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1. Basic definitions

1.1. Let G be a finite group. We write the multiplication in G using either concatenation or · (so
gg′ = g · g′) and we will denote the unit in G by 1.

Throughout these notes, C denotes any algebraically closed field of characteristic 0. Of course,
it’s fine to have the complex numbers in mind, but there’s no problem with using Q or anything
else. In particular, the use of analytic properties of the complex numbers is forbidden.

(Actually, in this section, it’s enough for C to be any field).

1.2. Let us begin by defining what a representation is. For a vector space V , let GL(V) (alias,
Aut(V )) denote the group of invertible linear endomorphisms of V .

Definition 1.1. A (complex) representation of G (or G-representation) is a pair (V, ρ) consisting of a
C-vector space V and a homomorphism ρ : G −→ GL(V ). By a finite-dimensional G-representation
we understand a representation which is finite-dimensional as a mere vector space.

Remark 1.2. Often, if there is no possible ambiguity, for V a G-representation, g ∈ G and
v ∈ V , we will write gv or g · v for (ρV (g))(v). In this notation, the condition of being a
G-representation is just that for all g ∈ G the map g · − : V −→ V is linear and for all
g, g′ ∈ G and all v ∈ V , g · (g′ · v) = (g · g′) · v. Similarly, we will sometimes omit ρ from the
notation.

Example 1.3. If V is the one-dimensional vector space C, then such a representation is the same
thing as a homomorphism G −→ C×. Since G is finite, any such homomorphism lands in the roots
of unity.
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1.3. Let us give an equivalent perspective on what a representation is.
Let C[G] be the (finite-dimensional) vector space of C-valued functions on G. This vector space

has a canonical algebra structure called “convolution.” Explicitly, this is given as follows:

(f1 · f2)(g) =
∑
x∈G

f1(gx
−1)f2(x).

The unit for the algebra is δ1 (which we also denote by 1 when convenient).
This algebra structure is characterized as follows. For g ∈ G, let δg ∈ C[G] be the “delta function

at g” whose value at g′ ∈ G is 0 if g′ ̸= g and is 1 if g′ = g. Note that {δg}g∈G forms a basis for
C[G]. I.e., every element of C[G] can be written in the form:∑

g∈G
ag · δg

for ag ∈ C (note that ag is the value of the corresponding function at g). Then convolution is
characterized by the requirements that it be C-linear and satisfies:

δg · δg′ = δgg′ .

Remark 1.4. Let X be any set and let Fun(X) be the vector space of C-valued functions on X.
Then Fun(X) has a canonical algebra structure of pointwise multiplication. In the case X = G,
this is very different from the algebra structure we constructed above. E.g., convolution is non-
commutative if G is, and Fun(X) is always commutative. We will always use C[G] to denote
functions considered with the convolution algebra structure structure above and Fun(G) to denote
functions considered with this algebra structure of pointwise multiplication.

1.4. We claim that the datum of a left C[G]-module is canonically equivalent to the datum of a
G-representation.

First, note that there is a canonical algebra map C −→ C[G] sending λ to λ · δ1. In particular,
any C[G]-module admits a canonical vector space structure.

Then for a C[G]-module V , we let ρV (g) be the operator of action by δg. This obviously satisfies
the condition to be a representation.

To go the other way, let V be a representation of G. Then we define a C[G]-module structure
on V by having

∑
g∈G ag · δg act by

∑
g∈G ag · ρV (g).

Remark 1.5. For this reason, we sometimes call G-representations “G-modules.”

Remark 1.6. Another way of phrasing this is the following: a representation ofG, which by definition
is a group homomorphism ρ : G −→ GL(V ), is equivalent to a C-algebra homomorphism ρ′ :
C[G] −→ End(V ). In this language, to pass from a ring homomorphism ρ′ : C[G] −→ End(V ) to a
group homomorphism ρ : G −→ GL(V ), one just restricts ρ′ to elements of the form δg.

1.5. Now let us give some examples of representations.

Examples 1.7. (1) For any vector space V , we have the canonical “trivial” action of G on V
defined by letting ρV (g) be the identity operator. I.e., it is defined by restriction of scalars
of the algebra map ε : C[G] −→ C mapping:∑

g∈G
ag · δg 7→ a1.

(2) Let G act on a set X. Then Fun(X) has the canonical structure of G-representation, where
we define ρ(g)(f) to be the function:

x 7→ f(g−1 · x)
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i.e., G acts by translating functions under the action of G on the set. This satisfies the
condition to be a representation since:

(g′ · (g · f))(x) = (g · f)(g′−1x) = f(g−1(g′)−1x) = f((g′g)−1x) = ((g′g) · f)(x).
Representations that arise in this way are called permutation representations.

(3) Recall that G × G acts on the set G by (g, h) · x := gxh−1. Therefore, Fun(G) has the
canonical structure of G×G representation. Explicitly, it is given by:

ρreg(g, h)(f)(x) := f(g−1xh).

This representation is called the “regular representation.” Note that it induces two struc-
tures of G-representation on Fun(G) coming from the two homomorphisms G −→ G × G
given by g 7→ (g, 1) and g 7→ (1, g). The first is called the “left regular representation” and
the second is called the “right regular representation.”

The map G −→ G sending x 7→ x−1 intertwines the two G-module structures, so they
really aren’t so different. When there’s possible ambiguity, we regard Fun(G) as a G-module
through the left regular representation.

1.6. For two representations V,W ofG, we let HomG(V,W ) denote the vector subspace of Hom(V,W )
of linear transformations consisting of those linear transformations which commute with the action
of G, i.e., those T ∈ Hom(V,W ) such that T ◦ ρV (g) = ρV (g) ◦ T . These are called G-equivariant
maps or maps of G-representations, or G-linear map, etc.

1.7. Let us study the regular representation a little more carefully. We have the canonical map
ev1 : Fun(G) −→ C given by evaluation at the point 1. Note that this is not a G-linear map (for
either G-module structure on Fun(G)).

Lemma 1.8. For any representation V , the map:

HomG(V,Fun(G)) −→ Hom(V,C) =: V ∗

given by:

T 7→ ev1 ◦ T
is an isomorphism.

Remark 1.9. In other words, this says: to give a map of G-representations from V to Fun(G) is the
same as giving an element of V ∗ the dual vector space to V . So the moral is: it’s very easy to map
a representation into the regular representation.

Proof. We have to see that this map is injective and surjective.
This map is manifestly linear, so to show injectivity it suffices to show that the kernel is 0. For

a G-equivariant map T : V −→ Fun(G) to lie in the kernel translates to saying that:

T (v)(1) = 0

for all v ∈ V (note that T (v) is a function on G, so it makes sense to evaluate it on an element of
G; so T (v)(1) could also be denoted (T (v))(1)). To see that T is itself zero, we need to show that
T (v)(g) = 0 for all g ∈ G and v ∈ V . But by G-equivariance:

T (v)(g) =
(
g−1 · (T (v)

)
(1) = T (g−1(v))(1) = 0.

Let us explain these manipulations a little more clearly. Here, g−1 · (T (v)) ∈ Fun(G) is the
function defined by acting on T (v) via the left regular representation, so the fact that T (v)(g) =(
g−1 · (T (v)

)
(1) follows from the definition of the action in the left regular representation. But

since the assignment v 7→ T (v) is G-equivariant, g−1 · T (v) = T (g−1v). But since T (w)(1) is equal
to 0 for all w ∈ V , setting w = g−1v we get the desired result.
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The above proof of injectivity shows us how to prove surjectivity as well. Namely, suppose we
have a linear functional λ : V −→ C. Then we define Tλ(v) to be the function:

Tλ(v)(g) := λ(g−1v).

The map Tλ : V −→ Fun(G) given by v 7→ Tλ(v) is G-equivariant since for x ∈ G we have:

Tλ(xv)(g) = λ(g−1xv) = (Tλ(v))(x
−1g) = (x · Tλ(v))(g).

That is to say: Tλ(xv) = x · Tλ(v), as desired.
□

Remark 1.10. This remark can safely be ignored. The above constructions give another reason to
distinguish notationally between Fun(G) and C[G]: morally, they play very different roles in the
theory. Namely, if G were an infinite group, then the “correct” analogue of C[G] would be functions
which are allowed to be non-zero only on a finite subset of G, while Fun(G) would continue to be
all functions. These are “correct” in the following sense: the construction of Section 1.4 requires
that the sum

∑
g∈G ag · δg be a finite sum, since we don’t know how to act by an infinite sum.

However, Lemma 1.8 goes through even in the case when G is infinite. (The following can especially
be ignored for us: if G were not a discrete group but, say, a Lie group or a p-adic group, then it
would be even smarter to define C[G] as measures on G).

2. Maschke’s theorem

2.1. In this section, it’s only important that C have characteristic 0.

2.2. For a G-representation V , we denote by V G the subspace of G-invariant vectors, i.e.:

V G := {v ∈ V | g · v = v for all g ∈ G}.

Of course, a G-equivariant map T : V −→ W induces a map on invariants: V G −→ WG.
Our goal for this section is to prove the following result and discuss some corollaries:

Theorem 2.1. Let T : V −→ W be a G-equivariant surjection. Then the induced map on invariants
V G −→ WG is surjective.

Remark 2.2. This property is particular to both finite groups and to characteristic 0 fields (actually,
the careful reader will observe that the proof goes through if we merely assume that the charac-
teristic of the ground field does not divide the order of the group). Here are two counterexamples,
which may safely be skipped by the reader.

(1) Let G = Z. Then a Z-representation is the same thing as a vector space V equipped with
an automorphism φ. A Z-equivariant map between two vector spaces (Vi, φi) equipped
with automorphisms is the same thing as a linear transformation intertwining the automor-
phisms, i.e., T : V1 −→ V2 such that T ◦φ1 = φ2 ◦ T . Let V1 = C2 and let φ1 be defined by
the matrix: (

1 1
0 1

)
Let V2 be the trivial, one-dimensional representation of Z on C. There is a Z-equivariant

map V1 −→ V2 sending

(
λ1

λ2

)
to λ2. However, V Z

1 = C ·
(
1
0

)
, so the induced map on

invariants is 0.
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(2) For a prime number p, let G = Z/pZ and let K be a field of characteristic p. In this case,
the above construction of a 2-dimensional representation of Z works verbatim. However, in
this case the representation of Z on K⊕2 factors through Z/pZ since:(

1 1
0 1

)p

=

(
1 p
0 1

)
=

(
1 0
0 1

)
Therefore, the same map V1 = K⊕2 −→ V2 = K defines a G-equivariant map which is not
surjective on invariants for the same reason: however, now the group is finite.

2.3. Here is a general construction. Let T : V −→ W be a G-equivariant map and let x =∑
g∈G ag · δg ∈ C[G]. Then we have operators on each of V and W defined by x, and T intertwines

these operators.

Remark 2.3. This is really the point of introducing the group algebra. Namely, we define a repre-
sentation as a vector space V which has some particular symmetries (labelled by elements of the
group G) which satisfy some relations. However, the group algebra keeps track of the additional
symmetries that the representation carries by mere virtue of being a representation. This is a part
of a general philosophy in representation theory: where possible, it’s best to relate representations
to modules over an associative algebra since (in a precise sense) the algebra encodes the complete
set of symmetries carried by the representations.

2.4. For a finite set X, let |X| denote the order of X.

2.5. Define AvG ∈ C[G] as 1
|G|

∑
g∈G δg. Note that the definition of AvG could not be given if G

were infinite or the characteristic of the ground field divided the order of the group!

Proposition 2.4. AvG satisfies the following properties:

(1) For any g ∈ G, δg ·AvG = AvG and AvG ·δg = AvG.
(2) AvG is an idempotent in C[G], i.e., AvG ·AvG = AvG.
(3) For V a G-representation and v ∈ V , AvG ·v ∈ V G.
(4) For V a G-representation and v ∈ V G, AvG ·v = v.

Proof. Let us begin with (1). For any g ∈ G, we have:

g ·AvG =
1

|G|
∑
g′∈G

(δg · δg′) =
1

|G|
∑
g′∈G

δgg′ =
1

|G|
∑
g′∈G

δg′ = AvG .

Similarly, we see that AvG ·δg = AvG. The first of these identities immediately implies (3).
Next, let us show (4). We compute:

AvG ·v =
1

|G|
∑
g∈G

(δg · v) =
1

|G|
∑
g∈G

v = v.

Finally, let us deduce (2). Indeed, AvG ∈ C[G]G is the subspace of invariants with respect to the
left (or right) G-action on C[G] by (1). Therefore, by (4) we have AvG ·AvG = AvG as desired.

□

Remark 2.5. Let AvnaiveG be
∑

g∈G δg(= |G| · AvG). Note that the definition of AvnaiveG does

not require division by |G| and therefore can be defined over a field of any characteristic. Then
conclusions (1) and (3) continue to hold for AvnaiveG , but (2) and (4) do not.
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2.6. Now we can prove the theorem.

Proof of Theorem 2.1. Let T : V ↠ W be as in the statement of the proposition and let w ∈ WG.
We need to find v ∈ V G such that T (v) = w.

Because T is surjective, there exists v0 ∈ V such that T (v0) = w. Since T is G-equivariant, we
have T ◦AvG = AvG ◦T . Therefore, we have:

T (AvG ·v0) = AvG ·T (v0) = AvG ·w = w.

Here the last equality follows from Proposition 2.4. Applying the proposition again, we see that
v := AvG ·v0 ∈ V G. This completes the proof.

□

Remark 2.6. Here’s another way to understand this proof. Note that for a representation V , the
subspace V G ⊂ V = Hom(C, V ) of invariants coincides with HomG(C, V ). Therefore, we want to
show that C is projective as a C[G]-module. It suffices to show that it is a direct summand of C[G].
We have the canonical map C −→ C[G] sending 1 to δe, and we have the G-equivariant splitting
C[G] −→ C defined by: ∑

g∈G
ag · δg 7→ 1

|G|
∑
g∈G

ag ∈ C.

2.7. Before proceeding, we will need to give some ways of constructing new representations starting
from old ones. Namely, given two G-representations V and W , we will explain how to make each
of V ⊗W and Hom(V,W ) into a G-representation in a convenient way. This digression will occupy
Sections 2.8-2.10.

2.8. Suppose first that V and W are representations of groups G and H respectively. Then V ⊗W
inherits a natural structure of G×H-representation.

Indeed, the construction goes as follows: for (g, h) ∈ G × H and
∑n

i=1 vi ⊗ wi ∈ V ⊗ W , we
define:

(g, h) ·
n∑

i=1

vi ⊗ wi =

n∑
i=1

(g · vi)⊗ (h · wi).

One immediately checks that this is well-defined and defines the desired structure of G × H-
representation.

Remark 2.7. In terms of group algebras, this construction can be phrased as follows. SupposeM and
N are modules for C-algebras A and B respectively. ThenM⊗N has a canonical structure of A⊗B-

module. Applying this to group algebras and noting the canonical isomorphism C[G] ⊗ C[H]
≃−→

C[G×H] (defined by δg ⊗ δh 7→ δ(g,h)) gives the above construction.

2.9. Now suppose that V and W are representations of the same group G. We claim that the
construction from Section 2.8 defines a canonical structure of representation on V ⊗W .

Indeed, we have the canonical “diagonal” homomorphism ∆ : G −→ G×G given by g 7→ (g, g).
Since V ⊗W has the structure of G×G-representation, we can restrict this structure along ∆ to
give a G-module structure.

In terms of formulae, this action is defined by:

g ·
n∑

i=1

vi ⊗ wi =

n∑
i=1

(g · vi)⊗ (g · wi).
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2.10. Now let us define the structure of G-representation on Hom(V,W ).

Proposition-Construction 2.8. There is a unique structure of G-representation on Hom(V,W )
such that the “evaluation” map:

ev : Hom(V,W )⊗ V −→ W

(sending T ⊗ v to T (v)) is G-equivariant with respect to the induced G-module structure on the
tensor product defined above.

With respect to this G-module structure, the invariants Hom(V,W )G coincide with the subspace
of G-equivariant maps HomG(V,W ).

Remark 2.9. For T ∈ Hom(V,W ), we will denote by gT the element of Hom(V,W ) given by acting
on T by g under the G-module structure on Hom(V,W ) from the construction. The reason for
this notation is to avoid ambiguity: if we used g · T then g · T (v) could reasonably mean g · (T (v))
or (g · T )(v) (the latter being what we are denoting gT (v)), and these two vectors are in general
different.

Proof. For T ∈ Hom(V,W ) and v ∈ V , the fact G-equivariance of ev implies that:

gT (g · v) = ev(g · (T ⊗ v)) = g · ev(T ⊗ v) = g · T (v).

Replacing v by g−1v, we see that gT (v) = g · T (g−1v), so gT = ρW (g) ◦ TρV (g−1). It’s immediate
to see that this is actually a G-module structure.

With respect to this structure of representation, a map T ∈ Hom(V,W ) lies in the invariants
Hom(V,W )G if and only if it lies in the subspace of G-equivariant maps HomG(V,W ). Indeed, we
have gT = T for all g ∈ G if and only if for all v ∈ V we have g · T (g−1 · v) = T (v). Replacing v
by g · v (since this is supposed to hold for all v ∈ V ), this equation becomes g · T (v) = T (g · v) as
desired.

□

Remark 2.10. For example, if V is the trivial representation, then Hom(V,W ) = Hom(C,W ) is just
W as a vector space, and we deduce from the uniqueness that this identifies them as representations
as well.

Remark 2.11. Let us note a similar compatibility. Recall that Lemma 1.8 said that in the case

W = Fun(G) the (left) regular representation, we have HomG(V,Fun(G))
≃−→ V ∗ (where the

map to V ∗ is given by evaluation at 1 ∈ G). Actually, this isomorphism defines the structure
of G-representation on V ∗ using the right action of G on Fun(G). We also have the structure
of G-representation on V ∗ by realizing V ∗ as Hom(V,C) (where C is given the trivial G-module
structure).

Again, by the uniqueness statement we deduce that these two structures of G-representation on
V ∗ are the same. Explicitly, for λ ∈ V ∗ and g ∈ G we have:

(g · λ)(v) = λ(g−1 · v)

with respect to this structure.

2.11. With this construction in hand, we can prove the following result:

Corollary 2.12. Given a G-equivariant surjection T : V −→ W of G-representations, there exists
a G-equivariant splitting, i.e. a map S : W −→ V such that T ◦ S = IdW .

Proof. Consider the induced map:

Hom(W,V ) −→ Hom(W,W )
7



which sends a linear transformation S : W −→ V to the composition T ◦ S. One immediately
sees that the G-equivariance of T implies that this is a G-equivariant map with respect to the G-
module structures defined on Hom(W,V ) and Hom(W,W ) defined in Proposition-Construction 2.8.
Moreover, it is obviously surjective. E.g., since T is surjective, there is (possibly not G-equivariant)
linear transformation σ : W −→ V such that T ◦σ = Id which immediately implies the surjectivity
(since any φ ∈ Hom(W,W ) is T ◦ (σ ◦ φ)).

Note that IdW is a G-equivariant map and therefore lies in the invariants of Hom(W,W ). There-
fore, by Theorem 2.1 there exists S ∈ HomG(W,V ) such that S maps to IdW under this map, i.e.,
T ◦ S = IdW as desired.

□

Remark 2.13. Here’s a more explicit way of combining the proofs of Corollary 2.12 and Theorem
2.1 to obtain a proof of Corollary 2.12. Let σ : W −→ V be as in the proof of Corollary 2.12,
namely, a (possibly not G-equivariant) splitting of T and define S to be

AvGσ =
1

|G|
∑
g∈G

ρV (g) ◦ σ ◦ ρV (g−1).

2.12. The following definition will be fundamental to our future studies:

Definition 2.14. A non-zero G-representation V is irreducible if the only subspaces V which are
preserved by the G-action are 0 and V . A representation V is said to be reducible if it is not
irreducible.

Examples 2.15. (1) Any 1-dimensional representation is irreducible.
(2) A representation V is irreducible if and only if its dual V ∗ is, since if W ⊂ V is stable under

the G-action, then W⊥ := {λ ∈ V ∗ | λ(w) = 0 for all w ∈ W} ⊂ V ∗ is also stable under
the G-action.

Remark 2.16. Here is a more computationally-minded perspective on an irreducible representation:
a representation is irreducible if and only if for every non-zero vector 0 ̸= v ∈ V , the vectors
{g · v}g∈G span V . Indeed, if the span of these vectors is visibly a G-submodule W of V , so if V is
irreducible, 0 ̸= v ∈ W implies W = V by irreducibility. Conversely, if we have 0 ⊂

̸=
W ⊂

̸=
V then

for v any non-zero vector in W we see that the span of {g · v}g∈G is contained in W , and therefore
if V is not irreducible then there exists a vector 0 ̸= v such that {g · v}g∈G does not span V .

It’s very important here that one check this conidition for every non-zero v. It’s easy to find
counter-examples where there exists some non-zero v such that {g · v}g∈G spans V but such that
V is not itself irreducible.

2.13. Corollary 2.12 then admits the following immediate corollary due to Maschke:

Corollary 2.17 (Maschke’s theorem). Any finite-dimensional G-representation V admits a direct

sum decomposition V
≃−→ ⊕n

i=1Vi where each Vi is irreducible.

Proof. We prove this by induction on dim(V ). For dim(V ) = 0, this is clear: take the empty direct
sum. Otherwise, there are two possibilities: either V is irreducible, in which case we are done, or
else it is not irreducible, in which case there exists:

0 ⊂
̸=
W ⊂

̸=
V

where W is a subrepresentation. Since W is a subrepresentation, the quotient V/W admits
(uniquely) the structure of G-representation such that T : V −→ V/W is G-equivariant. By
Corollary 2.12, there exists a splitting S : V/W −→ T of T . This expresses V as the direct sum of
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W and V/W as a G-representation, and since dimW < dimV and dimV/W < dimV , we deduce
the desired result by induction.

□
Remarks 2.18. (1) A similar proof goes through for infinite-dimensional representations (if one

allows infinite direct sums), but requires Zorn’s lemma. E.g., when G is the trivial group,
this theorem already says that every vector space admits a basis.

(2) Irreducible representations of a group are of fundamental importance in the study of repre-
sentation theory. Indeed, by Maschke’s theorem, all other representations are built out of
them via direct sums. However, for a given finite group G, it is non-trivial to compute all
of its irreducible representations. We will develop some general tools over the next several
sections to help.

3. Schur’s lemma

3.1. The following result exemplifies the rigidity of irreducible representations.

Proposition 3.1. Let V be an irreducible representation of G and let W be any representation of
G.

(1) Any G-equivariant map T : V −→ W is either the zero map or else injective.
(2) Any G-equivariant map T : W −→ V is either the zero map or else surjective.
(3) If W is also irreducible, then any G-equivariant map T : V −→ W is either 0 or else an

isomorphism.

Proof. For any G-equivariant map T : V −→ W one immediately sees that the kernel is a subrep-
resentation of V . Therefore, it is either 0 or V . If the kernel is 0, then T is injective, and if the
kernel is V then T is 0.

Similarly, for any G-equivariant map T : W −→ V , one immediately sees that the image is a
subrepresentation of V and therefore either 0 or V . If the image is 0, then T = 0, and if the image
is V then T is surjective.

We observe that (3) follows immediately from (1) and (2).
□

In particular, we deduce the following numerological result, which will be vastly improved upon
later:

Corollary 3.2. For V any irreducible representation of G, dim(V ) ≤ |G|.

Proof. Recall that Lemma 1.8 says that HomG(V,Fun(G))
≃−→ V ∗. Therefore, choosing an non-

zero λ ∈ V ∗ defines a non-zero G-equivariant map V −→ Fun(G). This map, being non-zero, is
injective by Proposition 3.1. Therefore, we deduce that:

dim(V ) ≤ dim(Fun(G)) = |G|.
□

Remark 3.3. Here is another proof of the corollary. If V is irreducible, then by Remark 2.16, for any
non-zero v the set {g · v}g∈G spans V . However, the perspective used in the proof of the corollary
will give stronger results later (see e.g. Corollary 3.8) so we emphasize this technique now.

3.2. From now on, we will really use that C is algebraically closed of characteristic 0 (okay, fine:
Schur’s lemma only needs algebraically closed, but we’ll combine it with Maschke’s theorem soon
enough).

Lemma 3.4 (Schur’s lemma). For V an irreducible representation of G, EndG(V ) is 1-dimensional
with generator the identity.
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Proof. Suppose that T ∈ EndG(V ) is G-equivariant endomorphism of V . We need to show that T
is a scalar multiple of the identity.

Since V is finite-dimensional (by Corollary 3.2) and since C is algebraically closed, T has an
eigenvalue λ. Recall that λ being an eigenvalue means that T − λ · IdV has non-zero kernel. But
by Proposition 3.1, this means that the G-equivariant map:

T − λ · IdV : V −→ V

must be zero, i.e., T = λ · IdV as desired.
□

3.3. Let Irrep(G) denote the set of isomorphism classes of irreducible G-representations. We will
sometimes say V ∈ Irrep(G) to mean that V is an irreducible representation, i.e., a representative
of an isomorphism class. Note that such a choice is non-canonical (by Schur’s lemma, if V and W
are isomorphic and irreducible then the set IsomG(V,W ) is a simply-transitive C×-set under the
action of C× by homotheties).

Here is a nice way of combining the content of Schur’s lemma and Maschke’s theorem into one
result:

Proposition 3.5. For any finite-dimensional representation V , the canonical map:

⊕Vi∈Irrep(G)HomG(Vi, V )⊗ Vi −→ V

is an isomorphism of G-representations.

Remarks 3.6. (1) The statement of the proposition implicitly chooses representatives for each
isomorphism class of irreducible representation.

(2) Of course, statement goes through verbatim when V is infinite-dimensional if one allows
the infinite-dimensional form of Maschke’s theorem.

Proof. Both the left and right hand sides of the map:

⊕Vi∈Irrep(G)HomG(Vi, V )⊗ Vi −→ V

commute with direct sums in the V -variable. Therefore, since Maschke’s theorem tells us that V
is a direct sum of irreducible representations, it suffices to check the statement of the proposition
when V is irreducible. By Proposition 3.1 (3), for Vi ∈ Irrep(G) we have Hom(Vi, V ) = 0 unless

Vi
≃−→ V . Therefore, the left hand side is just HomG(V, V )⊗ V . Therefore, by Schur’s lemma our

map is just (C · IdV )⊗ V −→ V , which is clearly an isomorphism.
□

Exercise 3.7. Conversely, deduce Maschke’s theorem and Schur’s lemma from Proposition 3.5.

3.4. As a corollary, we give the following (somewhat striking) improvement of the numerology
from Corollary 3.2.

Corollary 3.8. We have the equality: ∑
Vi∈Irrep(G)

dim(Vi)
2 = |G|.

Proof. Applying Proposition 3.5 to V = Fun(G) the (left) regular representation and applying
Lemma 1.8, we deduce:

⊕Vi∈Irrep(G)HomG(Vi,Fun(G))⊗ Vi
≃−→ ⊕Vi∈Irrep(G)V

∗
i ⊗ Vi

≃−→ Fun(G).

Taking the dimensions of the middle and right terms, we immediately deduce the result.
□
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Remark 3.9. In particular, there are at most |G| many irreducible representations of G. In the
next section, we’ll give a precise calculation of the number of irreducible representations (in terms
of the pure group theory of the group G).

3.5. Here is another result in the spirit of Corollary 3.8.

Corollary 3.10. For any finite-dimensional representation V of G, we have the equality:

dim(EndG(V )) =
∑

Vi∈Irrep(G)

dim(HomG(Vi, V ))2

In particular, V is irreducible if and only if dim(EndG(V )) = 1.

Proof. Applying HomG(−, V ) to the isomorphism from Proposition 3.5, we deduce an isomorphism:

HomG(⊕Vi∈Irrep(G)HomG(Vi, V )⊗ Vi, V )
≃−→ EndG(V )

The left hand side is isomorphic to the space:

⊕Vi∈Irrep(G)HomG(HomG(Vi, V )⊗ Vi, V )
≃−→ ⊕Vi∈Irrep(G) End(HomG(Vi, V ))

But this dimension of this term is given by dim(HomG(Vi, V ))2.
□

3.6. Here is another corollary of Schur’s lemma:

Corollary 3.11. Let A be a finite abelian group and let V be an irreducible representation of A.
Then dim(V ) = 1.

Proof. Observe ρV maps A to AutA(V ). Indeed, this immediate from the commutativity of A.
But since V is irreducible, we have seen that AutA(V ) consists of invertible scalar multiples of the
identity operator of V . Since such scalars preserve every subspace of V , we deduce the result. □

Example 3.12. Now we will give a counterexample to Schur’s lemma when the field is not alge-
braically closed. Suppose G = Z/3Z. We define a 2-dimensional representation V which sends the
generator of Z/3Z to the matrix: (

0 −1
1 −1

)
It’s easy to see that this does not stabilize any Q-lines because its eigenvalues are the non-trivial
third roots of unity, and in particular they are not defined over Q.

Note that in this case the argument used to prove Schur’s lemma shows that EndG(V ) is a
(non-commutative) division algebra over Q.

4. The center of the group algebra

4.1. Schur’s lemma tells us that every time we have an irreducible representation V and a G-
equivariant endomorphism of it, this endomorphism must be a scalar multiple of the identity. Our
goal for this section is to give a large supply of G-equivariant endomorphisms of representations.
The natural approach to this is through the center of the group algebra C[G].

4.2. Recall that if A is an algebra, then the center Z(A) of A is the subalgebra consisting of
elements z ∈ A such that za = az for every a ∈ A. E.g., if A is commutative, then Z(A) = A.

The action of Z(A) on a left A-module commutes with the action of A, i.e., there is an action
of Z(A) on every A-module by A-module endomorphisms. Note that this is not true for elements
which are not in the center! By considering the case when the module is A itself, one sees that the
center is the best thing which acts on every A-module by A-module endomorphisms.
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4.3. We denote by Z(G) the center of the group algebra C[G]. Suppose that V is any representation
of G. Then since any element of C[G] acts on V , in particular the element z defines a G-equivariant
endomorphism of V (note that this is not true for elements which are not in the center!). Thus, as
indicated above, we see that the center of the group algebra gives a convenient way of producing
G-equivariant endomorphisms of representations.

4.4. We will construct a canonical basis of Z(G) labelled by conjugacy classes of G. First, let us
recall the basic definitions about conjugacy classes and establish some notation.

Recall that G acts on itself in three natural ways: by left translation, right translation, and by

the adjoint action (alias: conjugation), i.e., g
ad· x := g−1xg. Recall that a conjugacy class in G

is an orbit for the conjugation action. We will denote the set of conjugacy classes by G
ad

/G. For

g ∈ G, we let [g] ∈ G
ad

/G denote the conjugacy class containing g.

4.5. Now let us construct the basis. Let C ∈ G
ad

/G be a conjugacy class. We define:

bC =
1

|C|
∑

{g∈G|[g]=C}

δg ∈ Z(G).

Remark 4.1. The scalar 1
|C| is not important for defining a basis, but rather is used to adhere to

standard normalizations. We will also see it appear naturally in the proof of Proposition 4.3.

Proposition 4.2. The set:

{bC}
C∈G

ad

/ G

is a basis of Z(G). In particular, dim(Z(G)) = |G
ad

/G|, the number of conjugacy classes of G.

This proposition will be proved in Section 4.7.

4.6. We will deduce Proposition 4.2 from the following more general proposition:

Proposition 4.3. Let X be a finite set equipped with a G-action and let Fun(X) be the associated
permutation representation. For each orbit O ⊂ X, let bO ∈ Fun(X) be the function which take
the value 1

|O| on O and is 0 otherwise. Then the set {bO}O an orbit forms a basis for the invariants

Fun(X)G.

Proof. The set {δx}x∈X is a basis for Fun(X) (here δx takes the value 1 at x and 0 away from x).
Therefore, by Proposition 2.4, the elements AvG ·δx span Fun(X)G. An immediate computation
shows that AvG ·δx = bO where O is the orbit containing x. Therefore, the elements bO span the
invariants, and it’s immediate to see that they are linearly independent as well.

□

4.7. Now let us give the proof of Proposition 4.2.

Proof of Proposition 4.2. Consider the action of G on the set G given by conjugation. By Propo-

sition 4.3, it suffices to show that under the natural identification C[G]
≃−→ Fun(G) the center of

the algebra identifies with the invariants of the conjugation action.
This space of invariants consists of elements x ∈ C[G] such that δg−1 · x · δg = x for all g ∈ G,

i.e., elements x such that x · δg = δg · x. Since the δg form a basis of C[G], this is exactly the center
of the algebra.

□
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4.8. For a commutative algebra A finite-dimensional over C, define the spectrum Spec(A) of A to
be the set of all C-linear ring homomorphisms χ : A −→ C.

Examples 4.4. (1) If A = C, then Spec(A) is just the singleton set consisting of the identity.
(Indeed, any ring homomorphism preserves units, so C-linearity ensures that any such
homomorphism is the identity).

(2) More generally, if X is a finite set then Spec(Fun(X)) is canonically identified with the
set X, where the map X −→ Spec(Fun(X)) assigns to a point x ∈ X the homomorphism
evx : Fun(X) −→ C sending f to f(x).

(3) For anyA finite-dimensional over C, there is a canonical homomorphismA −→ Fun(Spec(A))
which sends an element a ∈ A to the function eva : Spec(A) −→ C sending χ : A −→ C to
χ(a). When A = Fun(X) for a finite set X, then this map is an isomorphism. For more
general A, this is not the case: e.g., if A = C[x]/xn, then Spec(A) is a singleton set, while
dim(Fun(A)) = n. (However, one can show that as long as there are no non-zero nilpotents
in A, then this map is an isomorphism, but we won’t need this result.)

4.9. There is a canonical map:

F : Irrep(G) −→ Spec(Z(G))

defined as follows.
Let V be a representation ofG. The structure of representation defines an algebra homomorphism

C[G] −→ End(V ). Since Z(G) acts on V by G-equivariant endomorphisms, we have a diagram of
ring homomorphisms:

Z(G)
F(V ) //

� _

��

EndG(V )� _

��
C[G] // End(V ).

If V ∈ Irrep(G), then by Schur’s lemma EndG(V ) = C ·IdV , i.e., EndG(V ) is canonically isomorphic
to C as an algebra. Therefore, the map F(V ) : Z(G) −→ EndG(V ) = C is an element of Spec(Z(G)).

Our map F then sends V to F(V ).

Remark 4.5. The letter F stands for “Fourier.” The reason is that this map is a generalization of the
(finite) Fourier transform. Indeed, when A is a finite abelian group, we have Z(A) = C[A] = Fun(A)

(but the algebra structure is the convolution algebra structure) and Irrep(A) = Â the Pontryagin

dual group. Then the induced map on functions F∗ : Fun(A) −→ Fun(Â) (see below) is given by
the Fourier transform.

4.10. We have a map F∗ : Z(G) −→ Fun(Irrep(G)) coming from F. Indeed, by Example 4.4 we
have canonical maps:

Z(G) −→ Fun(Spec(Z(G)) −→ Fun(Irrep(G))

The following result is our present concern:

Theorem 4.6. The induced homomorphism:

F∗ : Z(G) −→ Fun(Irrep(G))

is an isomorphism. In particular, by Example 4.4, the map F : Irrep(G) −→ Spec(Z(G)) is a
bijection.

Exercise 4.7. As in Proposition 2.4, AvG ∈ Z(G). Show that the corresponding function F∗(AvG)
takes the value 1 on the trivial representation and 0 on every non-trivial irreducible representation.
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Corollary 4.8. | Irrep(G)| = |G
ad

/G|.

Proof of Corollary 4.8 assuming Theorem 4.6. We compute the dimension of both sides of the iso-

morphism from Theorem 4.6. By Proposition 4.2, the dimension of Z(G) is |G
ad

/G|, while obviously
the dimension of Fun(Irrep(G)) is | Irrep(G)|.

□
This gives the following strengthening of Corollary 3.11.

Corollary 4.9. A group G is abelian if and only if every irreducible representation of G is of
dimension 1.

Proof. Indeed, since
∑

V ∈Irrep(G) dim(V )2 = |G| by Corollary 3.8, Corollary 4.8 implies that |G
ad

/G| =
|G|, so every conjugacy class C has order 1. But this means every element of the group is central,
i.e., G is abelian.

□

4.11. We will deduce Theorem 4.6 from the following:

Proposition 4.10. The canonical map C[G] −→
∏

V ∈Irrep(G) End(V ) is an isomorphism of alge-

bras.

Proof. This map is clearly an algebra homomorphism. Moreover, by Corollary 3.8, the dimension
of both sides is (finite and) equal. Therefore, to see that this map is an isomorphism it suffices to
show that it is injective.

Suppose x ∈ C[G] is in the kernel of the homomorphism. This means that x acts by 0 on
each irreducible representation of G. By Maschke’s theorem, this implies that x acts trivially on
every finite-dimensional representation of G. In particular, x acts trivially by 0 on the left regular
representation of G, i.e., for every y ∈ C[G] we have xy = 0. But this clearly implies that x = 0:
indeed, for y = 1 we deduce that x = x · 1 = 0.

□
We now immediately deduce Theorem 4.6 from Proposition 4.10 by computing the center of∏
V ∈Irrep(G) End(V ) using the following elementary lemma from linear algebra:

Lemma 4.11. For a finite-dimensional vector space V , the center of the algebra End(V ) consists
of scalar matrices.

Remark 4.12. There are various easy (and elementary) ways of proving this lemma. One approach
consistent with our methods is to note that V is irreducible as an End(V )-module (in the sense
that it has no proper submodules, which is true because every non-zero vector obviously generates
this module under the action of End(V )) and then use the same argument we used to prove Schur’s
lemma.

5. The character table

5.1. An obvious problem in the representation theory of finite groups is to “compute” all repre-
sentations of a given finite group G. I.e., one would want to write down models for each of the
isomorphism classes of G-representation. By Maschke’s theorem, it essentially suffices to compute
all irreducible representations.

However, this problem is generally difficult, and more difficult than is necessary for the appli-
cations of the theory. For many applications, it is enough to compute the “character table” of G,
which will be defined below. This turns out to be more computable in practice in part because
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the product is of a simpler nature: it is not a sequence of vector spaces with some particular
automorphisms, but merely a matrix (with as many rows and columns as G has conjugacy classes).

5.2. First, let us establish some notation.
For V a finite-dimensional representation of G, we have the function δV ∈ Fun(Irrep(G)) defined

by:
Vi 7→ dim(HomG(Vi, V )).

Recall that we have defined an isomorphism F∗ : Z(G)
≃−→ Fun(Irrep(G)). For V as above, let

χV ∈ Z(G) denote (F∗)−1( 1
dim(V ) · δV ), i.e., the element of Z(G) corresponding to 1

dim(V ) · δV under

the isomorphism F∗.

Remark 5.1. The scalar 1
dim(V ) appears so that we adhere to standard normalizations. It is conve-

nient for Proposition 5.4.

5.3. Recall from the previous section that we have two bases for Z(G). The first was the ba-

sis {bC}
C∈G

ad

/ G
where bC = 1

|C|
∑

g∈C δg. The second came from the isomorphism Z(G)
≃−→

Fun(Irrep(G)) and the basis {dim(Vi) · F(Vi)}Vi∈Irrep(G) of Fun(Irrep(G)).

Definition 5.2. The character table of G is the change of basis matrix for these two bases.

I.e., the character table is a matrix with rows labelled by conjugacy classes of G and columns
labelled by irreducible representations of G. The entry of the matrix corresponding to (C, V ) ∈

G
ad

/G× Irrep(G) is the χV -coordinate of bC ∈ Z(G).

Remark 5.3. Let V be an irreducible representation. The element χV ∈ Z(G) defines a function

G −→ C as follows. For g ∈ G, recall that [g] ∈ G
ad

/G is associated conjugacy class. The value
of our function at g ∈ G is the b[g]-coordinate of χV . By abuse of notation, we will denote the
associated function G −→ C by χV .

5.4. Here is a more explicit way to describe an entry of the character table.

Proposition 5.4. Let γ ∈ G and let (V, ρV ) be an irreducible representation of G. Then χV (g) is
the trace Tr(ρV (γ)) of ρV (γ).

Remark 5.5. In particular, ρV (1) = dim(V ).

Proof. This is a matter of chasing the constructions we’ve given so far.
We have:

F∗(bC) =
∑

V ∈Irrep(G)

F(V )(bC) · δV =
∑

V ∈Irrep(G)

dim(V ) · F(V )(bC) ·
1

dim(V )
· δV

where F : Irrep(G)
≃−→ Spec(Z(G)) is as in the previous section, and by F(V )(bC) we understand

the homomorphism F(V ) : Z(G) −→ C evaluated at bC .
Therefore, we need to compute dim(V )·F(V )(bC). By definition of F, this is computed as follows:

by Schur’s lemma, Z(G) acts by scalars on V , and F(V )(bC) is the scalar by which bC ∈ Z(G) acts.
The trace of the operator ρV (bC) is therefore dim(V ) · F(V )(bC). For each g such that g ∈ C,

the endomorphisms ρV (g) are conjugate (indeed, ρV (x
−1gx) = ρV (x)

−1ρV (g)ρV (x)). Therefore,
the traces of these endomorphisms are constant. Thus, we have:

Tr(ρV (bC)) =
1

|C|
∑
g∈C

Tr(ρV (g)) =
1

|C|
∑
g∈C

Tr(ρV (γ)) = Tr(ρV (γ))

as desired.
□
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Remark 5.6. Proposition 5.4 gives a definition of the function χV : G −→ C (factoring through

G
ad

/G) of any finite-dimensional representation of G.
A sour piece of terminology is that the function χV : G −→ C is called the character of the rep-

resentation V . Therefore, the phrase “characters of G” may refer either to characters of represen-
tations (or even just characters of irreducible representations) or to homomorphisms χ : G −→ C×.
Note that the character G −→ C of such a homomorphism χ : G −→ C× (regarded as a 1-
dimensional representation) is just the composition G −→ C× ↪→ C. Therefore, we will sometimes
call homomorphisms G −→ C× “1-dimensional characters.”

5.5. Let us give a computation of the character table in the easiest case. Let G = Z/nZ for
n ∈ Z>0. Let σ denote the generator of Z/nZ.

By Corollary 3.11, all irreducible representations of Z/nZ are 1-dimensional. It’s easy to compute
these: they are characters χ : Z/nZ −→ C×, which are in clear bijection with µn the set of nth
roots of unity by considering where the generator of Z/nZ goes. Therefore, the columns of our
matrix are labelled by µn.

Let ζ denote a primitive nth root of unity, so µn = {1 = ζ0, ζ, ζ2, . . . , ζn−1}. The character table
is then given by the following matrix:

Z/nZ

µn=Irrep(Z/nZ)︷ ︸︸ ︷



1 ζ ζ2 . . . ζn−1

1 1 1 1 . . . 1
σ 1 ζ ζ2 . . . ζn−1

σ2 1 ζ2 ζ4 . . . ζ2·(n−1)

...
...

...
...

. . .
...

σn−1 1 ζn−1 ζ2·(n−1) . . . ζ(n−1)·(n−1)

 .

Exercise 5.7. Compute the character table of Z/2Z× Z/2Z.

5.6. The following describes the compatibility of characters with direct sums and tensor products:

Proposition 5.8. Let V and W be two finite-dimensional representations of G. Then we have:

χV⊕W = χV + χW

and:

χV⊗W = χV · χW

(i.e., for g ∈ G, χV⊕W = χV (g) + χW (g) and χV⊗W (g) = χV (g) · χW (g)).

Proof. This follows from general facts about linear operators: given two finite dimensional vector
spaces V and W with endomorphisms T ∈ End(V ) and S ∈ End(W ), the trace Tr(T ⊕ S) (resp.
Tr(T ⊗ S)) of the operator T ⊕ S ∈ End(V ⊕ W ) (resp. T ⊗ S ∈ End(V ⊗ W )) is the sum
Tr(V ) + Tr(W ) (resp. product Tr(T ) · Tr(S)). Applying this to the definition of the structure of
representation on V ⊕W and V ⊗W and using Proposition 5.4, we deduce the result.

□

5.7. Now we compute the character of a permutation representation.

Proposition 5.9. Suppose G acts on a finite set X. Then for g ∈ G, we have:

χFun(X)(g) = |{x ∈ X | g · x = x}|.
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Proof. This is a direct computation: we have the basis {δx}x∈X of Fun(X) (here δx(x
′) = 0 if

x ̸= x′ and δx(x) = 1). Then g · δx = δg·x, i.e., it permutes the basis vectors. Considering the
corresponding matrix immediately gives the result.

□

Corollary 5.10. Suppose G acts on a finite set X. Then the average number of points fixed by an
element of G is dim(Fun(X)G).

Proof. The operator ρFun(X)(AvG) is a projection onto Fun(X)G. As with any projection operator,
its trace is equal to the dimension of its image. But by Proposition 5.9, we have:

χFun(X)(AvG) =
1

|G|
∑
g∈G

|{x ∈ X | g · x = x}|

where the right hand side is exactly the average number of fixed points. □

Exercise 5.11. Combining this corollary with Proposition 4.3, we see that the average number of
fixed points in X of an element of G is exactly the number of orbits of the action of G on X. Give
a proof of this without representation theory.

5.8. Now let us proceed to discuss the numerology of the character table. These will be presented
as Propositions 5.12 and 5.14. (These two relations are usually called the “orthogonality relations
for characters”).

Proposition 5.12. Suppose V and W are irreducible representations of G. Let V ∗ be the dual
representation. If W ̸≃ V ∗, then there is an equality:

1

|G|
∑
g∈G

χV (g) · χW (g) = 0.

For W = V ∗, we have:
1

|G|
∑
g∈G

χV (g) · χV ∗(g) = 1.

Proof. Consider V ⊗W as a representation. By Proposition 2.4, AvG ∈ Z(G) defines a projection
operator ρV⊗W (AvG) onto the space of invariants (V ⊗ W )G. As for any projection operator,
Tr(ρV⊗W )(AvG)) is the dimension of its image. Since trace is additive, we therefore have:

dim(V ⊗W )G = Tr(ρV⊗W (AvG)) = Tr(
1

|G|
∑
g∈G

ρV⊗W ) =
1

|G|
∑
g∈G

χV⊗W (g)

By Proposition 5.8, we have χV⊗W (g) = χV (g)⊗ χW (g).
Therefore, all that needs to be proved is that for V and W irreducible, (V ⊗ W )G is zero-

dimensional if W ̸≃ V ∗ and one-dimensional if W ≃ V ∗. But since Hom(V ∗,W )
≃−→ V ⊗ W as

representations, we see that HomG(V
∗,W )

≃−→ (V ⊗W )G and the result now follows from Schur’s
lemma.

□

Corollary 5.13. Two finite-dimensional representations are isomorphic if and only if they have
the same character.

Proof. Suppose V is a finite-dimensional representation of G. By Maschke’s theorem, V
≃−→

⊕Vi∈Irrep(G)V
⊕di
i for some non-negative integers di. The set of integers di clearly determines the

isomorphism class of V .
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But by Proposition 5.12, the character of V alone determines the integers di since we have:

di =
1

|G|
∑
g∈G

χV (g) · χV ∗
i
(g).

□

5.9. Now we prove the second orthogonality relation.

Proposition 5.14. Let g, h ∈ G be two elements of the group. If [g] ̸= [h] ∈ G
ad

/G (i.e., if g and
h are not conjugate), then we have: ∑

V ∈Irrep(G)

χV (g) · χV ∗(h) = 0.

For [g] = [h] = C, we have: ∑
V ∈Irrep(G)

χV (g) · χV ∗(h) =
|G|
|C|

.

Remark 5.15. For g = h = 1, we have χV (1) = dim(V ). Therefore, the second result is a general-
ization of Corollary 3.8.

Proof. As in the proof of Corollary 3.8, we have:

Fun(G)
≃−→ ⊕V ∈Irrep(G)V

∗ ⊗ V

as G × G-representations (note that the right hand side is a G × G-representation by the initial
construction from Section 2.8). We compute the trace χFun(G)(h, g) of the action of (h, g) on this
space in two different ways.

By Proposition 5.9, χFun(G)((g, h)) equals the number of x ∈ G such that hxg−1(= (h, g) ·x) = x,

i.e., the number of x such that x−1hx = g. This is obviously 0 if g is not conjugate to h and is
equal to the order of |G| divided by the order of the conjugacy class otherwise (by orbit-stabilizer).

But by the isomorphism above, we have χFun(G)(h, g) =
∑

V ∈Irrep(G) χV ∗⊗V (h, g). However, by

Proposition 5.8 (or rather, its slight generalization which has the same proof), we have:

χV ∗⊗V (h, g) = χV ∗(h) · χV (g)

as desired.
□

5.10. Here is a corollary that follows trivially from the orthogonality relations.

Corollary 5.16. (1) For V a non-trivial irreducible representation of G, we have:∑
g∈G

χV (g) = 0

(2) For g ̸= 1 in G, we have: ∑
V ∈Irrep(G)

χV (g) · dim(V ) = 0

Indeed, the first relation follows from Proposition 5.12 with W being the trivial representation
and the second relation follows from Proposition 5.14 with h = 1.
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5.11. As an application, let us compute the character table of the symmetric group S3. First, let
us recall some generalities regarding symmetric groups.

Recall that for n ∈ Z>0, the symmetric group Sn is defined as Aut({1, 2, . . . , n}). We write
elements of Sn using their cycle decomposition.

Exercise 5.17. Two elements of Sn are conjugate if and only if the number of cycles each has of a
given length are the same. In particular, the conjugacy classes of Sn are labelled by the partitions
of the integer n.

Now recall that for n ≥ 2, Sn has exactly two 1-dimensional characters Sn −→ C×: the trivial
character and the “sign character” ε given as a composition:

Sn −→ Z/2Z = {±1} = µ2 ↪→ C×.

(E.g., ε can be defined by taking the determinant of the standard dimension n permutation repre-
sentation of Sn.)

5.12. Now let us compute the character table of S3.
By the above, S3 has exactly 3 conjugacy classes, labelled by the partitions 1 + 1 + 1, 2 + 1 and

3. Note that the partition 1 + 1 + 1 corresponds to the conjugacy class of 1, 1 + 2 corresponds to
the conjugacy class of (12) and 3 corresponds to the conjugacy class of (123).

We have found two irreducible representations already: the trivial representation and ε. We
know that there are three (since S3 has exactly three distinct conjugacy classes). We denote the
third, as yet mysterious, representation’s character by χ. Then, the character table looks as follows:

S3

ad

/S3

Irrep(S3)︷ ︸︸ ︷


triv ε χ

1 + 1 + 1 1 1 ?
2 + 1 1 −1 ?
3 1 1 ?

 .

However, it’s easy to compute the values of χ using the orthogonality relations. First, by Corol-
lary 3.8 we have:

χtriv(1)
2 + ε(1)2 + χ(1)2 = 1 + 1 + χ(1)2 = |S3| = 6.

Since χ(1) > 0 (being the dimension of the associated representation) we have χ(1) = 2.
Now applying Corollary 5.16, we see:

χtriv((12)) + ε((12)) + χ(1) · χ((12)) = 1− 1 + 2 · χ((12)) = 0

χtriv((123)) + ε((123)) + χ(1) · χ((123)) = 1 + 1 + 2 · χ((123)) = 0

Therefore, the character table completes to give:

S3

ad

/S3

Irrep(S3)︷ ︸︸ ︷


triv ε χ

1 + 1 + 1 1 1 2
2 + 1 1 −1 0
3 1 1 −1

 .

Exercise 5.18. Note that we used Corollary 5.16 (1) to compute the values of χ. Verify explicitly
that the character table above satisfies the relations from Corollary 5.16 (2).

Remark 5.19. In the next section, we will explain how to construct the irreducible two-dimensional
representation of S3 whose character χ we just computed.
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6. Some examples

6.1. Let G be a finite group and let X be a finite G-set (i.e., a finite set equipped with an action
of G). As in Example 1.7 (2), we have the associated permuation representation Fun(X) of G.

Define N2(X) to be the number of orbits of the diagonal action of G on X ×X (we note that,
despite the notation, N2(X) depends not only on X, but also on the action of G).

Proposition 6.1. We have the equality:∑
Vi∈Irrep(G)

dim(HomG(Vi,Fun(X))2 = N2(X).

We will prove this proposition in Section 6.3 after some preliminary remarks.

6.2. Here are some examples:

Examples 6.2. (1) Let X = G equipped with the action by left translation. Then it is direct to
see that N2(X) = |G|. Indeed, the orbits of the action of G on G×G are labeled by elements
of the group, where (g, h) ∈ G×G lies in the orbit for x ∈ G if and only if g−1h = x.

In this case, Proposition 6.1 gives the same result as Corollary 3.8.
(2) Let G = Sn the symmetric group with n ≥ 2. There is a tautological permutation represen-

tation of Sn on the set X = {1, . . . , n}. We claim that there are two orbits of Sn on X×X,
one which is the diagonal X ⊂ X × X and the other which is its complement. Indeed,
clearly the diagonal is an orbit since Sn acts transitively on X. To see that the complement
is, note that for x1 ̸= x2 and x′1 ̸= x′2 there is always an automorphism σ ∈ Sn of X taking
xi to x′i for i = 1, 2.1

Therefore, by Proposition 6.1, for n ≥ 2 the tautological permuatation representation
of Sn on C⊕n splits up into a direct sum of two irreducible representations. It’s easy
to find them: one of them is {v = (λ1, . . . , λn) | λi = λj for all i, j} and the other is
{v = (λ1, . . . , λn) |

∑
i λi = 0}. In particular, we have found an irreducible representation

of Sn of dimension n− 1.
The corresponding 2-dimensional representation of S3 is perhaps the simplest example

of an irreducible higher-dimensional representation of a finite group. Explicitly, this repre-
sentation is defined by permuting coordinates on {(x1, x2, x3) ∈ C⊕3 | x1 + x2 + x3 = 0}.

Exercise 6.3. Verify explicitly that the character S3 corresponding to the 2-dimensional irreducible
representation constructed above is given by the third column of the character table computed in
Section 5.12.

6.3. Now let’s give the proof of Proposition 6.1.

Proof of Proposition 6.1. By Corollary 3.10, the left hand side of the equality of the proposition is
given by dim(EndG(Fun(X))). Therefore, it suffices to show that dim(EndG(Fun(X))) = N2(X).

Note that Fun(X)∗
≃−→ Fun(X) as a representation. Indeed, there is a canonical such isomor-

phism of vector spaces (since Fun(X) has the preferred basis labelled by elements of the set X),
and one immediately checks that this is actually an isomorphism of representations.

Therefore, we have:

EndG(Fun(X)) = HomG(Fun(X),Fun(X)) = HomG(Fun(X)∗,Fun(X)) =

= Hom(C,Fun(X)⊗ Fun(X)) = (Fun(X)⊗ Fun(X))G.

1E.g., σ can be constructed as follows: the set X\{x1, x2} and X\{x′
1, x

′
2} have the same order (n − 2) and

therefore there exists a bijection between them; define σ(xi) = x′
i for i = 1, 2 and to be some such bijection otherwise.
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One immediately sees that Fun(X) ⊗ Fun(X) is isomorphic as a representation to Fun(X × X),
where the latter term is the permutation representation associated to the diagonal action of G on
X ×X (e.g., one can check this using the basis above). By Proposition 4.3, we deduce the desired
result.

□

6.4. Let us give an application of Example 6.2 (2). Let G = Sn and let X be the set {1, . . . , n}
equipped with its tautological action of Sn.

By the example, dim(Fun(X)G) has dimension 1. Therefore, by Corollary 5.10, the average
number of fixed points of an element of the symmetric group is 1.

6.5. Similarly, we can compute the standard deviation of the number of fixed points of an element
of the symmetric group (acting on X as above) using this permutation representation. We assume
n ≥ 2.

We have seen that Fun(X) splits as a direct sum of a trivial representation C and an irreducible
representation V . Therefore, we have χV = χFun(X)−χtriv. Since V is irreducible and self-dual (as
in the proof of Proposition 6.1), by Proposition 5.12 we have:

1 =
1

|Sn|
∑
g∈Sn

χV (g)
2 =

1

|Sn|
∑
g∈Sn

(χFun(X)(g)− χtriv(g))
2

But χtriv(g) = 1 for all g, and 1 is the average number of fixed points of an element of the symmetric
group. Since χFun(X)(g) is exactly the number of fixed points, we see that the square of this standard
deviation is 1, so the standard deviation itself is also 1.

Remark 6.4. This analysis goes through in the general setting of a group acting 2-transitively on a
set X, i.e., with precisely two orbits on X ×X.

Exercise 6.5. Conversely, show that if G acts on X with average number of fixed points 1 and
standard deviation 1, then G acts 2-transitively on X.

Exercise 6.6. For a positive integer n, we say that G acts n-transitively on X if |X| ≥ n and G
acts transitively on the set:

Xn\{(xi)ni=1 | xi = xj for some i ̸= j}

of n-tuples of distinct elements of X.

(1) Show that Sn acts n-transitively on {1, . . . , n}.
(2) Formulate and prove an analogue of the previous exercise describing n-transitive group

actions in terms of the statistics of the action.

6.6. We’ll conclude this section by sketching the computation of the character table of the sym-
metric group S4 using the above construction.

As in Section 5.11, the conjugacy classes of Sn are labelled by permutations of 4. There are
exactly 5 of them: 1 + 1+ 1+ 1, 2 + 1+ 1, 2 + 2, 3 + 1 and 4. We have already found 3 irreducible
representations of S4: the trivial representation, the sign representation ε, and the 3-dimensional
representation constructed in Example 6.2 (2). We easily find a fourth one by tensoring the one-
dimensional character ε with our three-dimensional representation.
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Computing these representations explicitly, we find that the character table of S4 begins:

S4

ad

/S4

Irrep(S4)︷ ︸︸ ︷



triv ε χ1 χ2 χ3

1 + 1 + 1 + 1 1 1 3 3 ?
2 + 1 + 1 1 −1 1 −1 ?
2 + 2 1 1 −1 −1 ?
3 + 1 1 1 0 0 ?
4 1 −1 −1 1 ?

 .

Finally, as in the case of S3, we use Corollary 5.16 (1) to find the last column of the character table,
giving the result:

S4

ad

/S4

Irrep(S4)︷ ︸︸ ︷



triv ε χ1 χ2 χ3

1 + 1 + 1 + 1 1 1 3 3 2
2 + 1 + 1 1 −1 1 −1 0
2 + 2 1 1 −1 −1 2
3 + 1 1 1 0 0 −1
4 1 −1 −1 1 0

 .

Exercise 6.7. Verify all this.

6.7. Let us construct explicitly this last irreducible representation of S4. Recall that there is a
surjective homomorphism φ : S4 −→ S3 realizing S3 as a quotient of S4. This is a “special” map in
that no analogue of it exists for other symmetric groups (one can show that for n ̸= 4 any proper,
normal subgroup of Sn is the alternating group). Its construction is therefore of a somewhat special
nature, appealing in particular to classical Euclidean geometry.

Then, to obtain the irreducible representation of S4 corresponding to the last column of the
character table, simply restrict the irreducible 2-dimensional representation of S3 along the map φ.

6.8. Let us construct the homomorphism φ. Recall that S4 is the group Aut(□3) of rigid automor-
phisms of the cube in R3 (i.e., the group of orientation-preserving isometries of R3 preserving the
cube with vertices at (±1,±1,±1)). Indeed, let V be the set of vertices of the cube: this is a set of
order 8 with a free action of Z/2Z sending a vertex v to −v. The action of Aut(□3) on V induces
an action of Aut(□3) on V/(Z/2Z). Since |V/(Z/2Z)| = 4, this gives a map Aut(□3) −→ S4. In
words: the map is defined by acting on opposite pairs of vertices.

Exercise 6.8. Show that the map Aut(□3) −→ S4 which we constructed is an isomorphism. Hint:
first, show it is injective, then show that it contains all transpositions in S4.

Therefore, it suffices to give an action of Aut(□3) on a set with three elements to define a map
S4 −→ S3. The pairs of opposite faces on the cube provide just such a set. One immediately verifies
that this is actually a surjective map.

Exercise 6.9. Compute explicitly that the induced two-dimensional irreducible representation of S4

(pulled-back from S3 via φ) has character given by the fifth column of the character table above.
Also prove this without computing anything.
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7. Arithmetic

7.1. The principal goal for this section is to prove the following theorem:

Theorem 7.1. For a finite group G, the dimension dim(V ) of any irreducible representation V
divides |G|.

This result is of a number-theoretic flavor, so will need to develop some techniques from algebraic
number theory to prove it. Therefore, we will need to give a digression on algebraic integers before
returning to representation theory.

7.2. Let Q be a fixed algebraic closure of the rational numbers Q. By a lattice, we understand a
finite rank free Z-module.

Lemma-Definition 7.2. For x ∈ Q, the following are equivalent:

(1) There exist integers a1, . . . an ∈ Z such that xn + a1 · xn−1 + . . .+ an = 0.
(2) There exists a lattice Λ with an endomorphism T such that x is an eigenvalue of T ⊗Z Q.

When these conditions are satisfied, we say that x is an algebraic integer.

Remarks 7.3. (1) We will denote the set of algebraic integers by O ⊂ Q.
(2) Note that the first condition says that x is the root to a monic polynomial with coefficients

in Z. It’s clear that every element of Q is a root of a polynomial with coefficient in Z (just
clear denominators), so the condition that this polynomial is monic is essential.

(3) For any algebraically closed field C of characteristic zero, we will slightly abuse notation by
defining O ⊂ C as the subset of C consisting of elements satisfying (1) from the Lemma-
Definition. After an identification of Q with the algebraic closure of Q in C, this subset of
C is identified with the subset of Q of algebraic integers.

(4) One feature distinguishing O from Q is that O is not a field: this follows from Proposition
7.5 below. E.g., for p a prime number, one can show that O/p · O is an algebraic closure of
the finite field Fp of order p.

(5) One can show that O is non-Noetherian.

Proof. First, let us show that (2)⇒(1). Choosing a basis for Λ, we see that T is given by a matrix
with coefficient in Z. Therefore, its characteristic polynomial is a monic polynomial with coefficients
in Z so any root satisfies 1.

For the converse, note that if xn+ a1 ·xn−1+ . . .+ an = 0, then x is an eigenvalue of the matrix:
0 0 . . . 0 −an
1 0 . . . 0 −an−1

0 1 . . . 0 −an−2
...

...
. . . 0

...
0 0 . . . 1 −a0


Indeed, the characteristic polynomial of this matrix is the polynomial p(λ) = λn+a1 ·λn−1+. . .+an.
Therefore, setting Λ = Zn+1 and T to be the operator defined by this matrix gives the result.

□

7.3. Let us give some examples of algebraic integers:

Examples 7.4. (1) The integers Z ⊂ Q are contained in O, since every n ∈ Z is a root of the
monic polynomial x− n.

(2) If ζ is a root of unity, then ζ is an algebraic integer since ζ is a root of xn − 1 for some
appropriate n.
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(3) Let A be a commutative ring which is finitely generated as an abelian group (under ad-
dition), i.e., a finite Z-algebra. Let χ : A −→ Q be any homomorphism. Then for every
a ∈ A, we claim that χ(a) ∈ O.

Indeed, let Λ be the image χ(A) ⊂ Q. This is a finitely generated abelian group (because
A is) and is torsion-free (because Q is) and therefore a finite rank free Z-module (by the
classification theory of finitely generated Z-modules), i.e., Λ is a lattice. Then a ∈ A defines
an endomorphism of Λ given by multiplication by χ(a). One of the eigenvalues of this
operator is χ(a) (it is assocaited to the eigenvector χ(1) = 1). Therefore, χ(a) fits the
paradigm of Lemma-Definition 7.2 (2).

(4) We will not need the following example (which may be regarded as an exercise for the

reader): if d is a square-free integer, then for a, b ∈ Q, a+ b
√
d is an algebraic integer if and

only if:
(a) a, b ∈ Z, or:
(b) d = 1 mod 4, a, b ∈ 1

2 · Z and a− b ∈ Z.
E.g., the “golden ratio” 1+

√
5

2 satisfies (4b) and is an algebraic integer since it is a root of

the quadratic polynomial x2 − x− 1.

7.4. The following is a fundamental result about O.

Proposition 7.5. The set O of algebraic integers is a subring of Q. The intersection of O with Q
is exactly Z.

Proof. We need to show that O is closed under addition and multiplication in Q. We will do this
using characterization (2) of algebraic integers. If x, y are eigenvalues of (Λ, T ) and (Λ′, S) (where
these are pairs of a lattice and an endomorphism), then x · y is an eigenvalue of:

(Λ⊗ Λ′, T ⊗ S)

and x+ y is an eigenvalue of

(Λ⊗ Λ′, T ⊗ IdΛ′ +IdΛ⊗S).

That O
∩

Q = Z is immediate from characterization (1) of algebraic integers and Gauss’ lemma.
□

Remark 7.6. With this proposition, we can explain the use of O in proving Theorem 7.1. Namely,

we will show that |G|
dim(V ) ∈ O for any irreducible representation V . Since this number is rational,

by the proposition it must be integral.

7.5. The connection between algebraic integers and representation theory of finite groups is given
by the following:

Proposition 7.7. For every finite-dimensional representation V of a finite group G and for every
g ∈ G, χV (g) ∈ O.

We will deduce Proposition 7.7 from the following more precise statement:

Proposition 7.8. For every finite-dimensional representation V of a finite group G and for every
g ∈ G, ρV (g) is a diagonalizable matrix with each eigenvalue a |G|-th root of unity.

Remarks 7.9. (1) Of course, the matrices {ρV (g)}g∈G are not simultaneously diagonalizable
unless ρV factors through the abelianization of G.

(2) A more precise statement holds (and follows immediately from the proof): if g has order n,
then ρV (g) has nth roots of unity as eigenvalues.
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Proof that Proposition 7.8 ⇒ Proposition 7.7. We have seen in Example 7.4 (2) that roots of unity
are algebraic integers. Since the trace is the sum of the eigenvalues and since algebraic integers
form a ring by Proposition 7.5, we immediately deduce the result.

□
Proof of Proposition 7.8. Let n := |G|. For every g ∈ G, we have gn = 1, and therefore (ρV (g))

n =
IdV ∈ End(V ). We deduce that the minimal polynomial of ρV (g) divides the polynomial xn − 1.
Since xn − 1 is a separable polynomial (i.e., it has distinct roots), this means that the minimal
polynomial of ρV (g) is also separable. But any matrix with separable minimal polynomial is clearly
diagonalizable. Since the minimal polynomial divides xn − 1, we see that all the eigenvalues of
ρV (g) are nth roots of unity.

□
Exercise 7.10. Using the counterexample from Remark 2.2 (2), show that the diagonalizability of
ρV (g) fails if the characteristic of the ground field is non-zero. Where does the proof of Proposition
7.8 fail in this case?

7.6. We will also need the following variant of Proposition 7.7.

Proposition 7.11. Let V be an irreducible representation of G. Then for every g ∈ G with

associated conjugacy class C ∈ G
ad

/G, we have:

|C|
dim(V )

· χV (g) ∈ O.

Proof. Let Z[G] ⊂ C[G] be the subalgebra:

{
∑
g∈G

ag · δg | ag ∈ Z for all g ∈ G}.

Let Zint(G) ⊂ Z(G) be the subalgebra Z(G)∩Z[G]. Note that Zint(G) has the Z-basis {bnaiveC }
C∈G

ad

/ G

where bnaiveC := |C| · bC =
∑

g∈C δg. In particular, Zint(G) is finitely generated as an abelian group.

Let F(V ) ∈ Spec(Z(G)) be the character of Z(G) associated to V by F. By Example 7.4 (3),
F(V )(z) ∈ O for all z ∈ Zint(G). In particular, applying this to bnaiveC , we see that F(V )(bnaiveC ) ∈ O.

For g ∈ C, we have:

χV (g) = dim(V ) · F(V )(bC) =
dim(V )

|C|
· F(V )(bnaiveC ).

Since F(V )(bnaiveC ) ∈ O by the above, we see that:

|C|
dim(V )

· χV (g) ∈ O

as desired.
□

Remark 7.12. Propositions 7.7 and 7.11 tell us that for an irreducible2 representation V and g ∈ G,

χV (g) and |C|
dim(V ) · χV (g) are both algebraic integers. Although these two numbers are rational

multiples of each other, neither of these statements is strictly stronger than the other. (In fact, the
interaction of these two statements will ultimately be responsible for the results of this section and
the next).

Indeed, if dim(V ) = 1, then χV (g) ∈ O clearly implies |C| · χV (g) ∈ O. But if |C| = 1 (i.e., the
unique element in C is central in G), then 1

dim(V ) · χV (g) ∈ O clearly implies that χV (g) ∈ O.

2Note that Proposition 7.7 does not need this hypothesis.
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7.7. Finally, we are prepared to prove Theorem 7.1.

Proof of Theorem 7.1. We may assume V is a non-trivial irreducible representation.
By Proposition 5.12, we have:

|G| =
∑
g∈G

χV (g) · χV ∗(g) =
∑

C∈G
ad

/ G

|C| · χV (bC).

Therefore, we have:

|G|
dim(V )

=
∑
g∈G

(
|C|

dim(V )
· χV (g)

)
· χV ∗(g).

By Propositions 7.7 and 7.11, the right hand side of the above equation is in O. Therefore, we

deduce that |G|
dim(V ) ∈ O. Clearly |G|

dim(V ) ∈ Q, so we deduce that |G|
dim(V ) ∈ Q ∩ O = Z.

□

7.8. We conclude this section with a result of a different flavor, but which is of an arithmetic
nature similar to what we have discussed in this section.

Proposition 7.13. For every n, the character table of the symmetric group Sn has integer entries.

We will give the proof of Proposition 7.13 in the remainder of this section.

Remark 7.14. Our earlier computations corroborate this proposition when n ≤ 4.

7.9. We immediately deduce Proposition 7.13 from the following two lemmas.

Lemma 7.15. Let G be a finite group with the following property:

(*): For every g ∈ G of order n and for every m ∈ Z>0 relatively prime to n, gm is conjugate
to g.

Then for every g ∈ G and every representation V of G, χV (g) ∈ Z. I.e., the character table of G
is an integral matrix.

Lemma 7.16. The symmetric group Sn satisfies the property (∗) from Lemma 7.15.

Proof of Lemma 7.16. This is immediate from the description of conjugacy classes in Sn from Sec-
tion 5.11.

Indeed, if g ∈ Sn has cycles of lengths ℓ1, . . . , ℓr (so
∑r

i=1 ℓi = Sn), then the order of g is the
least common multiple of the set {ℓi}ri=1. This means m ∈ Z>0 is relatively prime to the order of
g if and only if it is relatively prime to each ℓi. But iterating a cycle of length ℓi to a power prime
to ℓi gives another cycle of length ℓi.

□

Proof of Lemma 7.15. Suppose g ∈ G of order n and V is a finite-dimensional representation of G.
Let K ⊂ Q be the subfield of Q spanned by the nth roots of unity. By the irreducibility of the

cyclotomic polynomial, the Galois group Gal(K/Q) is (Z/n · Z)×, where σ ∈ (Z/n · Z)× acts on a
root of unity ζ by sending ζ to ζσ. We will denote the action of Gal(K/Q) = (Z/n · Z)× by ·, so
e.g. σ · ζ = ζσ.

We have seen in Proposition 7.7 that χV (g) ∈ O. Therefore, to see that χV (g) ∈ Z, it suffices
to show that χV (g) ∈ Q since O ∩ Q = Z. By Galois theory, χV (g) ∈ Q if and only if it is
invariant under the action of the Galois group Gal(K/Q), i.e., if and only if σ · χV (g) = χV (g) for
all σ ∈ Gal(K/Q).
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Since ρV (g) is diagonal with nth roots of unity as eigenvalues (c.f. Remark 7.9 (2)), the de-
scription of the action of the Galois group above shows that for σ ∈ Gal(K/Q) = (Z/r · Z)×, we
have:

Tr((ρV (g)
σ) = σ · χV (g).

Since ρV (g)
σ = ρV (g

σ) and since we have gσ conjugate to g by assumption, this implies:

Tr(ρV (g
σ)) = Tr(ρV (g))

and comparing this to the above gives σ · χV (g) = χV (g) as desired.
□

8. Burnside’s theorem

8.1. Throughout this section, we fix p, q two distinct primes. The goal for this section is to prove
the following theorem:

Theorem 8.1 (Burnside). Every group G of order |G| = paqb for a, b ∈ Z≥0 is solvable.

Remark 8.2. Recall that a group G is solvable if it has a filtration {1} = G0 ◁G1 ◁ . . .◁Gn = G
such that Gi+1/Gi is abelian for all 0 ≤ i < n. (To clarify the notation: we mean that Gi is normal
in Gi+1, but do not require that it is normal in all of G).

Remark 8.3. To prove Burnside’s theorem, it is enough to show that every group of order paqb with
a + b > 1 has a proper normal subgroup. Indeed, then the result follows by induction on a + b,
noting that every group of order p (or q) is abelian.

Corollary 8.4. Every non-abelian simple group has order with at least three prime factors.

Remark 8.5. The Feit-Thompson theorem, a deep result in finite group theory, says that every
group of odd order is solvable. This gives a much more precise version of Corollary 8.4: every
non-abelian simple group has order divisible by 2 and at least two odd primes.

This result is in some sense optimal. Indeed, the alternating group A5(:= Ker(ε : S5 −→ {±1})
is known to be simple, and its order is 5!

2 = 60 = 22 · 3 · 5.

8.2. We will deduce Theorem 8.1 from the following result, also due to Burnside.

Theorem 8.6. Suppose G is a group with a conjugacy class C of order |C| = pk where p is a prime,
C ̸= {1}. Then either G is cyclic of prime order or else G admits a proper normal subgroup.

Remark 8.7. This theorem immediately implies that every conjugacy class C ̸= {1} in a non-abelian
simple group has order divisible by at least two primes.

Proof that Theorem 8.6 ⇒ Theorem 8.1. Let G be a group of order pa · qb with a + b > 1. By
Remark 8.3, it suffices to show that G has a proper normal subgroup. Since a+ b > 1, we see that
G is not a cyclic group of prime order. Therefore, by Theorem 8.6, it suffices to show that G has
a conjugacy class C ̸= {1} of order a prime power.

Suppose otherwise. Then every conjugacy class C ̸= {1} has order divisible by p · q. We have:

|G| =
∑

C∈G
ad

/ G

|C| = 1 +
∑

C∈(G
ad

/ G\{1})

|C|.

Reducing modulo p (or q), we arrive at a contradiction.
□

Therefore, for the remainder of the section we will be concerned with proving Theorem 8.6.
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8.3. We will use the following lemma:

Lemma 8.8. Let ζ1, . . . , ζn be roots of unity such that:∑n
i=1 ζi
n

∈ O.

Then, either:

(1) ζi = ζj for all i, j, or:
(2)

∑n
i=1 ζi = 0.

Proof. Let us denote by ξ the sum:

ξ :=

∑n
i=1 ζi
n

∈ O.

Let | · | denote the complex absolute value. Let us assume ζi ̸= ζj for some i, j. By the triangle
inequality, if ζi ̸= ζj for some i, j then we have |ξ| < 1. We need to show that this implies that
ξ = 0.

Suppose that all the ζi are rth roots of unity, and let K ⊂ Q be the field spanned by the rth
roots of unity (so ζi ∈ K for all i). As in the proof of Lemma 7.15, the Galois group Gal(K/Q) is
(Z/rZ)×, where σ ∈ (Z/rZ)× acts by sending ζ to ζσ.

For any σ ∈ Gal(K/Q), observe that σ · ξ is also an algebraic integer (indeed: σ · ξ is clearly a
root of any polynomial with rational coefficients having ξ as a root, and in particular any monic
one). Moreover, by the above description of the Galois group, we see that σ · ξ also has the same
form: n · (σ · ξ) is a sum of n roots of unity, so |σ · ξ| < 1 as well.

Therefore, we see that:

|
∏

σ∈Gal(K/Q)

σ · ξ| =
∏

σ∈Gal(K/Q)

|σ · ξ| < 1.

Note that: ∏
σ∈Gal(K/Q)

σ · ξ ∈ O

since this term is a product of elements of O. We also observe that∏
σ∈Gal(K/Q)

σ · ξ ∈ Q

because K is Galois over Q and
∏

σ∈Gal(K/Q) σ · ξ is obviously invariant under the Galois group.

Therefore, we have: ∏
σ∈Gal(K/Q)

σ · ξ ∈ Q ∩ O = Z.

Thus, this product is an integer of absolute value strictly less than 1 and therefore zero. This
implies that σ · ξ = 0 for some σ ∈ Gal(K/Q), which immediately gives that ξ = 0 as desired.

□

8.4. We will also need the following (easy) lemma about algebraic integers:

Lemma 8.9. Suppose m,n ∈ Z are relatively prime and x ∈ O such that m
n ·x ∈ O. Then 1

n ·x ∈ O.

Proof. Since m,n are relatively prime, there exists r, s ∈ Z such that rm+ sn = 1. Then:

1

n
· x =

rm+ sn

n
· x = r · (m

n
· x) + s · x.

Since m
n · x and x are algebraic integers, the result follows.

□
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8.5. Our principal application of Lemma 8.8 is the following:

Proposition 8.10. Let C be a conjugacy class of a finite group G of order pk for p a prime
and k ≥ 1. Suppose V is an irreducible representation of G of dimension prime to p such that
χV (bC) ̸= 0. Then every g ∈ C acts on V by a scalar matrix.

Proof. Let g ∈ C. By Proposition 7.11, we have:

|C|
dim(V )

· χV (g) ∈ O.

Since |C| and dim(V ) are relatively prime, Lemma 8.9 implies 1
dim(V ) · χV (g) ∈ O.

However, by Proposition 7.8, χV (g) is a sum of dim(V )-many roots of unity. Therefore, by
Lemma 8.8 (and since we assume χV (g) ̸= 0) all of these eigenvalues must be equal, i.e., the
corresponding operator is a scalar operator.

□

8.6. Now we are ready to prove Theorem 8.6 (and thereby Theorem 8.1). The proof will occupy
Sections 8.7-8.10.

8.7. Let G be a group with a conjugacy class C ̸= {1} of order pk. If k = 0, then G has a nontrivial
central element (the sole occupant of C) and a non-zero center, so in this case the result is clear.
Therefore, it suffices to prove the result when k ≥ 1.

8.8. Next, we reduce to the case where every non-trivial representation V of G has dimension
greater than 1.

Otherwise, G admits a non-trivial homomorphism to C×, and since G is non-cyclic the kernel of
this homomorphism is a proper normal subgroup (since the image is a finite subgroup of C× and
therefore cyclic).

8.9. We claim that there exists a non-trivial irreducible representation V of order prime to p such
that χV (g) ̸= 0 for g ∈ C.

Indeed, suppose otherwise. By Corollary 5.16 (2), we have:

|C| =
∑

V ∈Irrep(G)

χV (g) · dim(V ).

Since each χV (g) is in O, we can reduce the left hand side modulo p ∈ Z ⊂ O to obtain:

0 = |C| =
∑

V ∈Irrep(G)

χV (g) · dim(V ) =
∑

V ∈Irrep(G)

p∤dim(V )

χV (g) · dim(V ) = 1 +
∑

V ∈Irrep(G)

p∤dim(V )

V non-trivial

χV (g) mod p.

(Here mod p means “in the ring O/pO”). Since the ring O/pO ̸= 0 (by virtue of containing, e.g.,
Z/pZ), this means that:

0 ̸=
∑

V ∈Irrep(G)

p∤dim(V )

V non-trivial

χV (g) mod p.

In particular, there must exist some representation V of the described type such that χV (g) ̸= 0,
since this holds mod p.
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8.10. Let V be an irreducible representation as described above: non-trivial of dimension prime
to p.

Define N ◁G as ρ−1
V (C× · IdV ) (i.e., Ker(G −→ GL(V )/C× · IdV )). Since dim(V ) > 1, N ̸= G.

By Proposition 8.10, C ⊂ N , so in particular N ̸= {1}. Thus, we have found a non-trivial normal
subgroup of G, as desired.

9. Induced representations

9.1. This section is devoted to another technique of producing new representations from old.
More precisely, “induction” takes representations of a subgroup and produces representations of
the group.

9.2. Let H ⊂ G be a subgroup and let W be an H-representation. We will define two G-
representations indGH(W ) and IndGH(W ) characterized by isomorphisms for every G-representation
V (functorial in both variables):

HomG(ind
G
H(W ), V )

≃ // HomH(W,V ) HomG(V, Ind
G
H(W ))

≃ // HomH(V,W )

Here we regard V as an H-representation by restriction.

Examples 9.1. Suppose H = {1}.
(1) For any H-module W , i.e., vector space W , we have indGH(W ) = C[G]⊗C W .
(2) Similarly, for such W , by Lemma 1.8 we have IndGH(W ) = Fun(G)⊗W .

9.3. Let us first construct indGH(W ).
There is a more general setup for this construction. Let A and B be two algebras with a map

f : A −→ B. Then for any A-module M , the tensor product B⊗AM admits an obvious B-module
structure (from the left B-module structure on B) and satisfies:

HomB -mod(B ⊗
A
M,N)

≃−→ HomA -mod(M,N).

(The isomorphism is induced by restriction along the map M = A⊗A M
f⊗IdM−→ B ⊗A M .)

Applying this in the case of group algebras, we see that defining indGH(W ) as C[G]⊗C[H] W , we
obtain the desired properties.

9.4. Next, let us construct IndGH(W ). We will imitate the construction from Example 9.1 (2).
Consider Fun(G) ⊗ W . More explicitly, this is the vector space of functions {f : G −→ W}.

Considering this space as a G-module via the (permutation) G-representation structure coming
from the right3 action of G on itself (and forgetting the action of H on W ), we see that this
satisfies the property that for any G-representation V we have:

HomG(V,Fun(G)⊗W )
≃−→ Hom(V,W ).

Note that W ⊗ Fun(G) also has a commuting structure of H-module, where this structure comes
from the action of H (by way of G) on Fun(G) corresponding to the left action of H on G combined
with the H-module structure on W . Under the isomorphism above, this corresponds to the H-
module structure on Hom(V,W ) coming from realizing both V and W as H-representations.

Therefore, we can form (Fun(G) ⊗ W )H (the H-module structure as above) and we retain a
G-action on this space. Moreover, we see that:

HomG(V, (Fun(G)⊗W )H)
≃−→ Hom(V,W )H = HomH(V,W ).

Therefore, we define IndGH(W ) as (Fun(G)⊗W )H .

3Unsurprisingly, this normalization doesn’t matter, but we have to choose something to work with consistently.
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9.5. Let us take a moment to write more explicit formulae for IndGH .

One realizes IndGH(W ) as the following subspace of W -valued functions on G:

{f : G −→ W | f(h · g) = h · f(g) for all g ∈ G,h ∈ H}.

The action of G on this space of functions is given by:

(g · f)(x) = f(x · g).

Given an H-equivariant map T : V −→ W (with V a G-representation), the induced map
V −→ IndGH(W ) sends v to the function fv : G −→ W :

fv : g 7→ T (g · v).

This lands in the desired space of functions since for h ∈ H we have:

fv(h · g) := T (h · g · v) = h · T (g · v) = h · fv(g)

by H-equivariance of T .

Remark 9.2. In the tensorial language, the map V −→ (Fun(G)⊗W )H is the map:

v 7→
∑
g∈G

T (g · v)⊗ δg.

Exercise 9.3. Suppose that H acts on a finite set X. Define the set G
H
×X to be the set (G×X)/H

where H acts diagonally via its right action on G. Note that G acts on G
H
×X via its left action

on G.
Considering Fun(X) as a permutation representation of H, show that:

IndGH(Fun(X))
≃−→ Fun(G

H
×X)

as G-representations.

In particular, IndGH(C) is the permutation representation Fun(G/H).

9.6. Let us give an example in the case of cyclic groups.
Suppose n and m are integers with n dividing m, so we have Z/nZ ⊂ Z/mZ (sending the

generator to the residue class of m
n , which we also denote by m

n ). Suppose χ : Z/nZ −→ C× send
the generator to a root of unity ζ.

Let us compute Ind
Z/mZ
Z/nZ χ. This is the space of functions f : Z/mZ −→ C which satisfies the

equivariance property:

f(x+
m

n
) = ζ · f(x).

Therefore, such functions form a m
n -dimensional space with basis {δi}

m
n
−1

i=0 . The matrix of the
generator of Z/mZ with respect to this basis is:

0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
ζ 0 0 . . . 0


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Remark 9.4. In particular, we see that as long as n ̸= m, the character of the induced representation
of χ has value zero on the generator of Z/mZ. Since every representation of V decomposes as a
direct sum of characters and because induction commutes with direct sums, we see that this is true
for every representation of Z/mZ induced from a representation of a proper cyclic subgroup.

9.7. We will prove the following result:

Theorem 9.5 (Frobenius’ reciprocity theorem). There is a natural isomorphism of G-representations

φ : indGH(W )
≃−→ IndGH(W ).

Remarks 9.6. (1) Although the above constructions of ind and Ind carry through in the case
of infinite groups, Frobenius reciprocity requires that the groups be finite.

(2) Frobenius reciprocity is useful in part because (as we will see) IndGH is easier to compute

with for many purposes, so this allows us to deduce results about indGH as well. E.g., we
will use this later in this section (see Section 9.16) to compute the character of an induced
representation.

(3) Some texts refer to the mere (defining) identities:

HomG(ind
G
H(W ), V )

≃ // HomH(W,V ) HomG(V, Ind
G
H(W ))

≃ // HomH(V,W )

as “Frobenius reciprocity.”

We will prove Theorem 9.5 in Section 9.10.

9.8. To put the proof of Frobenius reciprocity on better conceptual foundations, it is useful to
introduce the notion of “coinvariants.”

Definition 9.7. For a G-representation V , the coinvariant space VG is the maximal quotient V ↠ VG

of V for which the quotient map is G-equivariant for the trivial action of G on VG.

Remarks 9.8. (1) It’s easy to construct the coinvariants more explicitly. Namely, it is the
quotient V/ Span({g · v − v}g∈G,v∈V ). Equivalently, it is the tensor product:

VG = V ⊗
C[G]

C.

(2) The coinvariants satisfy the universal property that for a vector space W considered as a
G-module via the trivial action, we have:

Hom(VG,W )
≃−→ HomG(V,W ).

This is dual to the universal property for the invariants V G, which is that for such W we
have:

Hom(W,V G)
≃−→ HomG(W,V ).

Lemma 9.9. For G finite, the composition:

V G −→ V −→ VG

is an isomorphism V G ≃−→ VG.

Indeed, this follows immediately from Maschke’s theorem.

Exercise 9.10. Using AvG, construct an explicit inverse to the map V G −→ VG. Deduce Maschke’s
theorem (say, in the form of Theorem 2.1) from Lemma 9.9.
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9.9. The reason for introducing coinvariants is the following interpretation of indGH .
LetW be anH-representation and consider C[G]⊗W . This is a G×G×H-module, corresponding

to the left and right G-module structures of C[G] and the H-module structure on W . We will prefer
to consider it as a G × H-module, where the G-module structure comes from the left G-module
structure, and the H-module structure comes from the right H-module structure of C[G] and the
H-module structure of W . (Note the similarity to the construction from Section 9.4.

Then the tensor product:

C[G] ⊗
C[H]

W

coincides as a G-module with the H-coinvariants of C[G] ⊗ W (under the structures constructed
above).

9.10. Now let us prove the Frobenius reciprocity theorem.
The (tautological) isomorphism C[G] −→ Fun(G) induces a map C[G]⊗W −→ Fun(G)⊗W . It’s

easy to see that this map is G×G×H-equivariant, and therefore G×H-equivariant (for structures
as above).

Therefore, we have the following diagram:

(C[G]⊗W )H //

��

(Fun(G)⊗W )H

��

IndGH(W )

C[G]⊗W //

��

Fun(G)⊗W

��
indGH(W ) (C[G]⊗W )H // (Fun(G)⊗W )H

Clearly each of the horizontal arrows is an isomorphism. Moreover, both of the compositions of
vertical arrows are isomorphisms by Lemma 9.9. Tracing the “outer rectangle” in this diagram
gives the desired isomorphism.

9.11. Suppose H ′ ⊂ G is a second subgroup of G. Our next goal is to “compute” IndGH(W ) as an
H ′-representation.

Examples 9.11. (1) When H ′ = G, this computation will tell us nothing new.
(2) When H ′ = {1}, the computation essentially amounts to giving the dimension of IndGH(W ).

By construction of IndGH(W ), it’s clear that a function f : G −→ W in IndGH(W ) is de-
termined by its values at H-coset representatives and without other constraints, so this
dimension is |G/H| · dim(W ).

(3) The most interesting case is when H ′ = H.

The computation will be given in Sections 9.12-9.15 and will be stated as Proposition 9.13.

9.12. We will need the following construction.
For g ∈ G and W an H-representation, define gW to be the representation of the subgroup

g ·H · g−1 which is “W with action twisted by the adjoint action of g on G,” i.e., the underlying
vector space is W and for x ∈ g ·H · g−1 the operator ρgW (x) is defined as:

ρgW (x) = ρW (g−1xg).

Exercise 9.12. Let H = G. Show that gV is isomorphic to V as G-representations (note that the
“identity” map between V and gV is not usually G-equivariant!).
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9.13. Let W be an H-representation.
For g ∈ G, we will define a canonical G-equivariant isomorphism:

Tg : IndGH(W ) −→ IndGg·H·g−1(
gW ).

This map Tg sends a function f : G −→ W (satisfying the appropriate equivariance property)
the corresponding function translated G −→ W translated by g−1, i.e.:

Tg(f) : G // W Tg(f) : x 7→ f(g−1 · x).

Let us check that Tg(f) satisfies the appropriate equivariance property to lie in IndGg·H·g−1(gW ).

Suppose h ∈ g ·H · g−1. Then we want to show that for every x ∈ G we have an equality:

f(g−1 · h · x) = Tg(f)(h · x) = ρgW (h)(Tg(f)(x)) = g−1 · h · g · (f(g−1x)).

(For a vector w ∈ W and h ∈ H, we will use h · w to denote the initial action of H on W and
not the one twisted by the adjoint action of g). By assumption on h, g−1hg ∈ H. Therefore, since
f ∈ IndGH(W ), we have:

g−1 · h · g · f(g−1x) = f((g−1 · h · g) · (g−1x)) = f(g−1 · h · x)
as desired.

9.14. We have tautological maps:

IndGg·H·g−1(gW ) �
� // IndGH′∩g·H·g−1(gW ) // // IndHH′∩g·H·g−1(gW ).

Composing this with Tg from above, we obtain a map we will also denote by Tg(f) which is:

Tg(f) : Ind
G
H(W ) −→ IndH

′

H′∩g·H·g−1(
gW ).

Explicitly, this again sends a function f : G −→ W to the function H ′ −→ W given by translating

by g−1. This map Tg(f) : Ind
G
H(W ) −→ IndH

′

H′∩g·H·g−1(gW ) is by construction H ′-equivariant.

9.15. To formulate Proposition 9.13, we will need a choice of representatives of double cosets, i.e.,
a splitting

σ : H ′\G/H −→ G

of the surjection G −→ H ′\G/H sending an element of the group to its corresponding double coset.

Proposition 9.13. The H ′-equivariant map:

IndGH(W ) −→ ⊕
x∈H′\G/H

IndH
′

H′∩σ(x)·H·σ(x)−1(
σ(x)W )

given as:
⊕x∈H′\G/HTσ(x)

is an isomorphism.

Proof. First, let us show that the map ⊕x∈H′\G/HTσ(x) is injective.

Indeed, suppose f : G −→ W is an element of IndGH(W ) which lies in the kernel of this map. Let
g−1 ∈ G have image x ∈ H ′\G/H, so that there exists h′ ∈ H ′ and h ∈ H such that g−1 = h′·σ(x)·h.
Since Tσ(x)(f) : H

′ −→ W is 0, we have:

0 = Tσ(x)(f)(h
′−1) = f(σ(x) · h′−1).

Since f is in IndGH(W ), we have:

0 = h−1 · 0 = h−1 · f(σ(x) · h′−1) = f(h−1 · σ(x) · h′−1) = f(g).

As this holds for all g ∈ G, this implies that f = 0.
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Therefore, to see that ⊕x∈H′\G/HTσ(x) is an isomorphism, it suffices to show that both the domain
and the target have the same dimension. By Example 9.11 (2), we have:

dim(IndGH(W )) = |G/H| · dim(W )

and:

dim
(

⊕
x∈H′\G/H

IndH
′

H′∩σ(x)·H·σ(x)−1(
σ(x)W )

)
=

∑
x∈H′\G/H

dim(IndH
′

H′∩σ(x)·H·σ(x)−1(
σ(x)W )) =

=
∑

x∈H′\G/H

|H ′/(H ′ ∩ σ(x) ·H · σ(x)−1)| · dim(W )

and we have: ∑
x∈H′\G/H

|H ′/(H ′ ∩ σ(x) ·H · σ(x)−1)| = |G/H|

since the stabilizer of σ(x) ∈ G/H (the image of σ(x)) for the action of H ′ on G/H is the subgroup:

H ′/(H ′ ∩ σ(x) ·H · σ(x)−1).

□

9.16. Next, let us compute the character of an induced representation.

Proposition 9.14. Let W be a finite-dimensional representation of H ⊂ G. For x ∈ G, let x
denote the image of x in G/H. Then we have:

χIndGH(W )(g) =
1

|H|
∑
x∈G

g∈StabG(x)

χxW (g).

Remark 9.15. More concretely, g ∈ StabG(x) if and only if g ∈ x ·H · x−1.

Remark 9.16. For g ∈ G, let (G/H)(g) denote the fixed point set:

{y ∈ G/H | g · y = y}.

Let us choose H-coset representatives, i.e., a splitting σ : G/H −→ G of G −→ G/H. Then by
Exercise 9.12, Proposition 9.14 can be reformulated as saying:

χIndGH(W )(g) =
∑

y∈(G/H)(g)

χσ(y)W )(g).

Proof of Proposition 9.14. Let H ′ = (g) be the cyclic subgroup of G generated by g. We choose a
splitting

σ : (g)\G/H −→ G.

By Proposition 9.13, we have an isomorphism:

IndGH(W )
≃−→ ⊕

y∈(g)\G/H
Ind

(g)
(g)∩σ(y)·H·σ(y)−1(

σ(y)W )

which is compatible with the obvious operators induced by g on both sides.
As in Remark 9.4, for y ∈ (g)\G/H such that (g)∩ σ(y) ·H · σ(y)−1 ̸= (g), the trace of g on the

corresponding summand is zero, i.e.:

χ
Ind

(g)

(g)∩σ(y)·H·σ(y)−1 (
σ(y)W )

(g) = 0.
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Therefore, χIndGH(W )(g) is the trace of g acting on the space:

⊕
y∈(g)\G/H

g∈σ(y)·H·σ(y)−1

σ(y)W.

Note that the map:

{y ∈ G/H | g · y = y} −→ {y ∈ (g)\G/H | g ∈ σ(y) ·H · σ(y)−1}

is a bijection since the corresponding orbits of (g) in G/H have size one (the (g)-stabilizer of some
y ∈ G/H being (g) ∩ StabG(y)). Therefore, χIndGH(W )(g) is the trace of g acting on the space:

⊕
y∈G/H

g∈StabG(y)

σ(y)W

giving the desired result in the form stated in Remark 9.16.
□

Exercise 9.17. Give a more direct computation proving Proposition 9.14, i.e., one which does not
rely on the special case of cyclic groups.

The formula from Proposition 9.14 takes the following simpler form when H is normal in G.

Corollary 9.18. Let W be a finite-dimensional representation of H a normal subgroup of G. Then
if g ̸∈ H we have:

χIndGH(W )(g) = 0.

For g ∈ H, we have:

χIndGH(W )(g) =
1

|H|
∑
x∈G

χxW (g) =
1

|H|
∑
x∈G

χW (x−1 · g · x).

Remark 9.19. We already observed the phenomenon from Corollary 9.18 in a special case. Indeed,
in Remark 9.4, we saw that for cyclic groups, characters induced from proper (necessarily normal)
subgroups vanish on the generator of the group.

9.17. Next, let us give Mackey’s criterion describing when IndGH(W ) is irreducible.

Theorem 9.20 (Mackey’s irreducibility criterion). Let W be an irreducible representation of H ⊂
G. Then IndGH(W ) is irreducible if and only if for every g ∈ G\H (i.e., g ̸∈ H) the representations
W and gW of H ∩ g ·H · g−1 have no isomorphic irreducible summands.

Proof. By Corollary 3.10, it suffices to show that dim(EndG(Ind
G
H(W ))) = 1. Applying Frobenius

reciprocity, we have:

EndG(Ind
G
H(W )) = HomG(Ind

G
H(W ), IndGH(W )) = HomG(ind

G
H(W ), IndGH(W )) = HomH(W, IndGH(W )).

By Proposition 9.13, we have:

IndGH(W )
≃−→ ⊕

x∈H\G/H
IndHH∩σ(x)·H·σ(x)−1(

σ(x)W )

as an H-representation (with σ as in loc. cit.). For the identity coset 1 ∈ H\G/H the identity
coset, the corresponding summand is merely W . Therefore, the failure of EndG(Ind

G
H(W )) to be

one-dimensional occurs only in the presence of x ∈ H\G/H a non-identity coset and a non-zero
H-equivariant map:

W −→ IndHH∩σ(x)·H·σ(x)−1(
σ(x)W )
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or what is the same, a non-zero H ∩ σ(x) ·H · σ(x)−1-equivariant map:

W −→σ(x) W.

But this can only occure if W and σ(X)W share an irreducible summand as H ∩ σ(x) ·H · σ(x)−1-
representations. It’s immediate to see that this condition is independent of the choice of σ, and
therefore it is equivalent that it holds for all g ∈ G.

□

9.18. Mackey’s criterion takes a simpler form when dim(W ) = 1:

Corollary 9.21. Let χ : H −→ C× be a 1-dimensional character of H a subgroup of G. Then
IndGH(W ) is irreducible if and only if for every g ∈ G \ H we have χ|H∩g·H·g−1 ̸=g χ|H∩g·H·g−1

(where gχ is χ composed with the map G −→ G given by conjugation by g).

Similarly, we have the following simpler form when H is normal:

Corollary 9.22. Let W be an irreducible representation of H a normal subgroup of G. Then
IndGH(W ) is irreducible if and only if for every g ∈ G \H (i.e., g ̸∈ H) the representations W and
gW of H are not isomorphic.

9.19. Let us apply the techniques developed above to compute the character table of the dihedral
group Dn of order 2n. This computation will occupy the remainder of the section.

9.20. Recall that the dihedral group has generators and relations:

< σ, τ | σ2 = τn = 1, σ · τ · σ−1 = τ−1 > .

The dihedral group acts by linear symmetries on R2 preserving a regular n-gon with center at the
origin, where σ is a reflection across a line through some fixed vertex and τ is a rotation by 2π

n .

9.21. Let us compute the conjugacy classes of Dn.
We have the relations:

σ · τ r · σ−1 = τ−r τ · (σ · τ r) · τ−1 = σ · τ r−2 σ · (σ · τ r) · σ−1 = σ · τ−r

Therefore, if n is odd we have the conjugacy classes:

{1}, {τ, τ−1}, . . . , {τ
n−1
2 , τ

n+1
2 }, {σ, σ · τ, . . . σ · τn−1}.

Similarly, if n is even we have the conjugacy classes:

{1}, {τ, τ−1}, . . . , {τ
n
2
−1, τ

n
2
+1}, {τ

n
2 }, {σ, σ · τ2, . . . σ · τn−2}, {σ · τ, σ · τ3, . . . σ · τn−1}.

In particular, we see that if n is odd then there are 1 + n−1
2 + 1 = n+3

2 conjugacy classes and if

n is even then there are 1 + n−2
2 + 1 + 2 = n+6

2 conjugacy classes.

9.22. The subgroup generated by τ is a cyclic group of order n in Dn. For each nth root of unity
ζ, let χζ : Z/nZ −→ C× be the character sending the generator to ζ. Then for each such ζ, we

have the representation IndDn

Z/nZ(χζ).

Proposition 9.23. The representation IndDn

Z/nZ(χζ) is irreducible if and only if ζ ̸= ±1.

Proof. Note that Z/nZ = {τ r}n−1
r=0 is normal is Dn. Therefore, we will apply Mackey’s criterion in

the form of Corollary 9.22.
Every g ∈ G \H has the form σ · τ r for some r. Then we have:

(σ · τ r) · τ · (σ · τ r)−1 = σ · τ · σ−1 = τ−1.
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Therefore, Mackey’s criterion says that the representation is irreducible if and only if:

ζ = χζ(τ) ̸= χζ(τ
−1) = ζ−1

which amounts to the condition in the proposition.
□

9.23. Next, let us compute the character of IndDn

Z/nZ(χζ).

Proposition 9.24. We have:
χ
IndDn

Z/nZ(χζ)
(τ r) = ζr + ζ−r

χ
IndDn

Z/nZ(χζ)
(σ · τ r) = 0.

Proof. We compute the character using Corollary 9.18. By loc. cit., the character of IndDn

Z/nZ(χζ)

is zero off of Z/nZ = {τ r}n−1
r=0 and we have:

χ
IndDn

Z/nZ(χζ)
(τ r) =

1

n

( n∑
i=1

χζ(τ
r) +

n∑
i=1

χζ(σ · τ r · σ−1)
)
= χζ(τ

r) + χζ(τ
−r) = ζr + ζ−r.

□
9.24. Now let ζ denote a fixed primitive nth root of unity.

By Proposition 9.24, we see that {IndDn

Z/nZ(χζi)}
⌊n−1

2
⌋

i=1 consists of pairwise non-isomorphic irre-

ducible representations (of dimension 2). We also have two obvious 1-dimensional representations
of Dn: the trivial representation and the “sign” character (i.e., the character obtained from the
non-trivial character of Z/2Z = Dn/(Z/nZ)).

When n is odd, this gives:

1 + 1 +
n− 1

2
=

n+ 3

2
representations, and by Section 9.21, this gives all of the irreducible representations of Dn.

Example 9.25. Recall that we have D3
≃−→ S3. The irreducible 2-dimensional representation of D3

constructed above is therefore the same as the unique irreducible 2-dimensional representation of
S3. In particular, this representation of S3 is induced from a non-trivial character of Z/3Z ⊂ S3.

9.25. When n is even, we have found:

1 + 1 +
n− 2

2
=

n+ 2

2
representations, so by Section 9.21 we are still 2 short.

Note that (for n even) Dn has the normal subgroup {1, τ2, . . . , τn−2}, and the quotient by this
subgroup is isomorphic to Z/2Z×Z/2Z. This quotient gives rise to three non-trivial 1-dimensional
characters of Dn, one which we have already found (the sign character) and two more. Thus, we
have computed all of the irreducible representations of Dn in this case as well.
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