1]
to catch up.

6Perhaps this is too strong a claim: as is well-known among experts, the appearance of opers can be understood
as a spectral analogue of the Whittaker model, which normally only appears on the geometric side. Nevertheless,
such a thing is impossible arithmetically.
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1.6. History. We were first asked this question by Dennis Gaitsgory in 2010. He informs us that

the ambiguity in what was meant by a category over LocSys𝐺̌p
˝

𝒟q was the reason that no formulation
of a local geometric Langlands conjecture was given by him and Frenkel in [FG1], nor by Beilinson
earlier.

1.7. Changing notation. At this point, we stop referring to any Langlands duality. For the
remainder of the paper, let 𝐺 be an affine algebraic group over 𝑘, which will play the role that 𝐺̌
played above. In particular, we do not always assume that 𝐺 is reductive in what follows.

1.8. Main results. We now proceed to give a detailed description of the results of this paper.
We proceed in increasing technical sophistication. We begin in S1.9-1.18 with the main novel

geometric result of this paper, which is less technical than the rest of the paper in that it does not
involve DG categories.

In S1.19, we will comment on the compact generation of QCoh, indicating why the claim is non-

trivial (i.e., why it encodes at a technical level the idea that LocSys𝐺p
˝

𝒟q is like an Artin stack).
Finally, in S1.20, we will begin to discuss 1-affineness and what could be meant by a category

over LocSys𝐺p
˝

𝒟q. Recall that our main result here compares two different notions.

1.9. Geometry of LocSys𝐺p
˝

𝒟q. We now provide a more detailed description of the results of this
paper.

Our treatment will be thorough, since there are not great references treating the moduli of local
systems on the punctured disc as an object of algebraic geometry (though it is old folklore), and

hoping that the expert reader will forgive this. So we will give a precise definition of LocSys𝐺p
˝

𝒟q
followed by some examples, and then state our main geometric result.

1.10. First, we need to define LocSys𝐺p
˝

𝒟q.
Let AffSch denote the category of affine schemes.7 We will presently define a functor:

AffSchÑ 1–Gpd

𝑆 ÞÑ LocSys𝐺p
˝

𝒟qp𝑆q
where 1–Gpd is the category of 1-groupoids (i.e., the usual notion of groupoid, not a higher

groupoid). This will be the geometric object we mean by LocSys𝐺p
˝

𝒟q: in the language [Gai2]

of derived algebraic geometry, we say that LocSys𝐺p
˝

𝒟q is a 1-truncated classical prestack.

Warning 1.10.1. We emphasize from the onset that we will not sheafify this functor for any topol-
ogy; though we are trained always to sheafify, not sheafifying actually avoids some useless and un-
necessary confusion,8 and by descent does not change the categories we are interested in (namely,
quasi-coherent sheaves and sheaves of categories).

7Here these are classical affine schemes in the language of derived algebraic geometry. Fortunately, derived
algebraic geometry only plays a minor role in the present work (though it always lurks in the background). Moreover,
manipulations with connections (which is only possible in classical algebraic geometry) is crucial in S2, so our default
convention is the language of classical algebraic geometry.

8E.g., we never need to worry about the subtle questions of projectivity of an 𝐴pp𝑡qq-module versus local freeness
on Specp𝐴q: this question is irrelevant for us. So the cost is some awkwardness, and the benefit is that we never
engage with some subtleties.
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1.11. Let Ω1
𝐾 denote the 𝐾-line of 𝑘-linear continuous differentials for 𝐾. So we have a map

𝑑 : 𝐾 Ñ Ω1
𝐾 , and our coordinate 𝑡 defines the basis element 𝑑𝑡 P Ω1

𝐾 so that 𝑑𝑓 “ 𝑓 1 ¨ 𝑑𝑡. For
economy, we usually use the notation 𝐾𝑑𝑡 for Ω1

𝐾 , though we will not be using our coordinate in
any symmetry breaking way.

More generally, for 𝐴 a 𝑘-algebra and 𝑉 an 𝐴pp𝑡qq-module, we let 𝑉 𝑑𝑡 :“ Ω1
𝐾 b𝐾 𝑉 .

1.12. Description of LocSys𝐺p
˝

𝒟q as a quotient. We recall that there is a gauge action of the
indscheme 𝐺p𝐾q on the indscheme9 gpp𝑡qq𝑑𝑡.

Morally, this is given by the formula:

𝐺p𝐾q ˆ gpp𝑡qq𝑑𝑡Ñ gpp𝑡qq

p𝑔,Γ𝑑𝑡q ÞÑ Gauge𝑔pΓ𝑑𝑡q :“ Ad𝑔pΓq𝑑𝑡´ p𝑑𝑔q𝑔
´1

though we will give a precise construction in what follows. Modulo the construction of this action,

we define LocSys𝐺p
˝

𝒟q as the prestack (i.e., non-sheafified) quotient gpp𝑡qq𝑑𝑡{𝐺p𝐾q, where we are
using the gauge action.

One approach to constructing this action is to notice that for 𝐺 “ 𝐺𝐿𝑛, this formula makes sense
as is, and then to use the Tannakian formalism to reduce to this case. Indeed, the only difficulty
in making sense of this formula is the term 𝑑𝑔 ¨ 𝑔´1, and this case a clear meaning for matrices.

Alternatively, recall that 𝐺 carries the canonical g-valued 1-form (the Cartan form). This is a
right invariant g-valued 1-form on 𝐺. Note that right invariant g-valued 1-forms are the same as
vectors in gbg_, and our 1-form then corresponds to the identity matrix in gbg_ “ Endpgq. Note
that for 𝐺 “ 𝐺𝐿𝑛, the Cartan form is given by the formula 𝑑𝑔 ¨ 𝑔´1.

For 𝑆 “ Specp𝐴q P AffSch, let
˝

𝒟𝑆 :“ Specp𝐴pp𝑡qqq. Given 𝑔 :
˝

𝒟𝑆 Ñ 𝐺 (i.e., an 𝑆-point of 𝐺p𝐾q),

one can pullback10 the Cartan form to obtain an g-valued 𝑆-relative differential form on
˝

𝒟𝑆 , i.e.,
an element of pgb𝐴qpp𝑡qq𝑑𝑡 “ pgpp𝑡qq𝑑𝑡qp𝑆q.

1.13. Description of LocSys𝐺p
˝

𝒟q via local systems. We now give a somewhat more concrete

description of LocSys𝐺p
˝

𝒟q, especially for 𝐺 “ 𝐺𝐿𝑛.

Definition 1.13.1. A differential module on
˝

𝒟𝑆 is a finite rank free 𝐴pp𝑡qq-module 𝑉 equipped with
an 𝐴-linear map:

∇ : 𝑉 Ñ 𝑉 𝑑𝑡

satisfying the Leibniz rule:

∇p𝑓𝑣q “ 𝑓∇p𝑣q ` 𝑑𝑓 b 𝑣.

For 𝐺 “ 𝐺𝐿𝑛, we define LocSys𝐺𝐿𝑛
p
˝

𝒟qp𝑆q as the groupoid of differential modules on
˝

𝒟𝑆 of
rank 𝑛 (as an 𝐴pp𝑡qq-module). Indeed, for an p𝑛 ˆ 𝑛q-matrix Γ𝑑𝑡 P gpp𝑡qq, ∇ :“ 𝑑 ` Γ𝑑𝑡 defines a
connection on 𝐴pp𝑡qq‘𝑛, and it is standard to see that this gives an equivalence of groupoids.

9We begin a practice here where sometimes we view gpp𝑡qq𝑑𝑡 (or grr𝑡ss𝑑𝑡) as a geometric object, i.e., an indscheme
(or scheme), and sometimes as a linear algebra object, i.e., a 𝐾-vector space. We promise always to be careful to
distinguish which of the two perspectives we are using.

10For precision, since 𝐴pp𝑡qq𝑑𝑡 is a bit outside the usual format of differential algebraic geometry: the composition

O𝐺
𝑔˚

ÝÝÑ 𝐴pp𝑡qq
𝑑
ÝÑ 𝐴pp𝑡qq𝑑𝑡 is a derivation, so induces a map Ω1

𝐺 Ñ 𝐴pp𝑡qq𝑑𝑡. Similarly, we obtain g b Ω1
𝐺 Ñ

pgb𝐴qpp𝑡qq𝑑𝑡, and our form is the image of the Cartan form under this map.



6 SAM RASKIN

More generally, we obtain a Tannakian description of LocSys𝐺p
˝

𝒟q. (But we should be careful not
to sheafify in 𝑆!) So we take the groupoid of symmetric monoidal functors from finite-dimensional

representations of 𝐺 to differential modules on
˝

𝒟𝑆 , such that the resulting functor from finite-
dimensional representations of𝐺 to free 𝐴pp𝑡qq-modules admits an isomorphism with Oblvb𝑘𝐴pp𝑡qq,
for Oblv the forgetful functor for 𝐺-representations.

1.14. Example: 𝐺 “ G𝑚. We now give some important explicit examples of LocSys𝐺p
˝

𝒟q, which
the reader should always keep in mind. We begin with the case 𝐺 “ G𝑚.

Since 𝐺 is commutative, the gauge action is given by p𝑔, 𝜔q P G𝑚p𝐾q ˆ𝐾𝑑𝑡 ÞÑ 𝜔 ´ 𝑑 logp𝑔q.

We will compute the quotient by the gauge action in stages, ultimately showing that LocSysG𝑚
p
˝

𝒟q
is a product of three terms: G𝑎{Z where Z acts by translations, the quotient of an ind-infinite di-
mensional affine space by its underlying formal group (i.e., colim𝑛A𝑛

𝑑𝑅) , and BG𝑚 the classifying
stack of G𝑚.

First, we quotient by the first congruence subgroup 𝒦1 :“ KerpG𝑚p𝑂q Ñ G𝑚q of G𝑚p𝐾q (here
and everywhere, 𝑂 :“ 𝑘rr𝑡ss).

Since 𝒦1 is prounipotent, 𝑔 P 𝒦1 can be written canonically as expp𝜉q for 𝜉 P 𝑡𝑘rr𝑡ss. Here we are
abusing notation: by (e.g.) 𝑔 P 𝒦1, we implicitly are taking an 𝑆-point (for 𝑆 a test affine scheme),
and we are considering 𝑡𝑘rr𝑡ss as a scheme in the obvious way. That aside, the action of 𝒦1 then

sends p𝑔 “ expp𝜉q, 𝜔q to 𝜔´𝑑𝜉. Therefore, we see that 𝐾𝑑𝑡{𝒦1 “ 𝐾𝑑𝑡{𝑂𝑑𝑡, since 𝑑 : 𝑡𝑘rr𝑡ss
»
ÝÑ 𝑂𝑑𝑡.

Note that 𝐾𝑑𝑡{𝑂𝑑𝑡 is an ind-affine space, and is ind-finite type.
Quotienting by G𝑚p𝑂q, we see that G𝑚 “ G𝑚p𝑂q{𝒦1 acts on 𝐾𝑑𝑡{𝑂𝑑𝑡 trivially, and therefore

the quotient is 𝐾𝑑𝑡{𝑂𝑑𝑡ˆ BG𝑚.

Next, we quotient by {G𝑚p𝑂q, the formal completion of G𝑚p𝑂q in G𝑚p𝐾q, i.e., the connected com-

ponent of the identity in G𝑚p𝐾q. The exponential map defines a canonical isomorphism p𝐾{𝑂q^0
»
ÝÑ

{G𝑚p𝑂q{G𝑚p𝑂q, where p𝐾{𝑂q^0 is the formal completion at the identity of the group indscheme 𝐾{𝑂
(considered as a group under addition). Moreover, the resulting action on 𝐾𝑑𝑡{𝑂𝑑𝑡ˆBG𝑚 is trivial
on the second factor, and on the first factor (up to sign) is induced from the translation action

of 𝐾𝑑𝑡{𝑂𝑑𝑡 on itself and the homomorphism 𝐾{𝑂
𝑑
ÝÑ 𝐾𝑑𝑡{𝑂𝑑𝑡. Since the latter homomorphism

identifies the source with the kernel of the residue map, the resulting quotient is:

G𝑎 ¨
𝑑𝑡

𝑡
ˆKerpRes : 𝐾𝑑𝑡{𝑂𝑑𝑡Ñ G𝑎q𝑑𝑅 ˆ BG𝑚.

Here we are using the well-known de Rham prestack construction, and the fact that de Rham of a
group is the quotient of the group by its underlying formal group.

Finally, we quotient by G𝑚p𝐾q{ {G𝑚p𝑂q “ Z. It is easy to see that the generator acts as translation
by 𝑑𝑡

𝑡 on the factor G𝑎
𝑑𝑡
𝑡 and trivially on the other factors above, so the resulting quotient is:

pG𝑎 ¨
𝑑𝑡

𝑡
q{pZ ¨

𝑑𝑡

𝑡
q ˆKerpRes : 𝐾𝑑𝑡{𝑂𝑑𝑡Ñ G𝑎q𝑑𝑅 ˆ BG𝑚

as originally claimed.

1.15. Example: 𝐺 is unipotent. Next, we treat the case where 𝐺 is unipotent. We will show that

LocSys𝐺p
˝

𝒟q is isomorphic to the stack g{𝐺, where 𝐺 acts via the adjoint action. More precisely,
we claim that the map:
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g{𝐺Ñ LocSys𝐺p
˝

𝒟q

𝜉 ÞÑ 𝑑` 𝜉
𝑑𝑡

𝑡
gives an isomorphism.

First, suppose that 𝐺 is a commutative unipotent group. We have an exponential isomorphism

exp : gpp𝑡qq
»
ÝÑ 𝐺p𝐾q, and by commutativity, the gauge action then becomes:

gpp𝑡qq ˆ gpp𝑡qq𝑑𝑡
»
ÝÑ 𝐺p𝐾q ˆ gpp𝑡qq𝑑𝑡Ñ gpp𝑡qq𝑑𝑡

p𝜉,Γ𝑑𝑡q ÞÑ Γ𝑑𝑡´ 𝑑𝜉.

This clearly gives the claim in this case.

In the general case, let 𝑍 be the center of 𝐺. By commutativity, LocSys𝑍p
˝

𝒟q has commutative

group structure as a prestack. Moreover, by centrality it acts on LocSys𝐺p
˝

𝒟q, and the prestack

quotient for this action is LocSys𝐺{𝑍p
˝

𝒟q. Therefore, we can apply induction on the degree of
nilpotence to reduce to the commutative case.

1.16. Example: 𝐺 “ G𝑚 ˙ G𝑎. In this case, we will see that LocSys𝐺p
˝

𝒟q is not locally of finite
type, unlike the previous examples. Note that the nature of this example forces similar bad behavior
for 𝐺 “ 𝐺𝐿2, or any other nonabelian (connected) reductive group.

In what follows, we realize 𝐺 as a matrix group in 𝐺𝐿2 in the usual way.

Consider 𝑂 “ t𝑓 “
ř8

𝑖“0 𝑎𝑖𝑡
𝑖u as a scheme, and let A1ˆ𝑂 map to LocSys𝐺p

˝

𝒟q though the map:

p𝜆, 𝑓q P A1 ˆ𝑂 ÞÑ 𝑑`

ˆ

𝜆
𝑡 𝑓
0 0

˙

𝑑𝑡.

If LocSys𝐺p
˝

𝒟q were locally of finite type, then this map would factor through A1 ˆ 𝑂{𝑡𝑛𝑂 for
some 𝑛, i.e., it would be isomorphic to a map depending only on the first 𝑛 of the 𝑎𝑖 in the above
notation. We claim this is not the case.

To this end, we claim that the 𝐺-connection:

𝑑`

ˆ

´𝑛
𝑡 𝑡𝑛´1

0 0

˙

𝑑𝑡

is not isomorphic to the trivial 𝐺-connection for 𝑛 P Zě0, while the connection 𝑑`

ˆ

´𝑛
𝑡 0

0 0

˙

𝑑𝑡 is

isomorphic to a trivial connection. Note that this immediately gives a contradiction to the locally
finite type claim.

To see these results, we apply a gauge transformation by

ˆ

𝑡´𝑛 0
0 1

˙

P 𝐺p𝐾q. The former connec-

tion becomes:

𝑑`

ˆ

0 𝑡´1

0 0

˙

𝑑𝑡

which is easily seen to be nontrivial (one solution to the corresponding order 2 differential equation
is the logarithm), while the the latter connection becomes trivial, as desired.

Remark 1.16.1. This example also shows that 𝑡´1grr𝑡ss𝑑𝑡{𝐺p𝑂q is not locally of finite type.
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Remark 1.16.2. This example admits another interpretation. We will be slightly informal here,
since we will not use this language later in the paper.

Recall that to a two step complex of vector spaces (or vector bundles), we can associate a stack.

Then LocSysG𝑚˙G𝑎
p
˝

𝒟q Ñ LocSysG𝑚
p
˝

𝒟q is obtained by the (Tate analogue of) this construction for

the two step complex on LocSysG𝑚
p
˝

𝒟q computing de Rham cohomology of a rank 1 local system.
In these terms, the above corresponds to the fact that regular singular G𝑚-connections can have
de Rham cocycles with an arbitrarily high order of zero.

1.17. Semi-infinite motivation. The difficulty in working with LocSys𝐺p
˝

𝒟q as a geometric object
is that it is the quotient of something very infinite-dimensional by something else very infinite-
dimensional. Here “very infinite-dimensional” means “an indscheme of ind-infinite type.” So it is
not at all an Artin stack (except for 𝐺 unipotent).

But LocSys𝐺p
˝

𝒟q does share some properties of an Artin stack. E.g., the cotangent complex is
computed using de Rham cohomology, and therefore has finite-dimensional cohomology groups at
field-valued points.

So as a first approximation, one should think that the infinite-dimensional forces are canceling
each other out into something almost finite-dimensional. We have seen that this does happen in
a fairly precise the special cases where 𝐺 is unipotent or commutative, though it is harder to say
what we mean by this if 𝐺 is merely, say, solvable.

In fact, everything in this paper marked as a “theorem” may be regarded as an attempt to say

in what sense LocSys𝐺p
˝

𝒟q behaves like an Artin stack (i.e., that it has better geometric properties
than, say, gpp𝑡qq{𝐺p𝐾q under the adjoint action). Moreover, already for 𝐺 “ 𝐺𝐿2, these results are
the only such statements of which I am aware.

1.18. Motivated by the example of G𝑚˙G𝑎, we will show the following results in S2. Here 𝐺 can
be any affine algebraic group.

We begin with the case of regular connections.

Theorem (Thm. 2.12.1 and Ex. 2.8.4). Let 𝒦1 Ď 𝐺p𝑂q denote the first congruence subgroup (i.e.,
the kernel of the evaluation map 𝐺p𝑂q Ñ 𝐺).

For Γ´1 P g a 𝑘-point, consider the gauge action of 𝒦1 on the subscheme:

Γ´1
𝑑𝑡

𝑡
` grr𝑡ss𝑑𝑡 Ď gpp𝑡qq𝑑𝑡.

Then the quotient of this scheme by 𝒦1 is an Artin stack smooth over 𝑘 (in particular, it is of finite
type).

In other words, when we fix the polar part of the connection, the quotient is an Artin stack.

Remark 1.18.1. To emphasize, we have are encountering a strange pathology in infinite type al-
gebraic geometry. 𝒦1 acts on 𝑡´1grr𝑡ss𝑑𝑡 preserving the fibers of the residue map 𝑡´1grr𝑡ss𝑑𝑡 Ñ
𝑡´1grr𝑡ss𝑑𝑡{grr𝑡ss𝑑𝑡 “ g; then the quotient by 𝒦1 is an Artin stack on geometric fibers, but is not
an Artin stack before we take fibers (since it is not of finite type by S1.16).

In more naive terms, for every fiber some congruence subgroup acts freely, but the subgroup
cannot be taken independently of the fiber (again, by S1.16).

The result above is not quite true as is when we allow higher order poles, but we will see that
the following variant holds:



ON THE NOTION OF SPECTRAL DECOMPOSITION IN LOCAL GEOMETRIC LANGLANDS 9

Theorem (Thms. 2.12.1 and 2.19.1). For every 𝑟 ą 0, there exists an integer 𝜌 (depending also
on 𝐺) such that for every Γ´𝑟, . . . ,Γ´𝑟`𝜌 𝑘-points of g, the quotient of the action of the p𝜌 ` 1q-
congruence group 𝒦𝜌`1 :“ Kerp𝐺p𝑂q Ñ 𝐺p𝑂{𝑡𝜌`1𝑂qq on the subscheme of connections of the form:

Γ´𝑟𝑡
´𝑟𝑑𝑡` . . .` Γ´𝑟`𝜌𝑡

´𝑟`𝜌𝑑𝑡` 𝑡´𝑟`𝜌`1grr𝑡ss𝑑𝑡 Ď gpp𝑡qq𝑑𝑡

is an Artin stack smooth over 𝑘.

Note that the main difficulty in proving this is showing that the quotient is locally of finite type.

Remark 1.18.2. This second result is a special case of the first result: the only additional claim
is that for 𝑟 “ ´1, we can take 𝜌 “ 0. Moreover, as indicated above, this will be clear from the
formulation of Theorem 2.12.1 and from Example 2.8.4. We emphasize that the only difference from
the previous theorem is that for 𝑟 ą 1, we typically have 𝜌 ě 𝑟, i.e., we have to fix more than just
the polar part of the connection.

Remark 1.18.3. Note that the latter cited theorem, Theorem 2.19.1, is strongly influenced by
Babbitt-Varadarajan [BV], and closely follows their method for treating connections on the formal
punctured disc.

Remark 1.18.4. The proof of Theorem 2.12.1, which says that an infinitesimal finiteness hypothesis
implies quotients of the above kind are finite type, is surprisingly tricky, especially considering how
coarse the hypothesis and the conclusion of this result are. I would be very glad to hear a simpler
proof.

Remark 1.18.5. The regular singularities case stated above is substantially more elementary than
the case of higher order singularities, and is left as an instructive exercise for the reader. We have
mentioned it separately here only because the formulation is somewhat more straightforward than
the general case. In particular, this case does not need to pass through the infinitesimal analysis;
this is essentially because it is easy to find so-called good lattices for regular singular connections.

1.19. Compact generation of QCoh. Next, let QCohpLocSys𝐺p
˝

𝒟qq denote the (cocomplete) DG

category of quasi-coherent sheaves on LocSys𝐺p
˝

𝒟q. Recall that QCoh is defined as an appropriate
homotopy limit for any prestack, and we are simply applying this construction in the case of

LocSys𝐺p
˝

𝒟q.

Theorem (Thm. 4.4.1). If 𝐺 is reductive, then QCohpLocSys𝐺p
˝

𝒟qq is compactly generated.

Let us comment on why this result is nontrivial.

In forming LocSys𝐺p
˝

𝒟q, we take a certain quotient by 𝐺p𝐾q. Since 𝐺 is reductive, 𝐺p𝐾q{𝐺p𝑂q “
Gr𝐺 is ind-proper, and the major difficulty arises in quotienting by 𝐺p𝑂q.

Indeed, one can easily see that QCohpB𝐺p𝑂qq has no non-zero compact objects. Ultimately, this
is because the trivial representation has infinite cohomological amplitude, because of the infinite
dimensional pro-unipotent tail of 𝐺p𝑂q (more precisely, one should combine this observation with
left completeness of the canonical 𝑡-structure on this category). In other words, the global sections
functor on B𝐺p𝑂q has infinite cohomological amplitude, ruling out compactness.

We will prove the compact generation for LocSys𝐺p
˝

𝒟q by showing that global sections for
𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q is cohomologically bounded (for the natural 𝑡-structure on this quotient).

Here’s a sketch of the proof. This result can be checked after replacing𝐺p𝑂q by the 𝜌th congruence
subgroup 𝒦𝜌. Then the claim follows from a Cousin spectral sequence argument by noting that the
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geometric fibers of the map 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝜌 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡´𝑟`𝜌grr𝑡ss𝑑𝑡 are Artin stacks for 𝜌 large
enough (by the earlier geometric theorems), and the further (easy) observation that the dimensions
of these fibers are uniformly bounded (in terms of 𝜌 and 𝐺).

Remark 1.19.1. This argument illustrates the main new idea of this work: LocSys𝐺p
˝

𝒟q is nice from
the homological perspective because its worst pathologies are rooted in the poor behavior that
occurs as we move between the fibers of the map 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝜌 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡´𝑟`𝜌grr𝑡ss𝑑𝑡 (as has
long been known), and the Cousin filtration means that these pathologies disappear in the derived
category.

Question 1.19.2. The above theorem relies on the properness of Gr𝐺, which is why I only know it

for 𝐺 reductive. We know it for 𝐺 unipotent by separate means. Is QCohpLocSys𝐺p
˝

𝒟qq compactly
generated for general 𝐺? Already for 𝐺 “ G𝑚 ˙G𝑎, I do not know the answer.

1.20. 1-affineness. We now discuss the notion of 1-affineness from [Gai5], which plays a major
role in this text.

Remark 1.20.1. As some motivation for what follows: 1-affineness appears to play a key technical
role in this flavor of geometric representation theory. Indeed, I think I am not overstepping in
asserting that every non-trivial formal manipulation in the subject is an application of 1-affineness,
or that the theorems on 1-affineness, all of which are contained in [Gai5], are what fundamentally
undergird the “functional analysis” of the subject.

Remark 1.20.2. This is the only review of 1-affineness given in the text, and it may be slightly too
detailed for an introduction. We apologize to the reader if it seems to be so, and suggest to skip
anything that does not appear to be urgent.

1.21. First, we briefly need to recall the linear algebra of DG categories.
We always work in the higher categorical framework, so our default language is that a category

is an p8, 1q-category in the sense of Lurie et al.
By a cocomplete DG category, we will always mean a presentable one, i.e., a DG category

admitting (small) colimits and satisfying a set-theoretic condition. The relevant set theory will lie
under the surface in our applications to e.g. the adjoint functor theorem, and life is better for us
all if we suppress (without forgetting) it to the largest extent possible.

Let DGCat𝑐𝑜𝑛𝑡 denote the category of cocomplete (i.e., presentable) DG categories, with mor-
phisms being continuous (i.e., commuting with filtered colimits) DG functors. Note that these
functors actually commute with all colimits, since DG functors tautologically commute with finite
colimits.

We let Vect denote the DG category of (complexes of) vector spaces. For 𝐴 P AlgpVectq, we let

𝐴–mod denote the DG category of left 𝐴-modules. For 𝐴 connective, we let 𝐴–mod♡ denote the
heart of the 𝑡-structure on 𝐴–mod.

Recall that DGCat𝑐𝑜𝑛𝑡 is equipped with a standard tensor product b with unit object Vect.
We remark that this tensor product is generally hard to computeexplicitly with, and questions of
1-affineness generally boil down to the calculation of many tensor products.

For A P AlgpDGCat𝑐𝑜𝑛𝑡q, we will generally use A–mod to mean A–modpDGCat𝑐𝑜𝑛𝑡q. We sometimes
say that a functor 𝐹 : CÑ D between objects of A–mod is A-linear if it is (equipped with a structure
of) morphism in A–mod: in particular, this means that the functor 𝐹 commutes with colimits.

1.22. Suppose that Y is a prestack in the sense of [Gai2]: note that this is inherently a notion of
derived algebraic geometry. What should we mean by “a (DG) category over Y?”
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First, if Y “ Specp𝐴q is an affine DG scheme, all roads lead to Rome. I.e., the following structures
on C P DGCat𝑐𝑜𝑛𝑡 are equivalent:

‚ Functorially making Homs in C into 𝐴-modules, i.e., giving a morphism of E2-algebras
𝐴Ñ 𝑍pCq, where 𝑍pCq is the Hochschild cohomology (aka derived Bernstein center) of C.

‚ Giving C the structure of 𝐴–mod-module in DGCat𝑐𝑜𝑛𝑡.

1.23. For a general prestack Y, we have two options.
First, we could ask for a DG category tensored over Y, i.e., an object of QCohpYq–mod :“

QCohpYq–modpDGCat𝑐𝑜𝑛𝑡q (where usual tensor products of quasi-coherent sheaves makes QCohpYq
into a commutative algebra object of DGCat𝑐𝑜𝑛𝑡).

More abstractly, we could also ask for a (functorial) assignment for every 𝑓 : Specp𝐴q Ñ Y, of
an assignment of an 𝐴-linear category 𝑓˚pCq, with identifications:

𝑓˚pCq b
𝐴–mod

𝐵–mod “ p𝑓 ˝ 𝑔q˚pCq

for every Specp𝐵q
𝑔
ÝÑ Specp𝐴q

𝑓
ÝÑ Y, and satisfying higher (homotopical) compatibilities. I.e., we ask

for an object of the homotopy limit of the diagram indexed by tSpecp𝐴q Ñ Yu and with value the
category of 𝐴-linear categories, with induction as the structure functors. We denote the resulting
category by ShvCat{Y.

Roughly speaking, we should think that the former notion is more concrete, and that the latter
notion has better functoriality properties.

Remark 1.23.1. A toy model: a categorical level down, for Y a prestack, these two ideas give two
notions of “vector space over Y,” namely, a ΓpY,OYq-module, or a quasi-coherent sheaf on Y.

As in this analogy, we have adjoint functors:

QCohpYq–mod
Loc“LocY // ShvCat{Y
Γ“ΓpY,´q
oo

Definition 1.23.2 (Gaitsgory, [Gai5]). Y is 1-affine if these functors are mutually inverse equiva-
lences.

Remark 1.23.3. 1-affineness is a much more flexible notion than usual affineness, as we will see in
S1.25 below.

Remark 1.23.4. We let QCoh{Y denote the sheaf of categories LocpQCohpYqq, i.e., this is the sheaf
of categories that assigns 𝐴–mod to every Specp𝐴q Ñ Y. Note that ΓpQCoh{Yq is always equal to
QCohpYq.

1.24. Regarding sheafification. A quick aside: by descent for sheaves of categories ([Gai5] Ap-
pendix A), ShvCat{´ is immune to fppf sheafification. Therefore, we will often not sheafify, since
this is simpler and more convenient in many circumstances.

We have used this convention once already in defining LocSys𝐺p
˝

𝒟q. We will further use it in
forming quotients by group schemes 𝐺: for 𝐺 acting on 𝑆, 𝑆{𝐺 will denote the prestack quotient,
and B𝐺 will denote Specp𝑘q{𝐺.
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1.25. Examples. We now give the basic examples and counterexamples of 1-affineness. With one
exception, all of these results are proved in [Gai5]: see S2 of loc. cit and the local references given
there.

The one exception is the failure of 1-affineness of11 A8 :“ colim𝑛A𝑛: the argument given in
[Gai5] is not correct, and we refer instead to the erratum [GR1].

Theorem 1.25.1 (Gaitsgory). The following prestacks are 1-affine:

‚ Any quasi-compact quasi-separated DG scheme.
‚ Any (classically) finite type algebraic stack, or more generally, any eventually coconnective
almost finite type DG Artin stack. In particular, the classifying stack of an algebraic group
is 1-affine.

‚ For any ind-finite type indscheme 𝑆, 𝑆𝑑𝑅 is 1-affine.
‚ The formal completion 𝑇^𝑆 of any quasi-compact quasi-separated DG scheme 𝑇 along a

closed subscheme 𝑆 ãÑ 𝑇 with 𝑆𝑐𝑙 Ď 𝑇 𝑐𝑙 defined by a locally finitely generated sheaf of
ideals.

‚ For 𝐺 an algebraic group, the classifying (pre)stack B𝐺^𝑒 of its formal group is 1-affine.

The following prestacks are not 1-affine:

‚ The indscheme A8 :“ colim𝑛A𝑛. Same for its formal completion at the origin.
‚ The classifying prestack Bp

ś8
𝑖“1G𝑎q.

‚ The classifying prestack BA8, with A8 being the ind-infinite dimensional affine space. The
same holds for its formal group.

Remark 1.25.2. In remembering some of these examples, a helpful12 mnemonic is that infinite-
dimensional tangent spaces are the primary obstruction to 1-affineness. E.g., A8 :“ colim𝑛A𝑛 is
not 1-affine “since” it has infinite dimensional tangent spaces, but A8𝑑𝑅 is 1-affine, and its tangent
spaces vanish.

Remark 1.25.3. In what follows, it is helpful to know two examples where 1-affineness fails, but
partially holds.

Namely, for A8, the functor:

Loc : QCohpA8q–modÑ ShvCat{A8

is fully-faithful. In contrast, for Bp
ś8

𝑖“1G𝑎q, the functor:

Γ : ShvCat{Bp
ś8

𝑖“1 G𝑎q
Ñ QCohpBp

8
ź

𝑖“1

G𝑎qq–mod

is fully-faithful.13

1.26. Our main conjecture is the following:

Conjecture 1. For any affine algebraic group 𝐺, LocSys𝐺p
˝

𝒟q is 1-affine.

The following partial result is the main theorem of this paper.

11In this paper, the notation A8 should be regarded as “locally defined”: it may refer to either a pro-infinite
dimensional affine space or to an ind-infinite dimensional affine space, and we will specify locally which we mean.

12But imperfect: many examples in [Gai5] contradict this principle. Still, it is helpful for the purposes of the present
paper.

13This is not quite stated in [Gai5]: Theorem 5.1.5 of loc. cit. does not apply because the structure sheaf of this
stack is not compact. However, the claim is given in Proposition 3.5.1 below.
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Main Theorem. For 𝐺 a reductive group, the functor:

Loc : QCohpLocSys𝐺p
˝

𝒟qq–modÑ ShvCat
{LocSys𝐺p

˝

𝒟q
is fully-faithful.

Remark 1.26.1. We remind that this theorem partially answers a question of Gaitsgory.

Remark 1.26.2. Note that the space of gauge forms gpp𝑡qq𝑑𝑡 is an indscheme that is isomorphic
to a product of ind-infinite dimensional affine space and pro-infinite dimensional affine space, and
therefore it is not 1-affine.

Moreover, we are quotienting not just by 𝐺p𝑂q, which itself tends to create prestacks that are
not 1-affine (like B𝐺p𝑂q), but by 𝐺p𝐾q. And we have seen in Remark 1.25.3 that 1-affineness fails
in two different ways here.

Essentially, the above theorem shows that quotienting by 𝐺p𝑂q is no problem, and is unable to
treat the obstruction to 1-affineness coming from gpp𝑡qq𝑑𝑡 not being 1-affine.

1.27. Example: 𝐺 “ G𝑚. It is instructive to analyze 𝐺 “ G𝑚, where 1-affineness quickly reduces
to Gaitsgory’s results. We assume that the reader has retained (or at least revisited) the material
of S1.14.

Note that the intermediate 𝐾𝑑𝑡{G𝑚p𝑂q is not 1-affine, since there is an ind-infinite dimensional
affine space as a factor.

Instead, we need to quotient gauge forms 𝐾𝑑𝑡 by {G𝑚p𝑂q :“ the formal completion of G𝑚p𝑂q in
G𝑚p𝐾q. In this case, we obtain:

G𝑎 ¨
𝑑𝑡

𝑡
ˆKerpRes : 𝐾𝑑𝑡{𝑂𝑑𝑡Ñ G𝑎q𝑑𝑅 ˆ BG𝑚

as in S1.14. Since the infinite-dimensional affine space is replaced by its de Rham version, this
quotient is 1-affine.

It remains to quotient by G𝑚p𝐾q{ {G𝑚p𝑂q “ Z. One can readily show that BZ is 1-affine.14

Then the morphism:

LocSysG𝑚
p
˝

𝒟q “ p𝐾𝑑𝑡{ {G𝑚p𝑂qq{ZÑ BZ

has 1-affine fibers (since these fibers are 𝐾𝑑𝑡{ {G𝑚p𝑂q). Since BZ is 1-affine, this implies that

LocSysG𝑚
p
˝

𝒟q is also 1-affine by [Gai5] Corollary 3.2.7.

1.28. For general reductive 𝐺, such an explicit analysis does not work. However, we will show the
following results, inspired by the above.

The following is the main result in S3.

Theorem (Thm. 3.9.1). For any affine algebraic group 𝐺, 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q is 1-affine.

As for A8, we obtain that Loc is fully-faithful for gpp𝑡qq𝑑𝑡{𝐺p𝑂q (and this is the best possible
result for this prestack). We then use ind-properness of 𝐺p𝐾q{𝐺p𝑂q to deduce the main theorem.

14A proof, for the interested: tautologically, categories over BZ are equivalent to categories with an automorphism
(the fiber functor corresponds to pullback Specp𝑘q Ñ BZ). Moreover, QCohpBZq is equivalent to QCohpG𝑚q with its
convolution structure, so module categories for QCohpBZq are equivalent to categories over BG𝑚. By 1-affineness of
BG𝑚, the latter are equivalent to ReppG𝑚q-module categories, i.e., to categories with an automorphism. Then it is a
simple matter of chasing the constructions to see that Γ : ShvCat{BZ Ñ QCohpBZq–mod corresponds to the identity
functor for categories with an automorphism, and therefore is an equivalence.

Or, if one likes, this follows more conceptually from the method of [Gai5] S11.
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1.29. A remark on what is not in this paper:
The problem in proving Conjecture 1, at least for reductive 𝐺, is that Theorem 3.9.1 is not so

good for passing to the limit in 𝑟, since we cannot possibly obtain a 1-affine prestack.
One can show that following conjecture would formally imply Conjecture 1 for reductive 𝐺.

Conjecture 2. For any affine algebraic group 𝐺, the formal completion of 𝑡´𝑟grr𝑡ss𝑑𝑡 in gpp𝑡qq𝑑𝑡
modulo the gauge action of 𝐺p𝐾q^𝐺p𝑂q (the formal completion of 𝐺p𝑂q in 𝐺p𝐾q) is 1-affine.

Namely, this result for finite 𝑟 would also imply 1-affineness of gpp𝑡qq𝑑𝑡{𝐺p𝐾q^𝐺p𝑂q, i.e., it is

well-adapted to passing to the limit.

1.30. A heuristic. Let us give a heuristic explanation for why our geometric results imply Theorem
3.9.1, i.e., the 1-affineness of 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q and the first major step towards the main theorem.
The reader may safely skip this section.

First, why is B𝐺p𝑂q not 1-affine? Here is a heuristic, which is less scientific than the proof given
in [Gai5]. It relies on some general notions from the theory of group actions on categories that are
reviewed in S3.

It is easy to see that if B𝐺p𝑂q were 1-affine, then invariants and coinvariants for QCohp𝐺p𝑂qq-
module categories would coincide.15

However, the identity functor for Vect induces a functor Vect𝐺p𝑂q,𝑤 Ñ Vect. If if Vect𝐺p𝑂q,𝑤
»
ÝÑ

Vect𝐺p𝑂q,𝑤, we obtain an induced functor QCohpB𝐺p𝑂qq “ Vect𝐺p𝑂q,𝑤 Ñ Vect, and morally this
functor computes 𝐺p𝑂q-invariants of representations. Moreover, this functor tautologically is con-
tinuous, since that is built into our framework.

However, as discussed above, the trivial representation in QCohpB𝐺p𝑂qq is not compact, so
𝐺p𝑂q-invariants does not commute with colimits. What would the functor above be? And indeed,
Gaitsgory’s result that B𝐺p𝑂q is not 1-affine rules out the existence of this functor.

Then the heuristic explanation for the difference between 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q and Specp𝑘q{𝐺p𝑂q is
that the former has a continuous global sections functor, as was explained in S1.19.

1.31. Structure of this paper. We have basically given it already above.

In S2, we give our geometric results on LocSys𝐺p
˝

𝒟q, as described above. In S3, we show that
𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q is 1-affine; the main ideas were summarized in S1.19. In S4, we prove the compact

generation for QCohpLocSys𝐺p
˝

𝒟qq (for 𝐺 reductive). Finally, in S5, we complete the proof of the
main theorem.

1.32. Some conventions. We use higher categorical language throughout, letting category mean
p8, 1q-category, (co)limit means homotopy (co)limit, etc.

Most of our conventions about DG categories were recalled in S1.21. One warning: following
the above conventions, we use the notation CokerpF Ñ Gq where others would use Cone, and we
use KerpF Ñ Gq where others would use Coner´1s. If we mean to take a co/kernel in an abelian
category, not in the corresponding derived category, we will be cautious to indicate this desire to
the reader.

For C a DG category with 𝑡-structure, we let Cď0,Cě0 Ď C denote the corresponding subcate-
gories, where we use cohomological grading throughout. We let C♡ :“ Cď0 X Cě0 denote the heart
of the 𝑡-structure.

15Proof: QCohp𝐺p𝑂qq-module categories are easily seen to be the same as sheaves of categories on B𝐺p𝑂q, and
global sections matches up with invariants. So if B𝐺p𝑂q were 1-affine, global sections would commute with colimits

and be DGCat𝑐𝑜𝑛𝑡-linear. This would allow us to reduce to checking that the norm functor C𝐺p𝑂q,𝑤 Ñ C𝐺p𝑂q,𝑤 is an
equivalence for C “ QCohp𝐺p𝑂qq, where it is clear.
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Finally, we assume that the reader is quite comfortable with the linear algebra of DG categories.
We refer to [Gai1], [Gai5], [Gai3], [GR3] (esp. S7) and other foundational papers on Gaitsgory’s
website for an introduction to the subject.

1.33. Acknowledgements. I’m grateful to Dima Arinkin, Vladimir Drinfeld, Akhil Mathew, and
Ivan Mirković for their influence on this work.

Thanks to Dennis Gaitsgory for highlighting this question in the first place, and for his careful
reading of a draft of this paper and his many suggestions for its improvement.

Thanks also to Dario Beraldo, whose ready conversation in the early stages of this project diverted
many wrong turns and were key to its development.

Finally, thanks to Sasha Beilinson, to whom this paper is dedicated, for so much; not least of
all, thanks are due for guiding me to local class field theory and differential equations in the same
breath.
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2. Semi-infinite geometry of de Rham local systems

2.1. The motto of this section: in spite of all the evil in the world (e.g., LocSysp
˝

𝒟q is far from
an Artin stack; not all ∇ are Fredholm), there is some current of good (c.f. Theorems 2.12.1 and
2.19.1).

Remark 2.1.1. We remind the reader to visit S1.9-1.18 for a proper introduction to this material.
In particular, S1.16 is essential for understanding why we need to work with geometric fibers over
the leading terms space.

Remark 2.1.2. To the reader overly steeped in derived algebraic geometry, we emphasize that the
manipulations in this section are really about classical algebraic geometry, and we allow ourselves
the full toolkit of classical commutative algebra throughout.

2.2. Tate’s linear algebra. We give a quick introduction to the language of Tate objects in the
derived setting. This language plays a fairly supporting role in what follows, and we include it only
for convenience.

These definitions were found independently by [Hen], and use loc. cit. as a reference for this
material.

2.3. Let C P DGCat be a fixed compactly generated DG category and let C0 Ď C be the full
subcategory of compact objects.

Definition 2.3.1. The Tate category TatepCq is the full subcategory of PropCq Karoubi-generated
(i.e., generated under finite colimits and retracts) by C Ď PropCq and PropC0q.

Objects of PropC0q Ď TatepCq are sometimes called lattices, and objects of C Ď TatepCq are
sometimes called colattices.

2.4. Theorem 2 of [Hen] gives a more symmetric characterization of TatepCq. In particular, one
obtains:

Corollary 2.4.1. The Tate construction commutes with duality: TatepCq𝑜𝑝 “ TatepC_q.

2.5. Fredholm operators. Following [BBE] S2, we make the following definition.

Definition 2.5.1. A morphism 𝑇 : F Ñ G P TatepCq is Fredholm if Cokerp𝑇 q P C0 Ď TatepCq.
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2.6. Example: Laurent series. Suppose 𝐴 is a (classical) commutative ring and 𝑉 is a rank 𝑛
free 𝐴pp𝑡qq-module. Then 𝑉 inherits an obvious structure of object of Tatep𝐴–modq.

Remark 2.6.1. One advantage of using the Tate formalism (or at least pro-objects) is that we can
use formulae like 𝐴pp𝑡qq b𝐴 𝐵 “ 𝐵pp𝑡qq, as long as we are understanding (as we always will) 𝐴pp𝑡qq
as an object of Prop𝐴–modq and 𝐵pp𝑡qq as an object of Prop𝐵–modq.

In this setting, we will use the following terminology.

Definition 2.6.2. A lattice in 𝑉 is an object16 Λ P Prop𝐴–modq♡ that can be written as a limit in17

Prop𝐴–modq of finite rank projective 𝐴-modules,and which has been equipped with an admissible
monomorphism Λ ãÑ 𝑉 with CokerpΛ Ñ 𝑉 q lying in18 𝐴–mod Ď Prop𝐴–modq and flat.

Lemma 2.6.3. For any Λ1 ãÑ Λ2 ãÑ 𝑉 a pair of lattices, Λ2{Λ1 is a finite rank projective 𝐴-module.

We will deduce this using the following general result.

Lemma 2.6.4. For C a compactly generated DG category, the intersection PropC0q X C in TatepCq
equals C0.

Proof. Tautologically, this intersection is formed in PropCq. If F P PropC0q X C, write F “ lim𝑖 F𝑖

with F𝑖 P C
0. Since F P C, the identity map for F must factor through some F𝑖, meaning that F is

a retract of F𝑖. But C0 is closed under retracts, so we obtain the claim.
�

Proof of Lemma 2.6.3. First, observe that Λ2{Λ1 P PropPerfp𝐴–modqqX𝐴–mod. Indeed, it obviously
lies in PropPerfp𝐴–modqq, and it lies in 𝐴–mod since it sits in an exact triangle with 𝑉 {Λ1 and 𝑉 {Λ2.
Therefore, Lemma 2.6.4 implies that it lies in Perfp𝐴–modq.

Since this quotient lies in cohomological degree 0, we see that it is finitely presented. Therefore,
it suffices to show that this quotient is flat. This follows again from the resolution:

Λ2{Λ1 “ Kerp𝑉 {Λ1 Ñ 𝑉 {Λ2q.

�

Definition 2.6.5. An 𝐴rr𝑡ss-lattice in 𝑉 is a lattice Λ Ď 𝑉 which is an 𝐴rr𝑡ss-submodule, (equiva-
lently: for which 𝑡Λ Ď Λ).

We have the following structural result.

Lemma 2.6.6. Any 𝐴rr𝑡ss-lattice Λ Ď 𝑉 is a projective 𝐴rr𝑡ss-module with Λb𝐴rr𝑡ss 𝐴pp𝑡qq
»
ÝÑ 𝑉 .

(In particular, Λ has rank 𝑛 over 𝐴rr𝑡ss.)

Proof. Note that no Tors are formed when we form Λ{𝑡𝑟Λ “ Λb𝐴rr𝑡ss𝐴rr𝑡ss{𝑡
𝑟, and by Lemma 2.6.3,

Λ{𝑡Λ is a finite rank projective 𝐴-module. It follows that each Λ{𝑡𝑟Λ is projective 𝐴r𝑡s{𝑡𝑟-module
with rank independent of 𝑟. By a well-known argument, this implies that Λ is projective over 𝐴rr𝑡ss.

For a choice of isomorphism 𝑉
»
ÝÑ 𝐴pp𝑡qq‘𝑛, Λ is wedged between two 𝐴rr𝑡ss-lattices of the form

𝑡𝑠𝐴rr𝑡ss‘𝑛 for some choices of 𝑠 P Z. It then immediately follows that Λb𝐴rr𝑡ss 𝐴pp𝑡qq
»
ÝÑ 𝑉 .

�

16We are using the standard 𝑡-structure on Prop𝐴–modq♡, characterized by the fact that it is compatible with
filtered limits and restricts to the usual 𝑡-structure on 𝐴–mod.

17I.e., we are asking 𝑅𝑖 lim to vanish for 𝑖 ą 0.
18Of course, it lies in 𝐴–mod♡ then.
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2.7. Example: local de Rham cohomology. Let 𝑆 :“ Specp𝐴q, and suppose that we are given

a differential module 𝜒 “ p𝑉,∇q over
˝

𝒟𝑆 , i.e., 𝑉 is an 𝐴pp𝑡qq-module free of some rank 𝑛 and
∇ : 𝑉 Ñ 𝑉 𝑑𝑡 is 𝐴-linear and satisfies the Leibniz rule.

Below, we will construct the local de Rham cohomology19 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q as a Tate 𝐴-module, i.e.,
as an object of Tatep𝐴–modq.

Note that 𝑉 » 𝐴pp𝑡qq‘𝑛 obviously defines an object of Tatep𝐴–modq.
Let Λ Ď 𝑉 be an 𝐴rr𝑡ss-lattice, i.e., a finite rank free 𝐴rr𝑡ss-submodule spanning under the action

of 𝐴pp𝑡qq. By definition of differential module, there exists an integer 𝑟 such that ∇pΛq Ď 𝑡´𝑟Λ𝑑𝑡
for every choice of 𝐴rr𝑡ss-lattice Λ.20

We see that for each integer 𝑠, the map:

Λ Ñ 𝑡´𝑟Λ𝑑𝑡Ñ 𝑡´𝑟Λ𝑑𝑡{𝑡𝑠Λ𝑑𝑡

factors through Λ{𝑡𝑟`𝑠Λ.
Therefore, we obtain a morphism Λ Ñ 𝑡´𝑟Λ𝑑𝑡 in PropPerfp𝐴–modqq, where we consider Λ and

𝑡´𝑟Λ𝑑𝑡 as objects of this category in the obvious way. Taking the kernel of this morphism, we
obtain an object of PropPerfp𝐴–modqq encoding the complex Λ Ñ 𝑡´𝑟Λ (considered as a complex
in degrees 0 and 1).

Passing to the colimit in Prop𝐴–modq under all such choices of 𝐴rr𝑡ss-lattice, we obviously obtain
an object of Tatep𝐴–modq Ď Prop𝐴–modq, since 𝑉 {Λ and 𝑉 𝑑𝑡{𝑡´𝑟Λ𝑑𝑡 are both objects of 𝐴–mod Ď
Prop𝐴–modq.

Note that 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q is the kernel of the morphism:

∇ : 𝑉 Ñ 𝑉 𝑑𝑡 P Tatep𝐴–modq.

Example 2.7.1. In this formalism, formation of the de Rham complex commutes with base-change
in the 𝐴-variable as is.

2.8. The following notion will play a key role in what follows.

Definition 2.8.1. A differential module 𝜒 “ p𝑉,∇q on
˝

𝒟𝑆 is Fredholm21 if𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q P Perfp𝐴–modq Ď
Tatep𝐴–modq, i.e., if ∇ : 𝑉 Ñ 𝑉 𝑑𝑡 is Fredholm.

Example 2.8.2. If 𝐴 “ 𝐹 is a field, then it is well-known that every differential module p𝑉,∇q is
Fredholm: indeed, this follows at once from the finite-dimensionality of the de Rham cohomology
in this setting (see [BBE] S5.9 for related discussion).

Example 2.8.3. Suppose that we are given a connection on 𝐴pp𝑡qq‘𝑛 written as:

𝑑` Γ´𝑟𝑡
´𝑟𝑑𝑡` lower order terms

where Γ´𝑟 is an 𝑛 ˆ 𝑛-matrix with entries in 𝐴. Suppose that 𝑟 ą 1 and Γ´𝑟 is invertible. Then
the corresponding differential module is Fredholm.

19The notation is misleading: the reader should think de Rham cochains, not merely de Rham cohomology. We
will be careful to use an 𝑖 instead of ˚ when we mean to refer to a specific de Rham cohomology group, and promise
the reader never to refer to the graded vector space usually denoted in this way.

20To see this: choose a basis, so 𝑉
»
ÝÑ 𝐴pp𝑡qq‘𝑛 and ∇ “ 𝑑` Γ𝑑𝑡 for some matrix Γ. Then combine the fact that

Γ has a pole of bounded order with the fact that every lattice is wedged between two lattices of the form 𝑡𝑠𝐴rr𝑡ss,
𝑠 P Z.

21A closely related notion was introduced in [BBE], where it was called 𝜀-nice due to the nice behavior of 𝜀-factors
under this hypothesis.



18 SAM RASKIN

Indeed, for Λ “ 𝐴rr𝑡ss‘𝑛 and any integer 𝑠 ą 0, the map:

𝑡´𝑠Λ
∇
ÝÑ 𝑡´𝑟´𝑠Λ𝑑𝑡

is a quasi-isomorphism, as is readily seen using the 𝑡-adic filtrations on both sides. Passing to the

limit, we see that 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q vanishes in this case.
In particular, in the rank 1 case, if the pole order is at least 2 and does not jump (i.e., if the

leading term is invertible), then the corresponding connection is Fredholm.

Example 2.8.4. Suppose that we are given a regular singular connection on 𝐴pp𝑡qq‘𝑛, so:

∇ “ 𝑑` Γ´1𝑡
´1𝑑𝑡` lower order terms

where Γ´1 is an 𝑛 ˆ 𝑛-matrix with entries in 𝐴. Suppose that 𝑁 Id`Γ´1 is invertible for almost
every integer 𝑁 .

Then using 𝑡-adic filtrations as above, we find that 𝜒 is Fredholm. Indeed, let Λ “ 𝐴rr𝑡ss‘𝑛 (for 𝐴
our ring of coefficients, as usual), and note that ∇ maps 𝑡𝑁Λ to 𝑡𝑁´1Λ𝑑𝑡 by assumption. Moreover,
at the associated graded level, ∇ induces the map:

𝑡𝑁Λ{𝑡𝑁`1Λ “ 𝐴‘𝑛
Γ´1`𝑁 ¨id
ÝÝÝÝÝÝÑ 𝐴‘𝑛 “ 𝑡𝑁´1Λ𝑑𝑡{𝑡𝑁Λ𝑑𝑡.

Therefore, for 𝑠 " 0, the map:

𝑡𝑠𝐴rr𝑡ss‘𝑛
∇
ÝÑ 𝑡𝑠´1𝐴rr𝑡ss‘𝑛𝑑𝑡

is an isomorphism, while for 𝑟 " 0 the map:

𝐴pp𝑡qq‘𝑛{𝑡´𝑟𝐴rr𝑡ss‘𝑛
∇
ÝÑ 𝐴pp𝑡qq‘𝑛𝑑𝑡{𝑡´𝑟´1𝐴rr𝑡ss‘𝑛𝑑𝑡

is an isomorphism.

Counterexample 2.8.5. For 𝐴 “ 𝑘r𝜆s with 𝜆 an indeterminate, the connection:

𝑉 “ 𝐴pp𝑡qq,∇ “ 𝑑` 𝜆
𝑑𝑡

𝑡
is not Fredholm. Indeed, for this connection, 𝐻1

𝑑𝑅 is the sum of skyscraper sheaves supported on
Z Ď A1 “ Specp𝑘r𝜆sq.

2.9. The following basic results will be of use to us.

Lemma 2.9.1. Let 𝜒 “ p𝑉,∇q be a Fredholm differential module over 𝑆 “ Specp𝐴q, and let Λ Ď 𝑉
and Λ1 Ď 𝑉 1 be 𝐴rr𝑡ss-lattices with the property that ∇pΛq Ď Λ1. Then:

(1) The map:

∇ : Λ Ñ Λ1 P PropPerfp𝐴–modqq Ď Tatep𝐴–modq

is Fredholm.
(2) For 𝑁 " 0, the complex:

Cokerp𝑡𝑁Λ Ñ Λ1q P Perfp𝐴–modq

is of the form (i.e., quasi-isomorphic to a complex) 𝑃 r´1s for 𝑃 a finite rank projective
𝐴-module.
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Proof. For (1):

The 2-step complex Λ
∇
ÝÑ Λ1 lies in Prop𝐴–modq (by construction). Moreover, it sits in an exact

triangle with 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q, which by assumption lies in Perfp𝐴–modq, and the complex:

Cokerp𝑉 {Λ
∇
ÝÑ 𝑉 𝑑𝑡{Λ1q

which obviously lies in 𝐴–mod Ď Tatep𝐴–modq. Therefore, we obtain the claim from Lemma 2.6.4.
We now deduce (2).
First, note that ∇ maps 𝑡𝑁Λ to 𝑡𝑁´1Λ1 for every 𝑁 ě 0. Indeed, for 𝑠 P Λ, ∇p𝑡𝑠q “ 𝑠𝑑𝑡` 𝑡∇p𝑠q,

so we see that 𝑠𝑑𝑡 P Λ1 (since ∇p𝑡𝑠q and 𝑡∇p𝑠q are). Therefore, ∇p𝑡𝑁𝑠q “ 𝑁𝑡𝑁´1𝑠𝑑𝑡` 𝑡𝑁∇p𝑠q lies
in 𝑡𝑁´1Λ1 as desired.

We now claim that for 𝑁 " 0, the map of 2-step complexes:

𝑡𝑁Λ
∇ //

��

𝑡𝑁´1Λ1

��
𝑉

∇ // 𝑉 𝑑𝑡

is (isomorphic to) the zero map in Tatep𝐴–modq.

Indeed, since Λ Ñ Λ1 “ lim𝑁 Λ{𝑡𝑁Λ Ñ Λ1{𝑡𝑁´1Λ1 as a pro-object, and since 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q lies

in Perfp𝐴–modq, the map pΛ Ñ Λ1q Ñ 𝐻˚𝑑𝑅p
˝

𝒟𝑆 , 𝜒q must factor through pΛ{𝑡𝑁Λ Ñ Λ1{𝑡𝑁´1Λ1q for
some 𝑁 , giving the claim.

We now claim that taking 𝑁 with this property suffices for the conclusion. Indeed, we have
seen in (1) that Cokerp∇ : 𝑡𝑁Λ Ñ Λ1q is perfect as an 𝐴-module, so it suffices to see that it
has Tor-amplitude 0. It obviously suffices to show this for Cokerp∇ : 𝑡𝑁Λ Ñ 𝑡𝑁´1Λ1q instead.
By construction, this object has Tor-amplitude in r´1, 0s, so it suffices to show that it has Tor-
amplitude ě 0.

To this end, note that since the above map is zero, we obtain an isomorphism:

Kerp𝑉 {𝑡𝑁Λ
∇
ÝÑ 𝑉 𝑑𝑡{𝑡𝑁´1Λ1q » 𝐻˚𝑑𝑅p

˝

𝒟𝑆 , 𝜒q ‘ Cokerp𝑡𝑁Λ
∇
ÝÑ 𝑡𝑁´1Λ1q

upon taking its cone. Therefore, our cokernel is a direct summand of a complex visibly of Tor-
amplitude r0, 1s, and therefore itself has Tor-amplitude r0, 1s as desired.

�

2.10. With a bit more work, we have the following more precise version of Lemma 2.9.1 (2).

Lemma 2.10.1. In the notation of Lemma 2.9.1:
Suppose that 𝐴 has finitely many minimal prime ideals and its nilradical is nilpotent.22

Then there exist integers ℓ and 𝑟0 such that for all 𝑟 ě 𝑟0, 𝑡
𝑟`ℓΛ1 Ď ∇p𝑡𝑟Λq with finite rank

projective quotient.

Proof. We proceed by steps.

Step 1. First, observe that projectivity of the quotient follows at once if we know the inclusion:

𝑡𝑟`ℓΛ1 Ď ∇p𝑡𝑟Λq. (2.10.1)

22E.g., 𝐴 is Noetherian, or an integral domain, or a (possibly infinite) polynomial algebra over a Noetherian ring.
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Indeed, first note that we may safely assume 𝑟0 is large enough such that the conclusion of
Lemma 2.9.1 holds (i.e., so that ∇p𝑡𝑟Λq is a lattice). Then we are taking the quotient of one lattice
by another, so the claim follows from Lemma 2.6.3.

Step 2. Next, we reduce to the case where 𝐴 is reduced. More precisely, suppose 𝐼 Ď 𝐴 is a nilpotent
ideal. We claim that if the lemma holds for our lattices modulo 𝐼, then it holds for our lattices. We
obviously can reduce to the case where 𝐼2 “ 0 (just to make the numerics simpler).

Suppose p𝑟0, ℓq satisfy the conclusion of the lemma for our lattices modulo 𝐼. We will show that
p𝑟0, 2ℓ` 𝑟0q satisfies the conclusion of the lemma for 𝐴.

Using Lemma 2.9.1, we can make sure to choose 𝑟0 so that 𝑡𝑟0´1Λ𝑑𝑡 Ď Λ1 and ∇p𝑡𝑟0Λq Ď Λ1, in
which case:

∇p𝑡𝑟Λq Ď 𝑡𝑟´𝑟0Λ1 (2.10.2)

for all 𝑟 ě 𝑟0. Indeed, for 𝑠 P Λ, we then have:

∇p𝑡𝑟𝑠q “ ∇p𝑡𝑟´𝑟0 ¨ p𝑡𝑟0𝑠qq “ p𝑟 ´ 𝑟0q𝑡𝑟´1𝑠𝑑𝑡` 𝑡𝑟´𝑟0∇p𝑡𝑟0𝑠q
We now claim that:

𝑡𝑟`ℓΛ1 Ď ∇p𝑡𝑟Λq ` 𝐼𝑡𝑟´𝑟0Λ1. (2.10.3)

Indeed, for 𝜔 P 𝑡𝑟`ℓΛ1, note that 𝜔 “ ∇p𝑠q ` 𝜀 where 𝑠 P 𝑡𝑟Λ and 𝜀 P 𝐼 ¨ 𝑉 , since we are assuming
p𝑟0, ℓq satisfies our hypotheses modulo 𝐼. Moreover, by (2.10.2), 𝜀 P 𝐼𝑉 X 𝑡𝑟´𝑟0Λ1, so, it suffices
to note that 𝐼𝑉 X 𝑡𝑟´𝑟0Λ1 “ 𝐼 ¨ 𝑡𝑟´𝑟0Λ1. In turn, this equality holds because 𝐼𝑉 “ 𝐼 b𝐴 𝑉 and
𝐼Λ1 “ 𝐼 b𝐴 Λ1 by pro-projectivity, and then we see that (with e.g. Ker denoting homotopy kernels
everywhere):

`

𝐼𝑉 X 𝑡𝑟´𝑟0Λ1
˘

{𝐼 ¨ 𝑡𝑟´𝑟0Λ1 “ 𝐻0
`

Kerp𝑡𝑟´𝑟0Λ1{𝐼𝑡𝑟´𝑟0Λ1 Ñ 𝑉 {𝐼𝑉 q
˘

“

𝐻0
`

𝐴{𝐼 b
𝐴

Kerp𝑡𝑟´𝑟0Λ1 Ñ 𝑉 q
˘

“ 𝐻0p𝐴{𝐼 b
𝐴
𝑉 {𝑡𝑟´𝑟0Λ1r´1sq “ 0 P Tatep𝐴–modq

as desired.
Finally, we show that p𝑟0, 2ℓ` 𝑟0q satisfies for the lemma. Indeed, iterating (2.10.3), we have:

𝑡𝑟`𝑟0`2ℓΛ1 Ď ∇p𝑡𝑟`𝑟0`ℓΛq ` 𝐼𝑡𝑟`ℓΛ1 Ď ∇p𝑡𝑟`𝑟0`ℓΛq ` 𝐼p∇p𝑡𝑟Λq ` 𝐼𝑡𝑟´𝑟0Λ1q “

∇p𝑡𝑟`𝑟0`ℓΛq ` 𝐼∇p𝑡𝑟Λq Ď ∇p𝑡𝑟Λq
giving the claim.

Step 3. We now reduce to the case where 𝐴 “ 𝐹 is an algebraically closed field.
First, suppose 𝐴 ãÑ 𝐵 is any embedding of commutative rings. We claim that if p𝑟0, ℓq suffice for

our lattices tensored with 𝐵, then they suffice before tensoring with 𝐵 as well.
By Step 1, it suffices to show that the inclusion (2.10.1) holds if and only if it holds after tensoring

with 𝐵. Indeed, such an inclusion is equivalent to the fact that the map 𝑡𝑟`ℓΛ1 Ñ Λ1{∇p𝑡𝑟Λq is
zero, and since the quotient on the right is projective, it embeds into its tensor product with 𝐵.

Now the fact that 𝐴 is reduced with finitely many minimal primes means23 that we have:

𝐴 ãÑ
ź

pĎ𝐴 minimal

𝐴{p ãÑ
ź

pĎ𝐴 minimal

𝐹p

23Recall that the intersection of minimal prime ideals in any commutative ring is the nilradical.
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where 𝐹p is a choice of algebraic closure of the fraction field of 𝐴{p. Since this product is finite, we
can reduce to the case where 𝐴 coincides with one of the factors, as desired.

Step 4. In the next step, we will show that for 𝐴 “ 𝐹 algebraically closed, there is an 𝐹 rr𝑡ss-lattice
Λ0 Ď 𝑉 with the property that:

𝑡𝑟´1Λ0𝑑𝑡 Ď ∇p𝑡𝑟Λ0q

for all 𝑟 ě 0. Assume this for now, and we will deduce the lemma.
We may then find 𝑟0 ě 0 such that 𝑡𝑟0`1Λ1 Ď Λ0𝑑𝑡 and ℓ ě 0 such that 𝑡ℓΛ0 Ď 𝑡𝑟0Λ. We claim

that this choice of integers suffices.
Indeed, for any 𝑟 ě 𝑟0, we have 𝑡ℓ`𝑟´𝑟0Λ0 Ď 𝑡𝑟Λ, and applying our hypothesis on Λ0, we obtain:

𝑡ℓ`𝑟´𝑟0´1Λ0𝑑𝑡 Ď ∇p𝑡ℓ`𝑟´𝑟0Λ0q Ď ∇p𝑡ℓ`𝑟Λq.

We then have:

𝑡ℓ`𝑟Λ1 Ď 𝑡ℓ`𝑟´𝑟0´1𝑡𝑟0`1Λ1 Ď 𝑡ℓ`𝑟´𝑟0´1Λ0𝑑𝑡

as desired.

Step 5. We now construct Λ0 as above using the Levelt-Turrittin decomposition24 c.f. [Lev].
First, suppose that for some 𝑒 P Zą0 we have constructed:

Λ1 Ď 𝑉 b
𝐹 pp𝑡qq

𝐹 pp𝑡
1
𝑒 qq

satisfying the corresponding property, i.e., such that:

p𝑡
1
𝑒 q𝑟´1Λ1𝑑p𝑡

1
𝑒 q “ 𝑡

𝑟
𝑒
´1Λ1𝑑𝑡 Ď ∇p𝑡

𝑟
𝑒 Λ1q

for every 𝑟 ě 0. Define Λ0 as Λ1 X 𝑉 Ď 𝑉 b𝐹 pp𝑡qq 𝐹 pp𝑡
1
𝑒 qq. Clearly Λ0 is an 𝐴rr𝑡ss-lattice, and we

claim it satisfies the desired property:
Indeed, if 𝑟 P Zě0 and 𝑠 P 𝑡𝑟´1Λ0𝑑𝑡, then we can find 𝜎 P 𝑡𝑟Λ1 with ∇p𝜎q “ 𝑠. Note that

𝑉 b𝐹 pp𝑡qq𝐹 pp𝑡
1
𝑒 qq decomposes as an 𝐹 pp𝑡qq-module as ‘𝑒´1

𝑖“0𝑉 𝑡
𝑖
𝑒 , and similarly for 𝑉 b𝐹 pp𝑡qq𝐹 pp𝑡

1
𝑒 qq𝑑𝑡,

and these decompositions are compatible with ∇. Since ∇p𝜎q “ 𝑠 P 𝑉 𝑑𝑡, the component 𝜎0 P 𝑉 Ď

‘
𝑒´1
𝑖“0𝑉 𝑡

𝑖
𝑒 of 𝜎 also maps to 𝑠 under ∇. Since 𝜎0 P 𝑡

𝑟Λ0, this gives the desired claim.

Therefore, we may replace 𝐹 pp𝑡qq by 𝐹 pp𝑡
1
𝑒 qq for any 𝑒 ą 0. Then, because 𝐹 is algebraically

closed, the Levelt-Turrittin theorem says25 that (after such an extension) 𝑉 is a direct sum of
differential modules each of which is either regular or else (up to gauge transformation) has an
invertible leading term, reducing us to treating each of these cases.

But these cases were treated already in Examples 2.8.3 and 2.8.4, completing the proof of the
existence of the lattice claimed in Step 4.

�

24It would be great to have a more direct argument here.
25More specially, it says that after such an extension a differential module decomposes as a direct sum of a regular

module and modules that are tensor products of a rank 1 irregular connection with a regular connection. The latter
kind of connection obviously has an invertible (diagonal) leading term.



22 SAM RASKIN

2.11. We also record the following simple result for later use.

Lemma 2.11.1. Let p𝑉,∇q be a differential module over 𝑆 “ Specp𝐴q. Suppose 𝑑 P Zą0 is given.

Then if 𝑉 r𝑡
1
𝑑 s :“ 𝑉 b𝐴pp𝑡qq 𝐴pp𝑡

1
𝑑 qq equipped with its natural connection is Fredholm, then p𝑉,∇q

is Fredholm.

Proof. As a differential module over 𝐴pp𝑡qq, 𝑉 r𝑡
1
𝑑 s is isomorphic to:

‘
𝑑´1
𝑖“0 𝑉 b 𝜒 𝑖

𝑑

where 𝜒 𝑖
𝑑

is the rank 1 connection:

𝑑`
𝑖

𝑑

𝑑𝑡

𝑡
.

This obviously gives the claim, since 𝑉 is a direct summand of this differential module.
�

2.12. Application to algebraicity of some stacks. Our principal use of the above notions is
the following technical theorem, which should be understood as dreaming that every connection is
Fredholm, and deducing that 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q is an algebraic stack of finite type.

The reader who is interested to first see the construction of a large supply of Fredholm local
systems may safely skip ahead to S2.19.

Theorem 2.12.1. Let 𝐺 be an affine algebraic group with g :“ Liep𝐺q, and integers 𝑟 ą 0 and
𝑠 ě 0.

Let 𝑇 be a Noetherian affine scheme with a morphism 𝑇 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡, and let 𝑆
denote the fiber product:

𝑆 :“ 𝑇 ˆ
𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡

𝑡´𝑟grr𝑡ss𝑑𝑡.

Note that 𝑆 is equipped with an action of the congruence subgroup 𝒦𝑟`𝑠 :“ Kerp𝐺p𝑂q Ñ
𝐺p𝑂{𝑡𝑟`𝑠𝑂q: indeed, the gauge action of this group on forms with poles of order ď 𝑟 leaves the
first 𝑟 ` 𝑠 coefficients fixed.26

Note that the structure morphism 𝑆 Ñ 𝑡´𝑟grr𝑡ss defines a 𝐺-local system on
˝

𝒟𝑆. Suppose that
the local system associated to this 𝐺-local system by the adjoint representation is Fredholm.

Then the prestack quotient 𝑆{𝒦𝑟`𝑠 is an Artin stack, and the morphism 𝑆{𝒦𝑟`𝑠 Ñ 𝑇 is smooth
(in particular, finitely presented).

Example 2.12.2. Suppose 𝐺 is commutative. Then the adjoint representation is trivial, and therefore
the above connection on 𝑆 is trivial, and in particular Fredholm. It follows that:

𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q

is an Artin stack in this case. More generally, if Liep𝐺q is a successive extension of trivial represen-
tations (e.g., if 𝐺 is unipotent), then the above connection is a successive extension of trivial local
systems and therefore Fredholm, so the same conclusion holds.

We will prove Theorem 2.12.1 in S2.15-2.18 below, after some preliminary remarks in S2.13-2.14.

26The numerics here is the reason we assume 𝑟 ą 0; for 𝑟 “ 0, we would need to take 𝒦𝑟`𝑠`1 instead of 𝒦𝑟`𝑠

everywhere.
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2.13. The most serious difficulty in proving Theorem 2.12.1 is that we need to “integrate” from
infinitesimal information about the gauge action (through the Fredholm condition on the adjoint
representation) to global information. We will use two results, Lemmas 2.13.2 and 2.14.1, to do
this. Together, they give a way to check that a morphism of affine spaces is finitely presented: the
former gives a reasonably soft27 criterion for such a map to be a closed embedding, while the latter
gives an infinitesimal criterion for a closed embedding to be finitely presented.

Let 𝑆 be a base scheme, say affine with 𝑆 “ Specp𝐴q for expositional ease only.
We define an (ℵ0-)affine space 𝑉 over 𝑆 to be an 𝑆-scheme arising by the following construction:

Suppose 𝑃 “ 𝑃𝑉 P 𝐴–mod♡ is a colimit 𝑃 “ colim𝑖ě0 𝑃𝑖 with 𝑃𝑖 a finite rank projective 𝐴-
module and each structure map 𝑃𝑖 Ñ 𝑃𝑗 being injective with projective quotient. Then we set
𝑉 :“ SpecpSym𝐴p𝑃 qq. Note that 𝑉 p𝑆q “ lim 𝑃_𝑖 , so informally we should think of 𝑉 as the pro-

projective 𝐴-module lim𝑖 𝑃
_
𝑖 P Prop𝐴–mod♡q.

Construction 2.13.1. Let 𝑓 : 𝑉 Ñ 𝑊 be a morphism of affine spaces preserving zero sections (i.e.,
commuting with the canonical sections from 𝑆). We define the linearization Lp𝑓q : 𝑉 Ñ 𝑊 as the
induced morphism by considering 𝑉 and 𝑊 as the tangent spaces of 𝑉 and 𝑊 at 0.

More precisely, if 𝑃 (resp. 𝑄) is the ind-projective module defining 𝑉 (resp. 𝑊 ) and 𝐼𝑉 Ď

Sym𝐴p𝑃 q is the augmentation ideal, then 𝐼𝑉 {𝐼
2
𝑉 “ 𝑃 (resp. 𝐼𝑊 {𝐼

2
𝑊 “ 𝑄). Moreover, the map

𝑓˚ : Sym𝐴p𝑄q Ñ Sym𝐴p𝑃 q preserves augmentation ideal by assumption, so we obtain a morphism:

𝑄 “ 𝐼𝑊 {𝐼
2
𝑊 Ñ 𝐼𝑉 {𝐼

2
𝑉 “ 𝑃

and by covariant functoriality of the assignment 𝑃 ÞÑ 𝑉 , we obtain the desired map Lp𝑓q : 𝑉 Ñ𝑊 .

Suppose 𝑃 and 𝑄 are as above, and suppose 𝑃 “ colim𝑖ě0 𝑃𝑖 and 𝑄 “ colim𝑖ě0𝑄𝑖 as in the
definition of affine space. Let 𝑉𝑖 (resp. 𝑊𝑖) denote SpecpSym𝐴p𝑃𝑖qq (resp. SpecpSym𝐴p𝑄𝑖qq), so
that e.g. 𝑉 “ lim𝑉𝑖 with each morphism 𝑉 Ñ 𝑉𝑖 being dominant (and a fibration with affine space
fibers).

Lemma 2.13.2. Suppose 𝑓 : 𝑉 Ñ𝑊 is a morphism of 𝑆-schemes preserving 0. Suppose that:

‚ For every 𝑖, we have a (necessarily unique, by dominance) map:

𝑉
𝑓 //

��

𝑊

��
𝑉𝑖

𝑓𝑖 // 𝑊𝑖.

‚ For every 𝑖, there is a (necessarily unique) factorization:

𝑉𝑖
𝑓𝑖´Lp𝑓𝑖q //

��

𝑊𝑖

𝑉𝑖´1.

𝛼𝑖

77

where for 𝑖 “ 0 we use the normalization 𝑉𝑖´1 “ Specp𝐴q.
‚ Each morphism Lp𝑓𝑖q : 𝑉𝑖 Ñ𝑊𝑖 is a closed embedding.

Then 𝑓 is a closed embedding.

27Note that there is no hope of obtaining a purely infinitesimal criterion, because the Jacobian conjecture is
unknown. The criterion below is instead modeled on the simplest construction of non-linear automorphisms of affine
space, c.f. Example 2.13.3.
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Example 2.13.3. In the above, the lemma remains true if “closed embedding” is replaced by “iso-
morphism” everywhere. Then a toy model for the above lemma is the fact that any morphism of
the form:

A2 p𝑥,𝑦qÞÑp𝑥,𝑦`𝑝p𝑥qq
ÝÝÝÝÝÝÝÝÝÝÝÑ A2

(with 𝑝 any polynomial) is an isomorphism.

Proof of Lemma 2.13.2. Passing to the limit, it suffices to show that each 𝑓𝑖 is a closed embedding.
We will prove this by induction on 𝑖.

Note that 𝛼0 : Specp𝐴q Ñ𝑊𝑖 must be the zero section, since 𝑓0 ´ Lp𝑓0q preserves zero sections.
Therefore, 𝑓0 “ Lp𝑓0q, i.e., 𝑓0 is linear. Since Lp𝑓0q is assumed to be a closed embedding, this of
course implies that 𝑓0 is as well.

We now show 𝑓𝑖 is a closed embedding, assuming that 𝑓𝑖´1 is. Since 𝑉𝑖 and 𝑊𝑖 are affine, it
suffices to show that pullback of functions along 𝑓𝑖 is surjective.

Suppose 𝜙 is a function on 𝑉𝑖. Since Lp𝑓𝑖q is an isomorphism, there is a function 𝜓 on 𝑊𝑖 with
Lp𝑓𝑖q

˚p𝜓q “ 𝜙. We obtain:

𝜙 “ 𝑓˚𝑖 p𝜓q ´ p𝑓𝑖 ´ Lp𝑓𝑖qq
˚p𝜓q.

Using 𝛼𝑖, we see that p𝑓𝑖 ´ Lp𝑓𝑖qq
˚p𝜓q descends to a function on 𝑉𝑖´1, and therefore is obtained

by restriction (along 𝑓𝑖´1) from a function on 𝑊𝑖´1 by induction. In particular, p𝑓𝑖 ´ Lp𝑓𝑖qq
˚p𝜓q is

obtained by restriction (along 𝑓𝑖) from a function on 𝑊𝑖, as desired.
�

2.14. Above, we gave a way to check that a morphism of affine spaces is a closed embedding. We
also have the following criterion for checking when a closed embedding as above is actually finitely
presented.

Lemma 2.14.1. Suppose 𝐼1 and 𝐼2 are sets and we are given a closed embedding:

𝑖 : A𝐼1
𝑇 ãÑ A𝐼2

𝑇

of affine spaces over a Noetherian base 𝑇 , and suppose that 𝑖 is compatible with zero sections, i.e.,
the diagram:

A𝐼1
𝑇

𝑖 // A𝐼2
𝑇

𝑇

0
``

0
>>

commutes.
Then 𝑖 is finitely presented if and only if its conormal sheaf 𝑁˚A𝐼1{A𝐼2

P QCohpA𝐼1q♡ is coherent.

Proof. We can assume 𝑇 affine, so 𝑇 “ Specp𝐵q. Moreover, straightforward reductions allow us to
assume 𝑇 is integral (and in all our applications, 𝐵 will actually be a field).

The key fact we will need from commutative algebra is that a prime ideal in any (possibly
infinitely generated) polynomial algebra over a Noetherian ring (e.g., 𝑘) is finitely generated if
and only if it has finite height (in the usual sense of commutative algebra). Indeed, this result is
essentially given by [GH] Theorem 4 (see also [Ras] Proposition 4.3, which completes the argument
in some simple respects).28

28For the reader’s convenience, we quickly sketch the proof down here in the footnotes.
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Let 𝐽 Ď 𝐵rt𝑥𝑖u𝑖P𝐼2s be the ideal of the closed embedding. Note that A𝐼1
𝑇 is integral (since 𝑇 is),

and therefore 𝐽 is a prime ideal.
By assumption, 𝐽{𝐽2 is finitely generated. Choose 𝑓1, . . . , 𝑓𝑛 P 𝐽 generating modulo 𝐽2.
Suppose that 𝑓1, . . . , 𝑓𝑛 lie in 𝐵rt𝑥𝑖u𝑖P𝐼 12s for 𝐼 12 Ď 𝐼2 a finite subset (as we may safely do).

We claim that 𝐽 is contained in the ideal generated by t𝑥𝑖u𝑖P𝐼 12 . Note that this implies the claim:

clearly t𝑥𝑖u𝑖P𝐼 12 is contained in a finitely generated prime ideal (since 𝐵 is Noetherian), and as was

noted above, prime subideals of finitely generated prime ideals in 𝐵rt𝑥𝑖u𝑖P𝐼2s are themselves finitely
generated.

Let 𝐽 denote the reduction of 𝐽 modulo pt𝑥𝑖u𝑖P𝐼 12q (the ideal generated by our finite subset of

𝑥𝑖’s). It suffices to see that 𝐽 “ 0.

First, note that 𝐽 “ 𝐽
2

by construction of our generators. Moreover:

𝐽 Ď 𝐵rt𝑥𝑖u𝑖P𝐼2s{pt𝑥𝑖u𝑖P𝐼 12q “ 𝐵rt𝑥𝑖u𝑖P𝐼2z𝐼 12s

is contained in the ideal generated by all the 𝑥𝑖: indeed, this is true for 𝐽 in the original ring
𝐵rt𝑥𝑖u𝑖P𝐼2s by the compatibility with zero sections, implying the corresponding statement for 𝐽 .

But now we have:

𝐽 “
8
č

𝑟“1

𝐽
𝑟
Ď

8
č

𝑟“1

pt𝑥𝑖u𝑖P𝐼2z𝐼 12q
𝑟 “ 0

giving the claim.
�

2.15. Proof of Theorem 2.12.1. We now prove Theorem 2.12.1. The proof will occupy S2.15-2.18.

2.16. Note that, since 𝑟 ą 0, 𝒦𝑟`𝑠 is pro-unipotent. Because torsors for unipotent groups are
trivial on affine schemes, 𝒦𝑟`𝑠-torsors on affine schemes are as well. Therefore, the prestack quotient
𝑆{𝒦𝑟`𝑠 is already a sheaf.

2.17. Formulation of the key lemma. The following result will be the key input to the proof
of Theorem 2.12.1.

Lemma 2.17.1. For all sufficiently large integers 𝑁 ě 𝑟 ` 𝑠, the map:

𝒦𝑁 ˆ 𝑆 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡ˆ 𝑆

p7, 𝑠q ÞÑ pGauge7pΓp𝑠q𝑑𝑡q, 𝑠q
(2.17.1)

is a finitely presented closed embedding, where here 𝑠 ÞÑ Γp𝑠q𝑑𝑡 is the structure map 𝑆 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡.

The main point is the following simple observation: if 𝑍𝑛`1 Ď A𝑛`1 is a closed and integral subscheme, then

the scheme-theoretic image 𝑍𝑛 :“ 𝑝p𝑍𝑛`1q Ď A𝑛 of 𝑍𝑛`1 along the projection 𝑝 : A𝑛`1
Ñ A𝑛 either has smaller

codimension, or else 𝑍𝑛`1 “ 𝑝´1
p𝑍𝑛q. Indeed, 𝑍𝑛`1 Ď 𝑝´1

p𝑍𝑛q, and either the latter has codimension one less than
𝑍𝑛`1, or else they have equal codimension, and so are equal by irreducibility.

Now for 𝑍 Ď A8 :“ Specp𝑘r𝑥1, 𝑥2, . . .sq (note that 𝑘 can be any Noetherian ring, and we could be less lazy and
allow uncountable indexing sets for our indeterminates) a closed and integral subscheme corresponding to a finite
height prime ideal, the scheme-theoretic image 𝑍𝑛 Ď A𝑛 of 𝑍 along the projection 𝑝𝑛 : A8 Ñ A𝑛 corresponds to a
prime ideal of the same height for 𝑛 large enough, and then the above analysis shows that 𝑍 “ 𝑝´1

𝑛 p𝑍𝑛q. In particular,
𝑍 is defined by a finitely presented ideal.

Similarly, if 𝑍 is defined by a finitely presented ideal, then 𝑍 “ 𝑝´1
𝑛 p𝑍𝑛q for 𝑛 large enough, and our earlier analysis

shows that the height does not increase as we pullback to finite affine spaces; since finite height prime ideals in
𝑘r𝑥1, 𝑥2, . . .s are finitely presented, one readily deduces that the height of a prime ideal in this ring is bounded by the
number of generators (since this holds in each of the Noetherian rings 𝑘r𝑥1, . . . , 𝑥𝑚s by Krull’s theorem).
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Proof. We proceed by steps. Let ∇ be the connection on the g𝐴rr𝑡ss defined by ∇ :“ 𝑑 ´ rΓ,´s𝑑𝑡
throughout.

Step 1. First, we construct 𝑁 :
Note that because 𝑇 is Noetherian and 𝑆 Ñ 𝑇 is a fibration with affine space fibers, 𝑆 satisfies

the hypotheses of Lemma 2.10.1. Applying the lemma (with Λ “ g𝐴rr𝑡ss and Λ1 “ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡), we
find ℓ ě 0 and an integer 𝑁 ě 𝑟 ` 𝑠 such that ∇|𝑡𝑁g𝐴rr𝑡ss is injective, and for all 𝑖 ě 0 we have:

𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡 Ď ∇p𝑡𝑁`𝑖g𝐴rr𝑡ssq Ď 𝑡𝑁`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡

with finite rank projective quotients. Note that ∇p𝑡𝑁`𝑖g𝐴rr𝑡ssq is a lattice in this case.
Finally, note that we can safely replace 𝑁 by 𝑁`𝑖 for any 𝑖 as above and the conclusion remains,

so we may assume 𝑁 ě ℓ` 1.

Step 2. In Steps 2-6, we will apply Lemma 2.13.2 to see that (2.17.1) is a closed embedding. In the
present step, we just set up notation for this.

We abuse notation in letting e.g. g𝐴rr𝑡ss denote the affine space over 𝑆 “ Specp𝐴q associated
with g𝐴rr𝑡ss.

To be in the setting of Lemma 2.13.2, we need to have a map between affine spaces over a

Noetherian base preserving zero. First, we use the exponential isomorphism 𝑡𝑁g𝐴rr𝑡ss𝑑𝑡
»
ÝÑ 𝐾𝑁 ˆ𝑆

so that our map goes between affine spaces. Moreover, since 𝑆 Ñ 𝑇 is an affine space over 𝑇 , our
map is between affine spaces over a Noetherian base (namely, 𝑇 ). Our map does not quite preserve
zero: 0 ÞÑ Γ𝑑𝑡 P 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡 the given gauge form. But of course, we can just correct this by
subtracting off Γ𝑑𝑡.

Define:

Λ𝑖 :“ ∇´1p𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡q X 𝑡𝑁`𝑖g𝐴rr𝑡ss.
Note that Λ𝑖 is a lattice, since it maps isomorphically onto the lattice 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡. In partic-
ular, it has an associated affine space over 𝑆, which we again denote by Λ𝑖.

Step 3. In the next step, we will show that the composite map:

𝑡𝑁g𝐴rr𝑡ss
𝜉 ÞÑGaugeexpp𝜉qpΓ𝑑𝑡q´Γ𝑑𝑡
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡

proj.
ÝÝÝÑ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡{𝑡

𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡 (2.17.2)

factors through 𝑡𝑁g𝐴rr𝑡ss{Λ𝑖 (therefore satisfying the first condition from Lemma 2.13.2).
In other words, for29 𝜉 P 𝑡𝑁g𝐴rr𝑡ss and 𝜂 P Λ𝑖, we need to see that:

Gaugeexpp𝜉qpΓ𝑑𝑡q ´ Γ𝑑𝑡q and

Gaugeexpp𝜉`𝜂qpΓ𝑑𝑡q ´ Γ𝑑𝑡q

differ by an element of 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡. We will do this by explicitly computing Gaugeexpp𝜉`𝜂qpΓ𝑑𝑡q´

Γ𝑑𝑡q.
In a first motion towards this, we analyze the relationship between the “matrix” exponential

appearing above and the term “𝑑𝑔 ¨ 𝑔´1” appearing in the definition of the gauge action. More
precisely, this step will show the following identity of points of g𝐴rr𝑡ss𝑑𝑡:

`

𝑑 expp𝜉 ` 𝜂q
˘

¨ expp´𝜉 ´ 𝜂q P
`

𝑑 expp𝜉q
˘

¨ expp´𝜉q ` 𝑑𝜂 ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡. (2.17.3)

29Here 𝜉 and 𝜂 are points of these schemes with values in some test affine scheme. We suppress the affine scheme
from the notation to keep the notation simple, and we maintain such abuses throughout.
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Note that e.g. expp𝜉q´1 “ expp´𝜉q, hence the appearance of these terms.
By the Tannakian formalism, it suffices to prove (2.17.3) for the general linear group. Then note

that:

expp𝜉 ` 𝜂q P expp𝜉q expp𝜂q ` 𝑡2𝑁`𝑖g𝐴rr𝑡ss.

Indeed, the Campbell-Baker-Hausdorff formula says:

expp𝜉q expp𝜂q “ expp𝜉 ` 𝜂 `
1

2
r𝜉, 𝜂s ` etc.

loooooomoooooon

P 𝑡2𝑁`𝑖g𝐴rr𝑡ss

q.

(Here we recall that 𝜉 P 𝑡𝑁g𝐴rr𝑡ss and 𝜂 P 𝑡𝑁`𝑖g𝐴rr𝑡ss𝑑𝑡.) Then for 𝑎 :“ 𝜉`𝜂 and 𝑏 :“ 1
2 r𝜉, 𝜂s`etc. P

𝑡2𝑁`𝑖g𝐴rr𝑡ss, we have:

expp𝑎` 𝑏q “ id`p𝑎` 𝑏q `
1

2
p𝑎` 𝑏q2 ` . . . “

id`𝑎`
1

2
𝑎2 ` . . .` 𝑏`

1

2
p𝑎𝑏` 𝑏𝑎` 𝑏2q ` . . . P expp𝑎q ` 𝑡2𝑁`𝑖g𝐴rr𝑡ss

as desired.
We now show (2.17.3). Let 𝑔 “ expp𝜉q and ℎ “ expp𝜂q. By the above, we have:

`

𝑑 expp𝜉 ` 𝜂q
˘

¨ expp´𝜉 ´ 𝜂q P

p𝑑p𝑔ℎq ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡q ¨ pℎ
´1𝑔´1 ` 𝑡2𝑁`𝑖g𝐴rr𝑡ssq “

𝑑p𝑔ℎqℎ´1𝑔´1 ` 𝑑p𝑔ℎq ¨ 𝑡2𝑁`𝑖g𝐴rr𝑡ss𝑑𝑡` 𝑡
2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡 ¨ ℎ

´1𝑔´1 ` 𝑡4𝑁`2𝑖´1g𝐴rr𝑡ss𝑑𝑡 Ď

𝑑p𝑔ℎqℎ´1𝑔´1 ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡

where the last line follows from the observations that 𝑑p𝑔ℎq P g𝐴rr𝑡ss𝑑𝑡 and ℎ´1𝑔´1 P 𝐺p𝑂q.
Note that 𝑑p𝑔ℎqℎ´1𝑔´1 “ 𝑑𝑔 ¨ 𝑔´1 ` 𝑔p𝑑ℎ ¨ ℎ´1q𝑔´1. We compute:

𝑑ℎ ¨ℎ´1 “ p𝑑 expp𝜂qq ¨expp´𝜂q “ p𝑑𝜂`
1

2
𝑑p𝜂2q` . . .qpid´𝜂` . . .q P 𝑑𝜂`𝑡2p𝑁`𝑖q´1g𝐴rr𝑡ss𝑑𝑡. (2.17.4)

Since 𝑔 P 𝒦𝑁 and since 𝑑𝜂 P 𝑡𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡, we have 𝑔p𝑑𝜂q𝑔´1 P 𝑑𝜂 ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡. Since Ad𝑔

clearly preserves 𝑡2p𝑁`𝑖q´1g𝐴rr𝑡ss, this combines with the above to give:

𝑑𝑔 ¨ 𝑔´1 ` 𝑔p𝑑ℎ ¨ ℎ´1q𝑔´1 P 𝑑𝑔 ¨ 𝑔´1 ` 𝑑𝜂 ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss

as was claimed in (2.17.3).

Step 4. We now complete the factorization claim from the beginning of Step 3.
Note that the map (2.17.2) sends 𝜉 ` 𝜂 to:30

30For clarity, the notation Ad𝑛
𝜉`𝜂pΓ𝑑𝑡q means r𝜉 ` 𝜂, r𝜉 ` 𝜂, r. . . , r𝜉 ` 𝜂,Γ𝑑𝑡s . . .sss.
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Gaugeexpp𝜉`𝜂qpΓ𝑑𝑡q ´ Γ𝑑𝑡 “ Adexpp𝜉`𝜂qpΓ𝑑𝑡q ´ 𝑑
`

expp𝜉 ` 𝜂q
˘

¨ expp´𝜉 ´ 𝜂q ´ Γ𝑑𝑡 “

r𝜉 ` 𝜂,Γ𝑑𝑡s `
8
ÿ

𝑛“2

1

𝑛!
Ad𝑛

𝜉`𝜂pΓ𝑑𝑡q ´ 𝑑
`

expp𝜉 ` 𝜂q
˘

¨ expp´𝜉 ´ 𝜂q P

r𝜉 ` 𝜂,Γ𝑑𝑡s `
8
ÿ

𝑛“2

1

𝑛!
Ad𝑛

𝜉`𝜂pΓ𝑑𝑡q ´ p𝑑 expp𝜉qq ¨ expp´𝜉q ´ 𝑑𝜂 ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡 “

´∇p𝜂q ` r𝜉,Γ𝑑𝑡s `
8
ÿ

𝑛“2

1

𝑛!
Ad𝑛

𝜉`𝜂pΓ𝑑𝑡q ´ p𝑑 expp𝜉qq ¨ expp´𝜉q ` 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡.

(2.17.5)

Here we have applied the calculation (2.17.3). Note that, since 𝑁 ě ℓ ` 1, we have 2𝑁 ` 𝑖 ´ 1 ě
𝑁 ` 𝑖 ` ℓ ě 𝑁 ` 𝑖 ` ℓ ´ 𝑟, and therefore in the last equation we can replace 𝑡2𝑁`𝑖´1g𝐴rr𝑡ss𝑑𝑡 by
the larger lattice 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡.

We will show the following points all lie in 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡:
Next, observe that ∇p𝜂q P 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡 by definition of Λ𝑖. Moreover, below we will show

that that for any 𝑛 ě 2:

Ad𝑛
𝜉`𝜂pΓ𝑑𝑡q P Ad𝑛

𝜉 pΓ𝑑𝑡q ` 𝑡
𝑁`𝑖`1`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡. (2.17.6)

Assume this for the moment, and we will conclude the argument. We then see that the last term
in (2.17.5) lies in:

r𝜉,Γ𝑑𝑡s `
8
ÿ

𝑛“2

1

𝑛!
Ad𝑛

𝜉 pΓ𝑑𝑡q ´ p𝑑 expp𝜉qq ¨ expp´𝜉q ` 𝑡𝑁`ℓ`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡 “

Adexpp𝜉qpΓ𝑑𝑡q ´ p𝑑 expp𝜉qq ¨ expp´𝜉q ` 𝑡𝑁`ℓ`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡 “

Gaugeexpp𝜉qpΓ𝑑𝑡q ` 𝑡
𝑁`ℓ`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡

as desired.
It remains to show (2.17.6). More precisely, we claim that for any 𝑛 ě 0, we have:

Ad𝑛
𝜉`𝜂pΓ𝑑𝑡q P Ad𝑛

𝜉 pΓ𝑑𝑡q ` 𝑡
𝑁𝑛`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡 (2.17.7)

which would imply the claim of (2.17.6), since if 𝑛 ě 2, we have 𝑁𝑛 ` 𝑖 ´ 𝑟 ě 2𝑁 ` 𝑖 ´ 𝑟 ě
𝑁 ` 𝑖` 1` ℓ´ 𝑟 (since 𝑁 ě ℓ` 1 by definition).

We show (2.17.7) by induction, the base case 𝑛 “ 0 being obvious. Assume (2.17.7) holds for 𝑛,
and we will show it holds for 𝑛 ` 1. We apply Ad𝜉`𝜂 “ Ad𝜉 `Ad𝜂 to both sides. Obviously the
left hand side of (2.17.7) transforms as desired. For the right hand side, note that Ad𝜉`𝜂 maps

𝑡𝑁𝑛`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡 into 𝑡𝑁p𝑛`1q`𝑖´𝑟g𝐴rr𝑡s𝑑𝑡, since 𝜉 ` 𝜂 P 𝑡𝑁g𝐴rr𝑡ss𝑑𝑡; moreover, since Ad𝑛
𝜉 pΓ𝑑𝑡q P

𝑡𝑁𝑛´𝑟g𝐴rr𝑡ss𝑑𝑡, Ad𝜂 maps it into 𝑡𝑁𝑛´𝑟`𝑁`𝑖g𝐴rr𝑡ss𝑑𝑡 “ 𝑡𝑁p𝑛`1q`𝑖´𝑟g𝐴rr𝑡ss𝑑𝑡.

Step 5. We now verify the remaining conditions of Lemma 2.13.2.
The linearization of (2.17.2) is:

´∇ : 𝑡𝑁g𝐴rr𝑡ss{Λ𝑖 Ñ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡{𝑡
𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡

which is an embedding: indeed, if 𝜉 P 𝑡𝑁g𝐴rr𝑡ss with ∇p𝜉q P 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡, then we have
𝜉 P 𝑡𝑁`𝑖g𝐴rr𝑡ss by construction, and Λ𝑖 is exactly ∇´1p𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡q X 𝑡𝑁`𝑖g𝐴rr𝑡ss.
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Step 6. Finally, we show that the maps 𝛼𝑖 from Lemma 2.13.2 exist. I.e., we should show that if
𝜂 P Λ𝑖´1, then:

Gaugeexpp𝜉`𝜂qpΓ𝑑𝑡q ´ Γ𝑑𝑡`∇p𝜂q mod 𝑡𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡

is independent of 𝜂.
This follows readily from our earlier work. We compute the left hand side using (2.17.5), and we

find that it equals:

r𝜉,Γ𝑑𝑡s `
8
ÿ

𝑛“2

1

𝑛!
Ad𝑛

𝜉`𝜂pΓ𝑑𝑡q ´ p𝑑 expp𝜉qq ¨ expp´𝜉q ` 𝑡2𝑁`𝑖´2g𝐴rr𝑡ss𝑑𝑡.

Now the only terms involving 𝜂 occur inside that infinite sum, and by (2.17.6) (substituting 𝑖´ 1
for 𝑖 in loc. cit.), we have (for 𝑛 ě 2):

Ad𝑛
𝜉`𝜂pΓ𝑑𝑡q P Ad𝑛

𝜉 pΓ𝑑𝑡q ` 𝑡
𝑁`𝑖`ℓ´𝑟g𝐴rr𝑡ss𝑑𝑡

It remains to observe that 2𝑁 ` 𝑖´ 2 ě 𝑁 ` 𝑖` ℓ´ 𝑟, since 2𝑁 ` 𝑖´ 2 ě 𝑁 ` ℓ` 𝑖´ 1 and since
we have 𝑟 ě 1 by a running assumption.

Step 7. Finally, it remains to see that our closed embedding is finitely presented. Of course, we
do so via Lemma 2.14.1; loc. cit. means that we should show that the conormal sheaf is finitely
generated.

This is quite easy, in fact. Our map:

𝐾𝑁 ˆ 𝑆 Ñ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡

is given by acting on an 𝑆-point of the right hand side, so is obviously 𝐾𝑁 -equivariant. Therefore, its
cornormal sheaf is also 𝐾𝑁 -equivariant, so is determined by its restriction to 𝑆. Now the cotangent
complex of the above map restricted to 𝑆 is dual (is the sense of pro-vector bundles) to the complex:

´∇ : 𝑡𝑁g𝐴rr𝑡ss Ñ 𝑡´𝑟g𝐴rr𝑡ss𝑑𝑡.

Therefore, the restriction of the conormal bundle is dual to the cokernel of this map and therefore
a finite rank vector bundle.

�

2.18. We now deduce the theorem.

Proof of Theorem 2.12.1. Let 𝑁 be as in Lemma 2.17.1. It obviously suffices to show that 𝑆{𝒦𝑁 is
an algebraic space smooth over 𝑇 , as we will show below.

Step 1. For each integer 𝑚 ě 𝑠, let 𝑆𝑚 denote the fiber product:

𝑇 ˆ
𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡

𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑚grr𝑡ss𝑑𝑡.

Note that as we vary 𝑚, the structure maps are smooth, and lim𝑚 𝑆𝑚 “ 𝑆 P AffSch.
We claim that the structure map:

𝑆 Ñ 𝑆{𝒦𝑁

factors through 𝑆𝑚 for 𝑚 " 0 (depending on 𝑁).
We will show this in Steps 2-4.
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Step 2. In this step, we say in explicit terms what it takes to give a factorization 𝑆 Ñ 𝑆𝑚 Ñ 𝑆{𝒦𝑁 ,
and in the next step we provide such a construction.

We claim that the data of a section 𝜎𝑚 : 𝑆𝑚 Ñ 𝑆 to the structure map 𝜋𝑚 : 𝑆 Ñ 𝑆𝑚 plus a map
7 : 𝑆 Ñ 𝒦𝑁 such that the composite:

𝑆
𝜋𝑚ˆ7
ÝÝÝÝÑ 𝑆𝑚 ˆ𝒦𝑁

𝜎𝑚ˆid
ÝÝÝÝÑ 𝑆 ˆ𝒦𝑚

act
ÝÝÑ 𝑆

is the identity gives rise to a section as above.31,32

Indeed, the map 𝑆𝑚 ˆ 𝒦𝑁 Ñ 𝑆 is equivariant for the is 𝒦𝑁 -equivariant for the usual action of
𝒦𝑁 on 𝑆 and for the action of 𝒦𝑁 on 𝑆𝑚 ˆ 𝒦𝑁 defined by the trivial action on 𝑆𝑚 and the left
action on 𝒦𝑁 . Passing to the quotient, we obtain a map 𝑆𝑚 Ñ 𝑆{𝒦𝑁 .

The composite map 𝑆 Ñ 𝑆𝑚 Ñ 𝑆{𝒦𝑁 is the composite of 𝜎𝑚𝜋𝑚 with the tautological projection
of 𝑆 to 𝑆{𝒦𝑁 . But the map 7 provides an obvious way to identify these two maps.

Now observe that any choice of uniformizer 𝑡 gives an obvious section 𝜎𝑚. Below, we will construct
7 with the desired properties (for 𝑚 sufficiently large).

Step 3. Next, we claim that the morphism:

𝒦𝑁 ˆ 𝑆
actˆ𝑝2
ÝÝÝÝÑ 𝑆 ˆ

𝑇
𝑆

is a finitely presented closed embedding.
Observe that:

𝑆 ˆ
𝑇
𝑆 “ 𝑡´𝑟grr𝑡ss𝑑𝑡 ˆ

𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡
𝑆

and that when we compose the above map with the structure map to 𝑡´𝑟grr𝑡ss𝑑𝑡 ˆ 𝑆, it sends
p7, 𝑠q P 𝒦𝑁 ˆ 𝑆 to pGauge7p𝜔𝑠q, 𝑠q, where 𝑠 ÞÑ 𝜔𝑠 is the structure map 𝑆 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡. It suffices
to show that this composite map is a finitely presented closed embedding, but this is the content
of Lemma 2.17.1.

Step 4. We now complete the proof of the claim of Step 1 by constructing a map 7 : 𝑆 Ñ 𝒦𝑁 with
the desired properties.

Observe that 𝑆 “ lim𝑚 𝑆 ˆ𝑆𝑚 𝑆 as an 𝑆 ˆ𝑇 𝑆-scheme, where everything in sight is affine. Since
we have a morphism:

lim
𝑚
𝑆 ˆ

𝑆𝑚

𝑆 “ 𝑆 Ñ 𝑆 ˆ𝒦𝑁 Ñ 𝑆 ˆ
𝑇
𝑆

of 𝑆ˆ𝑇 𝑆-schemes (sending 𝑠 P 𝑆 to p𝑠, 1q P 𝑆ˆ𝒦𝑁 ) and since the latter map is finitely presented,
there must exist an integer 𝑚 and a map:

𝑆 ˆ
𝑆𝑚

𝑆 Ñ 𝑆 ˆ𝒦𝑁 Ñ 𝑆 ˆ
𝑇
𝑆 (2.18.1)

of 𝑆 ˆ𝑇 𝑆-schemes, and which induces the diagonal map on the diagonally embedded copy of
𝑆 Ď 𝑆 ˆ𝑆𝑚 𝑆.

31Since every 𝒦𝑁 -torsor on 𝑆𝑚 is trivial, it is easy to see that such a datum is essentially equivalent to giving such
a factorization.

32In words: we want to conjugate 𝑠 P 𝑆 to 𝜎𝑚𝜋𝑚p𝑠q to 𝑠 by means of 7p𝑠q. Our Fredholm assumption and the
construction of 𝒦𝑁 gives an infinitesimal version of this, and our problem is to integrate to get a global version.
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Composing the first map of (2.18.1) with the map 𝑆
idˆ𝜎𝑚𝜋𝑚
ÝÝÝÝÝÝÑ 𝑆ˆ𝑆𝑚𝑆 (for any choice of splitting

𝜎𝑚, say the one defined by a coordinate 𝑡), we obtain a map 𝑆 Ñ 𝑆ˆ𝒦𝑁 of 𝑆-schemes, i.e., a map
7 : 𝑆 Ñ 𝒦𝑁 .

It is tautological from the construction that 7 has the desired property.

Step 5. It follows immediately from the claim in Step 1 that 𝑆{𝒦𝑁 is a stack locally of finite
presentation over 𝑇 . Therefore, it suffices to show that 𝑆𝑚 Ñ 𝑆{𝒦𝑁 is a smooth covering and
provides an atlas.

Indeed, 𝑆{𝒦𝑁 obviously has an affine diagonal, and therefore 𝑆𝑚 Ñ 𝑆{𝒦𝑁 is affine. Moreover,
since 𝑆𝑚 and 𝑆{𝒦𝑁 are locally finitely presented over 𝑇 , this implies that the morphism is finitely
presented (since it is affine and therefore quasi-compact). We therefore deduce smoothness by
looking at cotangent complexes. Finally, we easily see that this map is a covering by base-change
along 𝑆 Ñ 𝑆{𝒦𝑁 .

�

2.19. Turning points. We have seen in Counterexample 2.8.5 that the a connection can fail to
be Fredholm quite severely: for the A1-family of connections there, there is no stratification of A1

such that the restrictions of the connection to strata are Fredholm.
However, our next result says that this behavior cannot occur locally.

Theorem 2.19.1. For every pair of positive integers 𝑛, 𝑟 ą 0, there exists a constant33 𝑁𝑛,𝑟 P Zě0
with the following property:

Let 𝑇 be the spectrum of a field and be equipped with a map:

𝑇 Ñ 𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡{𝑡
𝑠gl𝑛rr𝑡ss𝑑𝑡

with 𝑠 ě 𝑁𝑛,𝑟. Define:

𝑆 :“ 𝑇 ˆ
𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡{𝑡𝑠gl𝑛rr𝑡ss𝑑𝑡

𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡

and note that there is a canonical rank 𝑛 family of local systems on
˝

𝒟 parametrized by 𝑆.
Then the corresponding family of connections on 𝑆 is Fredholm.

Remark 2.19.2. This result says that any family of connections with all leading terms the same (to
some large enough order) is Fredholm.

Combining Theorem 2.12.1 with Theorem 2.19.1, we obtain:

Corollary 2.19.3. For 𝐺 an affine algebraic group, 𝑠 " 𝑟 and 𝜂 any (possibly non-closed) point
in 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡, the quotient of the fiber of 𝑡´𝑟grr𝑡ss𝑑𝑡 at 𝜂 by 𝒦𝑟`𝑠 is a Noetherian and
regular Artin stack that is smooth over 𝜂.

Remark 2.19.4. The proof is essentially an application of the Babbitt-Varadarajan algorithm [BV],
which they introduced for finding canonical forms for linear systems of Laurent series differential
equations (which is a somewhat different concern from ours here). We make no claims to originality
in our methods here, and indeed, the reader who is familiar with [BV] will find the argument
redundant; we rather include the argument for the reader who is not so familiar with their reduction
theory for linear differential equations.

The proof of the theorem will be given in S2.21-2.35 below.

33The proof of Theorem 2.19.1 below gives a very explicit recursive procedure for computing 𝑁𝑛,𝑟.
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2.20. Some counterexamples. We begin by clarifying why Theorem 2.19.1 is formulated in quite
the way it is. This material may safely be skipped by the reader, though we do not particularly
advise this.

First, why can we not always take 𝑁𝑛,𝑟 “ 0?

Counterexample 2.20.1. Suppose that we could always take 𝑁2,2 “ 0. It would follow that any
connection of the form:

𝑑`

ˆ

0 1
0 0

˙

𝑑𝑡

𝑡2
` 0 ¨

𝑑𝑡

𝑡
` lower order terms

is Fredholm (this follows from the case 𝑇 “ Specp𝑘q in the theorem). However, we claim that this
is not the case.

Indeed, let 𝑆 “ Specp𝑘r𝜆sq, and consider the connection:

𝑑`

ˆ

0 1
0 0

˙

𝑑𝑡

𝑡2
`

ˆ

0 0
𝜆p𝜆` 1q 0

˙

𝑑𝑡.

We claim that this connection is not Fredholm, in contradiction with the above.
When we specialize to 𝜆 “ ℓ P Z Ď 𝑘, we find that the de Rham complex for this connection has

a 0-cocycle

ˆ

𝑡ℓ

´ℓ ¨ 𝑡ℓ`1

˙

P 𝑘pp𝑡qq‘2.

Now observe that over the generic point of 𝑆, the de Rham complex is acyclic. Indeed, by (the

proof of) Lemma 2.11.1, it suffices to see this after adjoining a square root 𝑡
1
2 of 𝑡. Then we can

apply a gauge transformation by:

˜

𝑡
1
2 0

0 𝑡´
1
2

¸

P 𝐺𝐿2p𝐾q

so that our connection becomes:

𝑑`

ˆ

´1
2 1

𝜆p𝜆` 1q 1
2

˙

𝑑𝑡

𝑡
.

The leading term of this regular singular connection has determinant ´1
4 ´𝜆p𝜆`1q and trace zero,

and therefore is diagonalizable with eigenvalues ˘
b

1
4 ` 𝜆p𝜆` 1q “ ˘p𝜆 ` 1

2q. But the connection

𝑑` 𝜂
𝑡 𝑑𝑡 is acyclic for 𝜂 R Z, giving the acyclicity here.34

As in Counterexample 2.8.5, this implies that the connection is not Fredholm: indeed, the de
Rham cohomology vanishes at the generic point, but is not supported on any Zariski closed subva-
riety of Specp𝑘r𝜆sq, and therefore cannot be coherent.

We include the next counterexample just to indicate how jumps can occur as we vary our point
in 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡.

Counterexample 2.20.2. Let 𝑇 “ Specp𝐹 q be the spectrum of the localization of 𝑘r𝜆s at 0. Then
we claim that the rank one connection:

𝑑`
𝜆

𝑡2
𝑑𝑡

34Note that 𝑑𝑡
𝑡
“ 2 𝑑

?
𝑡?
𝑡
, so one should “really” view the eigenvalues as being 2𝜆 ` 1, which explains why the

complex is not acyclic for 𝜆 an integer.
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is not Fredholm.
Indeed, if it were, then Lemma 2.9.1 would imply that the complex:

𝐵rr𝑡ss
∇
ÝÑ 𝑡´2𝐵rr𝑡ss𝑑𝑡

is perfect. However, after extending scalars to the fields 𝐵r𝜆´1s and 𝐵{𝜆 “ 𝑘, we obtain different
Euler characteristics, a contradiction. Indeed, for 𝜆 invertible, we have seen in Example 2.8.3 that
the complex is acyclic, while for 𝜆 “ 0, the complex is obviously quasi-isomorphic35 to 𝑘‘ 𝑘r´1s ‘
𝑘r´1s.

2.21. Proof of Theorem 2.19.1. We now give the proof of Theorem 2.19.1.

2.22. We let 𝑇 “ Specp𝐹 q and let 𝑆 “ Specp𝐴q in what follows.

2.23. Regular singular case. Suppose 𝑟 “ 1. Then we claim that 𝑁𝑛,1 “ 0 suffices for any rank
𝑛 for the local system.

Indeed, suppose that the map 𝑇 “ Specp𝐹 q Ñ 𝑡´1gl𝑛rr𝑡ss𝑑𝑡{gl𝑛rr𝑡ss𝑑𝑡 “ gl𝑛 is defined by the
matrix Γ´1 P gl𝑛p𝐹 q.

Since the characteristic polynomial of Γ´1 has finitely many roots in 𝐹 , there are only finitely
many integers ℓ P Z such that Γ´1 ` ℓ ¨ id𝑛 is not invertible. Therefore, by Example 2.8.3, the
corresponding connection is Fredholm.

2.24. The rank 1 case. At this point, we proceed by induction on 𝑛, the rank of the local system.
We begin with the case 𝑛 “ 1. We claim that we can take 𝑁1,𝑟 “ 0 for all 𝑟.
Indeed, suppose our map:

𝑇 “ Specp𝐹 q Ñ 𝑡´𝑟𝑘rr𝑡ss𝑑𝑡{𝑘rr𝑡ss𝑑𝑡

is defined by 𝑓´𝑟𝑡
´𝑟𝑑𝑡` . . .` 𝑓´1𝑡

´1𝑑𝑡` 𝑘rr𝑡ss𝑑𝑡 with 𝑓𝑖 P 𝐹 .
If 𝑓𝑖 “ 0 for 𝑖 ă ´1, then we are in the paradigm of S2.23. Otherwise, 𝑓𝑖 ‰ 0 for some 𝑖 ă ´1,

and by Example 2.8.3, the corresponding connection is Fredholm.
Therefore, we can assume the result true for all 𝑛1 ă 𝑛 in what follows.

2.25. We will use the following notation in what follows. Given a map:

𝑇 Ñ 𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡{𝑡
𝑠gl𝑛rr𝑡ss𝑑𝑡

we let Γ𝑖 P gl𝑛p𝐹 q,´𝑟 ď 𝑖 ă 𝑠 denote the coefficient of 𝑡𝑖 above.
For all ´𝑟 ď 𝑖, we let Γ𝑖 P gl𝑛p𝐴q denote the coefficient of 𝑡𝑖 in the tautological connection on

𝑆. Note that the abuse of notation is justified by the fact that for ´𝑟 ď 𝑖 ă 𝑠, the two matrices we
have called Γ𝑖 are the same under the embedding gl𝑛p𝐹 q ãÑ gl𝑛p𝐴q.

Finally, we let Γ P 𝑡´𝑟pgl𝑛 b𝐴qrr𝑡ss denote the connection matrix
ř

Γ𝑖𝑡
𝑖.

(Note that Γ´𝑟 is independent of choice of coordinate up to scaling, justifying the prominent role
that it plays below.)

35The kernel is generated by 1 P 𝑘rr𝑡ss, while the cokernel is generated by the classes of 𝑡´1𝑑𝑡 and 𝑡´2𝑑𝑡
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2.26. Reduction to the case of nilpotent leading term. Suppose 𝑁𝑛,𝑟 ě 𝑁𝑛1,𝑟1 for all 𝑛1 ă 𝑛
and 𝑟1 ď 𝑟 (where we can suppose the latter numbers are all known by induction). We then claim
that the conclusion of the theorem is true for a given map 𝑇 Ñ 𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡{𝑡

𝑠gl𝑛rr𝑡ss𝑑𝑡 as long as
Γ´𝑟 is not nilpotent.36

Note that we can safely assume 𝑟 ą 1 below.

Step 1. Let Γ´𝑟 “ 𝑓 ` 𝑠 with 𝑓 nilpotent and 𝑠 semisimple commuting elements of gl𝑛p𝐹 q be the
Jordan decomposition of Γ´𝑟.

Note that 𝐹‘𝑛 » Kerp𝑠q ‘ Imagep𝑠q. Similarly, gl𝑛p𝐹 q “ KerpAd𝑠q ‘ ImagepAd𝑠q, and every
matrix in KerpAd𝑠q preserves this decomposition of 𝐹‘ as a direct sum.

Next, note that ImagepAd𝑠q Ď ImagepAdΓ´𝑟q. Indeed, since Ad𝑠 : ImagepAd𝑠q
»
ÝÑ ImagepAd𝑠q

and since Ad𝑓 is a nilpotent endomorphism of ImagepAd𝑠q commuting with Ad𝑠, AdΓ´𝑟 “ Ad𝑠`Ad𝑓 :
ImagepAd𝑠q Ñ ImagepAd𝑠q is an isomorphism.

Note that we obtain a similar decomposition:

𝐴‘𝑛 “ KerpAd𝑠q ‘ ImagepAd𝑠q

where we consider 𝑠 acting on 𝐴‘𝑛 by extension of scalars.

Step 2. Next, we claim that we can apply a gauge transformation by an element of 𝒦1p𝑆q so that
each matrix Γ𝑗 P gl𝑛p𝐴q (𝑗 ě ´𝑟) preserves each the 𝐴-submodules Kerp𝑠q and Imagep𝑠q of 𝐴‘𝑛.
(This method is very standard, and goes back at least to [Sib].)

More precisely, we will construct by induction 𝑔𝑖 P 𝒦𝑖p𝑆q with the property that the first 𝑖 ` 1
matrices in Gauge𝑔𝑖𝑔𝑖´1...𝑔1pΓ𝑑𝑡q have the property above; note that the infinite product of the 𝑔𝑖
makes sense in 𝒦1, and therefore gives a gauge transformation with the desired property.

These elements 𝑔𝑖 will have the property, which will be important later, that 𝑔𝑖 depends only on
Γ´𝑟, . . . ,Γ´𝑟`𝑖. In particular, for 1 ď 𝑖 ă 𝑟 ` 𝑠, we will have 𝑔𝑖 P 𝒦1p𝑇 q Ď 𝒦1p𝑆q.

To construct the 𝑔𝑖: applying the gauge transformation by 𝑔𝑖´1 . . . 𝑔1, we can assume that
Γ´𝑟, . . . ,Γ´𝑟`𝑖´1 preserve our submodules.

Then, we can (uniquely) write Γ´𝑟`𝑖 “ 𝑀1 `𝑀2 with 𝑀1 P KerpAd𝑠q and 𝑀2 P ImagepAd𝑠q.
Note that 𝑀2 “ rΓ´𝑟, 𝐶s for some 𝐶 P gl𝑛p𝐴q (or 𝐶 P gl𝑛p𝐹 q if 𝑖 ă 𝑟 ` 𝑠), since ImagepAd𝑠q Ď

ImagepAdΓ´𝑟q.

We then take 𝑔𝑖 “ expp´𝑡𝑖𝐶q P 𝒦𝑖p𝐴q. Then:

Gauge𝑔𝑖pΓ𝑑𝑡q “ Adexpp´𝑡𝑖𝐶qpΓ𝑑𝑡q ´ p𝑑 expp´𝑡𝑖𝐶qq ¨ expp𝑡𝑖𝐶q “
´

Γ𝑑𝑡´ r𝑡𝑖𝐶,Γ𝑑𝑡s ` terms divisible by 𝑡2𝑖´𝑟
¯

`

´

𝑡𝑖𝐶 ` terms divisible by 𝑡2𝑖´1
¯

.

Note that 𝑟 ě 1 by running assumption, so divisibility by 2𝑖´ 1 implies divisibility by 2𝑖´ 𝑟, and
since 𝑖 ě 1, this implies divisibility by 𝑖´ 𝑟` 1. Then reducing modulo 𝑡𝑖´𝑟`1gl𝑛rr𝑡ss𝑑𝑡, we obtain:

Γ𝑑𝑡´ r𝑡𝑖𝐶,Γ´𝑟𝑑𝑡s ` 𝑡
𝑖´𝑟`1gl𝑛rr𝑡ss𝑑𝑡.

Then we have not changed any Γ𝑗 for 𝑗 ď 𝑖´ 𝑟 except Γ𝑖´𝑟, and we have changed it to 𝑀1 in the
above notation. Since 𝑀1 commutes with the semisimple matrix Ad𝑠, it preserves the decomposition
of 𝐹‘𝑛 as ImagepAd𝑠q ‘KerpAd𝑠q.

Step 3. Finally, suppose that Γ´𝑟 is not a nilpotent matrix. Then 𝑠 ‰ 0, i.e., KerpAd𝑠q ‰ 𝐴‘𝑛.

36Since 𝐴 is an integral domain, there is no ambiguity in the meaning of nilpotent here: it just means that Γ´𝑟 is
nilpotent as a matrix.
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Therefore, we have shown above that we can gauge transform Γ to be a direct sum of connection
matrices Γ1 and Γ2 of smaller rank (so Γ𝑖 P gl𝑛𝑖pp𝑡qq for 𝑛1 ` 𝑛2 “ 𝑛, 𝑛𝑖 ‰ 0).

Since the 𝑔𝑖 constructed above lie in 𝒦1, Γ1 and Γ2 have order of pole at most 𝑟.
Moreover, since the construction of 𝑔𝑖 above depended only on the leading 𝑖` 1 terms of Γ, the

coefficients of 𝑡𝑗 for ´𝑟 ď 𝑗 ă 𝑠 depends only on the leading terms of Γ. That is, the connection
𝑑` Γ1𝑑𝑡` Γ2𝑑𝑡 on 𝑆 has leading 𝑟 ` 𝑠-terms defined by some map:

𝑇 Ñ 𝑡´𝑟gl𝑛rr𝑡ss𝑑𝑡{𝑡
𝑠gl𝑛rr𝑡ss𝑑𝑡.

Therefore, in this case we obtain the claim as long as 𝑁𝑛,𝑟 satisfies the inequalities we said.

2.27. Below, we will show how to handle the case the Γ´𝑟 is a nilpotent matrix. We use the key
idea of [BV] here: use the geometry of Slodowy slices to proceed by induction on dimpAdΓ´𝑟q.

2.28. Slodowy review. We briefly review some facts about nilpotent elements in reductive Lie
algebra. Let 𝐺 be a split reductive group (𝐺 “ 𝐺𝐿𝑛 for us) with Lie algebra g over a ground field
of characteristic zero, which we suppress from the notation (it will be 𝐹 for us later).

Let 𝑓 be a nilpotent element in g, and extend 𝑓 to an sl2-triple t𝑒, 𝑓, ℎu Ď rg, gs via Jacobson-
Morozov. Let 𝐻 : G𝑚 Ñ 𝐺 be the cocharacter with derivative ℎ.

Recall that the Slodowy slice 𝒮𝑓 is the scheme 𝑓 `KerpAd𝑒q (considered as a scheme by thinking
of KerpAd𝑒q as an affine space).

Equip g with the G𝑚-action:

𝜆 ‹ 𝜉 :“ 𝜆2 Ad𝐻p𝜆qp𝜉q, 𝜆 P G𝑚, 𝜉 P g.

Here the 𝜆´2 in front is the normal action by homotheties of G𝑚 on g.
Note that this ‹-action preserves 𝒮𝑓 because Ad𝐻p𝜆qp𝑓q “ 𝜆´2𝑓 . Moreover, this action contracts

𝒮𝑓 onto the point 𝑓 , since Adℎ has non-negative eigenvalues on KerpAd𝑒q (by the representation
theory of sl2).

Next, observe that the ‹-action preserves the 𝐺-orbit through 𝑓 : indeed, for 𝑔 P 𝐺, we have:

𝜆 ‹Ad𝑔p𝑓q “ 𝜆2 Ad𝐻p𝜆qAd𝑔p𝑓q “ Ad𝐻p𝜆qAd𝑔p𝜆
2𝑓q “

Ad𝐻p𝜆qAd𝑔 Ad𝐻p𝜆q´1p𝑓q “ Ad𝐻p𝜆q𝑔𝐻p𝜆q´1p𝑓q.

More generally, the ‹-action preserves the 𝐺-orbit through any nilpotent element 𝑓 1. Indeed,
first notice that 𝜆𝑓 P 𝐺 ¨ 𝑓 for any 𝜆, since Ad𝐻p

?
𝜆qp𝑓q “ 𝜆𝑓 . Here nothing about 𝑓 is special, so

𝜆𝑓 1 P 𝐺 ¨ 𝑓 1 for any 𝜆. Then:

𝜆 ‹ 𝑓 1 “ 𝜆2 Ad𝐻p𝜆qp𝑓
1q P 𝐺 ¨Ad𝐻p𝜆qp𝑓

1q “ 𝐺 ¨ 𝑓 1.

With these preliminary geometric observations, we now deduce:

Lemma 2.28.1 (c.f. [BV] S2). For any field-valued point 𝑓 1 P 𝒮𝑓 nilpotent, dimp𝐺¨𝑓 1qp“ dim ImagepAd𝑓 1qq

is greater than or equal to dimp𝐺 ¨ 𝑓qp“ dim ImagepAd𝑓 qq, with equality if and only if 𝑓 1 “ 𝑓 .

Proof. If 𝑓 1 is as above, we must have 𝐺 ¨ 𝑓 Ď 𝐺 ¨ 𝑓 1 (the orbit closure), since the ‹-action preserves
𝐺 ¨ 𝑓 1 and contracts 𝒮𝑓 onto 𝑓 . This implies the claim on dimensions.

Since 𝐺 ¨ 𝑓 1 is open in its closure, if dimp𝐺 ¨ 𝑓q “ dimp𝐺 ¨ 𝑓 1q then we must have 𝐺 ¨ 𝑓 “ 𝐺 ¨ 𝑓 1.
Therefore, we should see that 𝐺 ¨ 𝑓 X 𝒮𝑓 “ 𝑓 .

Observe that the 𝐺-orbit 𝐺 ¨ 𝑓 through 𝑓 and 𝒮𝑓 meet transversally at 𝑓 — this follows from
the identity:
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g “ KerpAd𝑒q ‘ ImagepAd𝑓 q

(which is again a consequence of the representation theory of sl2). Because the ‹-action on g
preserves 𝐺 ¨ 𝑓 and 𝒮𝑓 and contracts onto 𝑓 , it follows that 𝐺 ¨ 𝑓 and 𝒮𝑓 meet only at the point 𝑓 .

�

2.29. Nilpotent leading term. We now treat the case of nilpotent leading term. At this point,
the reader may wish to skip ahead to S2.36, where we indicate how the reduction theory works in
the simplest non-trivial case.

2.30. Let Γ´𝑟 “ 𝑓 P gl𝑛p𝐴q be nilpotent, and let 𝛿 :“ dim𝐺 ¨ 𝑓 , where 𝐺 ¨ 𝑓 Ď gˆSpecp𝑘q Specp𝐹 q
as a scheme. We will proceed by descending induction on 𝛿.

More precisely, below we will construct 𝑁𝑛,𝑟,𝛿 with the property that for 𝑠 ě 𝑁𝑛,𝑟,𝛿 and Γ´𝑟 of
the above type, the conclusion of the theorem holds. By induction, we can assume that knowledge
of 𝑁𝑛1,𝑟1 for all 𝑛1 ă 𝑛, and can assume the knowledge of 𝑁𝑛,𝑟1,𝛿1 for all 𝛿1 ą 𝛿.

Note that 𝛿 ą dimp𝐺q, the hypotheses are vacuous, giving the base case in the induction.
Moreover, this makes clear that if we accomplish the above construction of 𝑁𝑛,𝑟,𝛿, we have completed
the proof of the theorem: combining this with S2.26, we see that if we take:

𝑁𝑛,𝑟 :“ max
 

t𝑁𝑛1,𝑟u𝑛1ă𝑛, t𝑁𝑛,𝑟,𝛿u𝛿ďdimp𝐺q
(

we have obtained a constant satisfying the conclusion of the theorem.

2.31. We take an sl2-triple t𝑒, 𝑓 “ Γ´𝑟, ℎu P sl𝑛p𝐹 q as before. We obtain an identification:

gl𝑛p𝐹 q “ KerpAd𝑒q ‘ ImagepAd𝑓 q

and similarly for gl𝑛p𝐴q. Our sl2-triple integrates to a map at the level of group schemes over 𝐹 ,
and in particular we let 𝐻 : G𝑚,𝐹 Ñ 𝑆𝐿𝑚,𝐹 integrate ℎ.

By the same method as in Step 2 of S2.26, we may perform a gauge transformation by an element
of 𝒦1p𝐹 q to obtain a new connection matrix Γ1 “

ř

𝑖ě´𝑟 Γ1𝑖𝑡
𝑖 P 𝑡´𝑟gl𝑛rr𝑡ss with Γ1´𝑟 “ Γ´𝑟 and

Γ1𝑖 P KerpAd𝑒q for all 𝑖 ą ´𝑟. Moreover, by the construction of loc. cit., Γ1𝑖 P gl𝑛p𝐹 q Ď gl𝑛p𝐴q (i.e.,
it “has constant coefficients”) for ´𝑟 ď 𝑖 ă 𝑠.

Since the first 𝑟 ` 𝑠 terms of our matrix are constant, we might as well replace Γ by Γ1 and
thereby assume that the Γ𝑖 P KerpAd𝑒q for all 𝑖 ą ´𝑟 (just to simplify the notation with Γ1).

2.32. For 𝑗 P Z, let Γ
p𝑗q
𝑖 be the degree 𝑗 component of Γ𝑖 with respect to the grading defined by

𝐻, so:

rℎ,Γ
p𝑗q
𝑖 s “ 𝑗Γ

p𝑗q
𝑖 , or equivalently, Ad𝐻p𝜆qpΓ

p𝑗q
𝑖 q “ 𝜆𝑗Γ

p𝑗q
𝑖 p𝜆 P G𝑚q.

For example, Γ´𝑟 “ Γ
p´2q
´𝑟 . Note that for 𝑖 ą ´𝑟, since Γ𝑖 P KerpAd𝑒q, we have Γ

p𝑗q
𝑖 ‰ 0 only for

𝑗 ě 0.
Let 𝛼 P Qą0 be defined as:37

𝛼 :“ min
Γ
p𝑗q
𝑖 ‰0,´𝑟ă𝑖ă𝑠

𝑖` 𝑟

𝑗 ` 2
.

We treat the cases 𝛼 ě 𝑟´1
2 and 𝛼 ă 𝑟´1

2 separately in S2.34 and S2.35 respectively.

37We use the standard convention that 𝛼 “ 8 if the set indexing this minimum is empty.
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2.33. At this point, we impose our conditions on 𝑁𝑛,𝑟,𝛿. The reader may safely skip these formulae
right now: we are only including them now for the sake of concreteness.

Let 𝑗𝛿 the maximal degree in the grading of gl𝑛 defined by 𝐻 for some nilpotent 𝑓 with or-
bit having dimension 𝛿.38 This constant is well-defined e.g. because there are only finitely many
nilpotent orbits.

Below, we will show that as long as:

𝑁𝑛,𝑟,𝛿 ě ´1` 𝑗𝛿 ¨
𝑟 ´ 1

2
,

𝑁𝑛,𝑟,𝛿 ě p𝑗𝛿 ` 2q ¨ 𝑗𝛿 ¨
𝑟 ´ 1

2
`𝑁𝑛1,p𝑗𝛿`2q¨p𝑟´1q`1 for 𝑛1 ă 𝑛, and

𝑁𝑛,𝑟,𝛿 ě p𝑗𝛿 ` 2q ¨ 𝑗𝛿 ¨
𝑟 ´ 1

2
`𝑁𝑛,p𝑗𝛿`2q¨p𝑟´1q`1,𝛿1 for 𝛿 ă 𝛿1 ď dim𝐺𝐿𝑛.

(2.33.1)

the connection is Fredholm. Note that there are only finitely many conditions listed here, and they
are of the desired inductive nature, and so if we can show this, then we have completed the proof
of the theorem.

2.34. First, suppose that 𝛼 ě 𝑟´1
2 .

By Lemma 2.11.1, it suffices to show our connection is Fredholm after adjoining 𝑡
1
2 .

We then claim that after performing a gauge transformation by 𝐻p𝑡
1´𝑟
2 q, we obtain a connection

with regular singularities.

Indeed, first note that 𝑑 logp𝐻p𝑡
1´𝑟
2 qq has a regular singularity, so it suffices to show that

Ad
𝐻p𝑡

1´𝑟
2 q
pΓq has a pole of order ď 1.

We clearly have:

Ad
𝐻p𝑡

1´𝑟
2 q
pΓ´𝑟𝑡

´𝑟q “ 𝑡𝑟´1 ¨ Γ´𝑟𝑡
´𝑟 “ Γ´𝑟𝑡

´1.

Then for ´𝑟 ă 𝑖 ă 𝑠, we have:

Ad
𝐻p𝑡

1´𝑟
2 q
pΓ𝑖𝑡

𝑖q “
ÿ

𝑗

Γ
p𝑗q
𝑖 𝑡𝑖`

𝑗p1´𝑟q
2 .

We then claim that Γ
p𝑗q
𝑖 ‰ 0 and the definition of 𝛼 implies that:

𝑖`
𝑗p1´ 𝑟q

2
ě ´1

as desired. Indeed, for any such pair p𝑖, 𝑗q, we have:

𝑖` 𝑟

𝑗 ` 2
ě 𝛼 ě

𝑟 ´ 1

2
and rearranging terms we get:

𝑖` 𝑟 ě 𝑗
𝑟 ´ 1

2
` p𝑟 ´ 1q

which is obviously equivalent to the desired inequality.
Finally, for 𝑠 ď 𝑖, recall from (2.33.1) that 𝑠 ą ´1 ` 𝑗 𝑟´12 for any degree 𝑗 appearing in the

grading of gl𝑛 defined by 𝐻. Therefore, for 𝑖 in this range, we have:

38Of course, 𝑗𝛿 is bounded by the maximal degree in the principal grading of gl𝑛. We could replace 𝑗𝛿 everywhere
by this constant, but we are just trying to be somewhat more economical by retaining the dependence on 𝛿.
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𝑖`
𝑗p1´ 𝑟q

2
ě 𝑠`

𝑗p1´ 𝑟q

2
ě ´1

as desired.
Therefore, we see that the resulting connection is regular singular. Moreover, the above shows

that the leading term of this regular singular connection is determined entirely by Γ𝑖 for 𝑖 ă 𝑠 and

therefore has coefficients in 𝐹 Ď 𝐴 (noting that 𝑑 logp𝐻p𝑡
𝑟´1
2 qq also has coefficients in 𝐹 Ď 𝐴). This

completes the argument by S2.23.

2.35. Finally, we treat the case where 𝛼 ă 𝑟´1
2 .

Applying Lemma 2.11.1 again, it suffices to see that our connection is Fredholm after adjoining
𝑡𝛼.

Performing a gauge transformation by 𝐻p𝑡´𝛼q, we claim that we obtain a connection with a pole
of order ď ´𝑟 ` 2𝛼. Indeed, this follows exactly as in S2.34:

‚ The 𝑑 log term only affects the coefficient of 𝑡´1.
‚ Ad𝐻p𝑡´𝛼q Γ´𝑟𝑡

´𝑟 “ Γ´𝑟𝑡
´𝑟`2𝛼.

‚ For ´𝑟 ă 𝑖 ă 𝑠, we have

Ad𝐻p𝑡´𝛼qpΓ𝑖𝑡
𝑖q “

ř

𝑗 Γ
p𝑗q
𝑖 𝑡𝑖´𝑗𝛼, and for Γ

p𝑗q
𝑖 ‰ 0, we have:

𝑖` 𝑟

𝑗 ` 2
ě 𝛼ñ 𝑖` 𝑟 ě 𝑗𝛼` 2𝛼ñ 𝑖´ 𝑗𝛼 ě ´𝑟 ` 2𝛼.

‚ For 𝑠 ď 𝑖, the same argument as in S2.34 shows that the corresponding terms can only
change the coefficients of 𝑡𝑗 for 𝑗 ě ´1.

Note that by assumption, we presently have ´𝑟 ` 2𝛼 ă ´1.

For any pair p𝑖, 𝑗q with ´𝑟 ă 𝑖 ă 𝑠, Γ
p𝑗q
𝑖 ‰ 0, and:

𝑖` 𝑟

𝑗 ` 2
“ 𝛼

we have:

𝑖´ 𝑗𝛼 “ 𝑖´ p𝑗 ` 2q𝛼` 2𝛼 “ ´𝑟 ` 2𝛼.

Therefore, the leading term (i.e., 𝑡´𝑟`2𝛼-coefficient) of our resulting connection is:

Γ´𝑟 `
ÿ

𝑖`𝑟
𝑗`2

“𝛼,´𝑟ă𝑖ă𝑠

Γ
p𝑗q
𝑖 . (2.35.1)

Note that this sum cannot be Γ´𝑟: indeed, there is at least one summand on the right (since

𝛼 ă 𝑟´1
2 ă 8); moreover, a summand Γ

p𝑗q
𝑖 contributes purely in degree 𝑗 (with respect to the

grading defined by 𝐻), and since for given 𝑗 there is at most one pair p𝑖, 𝑗q with 𝑖`𝑟
𝑗`2 “ 𝛼, there

can be no cancellations within the given degree 𝑗.
Therefore, this sum lies in the Slodowy slice for Γ´𝑟. By Lemma 2.28.1, it is either nilpotent

with a larger dimensional orbit that Γ´𝑟, or it is not nilpotent, in which case we should bring S2.26
to bear.

Remark 2.35.1. The reader should be better off arguing for themselves that we are done at this
point, since this is essentially clear. But we include the final bit of the argument (difficult though
it may be to read) for completeness.
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Let 𝛼 “ 𝑎
𝑏 with 𝑎 and 𝑏 coprime. Note that 𝑏 is bounded in terms of 𝛿 alone: 𝑏 divides 𝑗 ` 2 for

some 0 ď 𝑗 ď 𝑗𝛿, and therefore 𝑏 ď 𝑗𝛿 ` 2.

Therefore, the order of pole in the extension 𝐴pp𝑡
1
𝑏 qq of 𝐴pp𝑡qq of our resulting connection is

bounded in terms of 𝛿. More precisely, we have:

𝑡´𝑟`2𝛼𝑑𝑡 “ 𝑏𝑡´𝑟`2𝛼`1´
1
𝑏 𝑑𝑡

1
𝑏

so that our pole has order (in the 𝑡
1
𝑏 -valuation) at most:

𝑏𝑟 ´ 2𝑎´ 𝑏` 1 ď 𝑏p𝑟 ´ 1q ` 1 ď p𝑗𝛿 ` 2q ¨ p𝑟 ´ 1q ` 1.

Moreover, the coefficients before (i.e., with lower order of zero/higher order of pole):

𝑡𝑠´𝑗𝛿𝛼𝑑𝑡 “ p𝑡
1
𝑏 q𝑏𝑠´𝑏𝑗𝛿𝛼`𝑏´1𝑑𝑡

1
𝑏

lie in gl𝑛p𝐹 q Ď gl𝑛p𝐴q, as is clear from using our same Adℎ-eigenspace decomposition of gl𝑛. Note
that we can bound the order of zero here from below independently of 𝛼:

𝑏𝑠´ 𝑏𝑗𝛿𝛼` 𝑏´ 1 ą 𝑏𝑠´ 𝑏𝑗𝛿 ¨
𝑟 ´ 1

2
` 𝑏´ 1 “ 𝑏p𝑠` 1q ´ 1´ 𝑏𝑗𝛿 ¨

𝑟 ´ 1

2
ě

𝑠` 1´ 1´ 𝑏𝑗𝛿 ¨
𝑟 ´ 1

2
ě 𝑠´ p𝑗𝛿 ` 2q ¨ 𝑗𝛿 ¨

𝑟 ´ 1

2
.

Therefore, if:

𝑁𝑛,𝑟,𝛿 ě p𝑗𝛿 ` 2q ¨ 𝑗𝛿 ¨
𝑟 ´ 1

2
`𝑁𝑛1,p𝑗𝛿`2q¨p𝑟´1q`1 for 𝑛1 ă 𝑛, and

𝑁𝑛,𝑟,𝛿 ě p𝑗𝛿 ` 2q ¨ 𝑗𝛿 ¨
𝑟 ´ 1

2
`𝑁𝑛,p𝑗𝛿`2q¨p𝑟´1q`1,𝛿1 for 𝛿 ă 𝛿1 ď dim𝐺𝐿𝑛.

then we obtain the claim. Indeed, the former condition takes care of the case where the leading
term of Gauge𝐻p𝑡𝛼qpΓ𝑑𝑡q has a non-nilpotent leading term by S2.26; and the latter condition takes
care of the case where it has nilpotent leading term, by the above analysis.

2.36. Example: n = 2, r = 2. It is instructive to see what is going on above in a simpler setup.
Suppose that we have a rank 2 connection with a pole of order 2 and with nilpotent leading term.
We claim that 𝑁2,2 “ 1 suffices.39

Up to (constant) change of basis, we can write:

Γ𝑑𝑡 “

ˆ

0 0
1 0

˙

𝑑𝑡

𝑡2
` Γ´1

𝑑𝑡

𝑡
` Γ0𝑑𝑡` lower order terms.

Suppose that Γ´1 “

ˆ

𝑎 𝑏
𝑐 𝑑

˙

and Γ0 “

ˆ

� 𝑒
� �

˙

where � is indicates that the term is irrelevant

for our needs below.
There are two cases: when 𝑏 “ 0 and when 𝑏 ‰ 0. Note that these correspond to S2.34 and 2.35

respectively.
In the former case, we apply a gauge transformation by:

˜

𝑡´
1
2 0

0 𝑡
1
2

¸

to obtain:

39This is a more precise estimate than we obtained from the crude estimates of S2.35.
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ˆ

𝑎` 1
2 𝑒

1 𝑑´ 1
2

˙

𝑑𝑡

𝑡
` lower order terms.

So we see that we get a regular singular connection whose leading terms depends only on the
fixed matrices Γ´2, Γ´1, and Γ0, and therefore it is Fredholm. (Note that if 𝑏 were ‰ 0, it would
contribute to a non-zero coefficient of 𝑑𝑡

𝑡2
here.)

If 𝑏 ‰ 0, then we instead apply a gauge transformation by the matrix:

˜

𝑡´
1
4 0

0 𝑡
1
4

¸

to obtain a connection of the form:

ˆ

0 𝑏
1 0

˙

𝑑𝑡

𝑡
3
2

`

ˆ

𝑎` 1
4 0

0 𝑑´ 1
4

˙

𝑑𝑡

𝑡
` lower order terms.

Since 𝑏 ‰ 0, the leading term of this connection is semisimple. Therefore, our connection can be
written as a sum of two rank 1 connections whose polar parts are constant. Therefore, the connection
is Fredholm by reduction to the rank 1 case.

2.37. Coda. We need some refinements to the above results, making them more effective. These
refinements will be used later in the paper, and may be safely skipped for the time being.

2.38. Let 𝐺 be an affine algebraic group. For 𝑟 ą 0 and 𝑠 ě 0, Theorems 2.12.1 and 2.19.1 imply
that the geometric fibers of the map:

𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡

are Artin stacks for 𝑠 " 0.

Proposition 2.38.1. The dimensions of these fibers are bounded uniformly in terms of 𝐺 and 𝑟.

Note that these Artin stacks are smooth with tangent complex:

𝑡𝑟`𝑠grr𝑡ss
´∇
ÝÝÑ 𝑡𝑠grr𝑡ss𝑑𝑡

for Γ𝑑𝑡 P 𝑡´𝑟grr𝑡ss𝑑𝑡 a point and ∇ :“ 𝑑´Γ𝑑𝑡. The dimension of the Artin stacks above is the Euler
characteristic of this complex (for Γ𝑑𝑡 any connection in the relevant fiber). Therefore, Proposition
2.38.1 follows from the next result:

Lemma 2.38.2. There is a constant 𝐶𝑛,𝑟 with the following property:
Let p𝑉,∇q be any rank 𝑛 differential module over40 𝑘pp𝑡qq, and let 𝐿 Ď 𝑉 be a 𝑘rr𝑡ss-lattice such

that ∇ maps into 𝑡´𝑟𝐿𝑑𝑡.
Then the absolute value of the Euler characteristic of the complex:

∇ : Λ Ñ 𝑡´𝑟Λ𝑑𝑡

is at most 𝐶𝑛,𝑟.

40Of course, 𝑘 can be any field of characteristic zero, not just our ground field. The result also immediately extends
to any Fredholm connection over any commutative ring.
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Proof. First, note that dimpKerp∇qq is at most 𝑛, and therefore we need to bound dimp𝑡´𝑟Λ𝑑𝑡{∇pΛqq
in terms 𝑛 and 𝑟 alone.

By [FZ] Lemma 8, we have:

codimp∇´1pΛ𝑑𝑡q X Λ Ď ∇´1pΛ𝑑𝑡qq ď codimp∇´1pΛ𝑑𝑡q X Λ Ď Λq.

Moreover, the right hand side is bounded in terms of 𝑟 and 𝑛: it is less than or equal to 𝑟𝑛. Indeed,
this follows from the embedding:

Λ{p∇´1pΛ𝑑𝑡q X Λq
∇
ãÑ 𝑡´𝑟Λ𝑑𝑡{Λ𝑑𝑡

so it is bounded by 𝑟𝑛.
Now recall (see e.g. [BBE] S5.9) that𝐻1

𝑑𝑅p𝑉,∇q is at most 𝑛-dimensional. Therefore, ∇p∇´1pΛ𝑑𝑡qq Ď
Λ𝑑𝑡 as codimension at most 𝑛. Combining this with the above, we see that:

∇p∇´1pΛ𝑑𝑡q X Λq Ď Λ𝑑𝑡

has codimension ď p𝑟 ` 1q𝑛, and therefore has codimension ď p2𝑟 ` 1q𝑛 in 𝑡´𝑟Λ𝑑𝑡.
�

3. Tameness

3.1. In this section, we study the action of 𝐺p𝑂q on gauge forms, and show that through the lens
of homological algebra, this action has many favorable properties.

In S3.2-3.8, we study some general aspects of (weak) actions of infinite type algebraic groups on
categories. In general, this subject exhibits pathological behavior that is not present in the finite
type situation.

However, we will introduce the notion of a tame41 action of such a group, where such behavior is
not present. The basic dichotomy the reader should keep in mind is that the regular representation
is tame, while the trivial representation is not.

Then the main result of this section, Theorem 3.9.1, is that the action of 𝐺p𝑂q on gauge forms
is tame.

3.2. Let 𝒢 be an affine group scheme (possibly of infinite type) over 𝑘.
Then QCohp𝒢q inherits a usual convolution monoidal structure by F b G :“ 𝑚˚pF b Gq for

𝑚 : 𝒢 ˆ 𝒢 Ñ 𝒢 the multiplication. This convolution structure commutes with colimits in each
variable separately, and therefore defines a structure of algebra on QCohp𝒢q P DGCat𝑐𝑜𝑛𝑡.

For C P QCohp𝒢q–mod :“ QCohp𝒢q–modpDGCat𝑐𝑜𝑛𝑡q, we define the (weak) invariant and (weak)
coinvariant categories as:

C𝒢,𝑤 :“ lim
Δ

`

C Ñ QCohp𝒢q b C . . .
˘

“ HomQCohp𝒢q–modpVect,Cq

C𝒢,𝑤 :“ colim
Δ𝑜𝑝

`

. . .QCohp𝒢q b C Ñ C “ C b
QCohp𝒢q

Vect
˘

.

Here Vect is induced with the trivial QCohp𝒢q-action, i.e., it is induced by the monoidal functor
Γ : QCohp𝒢q Ñ Vect.

41Given the interests of this paper, we explicitly state that this word has nothing to do with the notion of tame
ramification in Galois/𝐷-module theory.
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Example 3.2.1. If 𝒴 is a prestack with an action of 𝒢, then QCohp𝒢q acts on QCohp𝒴q. Moreover,
QCohp𝒴q𝒢,𝑤 identifies with QCohp𝒴{𝒢q.42

Example 3.2.2. We have canonical identifications:

QCohp𝒢q𝒢,𝑤 » Vect

QCohp𝒢q𝒢,𝑤 » Vect.

Indeed, the former is a special case of Example 3.2.1, and the latter equivalence is tautological: we
are computing QCohp𝒢q bQCohp𝒢q Vect.

3.3. The non-renormalized category of representations. We use the notation QCohpB𝒢q for
Vect𝒢,𝑤. Of course, this DG category is (tautologically) QCoh of the prestack B𝒢.

Note that QCohpB𝒢q “ HomQCohp𝒢qpVect,Vectq as monoidal categories (where the former has the

usual tensor product of quasi-coherent sheaves as its monoidal structure). Therefore, C𝒢,𝑤 and C𝒢,𝑤
have canonical QCohpB𝐺q-module structures for any C P QCohp𝒢q–mod.

Remark 3.3.1. For any affine scheme 𝒴 with an action of 𝒢, QCohp𝒴{𝒢q inherits a canonical
𝑡-structure characterized by the fact that QCohp𝒴{𝒢q Ñ QCohp𝒴q is 𝑡-exact; moreover, this 𝑡-
structure is left (and right) complete. Indeed, these facts follow by the usual argument for Artin
stacks (c.f. [Gai2]). In particular, QCohpB𝒢q has a canonical left complete 𝑡-structure.

Remark 3.3.2. For 𝒢 of infinite type, we emphatically do not use the notation Repp𝒢q for QCohpB𝒢q
out of deference to Gaitsgory, who suggests (c.f. [FG2]) to use this notation instead for a “renor-
malized” form of this category in which bounded complexes of finite-dimensional representations
are declared to be compact. However, this renormalized form will not play any role in this paper.

3.4. Averaging. By the Beck-Chevalley theory, the functor Oblv : C𝒢,𝑤 Ñ C admits a continuous

right adjoint Av𝒢,𝑤
˚ “ Av𝑤

˚ , and is comonadic. Moreover, the comonad Oblv Av𝑤
˚ on C is given by

convolution with O𝒢 P QCohp𝒢q.

3.5. We have the following basic result.

Proposition 3.5.1. (1) For every C P QCohp𝒢q–mod, the natural functor:

C𝒢,𝑤 b
QCohpB𝒢q

VectÑ C

is an equivalence.
(2) The invariants functor:

QCohp𝒢q–modÑ QCohpB𝒢q–mod

is fully-faithful.

Proof. For the first part:
We claim that the averaging functor CÑ C𝒢,𝑤 is monadic. Indeed, its composite with the forgetful

functor is tensoring with O𝒢 , and therefore it is obviously conservative. Moreover, it commutes with
all colimits, so this gives the claim.

Now let 𝜋 denote the map Specp𝑘q Ñ B𝒢 and consider 𝜋˚p𝑘q as an algebra object in QCohpB𝒢q.
Note that this algebra object induces the monad above. Therefore, we have:

42The main point here is that QCohp𝒴 ˆ 𝒢q “ QCohp𝒴q b QCohp𝒢q, which is a general consequence of the fact
that QCohp𝒢q is dualizable (being compactly generated).
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C𝒢,𝑤 b
QCohpB𝒢q

Vect “ C𝒢,𝑤 b
QCohpB𝒢q

𝜋˚p𝑘q–modpQCohpB𝒢qq “ 𝜋˚p𝑘q–modpC𝒢,𝑤q “ C

as desired.43

Now the second part follows easily from the first. Indeed, this functor admits the left adjoint
´bQCohpB𝒢q Vect, and we have just checked that the counit for the adjunction is an equivalence.

�

Remark 3.5.2. This is a different argument from the one given in [Gai5], which relied on rigidity.

3.6. Tameness. The functor Av𝑤
˚ : CÑ C𝒢,𝑤 induces a norm functor:

Nm : C𝒢,𝑤 Ñ C𝒢,𝑤.

Definition 3.6.1. C is tame (with respect to the 𝒢 action) if the above morphism Nm is an equiva-
lence.

Example 3.6.2. QCohp𝒢q P QCohp𝒢q–mod is tame: indeed, both invariants and coinvariants are
Vect, the norm functor is obviously compatible with respect to this.

Example 3.6.3. In [Gai5] S7.3, it is shown that for 𝒢 “
ś8

𝑖“1G𝑎, Vect is not tame.

Example 3.6.4. If 𝒢 is finite type, then every C is tame. Indeed, this follows from [Gai5] Theorem
2.2.2 and Proposition 6.2.7.

Generalizing Example 3.6.4, we obtain the following result:

Lemma 3.6.5. For 𝒢 acting on C and 𝜀 : 𝒢 Ñ 𝒢1 a flat morphism with 𝒢1 finite type and 𝒦 :“ Kerp𝜀q,
C is tame with respect to 𝒢 if and only if C is tame with respect to 𝒦 (with respect to the induced
action).

3.7. We have the following result, which relates the failure of tameness to the failure of the
invariants functor to be a Morita equivalence.

Proposition 3.7.1. For every C P QCohp𝒢q–mod, the norm functor induces an equivalence:

C𝒢,𝑤 b
QCohpB𝒢q

Vect
»
ÝÑ C𝒢,𝑤 b

QCohpB𝒢q
Vect.

Proof. By Proposition 3.5.1, the right hand side identifies with C. In particular, both sides commutes
with colimits in C (since this is obvious for the left hand side), and therefore we reduce to the case
QCohp𝒢q, where the result is clear.

�

3.8. Tameness and 1-affineness. Suppose 𝒴 is a prestack with an action of 𝒢.

Definition 3.8.1. 𝒴 is tame (with respect to the action of 𝒢) if QCohp𝒴q P QCohp𝒢q–mod is tame.

Proposition 3.8.2. In the above notation, suppose that 𝒴 is 1-affine and tame. Then 𝒴{𝒢 is 1-affine.

Proof. Because 𝜋 : 𝒴 Ñ 𝒴{𝒢 is a 1-affine morphism, we obtain:

ShvCat{p𝒴{𝒢q » 𝒢 ˙ QCohp𝒴q–mod

43The second to last equality follows from [Gai1] Proposition 4.8.1.
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where 𝒢 ˙ QCohp𝒴q is the semidirect (or crossed) product of QCohp𝒢q with QCohp𝒴q (as a mere
object of DGCat𝑐𝑜𝑛𝑡, this category is QCohp𝒢qbQCohp𝒴q). That is, for C P ShvCat{𝒴{𝒢 , Γp𝒴, 𝜋˚pCqq
is acted on by QCohp𝒴q and QCohp𝒢q satisfying the compatibility that the semi-direct product
of these two algebras acts; moreover, this gives an equivalence with categories acted on by the
semi-direct product.

We should show that the functor:

𝒢 ˙ QCohp𝒴q–modÑ QCohp𝒴{𝒢q–mod “ QCohp𝒴q𝒢,𝑤–mod

C ÞÑ C𝒢,𝑤 “ Hom𝒢˙QCohp𝒴qpQCohp𝒴q,Cq
(3.8.1)

is an equivalence. This functor admits the left adjoint:

`

D P QCohp𝒴{𝒢q–mod
˘

ÞÑ D b
QCohp𝒴{𝒢q

QCohp𝒴q.

First, we claim (as in Proposition 3.5.1) that (3.8.1) is fully-faithful. Indeed, first note that for
D P QCohp𝒴{𝒢q–mod, we have:

D b
QCohpB𝒢q

Vect
»
ÝÑ D b

QCohp𝒴{𝒢q
QCohp𝒴q

since it suffices to check that this map is an isomorphism for QCohp𝒴{𝒢q (since both sides commute
with colimits), and there it follows from Proposition 3.5.1. Then the claim of fully-faithfulness
follows directly from Proposition 3.5.1.

It therefore suffices now to show that our left adjoint is conservative. This follows from the
calculation:

`

D b
QCohp𝒴{𝒢q

QCohp𝒴q
˘

b
QCohp𝒢q

Vect “ D b
QCohp𝒴{𝒢q

QCohp𝒴q𝒢,𝑤 “

D b
QCohp𝒴{𝒢q

QCohp𝒴q𝒢,𝑤 “ D b
QCohp𝒴{𝒢q

QCohp𝒴{𝒢q “ D

for any D P QCohp𝒴{𝒢q–mod.
�

3.9. Let 𝐺 be an affine algebraic group for the remainder of this section. We now formulate the
main result of this section.

Theorem 3.9.1. For any 𝑟 ě 0, 𝑡´𝑟grr𝑡ss𝑑𝑡 is tame with respect to the 𝐺p𝑂q-action on it.

Remark 3.9.2. Since QCohpgpp𝑡qq𝑑𝑡q is a colimit/limit of the categories QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q, we im-
mediately obtain that gpp𝑡qq𝑑𝑡 is tame with respect to the action of 𝐺p𝑂q as well.

From Proposition 3.8.2, we obtain:

Corollary 3.9.3. The quotient 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q is 1-affine.

The proof of Theorem 3.9.1 will occupy the remainder of this section.

3.10. The main point in proving Theorem 3.9.1 is the following.

Proposition 3.10.1. The global sections functor Γ : QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq Ñ Vect has finite coho-
mological amplitude.

The proof of Proposition 3.10.1 will be given in S3.11-3.15.



ON THE NOTION OF SPECTRAL DECOMPOSITION IN LOCAL GEOMETRIC LANGLANDS 45

3.11. First, we observe that Γ commutes with colimits bounded uniformly from below.44

Indeed, this follows from 𝑡-exactness and comonadicity of the functor QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq Ñ
QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q by a well-known argument. We include this argument below for completeness.

Let 𝜋 denote the structure map 𝑡´𝑟grr𝑡ss𝑑𝑡Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q. Suppose F P QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qqě0.
By comonadicity, we have:

F “ lim
r𝑚sPΔ

p𝜋˚𝜋
˚q𝑚`1pFq.

Since Γ commutes with limits (being a right adjoint), we have:

ΓpFq “ lim
r𝑚sPΔ

Γp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q, p𝜋˚𝜋
˚q𝑚`1pFqq “ lim

r𝑚sPΔ
Γp𝑡´𝑟grr𝑡ss𝑑𝑡, 𝜋˚p𝜋˚𝜋

˚q𝑚pFqq.

Therefore, we have:

𝜏ď𝑛ΓpFq “ 𝜏ď𝑛 lim
r𝑚sPΔ

Γp𝑡´𝑟grr𝑡ss𝑑𝑡, 𝜋˚p𝜋˚𝜋
˚q𝑚pFqq “ 𝜏ď𝑛 lim

r𝑚sPΔď𝑛`1

Γp𝑡´𝑟grr𝑡ss𝑑𝑡, 𝜋˚p𝜋˚𝜋
˚q𝑚pFqq.

where Δď𝑛`1 ĎΔ is the subcategory consisting of totally ordered finite sets of size at most 𝑛` 1.
Here the crucial second equality follows from the fact that 𝜏ď𝑛 limΔ computes the limit in the
p𝑛` 1q-category Vectr0,𝑛s.

But now this expression visibly commutes with filtered colimits, since:

‚ The 𝑡-structure on Vect is compatible with filtered colimits.
‚ Γ on 𝑡´𝑟grr𝑡ss𝑑𝑡 commutes with all colimits (by affineness).
‚ 𝜋˚ commutes with colimits, since 𝜋 is affine.
‚ Our limit is now finite.

Finally, we obtain the claim from right completeness of the 𝑡-structure on Vect.

3.12. Next, we reduce to showing that Γ has finite cohomological amplitude45 when restricted to
QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq`, i.e., when restricted to objects bounded from below.

This follows from the following general lemma, noting that Γ commutes with all limits so satisfies
hypothesis (1b).46

Lemma 3.12.1. Suppose C and D are DG categories equipped with left complete 𝑡-structures.
Suppose 𝐹 : C Ñ D is a (possibly non-continuous) DG functor. Suppose that 𝐹 |C` has finite

cohomological amplitude.

(1) The following conditions are equivalent:
(a) 𝐹 has finite cohomological amplitude.
(b) 𝐹 commutes with left Postnikov towers, i.e.: for any F P C, the morphism:

𝐹 pFq “ 𝐹 plim
𝑛
𝜏ě´𝑛Fq Ñ lim

𝑛
𝐹 p𝜏ě´𝑛Fq

is an isomorphism.

44A slightly different version of this argument follows by noting that the same fact occurs on B𝐺p𝑂q, and reducing
to that case using affineness of the morphism 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q Ñ B𝐺p𝑂q; however the corresponding fact for B𝐺p𝑂q
is proved by exactly the same argument as that presented here.

45To be totally clear: a DG functor C Ñ D between DG categories with 𝑡-structures has finite cohomological
amplitude if there is an integer 𝛿 for which 𝐹 pCď0

q Ď Dď𝛿 and 𝐹 pCě0
q Ď Dě´𝛿.

46Gaitsgory informs us that this lemma appeared already in a simpler form as [DG] Lemma 2.1.4.
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(2) Suppose moreover that C and D are cocomplete, the 𝑡-structures on them are compatible
with filtered colimits, and that 𝐹 |C` commutes with colimits bounded uniformly from below.

Then the equivalent conditions above imply that 𝐹 is continuous.

Proof. To see that (1a) implies (1b):
We compute:

lim
𝑛
𝐹 p𝜏ě´𝑛Fq “ lim

𝑛
lim
𝑚
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq “ lim

𝑚
lim
𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq. (3.12.1)

For fixed 𝑚, we have:

lim
𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq “ 𝜏ě´𝑚𝐹 pFq

since the limit stabilizes to 𝐹 pFq for 𝑚 large enough by the boundedness of the cohomological
amplitude of 𝐹 .

Therefore, we compute the right hand side of (3.12.1) as:

lim
𝑚
𝜏ě´𝑚𝐹 pFq “ 𝐹 pFq

by left completeness of the 𝑡-structure on D.
Now suppose that (1b) holds.
We begin by reversing the above logic to show that the hypothesis (1b) implies that for every

F P C and every 𝑚, we have:

𝜏ě´𝑚𝐹 pFq
»
ÝÑ lim

𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq. (3.12.2)

Because 𝐹 |C` assumed to be cohomologically bounded, the limit on the right stabilizes. Let
G𝑚 P D denote this limit. Note that G𝑚 P Dě´𝑚 since this subcategory is closed under limits.
Moreover, 𝜏ě´𝑚pG𝑚`1q “ G𝑚 since each equals 𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq for 𝑛 large enough (i.e., because
the limits defining G𝑚 and G𝑚`1 stabilize).

Since 𝑚 ÞÑ G𝑚 is compatible under truncations, this system is equivalent to the datum of the
object G “ lim𝑚 G𝑚 P D, by left completeness of the 𝑡-structure of D. Therefore, it suffices to show
that:

𝐹 pFq Ñ lim
𝑚

G𝑚
»
ÝÑ lim

𝑚
lim
𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq

is an isomorphism. But this is clear, since the right hand side equals:

lim
𝑛

lim
𝑚
𝜏ě´𝑚𝐹 p𝜏ě´𝑛Fq “ lim

𝑛
𝐹 p𝜏ě´𝑛Fq

(1b)
“ 𝐹 pFq.

Now, since we noted that the limit in the right hand side of (3.12.2) stabilizes, this makes it
clear that 𝐹 is cohomologically bounded, so we see that (1b) implies (1a).

Finally, suppose that 𝐹 |C` commutes with colimits uniformly bounded from below and that
the 𝑡-structures are compatible with filtered colimits. We will show that (1b) implies that 𝐹 is
continuous.

We need to show that for 𝑖 ÞÑ F𝑖 a filtered diagram, we have:

colim
𝑖

𝐹 pF𝑖q
»
ÝÑ 𝐹 pcolim

𝑖
F𝑖q.

It suffices to show this after applying 𝜏ě´𝑚 for any integer 𝑚. Since the 𝑡-structures are compatible
with filtered colimits, the left hand side of the above becomes colim𝑖 𝜏

ě´𝑚𝐹 pF𝑖q upon truncation.
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We now compute the right hand side as:

𝜏ě´𝑚𝐹 pcolim
𝑖

F𝑖q
(3.12.2)
“ lim

𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛colim

𝑖
F𝑖q.

Using the compatibility between filtered colimits and 𝑡-structures, and the commutation of 𝐹 with
uniformly bounded colimits, this term now becomes:

lim
𝑛

colim
𝑖

𝜏ě´𝑚𝐹 p𝜏ě´𝑛F𝑖q.

Observe that this limit is eventually constant, since 𝐹 |C` has bounded amplitude. This justifies
interchanging the limit and the colimit, so that we can now compute further:

colim
𝑖

lim
𝑛
𝜏ě´𝑚𝐹 p𝜏ě´𝑛F𝑖q

(3.12.2)
“ colim

𝑖
𝜏ě´𝑚𝐹 pF𝑖q

as desired.
�

As an auxiliary remark, Lemma 3.12.1 allows us to deduce the following result from Proposition
3.10.1:

Corollary 3.12.2. Γ on 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q commutes with colimits, i.e., the structure sheaf of 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q
is compact.

We emphasize that Corollary 3.12.2 is a consequence of the (yet unproved) Proposition 3.10.1,
so of course we will not appeal to it in the course of the argument below.

We will return to Corollary 3.12.2 in S4.

Remark 3.12.3. If Corollary 3.12.2 appears innocuous given S3.11, do note that it fails (as does
Proposition 3.10.1) for B𝐺p𝑂q in place of 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q, unlike S3.11. The reader might also
glance at [FG2] to see these homological subtleties play out in the context of Kac-Moody represen-
tations.

3.13. By Theorems 2.12.1 and 2.19.1, we can therefore can choose 𝑠 so that the geometric fibers
of the map:47

𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡

are smooth Artin stacks.
Now observe that it suffices to prove Proposition 3.10.1 after replacing 𝐺p𝑂q by any congruence

subgroup; we will prove the homological boundedness for global sections on 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 instead.

3.14. Next, we reduce to showing that there is a uniform bound (see below) on the possible
cohomological amplitude of Γp𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠,Fq whenever F is set-theoretically supported48 on
the fiber of a schematic49 point.

47Implicitly, we are assuming 𝑟 ą 0 here that the polar part map makes sense; of course this is fine for our purposes.
48For a (possibly non-closed) point 𝜂 P 𝑆 for 𝑆 a smooth (finite type) scheme, we will say that F is supported on

this point if it can be written as a filtered colimit of sheaves 𝑖𝜂,˚pGq for G P QCohp𝜂q (i.e., the DG category of vector
spaces with coefficients in the residue field of 𝜂) for 𝑖𝜂 : 𝜂 ãÑ 𝑆.

We warn that this is a bad definition for general 𝑆 and is being introduced in an ad hoc way to make the language
easier in our current setting.

49We use the term schematic point to mean the generic point of an integral subscheme, i.e., a point in the topological
space underlying a scheme in the locally ringed spaces perspective on the subject.
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Remark 3.14.1. Here by uniform bound, we mean that the bound should be independent of which
fiber we choose. It is an immediate consequence of Theorem 2.12.1 that there is a bound fiber-
by-fiber, but what will remain to show after this subsection is that we can bound the relevant
cohomological dimensions uniformly.

For notational simplicity, let 𝒫 denote the affine space 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡. The Cousin complex
then provides a bounded resolution of O𝒫 by direct sums of sheaves of the form C 𝜂r´htp𝜂qs for

𝜂 P 𝒫 a schematic point and C 𝜂 P QCohp𝒫q♡ set-theoretically supported on 𝜂.
Tensoring with the Cousin resolution then implies that any F bounded from below admits a

finite filtration where the associated graded terms are direct sums of sheaves of the form F𝜂 where
F𝜂 is supported on a point 𝜂 P 𝒫, and where the F𝜂 are bounded uniformly (in 𝜂) from below.

Because the filtration is finite, and because Γp𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠,´q commutes with direct sums
bounded uniformly, we obtain the desired reduction.

3.15. Completion of the proof of Proposition 3.10.1. Again using the fact that Γ commutes
with colimits bounded uniformly from below, we see that it suffices to treat those sheaves F that are
pushed forward from the fiber of 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 at some schematic point in 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡.

Therefore, it suffices to show that the cohomological dimension of the global sections functor is
bounded uniformly on the fibers the map 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 Ñ 𝑡𝑠grr𝑡ss𝑑𝑡.

Recall that the dimensions of these fibers are bounded uniformly : this is Proposition 2.38.1.
Moreover, the dimensions of the automorphism group at a point is uniformly bounded by dimpgq,
since the Lie algebra of the stabilizer subgroup at a point embeds into 𝐻0

𝑑𝑅 of the corresponding
connection.

Therefore, the claim follows from the next result.50

Proposition 3.15.1. Suppose that 𝑋 is an affine scheme of finite type and 𝐾 is a unipotent group
acting on 𝑋.51

Define the stack X :“ 𝑋{𝐾. Then the cohomological dimension of the global sections functor
ΓpX,´q is bounded by:

dimpXq ` max
𝑥PX a geometric point

2 dimpAutXp𝑥qq.

Proof. First, note that by replacing 𝑋 by 𝑋𝑟𝑒𝑑, we can assume that 𝑋 is reduced. The action of
𝐾 also preserves irreducible components, so we can assume 𝑋 is integral.

In the case that 𝐾 acts transitively on 𝑋, the result is clear, since (perhaps after innocuously
extending our base-field 𝑘) X “ BpStab𝐾p𝑥qq for a 𝑘-point 𝑥 P 𝑋, and then the cohomological
dimension is bounded by the dimension of this stabilizer.

Let 𝑈 Ď 𝑋 be a non-zero 𝐾-stable open subscheme. We claim that 𝑈 contains a non-zero
𝐾-stable affine open subscheme.

Indeed, let 𝑍 Ď 𝑋 be the reduced complement to 𝑈 . By unipotence of 𝐾, we can find a non-zero
𝐾-invariant function 𝑓 vanishing on 𝑍, since the ideal of functions vanishing on 𝑍 is a non-zero
𝐾-representation.

50There is a slight finiteness issue to clarify here, since our stacks occur a priori as quotients of infinite type affine
schemes by prounipotent groups. However, since the quotient is an Artin stack, when we quotient by a small enough
congruence subgroup, we obtain a scheme, and then by Noetherian descent [TT] Proposition C.6, we obtain that the
quotient by a small enough congruence subgroup 𝒦𝑁 is finite type affine. Then our stack of interest is the quotient
of this finite type affine by the residual 𝒦𝑟`𝑠{𝒦𝑁 -action, as desired.

51We really need to extend scalars here and work over base-fields other than the arbitrary (characteristic zero)
ground field 𝑘. Of course, this is irrelevant, so for simplicity we just let 𝑘 denote our ground field in this proposition.
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Therefore, we can find an affine 𝐾-stable open H ‰ 𝑉 Ď 𝑋 such that the group scheme of
stabilizers is smooth over 𝑉 (since we can find some 𝐾-stable open for which this is true, namely,
the open of regular points, for which stabilizer has the minimal dimension).

We can then compute Γp𝑉 {𝐾,´q by pulling a quasi-coherent sheaf back to 𝑉 and then taking
Lie algebra cohomology with respect to the Lie algebra of the stabilizer group scheme. Since 𝑉
is affine, this means that the cohomological dimension of 𝑉 {𝐾 is at most the dimension of this
stabilizer, which we bound as:

max
𝑥P𝑉 {𝐾

dimpAutXp𝑥qq ď max
𝑥PX

dimpAutXp𝑥qq ď dimpXq `max
𝑥PX

2 dimpAutXp𝑥qq.

(Here we begin a convention throughout this argument that e.g. max𝑥PX assumes 𝑥 a geometric
point.)

Now let 𝑌 Ď 𝑋 be the reduced complement to 𝑉 , and note that dimp𝑌 q ă dimp𝑋q. By Noether-
ian descent, we can assume the result holds for Y :“ 𝑌 {𝐾. Then by an easy argument (c.f. [DG]
Lemma 2.3.2), the cohomological dimension of 𝑋{𝐾 is then bounded by:52

max
 

dimpXq `max
𝑥PX

2 dimpAutXp𝑥qq, 1` dimpYq `max
𝑦PY

2 dimpAutYp𝑥qq
(

ď

dimpXq `max
𝑥PX

dimp2 AutXp𝑥qq

as desired.
�

3.16. Digression: 𝑡-structures and monadicity. We digress for a moment to discuss the re-
lationship between 𝑡-structures and monadicity. This is well-known, and appears in some form in
both [Lur] and [Gai5], but we include it here because Corollary 3.16.2 is not quite stated in a
conveniently referenced way in either source.

We will use the following general (and well-known) results to check monadicity.

Lemma 3.16.1. Suppose that C and D are (possibly non-cocomplete) DG categories equipped with
left complete 𝑡-structures. Suppose that 𝐺 : CÑ D is right 𝑡-exact up to cohomological shift.

Then C admits geometric realizations of simplicial diagrams bounded uniformly from above, and
𝐺 preserves these geometric realizations. I.e., the functor Cď0 Ñ D commutes with geometric
realizations.

Proof. We can assume 𝐺 is right 𝑡-exact, and then this result is [Lur] Lemma 1.3.3.11 (2).
�

Corollary 3.16.2. Suppose that 𝐺 : CÑ D is a conservative DG functor between DG categories with
left and right complete 𝑡-structures. Suppose moreover that 𝐺 admits a left adjoint 𝐹 such that:

‚ The functors 𝐹 and 𝐺 are of bounded cohomological amplitude.
‚ The upper amplitude of the functors p𝐹𝐺q𝑛 is bounded independently of 𝑛, i.e., there is an
integer 𝑁 such that each functor p𝐹𝐺q𝑛 p𝑛 ě 0q maps Cď0 into Cď𝑁 .

Then 𝐺 is monadic.

Remark 3.16.3. For example, the last two hypotheses hold if 𝐹 and 𝐺 are both 𝑡-exact. However, we
will see below that one can sometimes arrange this situation without 𝑡-exactness of both functors.

52For the comparison with [DG], note that 𝑉 {𝐾 ãÑ 𝑋{𝐾 is affine, so the pushforward is 𝑡-exact.
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Proof of Corollary 3.16.2. By the Barr-Beck theorem, it suffices to show that for every F P C, the
map (coming from the bar resolution):

colim
r𝑛sPΔ𝑜𝑝

p𝐹𝐺q𝑛`1pFq Ñ F

is an isomorphism.
We have that 𝐺|Cď0 commutes with geometric realizations by Lemma 3.16.1.
For F P C as above and for any 𝑚 ě 0, we claim that the map:

colim
r𝑛sPΔ𝑜𝑝

p𝐹𝐺q𝑛`1𝜏ď𝑚F Ñ 𝜏ď𝑚F

is an isomorphism. Indeed, by conservativeness, it suffices to see this after applying 𝐺. This geo-
metric realization is of terms bounded uniformly from above by hypothesis on the endofunctors
p𝐹𝐺q𝑛`1, so the colimit commutes with 𝐺; then since this simplicial diagram is 𝐺-split, we obtain
the claim.

Because p𝐹𝐺q𝑛`1 is cohomologically bounded for each 𝑛 (since 𝐹 and 𝐺 are), for every F P C

we have:

p𝐹𝐺q𝑛`1pFq “ colim
𝑚

p𝐹𝐺q𝑛`1𝜏ď𝑚F

by (the dual to) Lemma 3.12.1. Combining this with the above, we compute:

colim
r𝑛sPΔ𝑜𝑝

p𝐹𝐺q𝑛`1pFq “ colim
r𝑛sPΔ𝑜𝑝

colim
𝑚

p𝐹𝐺q𝑛`1𝜏ď𝑚F “ colim
𝑚

colim
r𝑛sPΔ𝑜𝑝

p𝐹𝐺q𝑛`1𝜏ď𝑚F “

colim
𝑚

𝜏ď𝑚F “ F

as desired.
�

3.17. We now prove Theorem 3.9.1.

Proof of Theorem 3.9.1. Let 𝜋 denote the morphism 𝑡´𝑟grr𝑡ss𝑑𝑡Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q.

Step 1. By the Beck-Chevalley method (c.f. [Gai5] Appendix C), the non-continuous right adjoint
to the canonical functor QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q Ñ QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q𝐺p𝑂q,𝑤 is monadic.

Let 𝜋? denote the (non-continuous) right adjoint to 𝜋˚. One easily checks (c.f. [Gai5] S6.3, espe-
cially Proposition 6.3.7) that the monads on QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q corresponding to 𝜋?𝜋˚ and to the
monad coming from coinvariants coincide, compatibly with the norm functor comparing invariants
and coinvariants.

Therefore, it suffices to show that 𝜋? is monadic.

Step 2. We claim that 𝜋? is conservative. It is equivalent to say that 𝜋˚ generates the target under
colimits, which is the form in which we will check this result.

First, note that we can replace 𝐺p𝑂q by any congruence subgroup. Indeed, by [Gai5] Proposition

6.2.7 and 1-affineness of the classifying stack of a finite type algebraic group 𝛤 , Av𝛤,𝑤
˚ : C Ñ C𝛤,𝑤

generates the target under colimits for any QCohp𝛤 q-module category C.
Therefore, by Theorems 2.12.1 and 2.19.1 it suffices to show this result for 𝑡´𝑟grr𝑡ss𝑑𝑡{𝒦𝑟`𝑠 where

we have a polar part map to 𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡 with geometric fibers smooth Artin stacks.
Note that 𝜋˚ is a morphism of QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡q-module categories. Moreover, as for

any smooth scheme, QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝑡𝑠grr𝑡ss𝑑𝑡q is generated under colimits by skyscraper sheaves
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at geometric points. Therefore, it suffices to show that the morphism 𝜋˚ generates under colimits
when restricted to any geometric fiber.

But on these geometric fibers, the map 𝜋 base-changes to r𝜋 : 𝑆 Ñ 𝑆{𝐾 where 𝑆 is an affine
scheme (the geometric fiber of 𝑡´𝑟grr𝑡ss𝑑𝑡), 𝐾 is a prounipotent group scheme and 𝑆{𝐾 is a smooth
(finite-dimensional) Artin stack.

By Noetherian descent ([TT] Proposition C.6), there is a normal compact open subgroup 𝐾0 Ď 𝐾
such that 𝑆{𝐾0 is an affine scheme of finite type. Then 𝑆 Ñ 𝑆{𝐾0 is a 𝐾0-torsor. Moreover,
this torsor is necessarily trivial because 𝐾0 is prounipotent and 𝑆{𝐾0 is affine. Therefore, the
pushforward obviously generates under colimits in this case.

Then 𝑆{𝐾0 Ñ 𝑆{𝐾 generates under colimits using the fact that 𝐾{𝐾0 is finite type, and using
[Gai5] Proposition 6.2.7 once again.

Step 3. Next, we claim that 𝜋? has bounded cohomological amplitude.
Note that:

HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡qpO𝑡´𝑟grr𝑡s𝑑𝑡, 𝜋
?pFqq “ HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qp𝜋˚pO𝑡´𝑟grr𝑡s𝑑𝑡q,Fq P Vect

so it suffices to show that the latter complex is bounded.
But observe that 𝜋˚pO𝑡´𝑟grr𝑡s𝑑𝑡q is an ind-finite dimensional vector bundle under a countable

direct limit: indeed, it is obtained by pullback from the regular representation in QCohpB𝐺p𝑂qq
(i.e., the pushforward of 𝑘 P Vect under Specp𝑘q Ñ B𝐺p𝑂q).

By Proposition 3.10.1 (and a dualizability argument), HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q out of any finite
rank vector bundle has cohomological amplitude bounded independently of the vector bundle.

Note HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qp𝜋˚pO𝑡´𝑟grr𝑡s𝑑𝑡q,´q is a countable limit of such functors. Since the
limit is countable, the “𝑅 lim” aspect can increase the cohomological amplitude by at most 1, so
this functor also has bounded cohomological amplitude.

Step 4. Finally, we claim that p𝜋˚𝜋
?q𝑛 has cohomological amplitude bounded independently of 𝑛.

Note that this suffices by Corollary 3.16.2.
By the previous step, and since 𝜋˚ is 𝑡-exact (by affineness), it suffices to show that 𝜋?𝜋˚ is

𝑡-exact. Observe that:

𝜋?𝜋˚ “ act˚ 𝑝
?
2 (3.17.1)

where the maps here are 𝐺p𝑂q ˆ 𝑡´𝑟grr𝑡ss𝑑𝑡
𝑝2
Ñ
act

𝑡´𝑟grr𝑡ss𝑑𝑡. Indeed, the identity (3.17.1) follows

immediately from the base-change between upper-* and lower-* functors.
Since act˚ is 𝑡-exact (by affineness of 𝐺p𝑂q), we need to see that 𝑝?2 is 𝑡-exact. This follows by

explicit calculation: it is equivalent to see that:

HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡qp𝑝2,˚pO𝐺p𝑂qˆ𝑡´𝑟grr𝑡ss𝑑𝑡q,´q “ HomQCohp𝑡´𝑟grr𝑡ss𝑑𝑡qpΓp𝐺p𝑂q,O𝐺p𝑂qqbO𝑡´𝑟grr𝑡ss𝑑𝑡,´q

is 𝑡-exact. Clearly Γp𝐺p𝑂q,O𝐺p𝑂qq b O𝑡´𝑟grr𝑡ss𝑑𝑡 is a free quasi-coherent sheaf on an affine scheme,
giving the claim.

�

4. Compact generation

4.1. In this section, we discuss applications of the results of S3 to questions of compact generation.
This material logically digresses from the overall goal of proving our main theorem (c.f. S1.26).

However, it is a simple application of the results of the previous section, so we include it here.
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4.2. First, we give the following result, valid for any affine algebraic group 𝐺.

Proposition 4.2.1. For every 𝑟 ě 0, QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq is compactly generated. Moreover, an
object in this category is compact if and only if it is perfect.

In particular, QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq is rigid symmetric monoidal.

Proof. By dualizability, perfect objects are compact if and only if the structure sheaf is compact,
and this holds in our case by Corollary 3.12.2.

Now let 𝜌 denote the structure map 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q Ñ B𝐺p𝑂q Ñ B𝐺. We claim that the
objects 𝜌˚p𝑉 q for 𝑉 P Repp𝐺q a bounded complex of finite-dimensional representations form a
set of compact generators. Obviously this would imply that QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq is compactly
generated by perfect objects, and therefore the two notions would coincide as desired.

We now claim that these objects generate under colimits. Indeed, as in the proof of Theorem 3.9.1,
QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq is generated under colimits and shifts by 𝜋˚pO𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq “ 𝜌˚pO𝐺p𝑂qq.

Remarks on the notation: as in S3, 𝜋 is the projection map 𝑡´𝑟grr𝑡ss𝑑𝑡Ñ 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q, and we
are letting O𝐺p𝑂q denote the regular representation of 𝐺p𝑂q.

Then observe that O𝐺p𝑂q is the colimit of O𝐺p𝑂q{𝒦 for 𝒦 a congruence subgroup. Since Kerp𝐺p𝑂q{𝒦Ñ
𝐺q is unipotent, we then see that O𝐺p𝑂q{𝒦 lies in the category generated under colimits by repre-
sentations of 𝐺.

�

4.3. We readily deduce the following.

Corollary 4.3.1. QCohpgpp𝑡qq𝑑𝑡{𝐺p𝑂qq is compactly generated.

Proof. The structure maps 𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂q Ñ 𝑡´𝑟´1grr𝑡ss𝑑𝑡{𝐺p𝑂q are regular embeddings, and
therefore the restriction for quasi-coherent sheaves admits a left adjoint. Therefore, we have:

QCohpgpp𝑡qq𝑑𝑡{𝐺p𝑂qq “ lim
𝑟

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq “ colim
𝑟

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡{𝐺p𝑂qq

where the colimit is under the left adjoints. Since each of the structure functors in this colimit
obviously preserves compacts (being left adjoints to continuous functors), this implies that the
colimit is compactly generated as well (since Ind : DGCatÑ DGCat𝑐𝑜𝑛𝑡 is a left adjoint, so commutes
with colimits).

�

4.4. Finally, we deduce the following.

Theorem 4.4.1. For 𝐺 reductive, QCohpLocSys𝐺p
˝

𝒟qq is compactly generated.

Proof. The map 𝑝 : gpp𝑡qq𝑑𝑡{𝐺p𝑂q Ñ LocSys𝐺p
˝

𝒟q “ gpp𝑡qq𝑑𝑡{𝐺p𝐾q is a 𝐺p𝐾q{𝐺p𝑂q-fibration, i.e.,
a Gr𝐺-fibration up to sheafification. Therefore, this map is ind-proper (up to sheafification).

Identifying QCoh and IndCoh for Gr𝐺 and in [GR3], we see that the pullback 𝑝˚ admits a left
adjoint. Clearly 𝑝˚ is continuous and conservative, so this gives the result from Corollary 4.3.1.

�

5. Conclusion of the proof of the main theorem

5.1. In this section, we prove that for 𝐺 reductive, QCohpLocSys𝐺p
˝

𝒟qq–mod embeds fully-faithfully
into ShvCat

{LocSys𝐺p
˝

𝒟q
. The argument is fairly straightforward, given the work we have done already

at this point.
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5.2. Tameness redux. In what follows, let 𝒢1 be an affine group scheme, and let 𝒢1 Ď 𝒢2 with
𝒢2 a group indscheme with 𝒢2{𝒢1 a formally smooth ind-proper ℵ0-indscheme. We assume 𝒢1 has
a prounipotent tail, i.e., there exists a prounipotent compact open subgroup of it.

Example 5.2.1. The example we will use is 𝐺p𝑂q Ď 𝐺p𝐾q for 𝐺 reductive. But this generality also
would apply e.g. to 𝐺p𝑂q embedded into its formal completion in 𝐺p𝐾q (for any affine algebraic
𝐺).

5.3. Self-duality of QCohp𝒢2q. First, we construct a self-duality for QCohp𝒢2q. This construction
will be of “semi-infinite” nature, so e.g. depends on the choice of embedding 𝒢1 Ď 𝒢2.

The construction is given in S5.4-5.5.

5.4. In what follows, 𝒦 always denotes a (possibly variable) prounipotent compact open subgroup
of 𝒢1.

First, note that:

QCohp𝒢2q
»
ÝÑ lim

𝒦
QCohp𝒢2{𝒦q “ colim

𝒦
QCohp𝒢2{𝒦q.

Here the limit is under pushforward functors, and the colimit is under pullback functors. Note that
these pushforward functors are well-behaved because they are along affine morphisms. Adjointness
gives rise to the equality of the limit and colimit here. Finally, the fact that this co/limit actually
gives QCohp𝒢2q is a general fact53 about inverse limits of prestacks along affine morphisms.

Since each of the categories QCohp𝒢2{𝒦q are dualizable (e.g., being compactly generated), the
fact that this is a co/limit means that QCohp𝒢2q is dualizable as well. In order to make it self-dual,
we should make each category QCohp𝒢2{𝒦q self-dual in a way that the pullback structure functors
are dual to the pushforward structure functors. We do this in S5.5

5.5. We will accomplish the above task using IndCoh, which is an effective way of dealing with the
indscheme issues that occur here.

Note that 𝒢2{𝒦 is formally smooth, so by [GR2], QCohp𝒢2{𝒦q
»
ÝÑ IndCohp𝒢2{𝒦q, where the

functor is tensoring with the dualizing sheaf. The categories IndCohp𝒢2{𝒦q are self-dual via Serre
duality, i.e., we have an equivalence:

D𝑆𝑒𝑟𝑟𝑒
𝒦 : IndCohp𝒢2{𝒦q

»
ÝÑ IndCohp𝒢2{𝒦q_.

Recall that under Serre duality, upper-! and lower-* functors are dual.
Using formal smoothness, we get an induced duality:

1D𝑆𝑒𝑟𝑟𝑒
𝒦 : QCohp𝒢2{𝒦q

»
ÝÑ QCohp𝒢2{𝒦q_.

We warn from the onset that we will need to modify this duality in what follows. Indeed, let
𝛼 “ 𝛼𝒦,𝒦1 denote the structure map 𝒢2{𝒦 Ñ 𝒢2{𝒦1, and let us compute the dual p𝛼˚q_ to the

functor 𝛼˚ (with respect to 1D𝑆𝑒𝑟𝑟𝑒). For F P QCohp𝒢2{𝒦q, we have:

p𝛼˚q_pFq b 𝜔𝒢2{𝒦1 » 𝛼IndCoh
˚ pF b 𝜔𝒢2{𝒦q.

Indeed, this follows from the corresponding calculation for D𝑆𝑒𝑟𝑟𝑒. Now note that in contrast, we
have:

𝛼˚pFq b 𝜔𝒢2{𝒦1 “ 𝛼IndCoh
˚ pF b 𝛼˚,IndCohp𝜔𝒢2{𝒦1qq (5.5.1)

53It reduces to the description of modules over a colimit of algebras as the limit of the corresponding categories of
modules.
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(c.f. [Gai3] S3.6), showing the discrepancy between p𝛼˚q_pFq and 𝛼˚pFq.
Therefore, we use the following modified duality functors. For any pair 𝒦 Ď 𝒦1 Ď 𝒢1 as above, let

detp𝒦1,𝒦q denote the cohomologically graded line bundle on 𝐺2{𝒦 coming from the representation
detpLiep𝒦1q{Liep𝒦qqr´dim𝒦1{𝒦s of 𝒦. Note that we have canonical isomorphisms:

𝛼IndCoh,˚
𝒦,𝒦1 p´q » detp𝒦1,𝒦q b 𝛼!

𝒦,𝒦1p´q.

In particular, we can rewrite the right hand side of (5.5.1) as:

𝛼IndCoh
˚ pF b 𝜔𝒢2{𝒦 b detp𝒦1,𝒦qq.

We then define:

D
8
2
𝒦 pFq :“ 1D𝑆𝑒𝑟𝑟𝑒

𝒦 pdetp𝐺1,𝒦q b Fq.

It then easily follows that with respect to these duality functors for QCohp𝒢2{𝒦q and QCohp𝒢2{𝒦1q,
𝛼˚ and 𝛼˚ are dual.

As we vary our compact open subgroups, these constructions go through in a homotopy com-
patible way easily using the theory of [GR2], giving the desired claim.

Example 5.5.1. The functor dual to the ˚-restriction QCohp𝒢2q Ñ QCohp𝒢1q is the left adjoint to
this restriction. The functor dual to the pullback Vect Ñ QCohp𝒢2q is given by ˚-pushing forward
to 𝒢2{𝒢1 and then taking IndCoh global sections (which is a left adjoint here, by assumption).

5.6. Note that the group structure on 𝒢2 canonically makes QCohp𝒢2q into a coalgebra object of
DGCat𝑐𝑜𝑛𝑡. If e.g. 𝒢2 acts a prestack 𝒴, the QCohp𝒴q is a comodule category for QCohp𝒢2q.

54 The
restriction functor QCohp𝒢2q Ñ QCohp𝒢1q is a morphism of coalgebras.

By self-duality, QCohp𝒢2q inherits a monoidal structure as well, so that QCohp𝒢2q-module cat-
egories (in DGCat𝑐𝑜𝑛𝑡) are the same as comodule categories for the above structure. Moreover,
QCohp𝒢2q receives a monoidal functor from QCohp𝒢1q.

Note that Vect has a tautological QCohp𝒢2q-module structure corresponding to the trivial action
of 𝒢2 on a point. As usual, this allows us to speak about invariants and coinvariants for QCohp𝒢2q-
module categories.

5.7. Semi-infinite norm functor. Suppose now that C is acted on by QCohp𝒢2q. We will construct
a norm functor:

Nm
8
2 : C𝒢2 Ñ C𝒢2

that is functorial in C and an equivalence for QCohp𝒢2q.

5.8. Here is an abstract description of Nm
8
2 , though we will give a more concrete description in

what follows.
Regard QCohp𝒢2q as a bi-comodule category over itself. Then we have Vect

»
ÝÑ QCohp𝒢2q

𝒢2,𝑤

as QCohp𝒢2q-comodule categories, where we are using the residual action on the right hand side.
Indeed, since we have carefully used the comodule language everywhere, there is nothing non-
standard in this claim, i.e., we are not using the self-duality of QCohp𝒢2q anywhere (which is
non-standard in the sense that it has 𝒢1 built into it).

But by equating comodule structures and module structures by self-duality, the situation is more
interesting. In particular, for C P QCohp𝒢2q, we can tensor the above map to obtain:

54We need the formula QCohp𝒢2q bQCohp𝒴q »ÝÑ QCohp𝒢2 ˆ 𝒴q for this, but this formula holds because QCohp𝒢2q

is dualizable.
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C𝒢2,𝑤 :“ C b
QCohp𝒢2q

Vect “ C b
QCohp𝒢2q

QCohp𝒢2q
𝒢2,𝑤 Ñ

`

C b
QCohp𝒢2q

QCohp𝒢2q
˘𝒢2,𝑤

“ C𝒢2,𝑤.

This is our norm map. It obviously satisfies the desired functoriality, and is obviously an equivalence
for C “ QCohp𝒢2q.

5.9. We now give a slightly more concrete description of the norm functor above.
Suppose that C is a QCohp𝒢2q-module category. The restriction functor Oblv : C𝒢2 Ñ C𝒢1 is

conservative and admits a left adjoint Av𝑤
! by ind-properness of 𝒢2{𝒢1. This functor is functorial

in C.
We claim that the composite functor:

CÑ C𝒢2,𝑤
Nm

8
2

ÝÝÝÑ C𝒢2,𝑤

is computed by:

C
Av𝑤˚
ÝÝÝÑ C𝒢1,𝑤

Av𝑤!
ÝÝÝÑ C𝒢2,𝑤.

Indeed, this follows from the commutative diagram:

C “ C b
QCohp𝒢2q

QCohp𝒢2q
idbAv𝑤˚ // C b

QCohp𝒢2q

QCohp𝒢2q
𝒢1,𝑤 //

Av𝑤!

��

`

C b
QCohp𝒢2q

QCohp𝒢2q
˘𝒢1,𝑤

“ C𝒢1,𝑤

Av𝑤!

��

C𝒢2,𝑤 “ C b
QCohp𝒢2q

QCohp𝒢2q
𝒢2,𝑤 //

`

C b
QCohp𝒢2q

QCohp𝒢2q
˘𝒢2,𝑤

“ C𝒢2,𝑤

and the calculation that QCohp𝒢2q
Av𝑤! Av𝑤˚
ÝÝÝÝÝÝÑ QCohp𝒢2q

𝒢2,𝑤 “ Vect is the functor dual to the pullback
(as follows from Example 5.5.1).

5.10. We can now proceed as before with tameness.

Definition 5.10.1. C is tame with respect to 𝒢2 if the above norm map is an equivalence.

In fact, tameness for 𝒢2 is the same as tameness for 𝒢1:

Proposition 5.10.2. C is tame with respect to 𝒢2 if it is tame as a QCohp𝒢1q-module category.

Example 5.10.3. If 𝒢1 is normal in 𝒢2, this result is immediate: then it is well-known (c.f. [Gai5]
S11) that invariants and coinvariants coincide for 𝒢2{𝒢1 via the Av𝑤

! functor.

Proof of Proposition 5.10.2. Suppose C is a general QCohp𝒢2q-module category, i.e., forget about
tameness for a moment.

We have a tautologically commutative diagram:

C // C𝒢1,𝑤

Nm𝒢1
��

// C𝒢2,𝑤

Nm
8
2
𝒢2��

C𝒢1,𝑤
Av𝑤! // C𝒢2,𝑤.

Note that the top arrow in this square is given by:
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C𝒢1,𝑤 “ C b
QCohpG2q

QCohp𝒢2q𝒢1,𝑤 “ C b
QCohpG2q

QCohp𝒢2{𝒢1q Ñ C b
QCohpG2q

Vect “ C𝒢2,𝑤.

corresponding to the IndCoh-global sections functor on 𝒢2{𝒢1. In particular, we see that the functor
C𝒢1,𝑤 Ñ C𝒢2,𝑤 admits a continuous right adjoint, since 𝒢2{𝒢1 is ind-proper. Moreover, this right
adjoint is obviously monadic, since it is conservative and continuous.

This description of the right adjoint immediately gives the commutation of the diagram:

C𝒢1,𝑤

Nm𝒢1
��

C𝒢2,𝑤

Nm
8
2
𝒢2��

oo

C𝒢1,𝑤 C𝒢2,𝑤Oblvoo

Now suppose that C is tame with respect to the 𝒢1-action. The we have a morphism of monads
corresponding to the commutative diagram:

C𝒢2,𝑤
Nm

8
2 //

&&

C𝒢2,𝑤

xx
C𝒢1,𝑤 “ C𝒢1,𝑤

that is an isomorphism of endofunctors, by the explicit descriptions of these functors. Moreover,
each of these diagonal functors is monadic (being continuous and conservative), so we obtain the
claim.

�

5.11. We now have the following application to the actions on gauge forms.

Proposition 5.11.1. For 𝐺 a reductive group, QCohpgpp𝑡qq𝑑𝑡q is tame with respect to the 𝐺p𝐾q-action
by gauge transformations.

More generally, any C P QCohpgpp𝑡qq𝑑𝑡q–mod equipped with a compatible action of QCohp𝐺p𝐾qq
(i.e., with an action of the appropriate semidirect product, c.f. the proof of Proposition 3.8.2) is
tame with respect to 𝐺p𝐾q.

Proof. By Proposition 5.10.2, it suffices to prove these results with 𝐺p𝑂q replacing 𝐺p𝐾q every-
where.

Then note that in forming the limit QCohpgpp𝑡qq𝑑𝑡q “ limQCohp𝑡´𝑟grr𝑡ss𝑑𝑡q, each of the structural
functors admits a left adjoint. Therefore, this limit is also a colimit, and formation of this limit
commutes with all tensor products. Finally, note that each of the structural functors (whether left
or right adjoint) is a morphism of QCohp𝐺p𝑂qq-module categories.

Now for C P QCohpgpp𝑡qq𝑑𝑡q–mod, we obtain:

C “ lim
𝑟

C b
QCohpgpp𝑡qq𝑑𝑡q

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q “ colim
𝑟

C b
QCohpgpp𝑡qq𝑑𝑡q

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q P QCohp𝐺p𝑂qq–mod.

Note that formation of invariants commutes with formation of the limit, and formation of coinvari-
ants commutes with formation of the colimit. Therefore, by functoriality and by Theorem 3.9.1, we
obtain:
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C𝐺p𝑂q,𝑤 “ colim
𝑟

´

C b
QCohpZ𝑟q

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q
¯

𝐺p𝑂q,𝑤

»
ÝÑ colim

𝑟

´

C b
QCohpZ𝑟q

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q
¯𝐺p𝑂q,𝑤

“

lim
𝑟

´

C b
QCohpZ𝑟q

QCohp𝑡´𝑟grr𝑡ss𝑑𝑡q
¯𝐺p𝑂q,𝑤

“ C𝐺p𝑂q,𝑤

as desired.
�

5.12. We can now show for 𝐺 reductive that the functor:

Loc : QCohpLocSys𝐺p
˝

𝒟qq–modÑ ShvCat
{LocSys𝐺p

˝

𝒟q

is fully-faithful.
First, we claim that the right adjoint functor:

ΓpLocSys𝐺p
˝

𝒟q,´q : ShvCat
{LocSys𝐺p

˝

𝒟q
Ñ QCohpLocSys𝐺p

˝

𝒟qq–mod

commutes with all colimits and is a morphism of DGCat𝑐𝑜𝑛𝑡-module categories. It suffices to check
this after further composing with the forgetful functor to DGCat𝑐𝑜𝑛𝑡.

Then note that this functor is tautologically computed by pulling back a sheaf of categories on

LocSys𝐺p
˝

𝒟q to gpp𝑡qq𝑑𝑡, taking global sections there, and then forming weak 𝐺p𝐾q-invariants for
the resulting category. By Proposition 5.11.1, these invariants coincide with coinvariants, which
makes the structural properties clear.

Therefore, the main theorem follows from the next claim.

Lemma 5.12.1. For Y any prestack with:

ΓpY,´q : ShvCat{Y Ñ QCohpYq–mod

commuting with colimits and a morphism of DGCat𝑐𝑜𝑛𝑡-module categories, Loc is fully-faithful.

Proof. We need to see that id
»
ÝÑ Γ˝Loc. Note that Loc is tautologically a morphism of QCohpYq–mod-

module categories. For Γ, this follows from our hypotheses, plus the usual calculation of a tensor
product as a geometric realization.

Therefore, it suffices to see that id Ñ Γ ˝ Loc is an isomorphism when evaluated on the unit
object QCohpYq. But this is tautological for any prestack Y.

�
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M. Vaquié, and G. Vezzosi, editors, Stacks and Categories in Geometry, Topology, and Algebra:, Contemporary
Mathematics. American Mathematical Society, 2015.

[GH] Robert Gilmer and William Heinzer. The Noetherian property for quotient rings of infinite polynomial rings.
Proceedings of the American Mathematical Society, 76(1):1–7, 1979.

[GR1] Dennis Gaitsgory and Sam Raskin. Acyclic complexes and 1-affineness. Available at math.mit.edu/~sraskin/
Ainfty.pdf, 2015.

[GR2] Dennis Gaitsgory and Nick Rozenblyum. Studies in derived algebraic geometry. Forthcoming.
[GR3] Dennis Gaitsgory and Nick Rozenblyum. DG indschemes. Contemp. Math, 610:139–251, 2014.
[Hen] Benjamin Hennion. Tate objects in p8, 1q-categories. 2014. Available at: http://guests.mpim-bonn.mpg.de/

hennion/pdf/tate.pdf.
[Lev] A HM Levelt. Jordan decomposition for a class of singular differential operators. Arkiv för matematik, 13(1):1–

27, 1975.
[Lur] Jacob Lurie. Higher algebra. Available at: http://math.harvard.edu/~lurie/papers/HigherAlgebra.pdf,

2012.
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