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AN ARITHMETIC APPLICATION OF GEOMETRIC LANGLANDS

SAM RASKIN

ABSTRACT. Vincent Lafforgue has constructed a Langlands decomposition of the space of cuspidal
automorphic functions for function fields. In our joint work with Arinkin, Gaitsgory, Kazhdan,
Rozenblyum, and Varshavsky, we showed that a version of the geometric Langlands conjectures
yields a description of the eigenspaces of Lafforgue’s decomposition in the everywhere unramified
case.

In this note, we give an overview of the latter circle of ideas. We then explain how to use these
methods to show that geometric Langlands implies that there are no everywhere unramified cusp
forms with ¢rivial Langlands parameter, addressing a question of Michael Harris.

Of some independent interest, we calculate a spectral analogue of pseudo-Eisenstein series near
the trivial Langlands parameter in some explicit terms. In suitable coordinates, we find it is a
product of the Weyl character formula with a zeta factor related to the curve.
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1. INTRODUCTION

1.1. Background and goals.

1.1.1. In our joint works [AGKRRV1], [AGKRRV2|, and [AGKRRV3] with Arinkin, Gaitsgory,
Kazhdan, Rozenblyum, and Varshavsky, we formulated a conjectural spectral decomposition of
unramified, compactly supported automorphic functions. This conjecture was also found by X. Zhu
in [Zhu].

Our spectral decomposition, inspired by V. Lafforgue’s breakthroughs [Laf3] and by the geo-
metric Langlands conjecture of Beilinson-Drinfeld, is of Langlands type, but of different nature: it
describes all (compactly supported) automorphic functions, not merely eigenforms, and it yields
both reciprocity and functoriality statements without explicitly incorporating either into its formu-
lation.

One major purpose of our work was to show that the spectral decomposition actually follows
from an f-adic version of the geometric Langlands conjecture.

1.1.2. In advertising our joint work, including in my talks at IHES, I have tried to argue that
our conjecture yields new insights into automorphic functions that should be of interest to number
theorists. Our conjecture is most manifestly satisfying around discrete (alias: elliptic) Langlands pa-
rameters (cf. Example 2.4.5.1). But I have been hard pressed to give precise, concrete consequences
near other Langlands parameters.

For instance, our conjecture as is does not immediately reproduce the Arthur multiplicity formula
for discrete series. Further development of the theory is needed to understand such forms.

1.1.3. With that said, the main new contribution of this note is to give a simple, concrete applica-
tion of our work to automorphic functions, answering a question of Michael Harris. The assertion
statement concerns the trivial Langlands parameter, which is essentially as far from discrete as
possible.

1.1.4. In addition, befitting conference proceedings, in §2 we provide some introduction to the
geometric Langlands program and the circle of ideas developed in [AGKRRV1], [AGKRRV2], and
[AGKRRV3]. These two parts of the paper can be read essentially independently.

The reader who is most interested in this survey material might skip ahead to §2; as that material
is by its nature introductory, the emphasis of the remainder of the introduction is on the problem
considered in the latter part of the paper.

1.2. Statement of the main result.

1.2.1. Setting. We fix F, a finite field of characteristic p and let k = F, denote its algebraic closure.
We let £ # p be a fixed prime and let e denote Qy; this is the field of coefficients in the terminology
of [AGKRRV1]. We fix G/F a split reductive group and let G /e denote its Langlands dual group.

Let Xo/F, be a smooth, projective, and geometrically connected curve, and we let X = Xo xp_k
denote its base-change to k.
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We let F' = Fy(Xo) denote the global field associated with X. We let A denote its ring of adeles
and let O € A denote the subring of integral adeles.

We let Autunr denote the space of everywhere unramified, compactly supported automorphic
function for F By definition, this means that Aut;™ is the vector space of functions:

G(F)\G(A)/G(O) — e

with finite support. We let Autgiy, < Aut.™ denote the subspace of cuspidal automorphic forms.

1

1.2.2.  We fix once and for all a k-point of X to use as the base-point for our fundamental groups;
we omit it from the notation.? We let 7{*(X) denote the étale fundamental group of X, we let
mrthm (X)) := 7¢*(X() denote the arithmetic fundamental group, and we let Wy := mi™h™ (X)) x 5 Z

denote the Weil group of X (considered with its standard topology, so that 7*(X) € Wy is open).

Notation 1.2.2. 1 For definiteness: we always use geometric Frobenius conventions. So we have
identified Z ~ ¢t (Spec(F,)) with generator of y/ corresponding to the geometric Frobenius element.

1.2.3. Lafforgue-Langlands decomposition. For the moment, we assume that G is semisimple to
simplify the discussion. (The body of the paper works with general reductive groups.)

A Langlands parameter is a continuous homomorphism p : Wx — G (e). A Langlands parameter
is semi-simple if for any parabolic P € G such that p factors through P(e), there exists a Levi
factor M < P so that p further factors through M(e) (see [AGKRRV1] §3.5-3.6).

We now remind that [Laf3] constructed a decomposition:

AutiE ~ @ Autth (1.2.1)

cusp cusp,
o]

where [o] runs over conjugacy classes of semi-simple Langlands parameters.

Remark 1.2.3.1. The above applies just as well for ramified automorphic functions. Our main results
are restricted to the unramified setting, so we have chosen simply to emphasize the unramified
setting throughout this text.

1.2.4. The main result in this note is the following:

Theorem A. Let G be semi-simple (and not the trivial group). Let triv : Wy — G(e) denote the
trivial Langlands parameter, i.e., the constant map with value the identity.

Assume the restricted geometric Langlands conjecture of [AGKRRV1] with its compatibility with
Eisenstein series.

Then the summand ‘Au#cll?;p,[triv] Autdng, s zero. In other words, there are no unramified cusp
forms with trivial Langlands parameters.

Remark 1.2.4.1. Although we do not emphasize this in the text, one can get by with less. Namely,
according to [AGKRRV1] Corollary 14.3.5, Shvy;;,(Bung) breaks up as a sum over semi-simple
G-local systems on X. One only needs restricted geometric Langlands for the trivial local system.
We expect forthcoming work to completely address this problem.

Remark 1.2.4.2. Roughly speaking, the argument goes as follows. In §3, we discuss what Eisenstein
series corresponds to on the spectral side of arithmetic Langlands. Then in §4, we provide local
coordinates on LS%rthm near the trivial local system (see Theorem 4.3.3.1) and then explicitly

1We remind the well-known fact that over function fields, cuspidal automorphic forms are a priori compactly
supported.

2It is better to think in terms of the category of lisse sheaves on X, as we often do. We use 7¢* simply to make
some points of our discussion more concrete.
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calculate spectral Eisenstein series in these coordinates (see Theorem 4.7.2.1). From here, the result
is essentially obvious (see Lemma 3.7.1.1).

Remark 1.2.4.3. We remark that one key point of the proof of Theorem 4.7.2.1 suggests a relation-
ship between manipulations with certain divergent series and categorical trace methods. We spell
out our ideas on this subject — such as they are — in §4.6.5. This material can be read essentially
independently of the rest of the paper.

1.3. Some comments.

1.3.1. Motivation I. The vanishing of Autgggp [triv]
Plessis—Harris—Thorne studying the local Langlands correspondence for function fields via the trace
formula. The above theorem leaves their results conditional on the geometric Langlands correspon-

dence, on which a great deal of progress has been made in recent years.

is an ingredient in forthcoming work of Beuzart-

1.3.2. Motivation II. For G = PGL,, any cusp form has irreducible Langlands parameter, i.e., in

this case Aut{ o) o] = 0 unless o is irreducible; we refer to [Laf3] Lemma 16.4 for a recent treatment

(following parts of [Lafl]; see the statement of [Lafl] Theorem V1.9 in particular).
However, for general G the situation is more complicated: cusp forms may have reducible Lang-
lands parameters; this is related to the failure of the Ramanujan conjecture for these cusp forms.
Still, Arthur’s conjectures provide some restrictions on the ¢’s that may appear. First, note that
there is a canonical map Wx — Z En/ BN e* that we denote v ~— |7|; choosing ,/q € e, we then
obtain a canonical map:

Wx — Wy x SLy(e)
- <7< (lw OW)> (1.3.1)

punr
cusp,[o]

(1.3.1) to an irreducible representation of Wx x SLs into G.3

Arthur’s conjectures predict that Au will be zero except possibly when o extends along

1.3.3. Suppose we are given such an Arthur parameter of : Wx x SLy — G, and suppose its

restriction to 7{*(X) is trivial, so we have a map o : Z x SLy — G. Let f € §(e) denote the
1

logarithm of o (O,(% 8)) and let F € G(e) denote the image of (1, (? %)). Note that F

encodes the underlying Langlands parameter of of, and also note that Adg(f) = ¢f. We also note
that f must be non-zero, or else of will not be irreducible.
We then arrive at:

Conjecture 1.3.1. Suppose F € G(e) is a semisimple element and let o : Wx — G(e) denote
the corresponding Langlands parameter Wx — Z EaliR G(e). Then .Autgfllsrp [F] is trivial unless q is
an eigenvalue of Adp : § — g.

Remark 1.3.3.1. Of course, q can be replaced by ¢~! in this conjecture (apply the Cartan involution

on Arthur’s SLs), which partially reflects the invariance of the conjecture under modifications of
our normalizations (like geometric vs. arithmetic Frobenius).

3F0rmally, this means we have a map SLy — G over e and a continuous map Wx — G(e) whose image commutes
with the image of SLa(e) — G(e).
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Assuming geometric Langlands, we will prove something close to this conjecture. Namely, we will

show that .Aut;f;p (o] = 0 unless Adr has an eigenvalue equal to a Frobenius eigenvalue appearing

in H),(X) x H%(X); as g is the Frobenius eigenvalue on HZ (X), this is somewhat stronger than
the hypotheses of the conjecture. We remark that the case where F' is the identity yields Theorem
A.

1.4. Conventions and notation. Our hope is that this note can serve as a point of entry to the
long papers [AGKRRV1], [AGKRRV2], [AGKRRV3]|. We have provided some background in §2.
We also refer the reader to the introduction of [AGKRRV1] for more background on the subject.
We have also aimed to include precise citations whenever we use technical results from these papers
with the hopes that this can help the reader navigate these works.

We generally maintain the conventions and notation of [AGKRRV1]; we refer to §0.9 in particular.
We work over the geometric field k = Fq for geometry of the curve X, its moduli stacks Bung of
H-bundles, and so on, and we use the characteristic 0 coefficient field e = Q, for geometry of local
systems. Outside of §2, we have k = Fq. The geometry over k is classical algebraic geometry, while
the algebraic geometry over e is derived. We use higher categorical methods. Our DG categories
are assumed to be enriched over e-vector spaces.

For an algebraic stack Y over k locally of finite type, we let Shv(Y) denote the DG category
of e-sheaves on Y (see [GKRV] A.1.1 (d’)). We let qLisse(Y) < Shv(Y) denote the subcategory of
quasi-lisse complezes as in [AGKRRV1] Definition 1.2.6; these are objects whose (perverse, say)
cohomologies are colimits of lisse sheaves (in the usual sense).

We generally refer to co-categories simply as categories to simplify the terminology.

We let DGCatcopnt denote the category of cocomplete (and accessible) DG categories under con-
tinuous DG functors. We consider DGCatcont as equipped with Lurie’s tensor product. We let
Vect € DGCatcont denote the DG category of e-vector spaces, which is the unit for the monoidal
structure.

For € a DG category, we let C° denote its subcategory of compact objects. When € has a t-
structure, we let €V (resp. C<C, resp. €=9) denote the heart of the t-structure (resp. the subcategory
of connective objects, resp. the subcategory of coconnective objects).

We refer to [GKRV] for background on categorical trace methods.

For H an affine algebraic group over e, we remind that there is a moduli stack LS = LS (X))
over e of H-local systems (with restricted variation) on X. We remind that an H-local system is sim-
ply a t-exact (equivalently: right t-exact) symmetric monoidal functor Rep(H) — qLisse(X) (equiv-
alently: a symmetric monoidal e-linear functor Rep(H)Y»¢ — Lisse(X)"). Therefore, we define the
stack LS"$" to parameterize right t-exact symmetric monoidal DG functors Rep(H) — qLisse(X);
more precisely, the S = Spec(A) points of LS are the groupoid of right t-exact symmetric
monoidal functors Rep(H) — A-mod(qLisse(X)).

Pullback along geometric Frobenius Froby : X — X defines a map LS}*"™ — LS that we also
call Frobenius.* Tts Frobenius fixed points are by definition the stack LS%thm, which (tautologically)
parameterizes right t-exact symmetric monoidal functors from Rep(H) to quasi-lisse Weil sheaves
on X.

Finally, we always assume p = char(k) satisfies the (mild) assumptions from [AGKRRV1] §14.4.1.

1.5. Acknowledgements. I'm grateful to Michael Harris for raising this question. I also thank
Sasha Braverman and Dennis Gaitsgory for their interest and for helpful conversations on this

4Note that this map is a map of stacks over e. The Frobenius for LS can be thought of as a non-abelian/non-
linear version of Frobenius acting on the (e-vector space of) étale cohomology of X.
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subject. I thank Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Nick Rozenblyum, and Yasha
Varshavsky for their collaboration on this subject and to Vincent Lafforgue and Cong Xue for
related discussions.
This work was supported by NSF grant DMS-2101984 and a Sloan Research Fellowship.
Finally, I thank the organizers of the 2022 Summer School on the Langlands program at IHES
for the invitation to speak and for their extraordinary patience with me while writing this article.

2. AGKRRV THEORY

We begin with a general overview of the works [AGKRRV1] and [AGKRRV3| and some of the
background material.

These works are admittedly technical. We do not intend here to provide an overview of each bit
of the technical background needed for those works. However, we have tried at least to explain why
certain technical issues arise (e.g., the need for derived algebraic geometry). But in this vein, we
freely appeal to foundational ideas in the subject that may not be familiar to all readers: stacks, DG
categories, D-modules, ¢-adic sheaves, and IndCoh stand out. Although these subjects are technical
and not always widely known, these days there are many references (and generous experts), and we
think the interested reader should readily find resources to pursue their interest in the background
material that comes up in the discussion.

This section is structured as follows. First, in §2.1, we explain a bit how someone interested
in automorphic functions should regard about the de Rham (or D-module) geometric Langlands
conjecture, and we highlight some nice pleasant features of the latter subject in comparison with
the former. In §2.3, we explain the restricted geometric Langlands correspondence; one side involves
moduli theory for /-adic local sheaves, which we explain in §2.2. In §2.4, we explain how the story
develops working over finite fields, when Frobenius is considered. Finally, in §2.5, we describe how
our main arithmetic result (from [AGKRRV3)) is proved, emphasizing the key role played by Xue’s
work on sheaves of shtuka cohomologies.

2.1. Arithmetic and geometric Langlands.

2.1.1. Arithmetic Langlands. Conventional arithmetic Langlands concerns automorphic represen-
tations, which by definition are certain irreducible representations appearing in a suitable space of
automorphic functions.

A crude (and perhaps vulgar) form of the Langlands philosophy predicts that automorphic
representations for G correspond to Langlands parameters for G. There are corrections that are
not quite our emphasis here: Arthur parameters should be used, L-packets appear, for number fields
there is not a suitable definition of Langlands parameter (or Langlands group), and so on. What is
our emphasis is the atomic nature of the conjecture: the basic objects are irreducible subquotients
of a space of functions, not the function space itself.

2.1.2. Geometric Langlands. By contrast, the conventional form of the geometric Langlands con-
jecture predicts that:

D-mod(Bung) ~ IndCohy, (LSEY) ~ QCoh(LSEY). (2.1.1)

Since the conference primarily concerns arithmetic aspects of the Langlands program, we digress
for some time to explain some starting features of the geometric setting, including the notation
used above and some ways of thinking about the main objects that appear there.

This form of the geometric Langlands conjecture is due to Beilinson-Drinfeld and Arinkin-
Gaitsgory, see [AG] and [Gai3] for an introduction to this circle of ideas. We will refer to it as
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the de Rham geometric Langlands conjecture because the theory of D-modules remembers de
Rham’s cohomology groups.

2.1.3. The input for geometric Langlands conjecture is a smooth projective curve X /k for a fixed
field k. We assume k is algebraically closed to simplify certain points, although this is not funda-
mentally essential in the de Rham setting.

Then Bung is the space of G-bundles on X. More specifically, Bung = Bung(X) is a stack whose
functor of points is given by:

Bung(S) := Hom(X x S,BG) = {G-bundles on X x S}

where S is an affine scheme and BG is the classifying stack of G. It is standard that Bung is a
smooth algebraic stack locally of finite type, although it is not quasi-compact.
A lovely formula due to Weil® says that:

Bung(k) = G(F)\G(A)/G(O)
with O =[], x() Ox the ring of integral adeéles (for O, the ring of Taylor series based at « € X (k)),
A = colimgc x (k) finite ([ 1,es Frac(Oy) x [ Ligs O,) the similarly defined ring of adeles, and F =
k(X) the field of rational functions on X. Therefore, we can think of Bung as a geometric avatar

of the double quotient space where unramified automorphic functions would live (if we replaced k
by a finite field).

2.1.4. A foundational analogy in geometric representation theory says that when k is of charac-
teristic zero, the category of D-modules on a stack Y behaves like the space of functions on the set
Y(F,) of F,-points of Y, if such a thing makes sense.

There are several justifications of this idea. First, for £ = C, some D-modules are related to
constructible sheaves by the Riemann-Hilbert correspondence, which are in turn related to étale
sheaves by the Riemann existence theorem, which for k& = F, are in turn related to functions by
the Grothendieck-Deligne sheaves-functions correspondence.”

Alternatively, one can imagine that D-modules encode linear systems of differential equations
whose solutions define functions (or distributions) on Y(C), which are analogous to functions on
Y(F,) for different reasons.

In practice, it is important in this analogy to work with all D-modules on Y. For example, the
Mellin transform in this setting is an equivalence D-mod(G,) ~ QCoh(A'/Z); it can be thought
of as a simplified toy model geometric Langlands-style equivalences. Under the Mellin transform,
neither holonomic nor regular holonomic objects on the left hand side have reasonable descriptions
on the right hand side. One takes this as a sign that one should work with the category of “all”
D-modules in geometric representation theory rather than a constructible sort of subcategory.

Moreover, by [Lau2], for G = G,,, the equivalence (2.1.1) does not come from an equivalence of
abelian categories; that is, it is necessary to work with derived categories in this analogy. Per the

5This formula is essentially obvious once one knows that G-bundles are Zariski (not merely étale) locally trivial
on smooth projective curves. For GL,, this follows from descent. For other groups, this is Steinberg’s theorem.

We remark here that the theorem also holds over finite fields, as is often implicitly taken for granted in the subject.
For simply-connected G, this is a theorem of Harder [Har]. In general, one takes a surjective G’ — G with G’ having
simply-connected derived group and Ker(G' — G) being a (connected) torus; then G-bundles on X lift to G’ (by
class field theoretic Brauer group considerations), so we are reduced to Harder’s theorem.

6For example, the reader can imagine Y is defined over Z[1/N] for N prime to ¢g. But I would encourage the
reader not to be so literal on this point.

"We refer to the first sections of [Del] “Applications de la formule des traces aux sommes trigonométriques” for
background on this notion.
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modern understanding, we use DG categories in the homotopical formalism of co-categories; we
generally abide by the convention that our DG categories should have all direct sums and functors
between them should be linear, exact, and preserve direct sums. The advantage of the homotopical
formalism is that it eases the foundational burdens of the subject by introducing algebraic tools —
we speak can fluently of monoidal categories, module categories, tensor products, and so on most
readily in this language.

Ezample 2.1.4.1. Per the previous discussion, one considers D-mod(Bung) as analogous to the space
Aut?™ of unramified automorphic functions.

2.1.5. Let us pause a bit further to discuss the analogy between categories and vector spaces
further.

The origin can be thought of as follows: for Y/F, defined over F, a constructible Weil étale sheaf
F on Y gives rise to a function on Y(F,) by taking the trace of Frobenius on the fibers at rational
points, giving a fairly general procedure for producing functions from sheaves. This is the usual
source of the analogy between sheaves and functions.

One can say that functions on a space form a vector space, while sheaves on a space form a
category, so vector spaces (of functions) categorify to categories (of sheaves).

2.1.6. One can make the previous discussion more precise.

Fundamentally, the source of functions in the previous discussion was that if we have a (finite-
dimensional) vector space V' with a linear transformation 7" : V' — V', we can form try (7") to obtain
a number.

Similarly, for a (dualizable DG) category € with endofunctor 7" : € — C, there is a trace tre(7) €
Vect associated to this datum; we refer to [GKRV] for a detailed discussion of this construction.
We wish to highlight that — besides (maybe serious) psychological barriers around categories — the
general construction is quite formal and mirrors the usual theory of traces.

2.1.7. We now turn to more closely interpreting the geometric Langlands equivalence.
The space LSdG,R = LSdGR(X) is the moduli stack of de Rham G-local systems on X. In the field,

the stack LS{R (for H/k an affine algebraic group) is conventionally defined as having S-points:
LS$R(S) := Hom(Xgg x S, BG)

where Xg4r is the de Rham space of X. It would be too digressive here to discuss the de Rham
space in detail, but its key point is that QCoh(Xggr) = D-mod(X).

Less conventionally, one can proceed as follows. First, at the level of k-points: what is an H-local
system supposed to be? We could take gLisse®®(X) € D-mod(X) to be the subcategory of objects
each of whose cohomologies is a colimit of local systems, i.e., vector bundles with connections;
this is a suitable derived category of lisse D-modules, but we call them quasi-lisse to adhere to
conventions from [AGKRRV1].

Then a de Rham H-local system is essentially a symmetric monoidal functor Rep(H) — qLissedR(X );
this is not quite right since for H = Gy, such a datum is a tensor-invertible object o of qLissedR(X ),
i.e., a cohomologically shifted line bundle with connection; to remove that ambiguity, we refine our
definition by asking that our functor be right t-exact.®

80f course, this issue arises only because of our insistence to work with derived categories, which the reader may
take issue with. In §2.1.12, we explain that it is necessary to use derived algebraic geometry in the story we are telling,
so our affine test schemes S should also be derived; the derived category QCoh(S) is sensitive to derived geometry
but not the abelian category QCoh(S)? is not.
In anticipation of these issues, we have made a pedagogical choice to stick with derived categories and right t-exact
functors.
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We note that this definition then behaves essentially as expected: a de Rham G Ly-local system
is a rank n vector bundle on X with connection; a de Rham SO,-local system is a rank n vector
bundle € with connection V and non-degenerate symmetric pairing € ®op, € — Ox preserving
the connections; a de Rham Spa,-local system is similar, but the non-degenerate pairing is anti-
symmetric; a de Rham Gs-local system is an octonion bundle with connection; and so on.

This Tannakian definition of local systems — which is perhaps the simplest way to define local
systems for general algebraic groups — adapts to give S-points for LS?{R: its S-points are right
t-exact functors:

Rep(H) — D-mod(X) ® QCoh(S). (2.1.2)

We suggest the reader turn refer to [AGKRRV1] §4.1 for further related discussion. We briefly
note that any symmetric monoidal functor Rep(H) — D-mod(X) lands in qLisse?®(X).

2.1.8. Needless to say: for a number theorist, LS%R is thought of as a moduli stack of Galois
parameters.

Indeed, by (a very easy form of) the Riemann-Hilbert correspondence, for £k = C, there is
an analytic identification of G-local systems with homomorphisms p : 71(X(C)) — G(C) up to
conjugation (although this does not work naively in S-families).

2.1.9. The next key piece of structure in the geometric Langlands conjecture is the spectral action.

This is the action of the monoidal category QCoh(LSdGR) on D-mod(Bung) constructed in [Gail]
by Drinfeld-Gaitsgory. According to loc. cit., this action is uniquely characterized by its compati-
bility with (a suitably strong version of) the Hecke action on D-mod(Bung).

2.1.10. The spectral action can be visualized as follows.
Let Y be any stack and suppose C is a module category for QCoh(Y). We draw this as a category
fibered over Y:

Cy

\
%

Here the fiber C, at y is defined as:

Cyji=C ® Vect
QCoh(Y)
if y is a k-point; if it is an A-point, replace Vect with A-mod. Heuristically, we might write € =
Syey Cy dy. This formalism was studied in great detail in [Gai4].

So informally, the Drinfeld-Gaitsgory spectral action says that the category D-mod(Bung) fibers
over LS%R, and that this structure is canonically defined by Hecke functors. Therefore, the existence
of the spectral action can be interpreted as a (categorical) reciprocity law for the category of
automorphic sheaves (a phrase that means D-mod(Bung), at least in this de Rham context).

By definition, the fiber D-mod(Bung), of D-mod(Bung) at a point o € LS‘éR is the category of
Hecke eigensheaves with eigenvalue o.
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2.1.11. In the heuristic formula € = Syey Cy dy above, we imagine that we have a category-valued
measure G, dy on Y. In cases of interest, we may wish to calculate it.

This is the job of the full geometric Langlands conjecture. The QCoh(LS‘éR)—module category
IndCOhNﬂp(LS%R) encodes an analogue of Plancherel measure under this metaphor.

Here the category IndCohNilp(LS%R) of ind-coherent sheaves with nilpotent singular support was
defined in [AG] and has been the subject of wide study in the field since then. We refer to [AG] for
an introduction to this subject.

Because irreducible G-local systems do not support non-zero nilpotent horizontal sections of their
adjoint bundles, we have:

QCoh(LSIredy @ IndCohyy, (LSIR) = QCoh(LSA-irred)
5 )QCOh(LS%R) PATRG G

(see [AG] Proposition 13.3.3 for more details).

Under our analogy, this means that Plancherel measure is constant on LS(éR’i]”red with value Vect.
Near reducible local systems, there is a correction relating to nilpotent horizontal sections of the
adjoint bundle, which are avatars here of Arthur’s SLo.

2.1.12. We now give a quick example illustrating some basic technical points.

Suppose X = P! and G = G,,. Then Bung,, parameterizes line bundles on P!, so is isomorphic
to Z x BG,,: the Z-factor parametrizes degrees of line bundles while the BG,,,-factor encodes the
fact that every line bundle on P! has automorphism group G, (suitably understood in S-families).

Therefore, D-mod(Bung,, (P')) = [],,cz D-mod(BG,,).

The category D-mod(BG,,) can be calculated quite explicitly. Let 7 : Spec(k) — BG,, be
the structure map, which we remind is a smooth covering. The functor 7' : D-mod(BG,,) —
D-mod(Spec(k)) = Vect is evidently conservative and admits a left adjoint m. By base-change,
the endofunctor 7'm of Vect is given by tensoring with Cqr(G,), the de Rham homology of G,.
Moreover, by a simple form of Barr-Beck, this endofunctor 7'm has a natural monad structure
corresponding to the algebra structure on Cyr(G,) coming from the group structure on Gy,;
moreover, the induced functor D-mod(BG,,) — C4qr(G,,) is an equivalence.

Finally, of course, Cqr(Gy,) is a DG algebra which is a square-zero extension of k£ by a single
generator 7 in cohomological degree —1 (aliases: a symmetric algebra on a generator in degree -1;
a homologically graded exterior algebra on one generator). So we have:

D-mod(Bung,, (P1)) = H(k x kn)-mod. (2.1.3)

neZ
Naively, P! is a simply-connected, so has no non-trivial local systems, so one might expect
LSdGR(Pl) to equal BG (reflecting the non-trivial automorphism group of a trivial local system).

For G = G,,, we would have QCoh(BG,,) = Rep(G,,) = [],,.5 Vect, which is close to (2.1.3), but
missing the generator in degree —1. § 5
In fact, this is because we were too naive. The derived stack LSdGR(Pl) equals’ BG X5/c BG,

nez

which for G = G, is just BG,, x (0 x a1 0). Here it is important the fiber products be taken in
the sense of derived algebraic geometry. Then we find QCoh(LS(g}ﬂ (P1)) = [T1,,ez QCoh(0 x o1 0).
Finally, we note that 0 x o1 0 is Spec of k®y [k (the tensor product being derived), which is the
same square-zero extension Cygr(Gy,) we saw before.

We remark that the underlying classical stack recovers our naive conception of LS from before.

9This formula comes e.g. from thinking of a local system on P* as a pair of local systems on the two standard open
A'’s in P! with an isomorphism on their intersection A1\0. We note that Al is contractible, not just simply-connected.
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Alternatively, one can see the utility of derived algebraic geometry as follows. For general X and
G, standard arguments say that the tangent space of LSdG-R at a G-local system o is H éR(X ,00),
the first de Rham cohomology with coefficients in the adjoint local system of . More generally,
we should expect the tangent complez to be Cqr(X, §-)[1]. As the above example illustrates, this
formula is only possible in general when LS%,R is interpreted as a derived stack.

In summary: we use derived algebraic geometry in the spectral side of geometric Langlands
because it produces right answers (unlike classical algebraic geometry) and because it yields more
manageable infinitesimal geometry of moduli spaces.

2.1.13. Conclusion. Above, we briefly discussed arithmetic Langlands and gave a lengthier intro-
duction to (de Rham) geometric Langlands.

There is a key difference, which §2.1.1 already hints at: in arithmetic Langlands, we study atomic
objects (irreducible representations), whereas in geometric Langlands we study molecular objects
(an analogue of the space of automorphic functions). One may compare the situation with the
Fourier theory on the circle S': the atomic theory says (necessarily unitary) characters of S*
are in bijection with Z, but the actual Fourier theory says L?(S') is a direct integral over Z of
I-dimensional Hilbert spaces (i.e., L?(Z)). In the automorphic theory, an analogue of the latter
would be desirable, but the former is all we can access.

One starting point for [AGKRRV1] is an attempt to resolve this discrepancy, at least for func-
tion fields, at least in the everywhere unramified case. In the end, we end up with an arithmetic
perspective closer to the geometric Langlands conjecture.

I wish to emphasize: our work is not the only one working on bridging this gap; [Zhu] and [FS]
are closely related efforts, and we all were inspired by V. Lafforgue’s breakthroughs [Laf3].

2.2. Local systems with restricted variation: an introduction. There is an old desire to
have some kind of geometric Langlands for /-adic sheaves instead of D-modules. One side is easier
to imagine: we should consider (certain) ¢-adic sheaves on Bung instead of D-modules on Bung.
The spectral side (i.e., the LS-side) has been less clear, but the relevant geometry was developed
in [AGKRRV1]. We now summarize the story.

2.2.1. What is the problem? Suppose now that k is an algebraically closed field and X is a smooth
projective curve over k. We let e := Q.

We wish to imitate the general geometric Langlands story, but understanding local systems as
lisse étale e-sheaves rather than vector bundles with connection. What goes wrong?

First, let us be maximally optimistic: we wish to have a stack LS% = LSéth(X ) that behaves

like our earlier stack LS‘éR from before. Suitably understood, its points should be G-local systems,

i.e., right t-exact symmetric monoidal functors Rep(G) — qLisse(X) — here glLisse(X) < Shv(X) =
Shv'(X) is understood in the étale sense, as in §1.4.

As a preliminary step, note that the automorphism group of the trivial G-local system on X
is G(e). This suggests that LS‘g should be defined over the field e and contain a copy of BG
corresponding to the trivial local system.

Remark 2.2.1.1. Here we see a basic bifurcation in the algebraic geometry of the geometric Lang-
lands; some objects, like X, G, Bung, etc. live over the ground field k, but spectral objects, like
G, Lsg), etc. live over the coefficient field e. For the de Rham theory, the coefficient field is the
ground field and this distinction can be ignored.
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2.2.2. Now let us suppose k has characteristic 0 and X has genus g > 0. )
Ignoring technical issues (stackyness, derived structures), we might first guess that LSE . would

be something like G2 over the field e. After all, the étale fundamental group of X has abehamzatlon
72 Moreover, one can see that (neglecting the same technical issues), the stack LSG over C is
complex analytically isomorphic to G%(XBGm x 0 x a1 0).

However, the difference between Z and Z is key here. In point of fact, continuous homomorphisms
729 — e* are indexed by points in (OX)?9 where O, C e is its usual valuation subring of integral
elements. In other words, our hope LS‘%rm = G?g(xBGm X 0xa10)~ G?,? was too naive: the right
hand side has too many points over e!

Note that it is hard to find an interesting scheme over e with e-points OJ. So we give up on a
nice stack (say, connected and algebraic) LS%M existing.

2.2.3.  One the other hand, deformation theory of étale local systems (alias: Galois representations)
is an old story. Usually one considers torsion coefficients, but we need not do so here. The basic
point is that for an étale local system o, we have a DG Lie algebra Cg (X, §5), so has an associated
formal moduli problem (see [Lur] Chapter 13 and [GR3]).

In other words, although we gave up on LS%E existing, we do know its e-points (which are local
systems after all) and we do know its formal completion at each such point.

2.2.4. The definition. In [AGKRRV1], we define a prestack over e (i.e., functor from connective
commutative e-algebras to oo-groupoids, i.e., moduli problem) called LS}$** for any affine algebraic
group H /e. In general, it remembers a little more than just formal neighborhoods of points, as we
will see.

The definition is a naive imitation of (2.1.2); by definition, an S-point of LS'$" is a right t-exact
symmetric monoidal functor:

Rep(H) — qLisse(X) ® QCoh(S5).

Remark 2.2.4.1. To make this definition appear more concrete, let us explain what the right hand
side is without using tensor products of DG categories. Suppose € is a DG category, which we
remind as all colimits. Suppose S = Spec(A). Then € ® QCoh(S) = € ® A-mod = A-mod(C), i.e.,
an object of € with an action of A. So the right hand side is reasonably concrete — the complexity
is about the same as that for A-mod.

2.2.5. What do we get? The above is a formal definition. It remains to justify that we have given
a good notion, where the meaning of this phrase will become more refined as we proceed.

2.2.6. Example: the additive group. First, suppose H = G,.

We claim that in this case, LSrCESatr actually “looks the same” as in the de Rham case! More
precisely, we will show that LSE?,itr is the algebraic stack corresponding to the complex Cg (X)[1],
i.e., it is (non-canonically'?) isomorphic to BHY, (X) x Hj (X ) x QHZ (X) (where QHZ (X)) is defined
as the derived scheme 0 x H2.(X) 0). One can see (e.g., via the following analysis) that the same
holds in the de Rham settlng, but with de Rham cohomology replacing étale everywhere.

To see this, let triv € Rep(G,,) be the trivial representation, i.e., the tensor unit. There is a canoni-
cal map triv — triv[1] € Rep(G,) corresponding to the standard 2 dimensional representation (1)
of G,.

Now for € a symmetric monoidal DG category and F' : Rep(G,) — € a symmetric monoidal
functor, we can apply F' to the extension class above to obtain a map 1e¢ — 1e[1], i.e., a point

10We have in effect chosen a formality isomorphism for Ce; (X)[1].
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in the (co-)groupoid Home(le, Te[1]) = Q®'Ende(le).!! It is easy to see'? that this gives an
isomorphism of groupoids:

Hom omAlg(DGCateon:) (REP(Ga), €) = Home(1e, Le[1]).
Taking € = qlLisse(X) ® QCoh(S), we see that S-points of LS%" equal:
Q" (Homg jsse(x) (€, €x[1]) ® Homqeon(s) (Ox, Ox)) = Q7 (Cer(X)[1] ®T(S, O5))

for ex the constant sheaf on X. Up to unwinding the formalism, this proves the claim.

2.2.7. Ezxample: the multiplicative group. Here we simply state the outcome:

The space LSrCﬁi:r is an ind-algebraic stack. It is a disjoint union of its connected components, each
of which is (again non-canonically'®) isomorphic to BG,, x HA(X)§ x QHZ(X). The connected
components of Lsgfff are in bijection with its e-points, which we remind are just the rank 1 lisse
sheaves on X.

2.2.8. What is the toolkit? This material can be ignored. For the reader’s convenience, we describe
the general recipes for proving things about LS.

First, we need to probe the underlying classical stack, ignoring issues about derived algebraic ge-
ometry. For this, we let ITx be the Tannakian group attached to the Tannakian category qLisse(X )O,
so IIx is a group scheme over e with a symmetric monoidal equivalence Rep(IT X)Q ~ qlisse(X)Y.

For classical schemes, S-points of LS are canonically in bijection with maps Ty x S — H x S
of group schemes over S, considered up to conjugation (where we quotient in the groupoid sense)
— see [AGKRRV1] Proposition 2.5.9 (though the assertion is essentially Tannakian duality plus
bookkeeping). This allows us to study the underlying classical prestack of LS}$*" using tools from
the theory of algebraic groups.

We then extend to derived schemes using deformation theory, which is simple to compute for
LSY: see [AGKRRV1] §2.2.

Example 2.2.8.1. Let us illustrate the first technique in an example.
The earlier assertion that LSrCfftr is a disjoint union of “fat points” from §2.2.7 amounts to saying

n

that for any algebraically closed field extension €'/e, a map S = Spec(e’) — LS]“c‘f;f:fr factors through
an e-point. This becomes a general assertion about group schemes: a map IIx x S — G,, x S
comes from a map defined over e. As G, has finite type, this reduces to the same assertion with
IIx replaced by an affine algebraic group I' (i.e., a finite type quotient of ITx ), which we can even
assume is abelian. Here the assertion is evident from the representation theory of commutative
algebraic groups.

Lo clarify for the reader who is not versed in this material: for a spectrum V' (or complex of k-vector spaces),
Q®V means “take the underlying oo-groupoid” — at least for connective spectra/chain complexes, this is analogous
to taking the underlying set of an abelian group, and in general, one can think of it as “pass to the connective cover
and then take the underlying homotopy set.” In explicit set-theoretic models, we might take a chain complex V* of
Z-modules, truncate to obtain 7<°(V'*), and then pass to the corresponding simplicial abelian group (hence simplicial
set) under Dold-Kan.

The notation Q° (V) simply means Q°(V[1]).

12Namely, one simply uses that there is a standard symmetric monoidal equivalence between Rep(G.,) and modules
over the commutative algebra e x e[—1].

BHere is a recipe to construct the component more canonically. First, take LSréffr and formally complete it at
the trivial Gg-local system. The resulting stack receives a homomorphism from BG, = BG/, (here we use the
exponential); then pushout along the map to BG,.
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2.2.9. Structure of LS™' in general. We hope the following results will contain no surprises at this
point.

First, LS is always a formal algebraic stack. More precisely, if one maps LS%" = LS (X) —
BH = LS (Spec(k)) by taking the fiber at a k-point in X, this map is representable in ind-
schemes, and even better, in indschemes that are disjoint unions of formal schemes — see  AGKRRV1]
Theorem 1.4.5.

Second, the connected components of LS are in bijection with semi-simple H-local systems
up to equivalence. Informally, two points of LS lie in the same connected component if and
only if their semi-simplifications are infinitesimally close. See [AGKRRV1] Proposition 3.7.2 for a
precise statement.

Finally, if we imagine LS‘;} existed, then for each semi-simple o, there would be a closed substack
LS%}U of local systems with semi-simplification o; LS*"" is then morally the disjoint union of LS

formally completed at each such LS%’J. For more precise assertions in the Betti and de Rham
settings, see [AGKRRV1] §4.

2.3. Restricted geometric Langlands. We briefly discuss our main conjecture in the subject.

2.3.1.  Let Shvy;,(Bung) < Shv(Bung) denote the subcategory of sheaves with singular support
in the nilpotent cone. Here singular support of étale sheaves was defined by Beilinson in [Bei].

In the Betti setting, Ben-Zvi and Nadler [BZN] said that sheaves with nilpotent singular support
are the right object to study. We mimic this principle in the étale setting, conjecturing:

Conjecture 2.3.1 (Restricted geometric Langlands conjecture). There is an equivalence Shvy;,(Bung) ~
IndCohNﬂp(LSEES“).

Here the right hand side is defined as in the de Rham case.
Remark 2.3.1.1. One can find a simplified version of this conjecture in [Laul] Conjecture 6.3.2.

Remark 2.3.1.2. Of course, Conjecture 2.3.1 is subject to many compatibilities. The compatibility
with Whittaker coefficients, (a mild form of) the compatibility with Eisenstein series,'* and a
version of [FR] Theorem 8.3.0.1 uniquely determine the comparison functor in Conjecture 2.3.1; in
the de Rham and Betti settings, this idea is the subject of [GR1].

2.3.2. Evidence. When the geometric field k has characteristic 0, we show in [AGKRRV1] that the
restricted GLC follows from the de Rham geometric Langlands conjecture.

In general, one can directly verify the conjecture for G = G, and similar ideas as in [Laf2], one
can reduce the conjecture to derived Satake for X = P!,

2.4. Frobenius. We now discuss what happens when we include Frobenius.

2.4.1. Now suppose the ground field & is F,. Suppose X is defined over F; as G is a priori defined
over Z, it follows that Bung is naturally defined over F, as well. Recall that rational structure can
be encoded in the geometric Frobenius endomorphism of X (resp. Bung).

Therefore, there are Frobenius automorphisms (namely: pullback along geometric Frobenius)
acting on Shv(X), qlisse(X), and Shv(Bung).

By definition of LS, the Frobenius automorphism of qLisse(X) induces a “Frobenius” auto-
morphism of LS.

Hgee [Gai3] for formulations of both Whittaker and Eisenstein compatibilities.
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Example 2.4.1.1. Suppose H = G,. By §2.2.6, LSE‘";itr is a geometric avatar of the chain complex
Cet(X)[1]; this complex carries its own standard Frobenius automorphism, and the two tautologi-
cally match under this dictionary.

In general, the Frobenius on LS might therefore be thought of as a non-linear analogue of

the Frobenius on Cg(X).

2.4.2. We define LS#™™™ as the Frobenius fixed points of LS.
More precisely, we have a Cartesian diagram:

arthm restr
LSarthm ___, pgre

! |

A
LS?}SH leﬁstr X leﬁstr

of formal derived stacks where the arrow on the right is the graph of the Frobenius map.
Note that e-points of LS?fZ};m are rank n lisse Weil sheaves on X. More generally, we think of
Lsgthm as the stack parametrizing continuous homomorphisms from the Weil group Wx to the

algebraic group G /e, considering these homomorphisms up to conjugacy. Said more neatly: LSBCL;,rthm
is the stack of unramified Langlands parameters for the global field F,(X).

Remark 2.4.2.1. Let qlisse?(X) denote the DG category of quasi-lisse Weil sheaves, which by
definition are the fixed points of the Z-action on qLisse(X) coming from Frobenius. Tautologically,
LShm parametrizes symmetric monoidal functors Rep(H) — qLisse?(X) in the same way that
LSS parametrizes symmetric monoidal functors Rep(H) — gLisse(X) (i.e., S-points of LS¥thm
are right t-exact symmetric monoidal functors Rep(H) — qLisse(X) ® QCoh(S5)).

However, qLisse?(X) has different categorical properties than qLisse(X ). For example, qLisse? (X)"
is not a Tannakian category. This leads to some formal differences between the two settings, with
LS?;thm behaving more like the moduli of Betti local systems in some regards; e.g., it turns out
(JAGKRRV1] Theorem 16.1.4) that LS¥™™ is a (non-formal!) algebraic stack that is quasi-compact
(and in particular: has finitely many connected components!).

Remark 2.4.2.2. We do not try to provide more explicit pictures in this section, beyond commenting
that the geometry of LS‘F’LGrthm is more complicated than its restricted counterpart. But in Theorem

4.3.3.1, we give coordinates on a patch of Lsgthm containing the trivial representation, providing
some bit of explicit analysis of its geometry.

2.4.3. Essentially by Remark 2.3.1.2, any restricted geometric Langlands equivalence must be
compatible with Frobenius automorphisms on both sides.

Recall the notion of categorical trace alluded to in §2.1.6: it takes (dualizable) DG categories
with endofunctors and produces vector spaces.

We can then take the trace of Frobenius on both sides of the restricted geometric Langlands
equivalence. As outlined in [AGKRRV1] §16, the trace of the Frobenius on IndCohNﬂp(Lsgm) is

the same as on IndCoh(LsgS“), which is:
D(LSE™™, w)

for w the dualizing sheaf on L
On the other hand, the main theorem of [AGKRRV3| calculates the trace of Frobenius on
Shvyiip (Bung) as:

arthm
S b

unr
‘AUtG,c .
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One can interpret this as a higher categorical version of the sheaves-functions correspondence (albeit
in a special case, not as a general geometric phenomenon).

2.4.4. We end up with the arithmetic conjecture:
Autds ~ T(LSEM™, w).

As in the introduction, the vector space on the left is that of unramified automorphic functions,
i.e., compactly supported functions on Bung(F,). In particular, unramified cusp forms sit in this
space.

2.4.5. There is a canonical map 7 : O garthm — Wy garnm encoding a “weak Calabi-Yau” structure
G G

arthm
on LSG

— see §4.6.5 for more discussion.
In particular, there is a natural map from functions on LSBCE;thm to the right hand side P(Lsgthm, w)
above. One should think of Arthur’s SLs as measuring the difference between O and w on Lsgthm.

Ezample 2.4.5.1. Suppose o € L is a smooth, isolated point of this stack. (Such o are called
an elliptic or discrete Langlands parameter.) Then one can see that 7|, is an isomorphism. There-
fore, our conjecture predicts that there is a 1-dimensional space of unramified automorphic forms
corresponding®® to o.

arthm
Se

2.5. Xue’s theorem and the Frobenius trace.

2.5.1. Above, we said that:
tr(Frobf,y, . » Shvvip (Bung)) ~ Auty™ (2.5.1)

was the main theorem of [AGKRRV3]|. We briefly indicate how this is proved. They key role is
played by Xue’s theorem from [Xue2].

One can also turn to the introduction of [AGKRRV3] for an overview of the argument. Our
summary is not so different here, except we try a little harder to sweep Beilinson’s spectral projector
under the rug (maybe to the detriment of the discussion).

2.5.2. Step 1. One lesson from Drinfeld’s work'® on the Langlands correspondence is that it is
generally helpful to consider automorphic functions Aut.™" as special cases of sheaves of shtuka
cohomologies.

We remind the story briefly. The shtuka construction takes a finite set I, a representation V €
Rep(GT), and yields a sheaf Sht; v € Shv(X7). Namely, attached to the data of I and V, one has a
Hecke functor:

Hy : Shv(Bung) — Shv(Bung x X71).

This functor comes from a naturally defined kernel Ky € Shv(Bung x Bung x X'). We remark that
geometric Satake plays a key role in the construction, and we refer to [Laf3] or [AGKRRV3] for
more details on the construction.

Then Sht; y is obtained by #-pulling back Xy along the graph of Frobenius:

Graphp,op, X idy 1
2 Beb” X, Bung x Bung x X!

Bung xX
15We are being sloppy about what “corresponding to” means here. To be more precise, our conjecture combined
with the discussion of [AGKRRV1] §24.2 implies that there should be a 1-dimensional space of unramified eigenforms
for the action of V. Lafforgue’s excursion algebra with the eigenvalue being that defined by o. As is well-known, for
general G, Hecke operators alone are not enough to pick out a 1-dimensional eigenspace.
16The perspective discussed here for general reductive groups is from [Var].
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and then taking compactly supported cohomology along the Bung factor, i.e., -pushing forward to
X7

For example, when I = (J (and V is the 1-dimensional representation of the trivial group),
Ky = Ai(eBung ), s0 by base-change, the above computes Cg; (Bung(Fy)) = Autd”.

There are natural morphisms between shtuka cohomology sheaves. First, for I fixed, the above
construction yields a functor Sht; : Rep(G') — Shv(X'). But we can also vary I; more precisely,
the symmetric monoidal structure on Rep(G) maps the assignment I — Rep(G') = Rep(G)®!
into a functor fSet — DGCatcont (for fSet the category of finite sets); #-pullback along diagonal
morphisms makes the assignment I ~— Shv(X7') into a functor fSet — DGCatcont as well. Then
standard functoriality properties of geometric Satake say we have a natural transformation:

Sht : (I — Rep(G)) — (I — Shv(x7))

of functors:
fSet — DGCateopt.

This functoriality is a key property of shtuka cohomologies, and its existence encodes key sym-
metries of automorphic functions: V. Lafforgue used exactly this functoriality in [Laf3] to construct
excursion operators.

2.5.3. Step 2. We now similarly generalize the other side of our theorem, which we remind is
trSthﬂp(BunG)(Frob). The answer should input V € Rep(G') and yield a sheaf on X', which we
will ultimately denote by Shtfy,. Of course, the construction should involve Hecke functors and
Shvyip (Bung), so we presently digress to discuss the latter subject for a moment.

Following [NY] in the topological setting, we show in [AGKRRV1] Theorem 14.2.4 (and its sub-
sequent discussion) that for V € Rep(G'), the Hecke functor Hy maps Shvy,(Bung) € Shv(Bung)
into Shvy,(Bung) ® qlisse(X!) < Shv(Bung x X71).

Moreover, we prove a converse as well: in loc. cit. Theorem 14.4.3, we show that for F € Shv(Bung)
with Hy (F) € Shv(Bung) ®qLisse(X) for all V € Rep(G), one necessarily has F € Shvy,(Bung).'”

So we summarize with the motto: Shvy;;,(Bung) can be regarded as the subcategory of sheaves
F whose Hecke transforms Hy (F) are locally constant as we vary the point x € X.

This perspective on Shvy,(Bung) is actually the better one for almost!® every result in the
AGKRRY series. (From one point of view, this is why it is important to introduce Hecke functors
and general shtuka sheaves into our present analysis: Shvy,(Bung) itself is best understood using
the Hecke action.)

2.5.4. Step 3. By the above, for V' € Rep(G), we have a Hecke functor:
Hy : Shvyp(Bung) — Shvy,(Bung) ® qLisse(XI).
We can precompose this functor with the Frobenius on Bung to obtain:
Hy o Frobpun, : Shvyi, (Bung) — Shvy, (Bung) ® qLisse(X 7).

We can then take the trace along!® Shviip(Bung) to obtain an object of qLisse(XT). This is the
desired object Sht{'y .

17Technically7 there are minor restrictions on the characteristic of the ground field in this assertion. Recall from §1.4
that we always neglect these small characteristics, and we implicitly assume we are away from these characteristics
in our discussion here.

18The main exception is the Kiinneth formula from [AGKRRV1].

9T his is analogous to saying that if we have a linear transformation W7 — Wi ® W2 with Wi finite-dimensional,
we have a corresponding vector in WY ® W1 ® Wa, and we can pair along the first two factors to obtain a “trace
along W1” that is a vector in Wa.
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Our goal in what follows is to show that we have functorial identifications:
Shtt]fv ~ Shty v [2|1]] (2.5.2)

where the cohomological shift occurs for technical reasons that will appear below. The case I = (7,
V' 1-dimensional now recovers (2.5.1) in concise notation.

2.5.5. Step 4. Observe a difference between Sht'}fv and Shtyy: for essentially geometric reasons,
Sht!" takes values in qLisse(X') < Shv(X7), but this is not apparent for Sht; itself.

In [AGKRRV2], we introduce methods for calculating traces on Shvy;;,(Bung). We refer to loc.
cit. for details, but the summary answer is that traces can be computed using general geometric
ingredients (upper-* and lower-! functors) plus a specific ingredient from (geometric) representation
theory. The latter is Beilinson’s spectral projector, whose job (for our purposes) is to take compatible
(over I) systems of functors 8; : Rep(G') — Shv(X') and produce a compatible systems AS; :
Rep(GT) — qLisse(X 7).

At an imprecise, top level view, the recipe from [AGKRRV2| produces the following answer: the
system of functors Sht'' is the best approzimation to the system of functors Sht; that takes values
in qLisse(X ') rather than Shv(X7), i.e., it is A Sht;.

Then Xue’s theorem [Xue2] says that Sht; itself takes values in qLisse(X?), so A Sht; coincides
with Sht; itself, so we obtain (2.5.2).

2.5.6. Step 5. The above is morally correct, but we now fix one lie. The discussion that follows can
be compared with [AGKRRV3] Remark 3.2.6.

The functors Sht; are compatible under upper-* functors as we vary the finite set . However, the
procedure of applying the spectral projector applies for a system of functors 8; compatible under
upper-! functors. So we need a variant Sht' of the shtuka functors that are suitably compatible
under upper-! functors.

The relevant functors Sht!L, : Rep(GT) — Shv(XT) are characterized by the formula:

Co(X7, Sht! , ®F) = Co(Bung x X7, (Frob x id)* (Ky & p§(5)) (2.5.3)
for ps : Bung x Bung x X! — X7 the projection.?’
A priori, the result from [AGKRRV2| actually implies is that {Sht%} crse; is the best approxi-
mation to the functors {Sht!I} Iefset taking values in the subcategories qlisse € Shv.
The logic then proceeds by applying Xue’s theorem twice. First, this theorem tells us that
Sht!”/ = Shtyy[2|1]] (where 2|I| appears as 2 dim(X')) — namely, we simply substitute Sht; /[2|1]]

!
in place of Sht!LV in the left hand side of (2.5.3), and then we apply the identity §® F = § (:Z)
F[—2dim]| for § being lisse to (functorially) manipulate the resulting expression into the right
hand side of (2.5.3). In particular, Xue’s theorem then implies Sht!l,v takes values in qLisse, so the

previous paragraph implies Sht%¥ = Sht}, which we just saw also equals Sht;[2|I|], as desired.

3. SPECTRAL EISENSTEIN SERIES

We now begin working toward Theorem A. For the remainder of the paper, we assume k = Fq.
Our goal in this section is to define and study a certain map:

EiSSpec . F(LS?thm, st%rthm) g F(Lsgthm,stzgthm)

20A notational remark: our notation is inconsistent with [AGKRRV3]. The collection of functors we now call Sht}
are neatly packaged in the single functor called Sht in [AGKRRV3], although the functors we call Sht; here are
denoted in the same way in [AGKRRV3]. They differ only by shifts by Xue’s theorem.
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Throughout this section, we only consider (pre)stacks locally almost of finite type; we omit
further mention of this hypothesis.

3.1. Automorphic Eisenstein series. We begin by reviewing some constructions regarding geo-
metric Eisenstein series and their function-theoretic counterpart, the pseudo-Eisenstein series. We
will later wish to find counterparts of these constructions on the spectral side.

3.1.1. First, we have a canonical functor:
Eis : Shv(Bunyz) — Shv(Bung)

defined by =-pullback along Bunp — Bunyp followed by !-pushforward along Bung — Bung.
By the Hecke property for Eis; established in [BG], and [AGKRRV1] Theorem 14.4.3 (the “con-
verse to the Nadler-Yun theorem”), we find:

Proposition 3.1.1.1. The functor Eis; maps qLisse(Bunr)(= Shvyi;,. (Bunr)) to Shvy,(Bung).

3.1.2. Pseudo-Eisenstein series. Let ps-Eis : Autp, — Autgl, be the pseudo-Eisenstein map. By
definition, this is the composition:

Autyle = Fune(Bung (Fy)) — Fun.(Bung (Fy)) — Fun.(Bung(Fy)) = Aut

given by first restricting (noting that the fibers of the map Bung(F,;) — Buny(F,) are finite) and
then summing along the fibers of the map Bung(F,) — Bung(F,) (which is well-defined because
we consider this on functions with finite support).

3.1.3. Compatibility of the two. The functor Eis) obviously intertwines Frobenii and preserves com-
pact objects, so we may pass to traces of Frobenius to obtain a map:
tr(Eis)) : trqLisse(Buny) (Frob) — trSthilp(BunG)(Frob).
By the main theorem of [AGKRRV3], we have isomorphisms:
tTqLisse(Buny) (Frob) ~ Autp’s

o 3.1.1
ETShyagir, (Bung) (Frob) ~ Autg;’ ( )

so tr(Eis;) corresponds to a map:
Autunr 5 Autunr

By?! [AGKRRV3] Theorem 5.2.3, the isomorphisms (3.1.1) are given by a version of the sheaves-
functions correspondence; it follows formally that we have a commutative diagram:

tr(Eis))
trq Lisse(Bunr) (FrOb) — trSthllp (Bung) (FI‘Ob)

lg l: (3.1.2)

Au unr ps-Eis Au unr

In other words: the trace of geometric Eisenstein series is the pseudo-Fisenstein series.

3.2. Some general constructions. Until further notice, we work exclusively over the field e.
Below, we give general a construction of Eis®P®® in a general stack-theoretic context.

21We remark that loc. cit. is conditional (even in its formulation) on a certain technical hypothesis on
Shvyiip(Bung); see [AGKRRV3] §5.1. This hypothesis was recently verified by the author and Gaitsgory and will
appear in forthcoming work.
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3.2.1. Terminology around stacks. Recall the notion of a QCA stack from [DG1]: this means an
algebraic stack Y that is quasi-compact with affine diagonal. For any such QCA stack Y, [DG1]
Theorem 0.4.5 asserts that IndCoh(Y) = Ind(Coh(Y)); this is our key use of this hypothesis.

Also, we recall the notion of ind-algebraic stack from [AGKRRV1] §5.2. We remind that a prestack
Y is ind-algebraic if it is convergent and for every n > 0 its n-truncation S can be written as a
filtered colimit of n-truncated algebraic stacks Y; under closed embeddings. We say Y is ind-QCA
if the terms Y; can moreover be taken to be QCA.

Our main example is LS}" for H an affine algebraic group. According to [AGKRRV1] Corollary
5.2.6, LSY' is ind-algebraic; moreover, the proof of this result shows that LS%" is in fact ind-QCA.

By the above theorem of Drinfeld-Gaitsgory, any ind-QCA stack Y has IndCoh(Y) being compactly
generated.

3.2.2. Below, we fix f:Y — Z a l-representable?? map between ind-QCA stacks.

Suppose in addition that we are given automorphisms ¢y : Y — Y and ¢ : Z — Z intertwined
by f (i.e., we are given an identification ¢z o f ~ f o ¢y). We sometimes omit the subscripts and
simply write ¢ for either ¢y or ¢g.

¢
We form the fixed point stack Y® (resp. Z?) of ¢. Explicitly, this is the equalizer Eq(Y % Y,
1

. X X Graph¢
which can also be written as the Cartesian product of Y ——
have an induced map Y¢ — 2¢ that we denote by f.

Below, under suitable hypotheses, we will construct canonical maps between F(Hd’,ww) and
F(Z(z),de)).

YxYy A Y. By assumption, we

3.2.3. Pushforward. First, suppose that the map f is representable and proper. In this case, we will
construct a map:
IndCoh (Yo oyy) — TINACON(22 o). (3.2.1)
In fact, this is quite easy. In this case, the map f¢ : Y¢ — 2 is also proper (and representable),?
which is all we will need below.
Then f; IndCoh 5o Jeft adjoint to f®', so we obtain a canonical adjunction map fg’
This yields a map f&"4ceh (wys) — wye; applying T'M4CON (22, —) gives the desired map (3.2.1).

Remark 3.2.3.1. The map (3.2.1) is ['(2?, Q40 )-linear.

3.2.4. Pullback. Next, suppose that f is eventually coconnective (and 1-representable). In this case,
we will construct a map:

|I'ldc0hf| N id.

FIndCoh(Zqﬁ7 de)) N FIndCoh (13(1)’ quﬁ)‘ (322)
First, note?* that fI"C" . IndCoh(Y) — IndCoh(2) admits a left adjoint f*'"4C°" in this case. We
have base-change between x-pushforwards and #-pullbacks (with the latter being only considered
for eventually coconnective morphisms).
In this case, we have a natural transformation:

(id ><f)>x<,lndCoh (ld ng)z)l*ndCOh (ld xf)l*ndCoh _

(id x f)*I"9Cen(id x f)Ir9Con (id x )19 — (id x ¢y)r*“°" € End(IndCoh(Y x Y)).

22I.e., the fibers are algebraic stacks. Specifically, for every S € AffSch and S — Z, the fiber product Y xz S is an
algebraic stack. In our context, this condition rules out a map like Y — Spec(e) unless Y is an actual (as opposed to
ind-)algebraic stack.

23Indeed, because f is representable and separated, the morphism Yo =y XyxyY — Yxz2x2Y is a closed embedding.
Clearly the further projection Y Xzxz Y — Z xzx2 Z = 2% is proper.

24This, and other similar assertions in this section, formally reduce to the results of [GR2] Chapter 4 §3.
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coming from adjunction. Applying this map to AL”dC"h(wg), we obtain a canonical map:
(id x f)*!"" GraphfsPh (wy) — Graphy, . (wy) € IndCoh(Y x Y). (3.2.3)
Here for a map g : S — T', the map Graph, : S — S x T is the graph morphism, i.e., Graph, =
(id xg) o Ag.
Let wy denote the canonical map Y® — Y sending a pair (y € Y,y ~ ¢2(y)) to y, and similarly
for wy. Below, we will construct a canonical isomorphism:

A{d(id xf)*""dc°h Graph!;;;f]?i(wy) ~ f*"”dc°hw2‘ic°h(wz¢) € IndCoh(Y). (3.2.4)
Assuming for a moment that this construction has been given, we obtain a canonical map:
f*,lndCOhwg‘,i“h (wye) — Azd Graphy, . (wy) € IndCoh(Y)
by applying A! to (3.2.3). By adjunction, this yields a canonical map:

wgflkCoh( 5) — flndCOhAy Graph% «(wy) ~ IndCOhwg:iCOh (qub) € IndCoh(Z).

Here we have used the base-change isomorphism Ay Graphg‘:g"h ~ w{d"dcc’hwfd. Now applying the

global sections functor I'"4<°" (2 —) to both sides above, we obtain the desired map (3.2.2).
It remains to give the isomorphism (3.2.4). First, the Cartesian diagram:

Graph,_
y Ml oy o
lf lfxid
Graph
i BN AN

gives a base-change isomorphism:
Graphg‘zdgj?i (wy) ~ (f x id)" Graph'“;’?h(wz).
This now yields:
A{j (id ><f)""'"dc°h Graphg':&?i (wy) ~ Ay (id x f)* '”dc°h(f X 1d) Graphg‘:?h( 2)-
We have?® (id x f)*IndCoh( £ 5 id)! ~ (f x id)'(id x f)*"dCoh 5o we can rewrite the right hand side
above as:
A!H(f x id)' (id x f)*IndCoh Graph'"dc°h( 2) = Graph;’!(id x f)*IndCoh Graphg'zd?h (wz).
Here we use Graphg to denote (g x id) o A, i.e., the graph map following by swapping the two

Cartesian factors.
Now base-change for the Cartesian diagrams:

Graph‘}

Y 2 xY 29— T2, 7
lf lidx f le J/Gra.ph(bz
98 L9xg A BN NG |

yields identifications:

Grapha’ (ld Xf)* ,IndCoh GraphlndCOh (WZ) ~ f*,lnd(:ohA!Z Graphgns’(ioh (WZ) ~
f* IndCohwlz?,(iCoh (wz,d>)

25This kind of commutation is a general fact: see [Gai2] Proposition 7.1.6. However, it is particularly easy in the
present setting: by the Kiinneth formula, we can write (f x id)' = f' ®id and (id x f)*"M4%h as id @ f*ndCoh,



22 SAM RASKIN

as desired.
Remark 3.2.4.1. The map (3.2.2) is (29, Q40 )-linear.

3.2.5. Categorical setting. We now present a more conceptual approach to constructions such as
the above.

Suppose F' : € —> D € DGCatcont is a map between dualizable DG categories. Suppose that €
(resp. D) is equipped with an endofunctor ¢e (resp. ¢p) and that:

e F admits a continuous right adjoint F®.
e F' lax intertwines ¢, i.e., we are given a map (often an isomorphism) F o ¢e — ¢p o F.

Then standard functoriality of traces yields a canonical map:

tr@(gf)e) — tI‘D((b@) € Vect

associated with this data. Namely, we have:
tre(ge) — tre(peF'F) = trp(FéeF™) — trp(¢ppFFT) — trp(¢n).

Here we used the cyclicity of traces and standard adjunction maps.

3.2.6. Pushforward/pullback revisted. Suppose first that we are given f : Y — Z as before repre-
sentable and proper.
In the setting of §3.2.5, take € = IndCoh(Y), D = IndCoh(Z), F = flndCoh 4o = qbly”’iCOh and

¢p = gb'z'“i@h. Then the categorical formalism yields a canonical map:2°

TN (Y2, wyo) = trindcon(y) (D15 ") = trindcon(z) (9Fs ") = T2, wyo).

A straightforward diagram chase shows that this map recovers (3.2.1). We remark that properness
is needed for fIndCoh to admit a continuous right adjoint.

Next, take f : Y — Z l-representable and eventually coconnective. Now take € = IndCoh(Z),
D = IndCoh(Y), F = findCoh.x "4, — qu!Z, op = gb}d. Then the categorical formalism yields a canonical
map:2”

T1CON (22 w06 ) = trindcon(z) (95) — trindcon(y) () = TN (Y2, wys).

A diagram chase shows that this map coincides with (3.2.2).

Remark 3.2.6.1. The second diagram chase is routine, but unsurprisingly, somewhat more involved
than the first. We omit the verification here. Actually, for our purposes, the reader may take the
categorical constructions as definitions of (3.2.1) and (3.2.2), completely ignoring the material of
§3.2.3-3.2.4. We only included the explicit constructions to make the construction appear more
concrete.

3.3. Spectral Eisenstein series.
3.3.1. Setup. We have the standard correspondence:
t
LS
/ \
t t
LSz LSE™.

26Here the equalities are standard isomorphisms; see e.g. [GKRV] §3.5.3.
2TNote that tre(F) = trev (FY), so tr(¢') = tr(glhdch).
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The map p is representable and proper, while the map q is quasi-smooth and 1-representable.
Also, each of these spaces carries a Frobenius self-map, and the maps p and q intertwine these
Frobenii. Therefore, by (3.2.1) and (3.2.2), we obtain canonical maps:

F(Ls%—f‘thm, stz%rthm) — F(Lsgthm, staérthm) g F(Lsaérthm, stzérthm ) .

Definition 3.3.1.1. The composition of the above maps is the spectral Fisenstein series Eis®P®¢ :

rthm rthm
F(LS%t 3 st?thm) — F(LS&G_T, B stacrthm).
3.4. Spectral vs. function theoretic Eisenstein series.

3.4.1. Recall that restricted geometric Langlands (see [AGKRRV1] Main Conjecture 21.2.7) pre-
dicts an equivalence of categories:
Shvi (Bung) = IndCohyggpspec (LSES™). (3.4.1)

We refer to [AGKRRV1] §21 for background on this conjecture.
The equivalence should be subject to various compatibilities. We formulate two of salient interest
here:

e (Hecke compatibility): The equivalence (3.4.1) is of QCoh(LSréfStr)—module categories; here
the right hand side has the evident action and the left hand side carries the action of

[AGKRRV1]| Theorem 14.3.2.
e (Eisenstein compatibility, P = B case): The diagram:

qlLisse(Bunr) S N Shvyip(Bung)

| -

QCoh(LSEe=tr) — = IndCohygpepec (LSIET)

commutes; here the left arrow is the equivalence unconditionally constructed in [AGKRRV1]
Example 21.2.9.

3.4.2. We now recall the following result:

Proposition 3.4.2.1. Suppose Y is a quasi-smooth ind-algebraic stack equipped with a self-map
¢y. Let N € T*[—1]Y be a closed conical substack (of the -1-shifted cotangent bundle of Y) such
that for every point y € Y9, the map d[—1] : Ny — N, is contracting onto 0 € T;[—1]9. Then the
map:

t1ndCoha(Y) (?') — tindcon(y) () = T(Y%, wys)
s an isomorphism.

See [AGKRRV1] §24.6.8.%8
In particular, we find that restricted geometric Langlands produces an isomorphism:

Autd ~ T(LSH™™, Wy gorthm ). (3.4.2)

Assuming the Hecke compatibility for restricted geometric Langlands, this is an equivalence of

Excy = F(LS?gthm, O} garthm )-modules, where the left hand side inherits its Excs-module structure
G

from [AGKRRV3]. We remind (see [AGKRRV1] §24.2) that the Excxs-module structure on Aut:™
refines the Lafforgue-Xue action of excursion operators on this space (see §1.2.3).

28In loc. cit., this is formulated as a conjecture. But it is actually straightforward to prove from the formalism of
[AG].
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3.4.3. We now obtain:

Proposition 3.4.3.1. Assume restricted geometric Langlands holds for G with its Eisenstein com-
patibility. Then the following diagram commutes:

ps-Eis

unr unr
.AutT7 . .Auta :

: }

th Eis®Pee th
F(LS;‘J m, WLS%}“thm) % F(LSaGLr m, staG}“thm)

where the vertical isomorphisms come from (3.4.2).

Indeed, this follows from the realizations of ps-Eis and Eis*P®° via traces, see (3.1.2) and §3.2.6.
3.5. Formulation of the main result.

3.5.1. We will be concerned with localized versions of the map Eis*?*°. We briefly discuss the
relevant formalism.
Suppose we are given a commutative diagram:

arthm
LS B

arthm arthm
LS LS

S
Al
Let Al := A1\0. Note that:

F(LSgthm,w)[ffl] = C(J)}i_m P(Lsgthm,wLSgthm) o~ F(LS%rthm x Al w)

Al
and similarly for (T, g) or (B, FILS vt = 9ILS garinm ) I Place of (G, ).

Now observe that we have a correspondence:

Lsythm x Al
Al

/ \ (3.5.1)

Lzt x Al Larthm x Al
Al Al

with left arrow proper and representable and right arrow eventually coconnective and 1-representable.
As in the definition of spectral Eisenstein series, we obtain a canonical map:

P(Lsgfthm,ww%rthm)[g—l] — T(LSZ™™, Wy gartnm) [ Jl (3.5.2)
We clearly have:

Lemma 3.5.1.1. (1) The map Eis*P*¢ : F(LS%“hm, Wy garthm ) — F(LSgthm,wLSe{mhm) intertwines
T G

the operators of multiplication by f and g, i.e., the map is naturally a morphism of e[t]-
modules.
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(2) The map (3.5.2) is obtained by inverting the action of t, i.e., tensoring over e[t] with
e[t,t™1].
(8) The diagram:

Rigspec
F(Ls%{thm, WLS%rthm) 15 F(Lsaérthm, staG'rthm)

| |

rthm _ (3.5.2) rthm _
F(Ls%th ,(A.)Ls;rthm)[g 1] F(Lsaéth ,staG}rthm)[f 1]

commutes.

Accordingly, when the meaning is unambiguous, we will abuse notation in also denoting the map
(3.5.2) by Eis®Pe.

3.5.2. We are now in a position to state our main result about Eis®P¢°.

Theorem 3.5.2.1. There exists a commutative diagram.:

arthm
LS

(3.5.3)

arthm arthm
LS LS

Al
such that:

(1) The map 6 takes a non-zero value at the trivial Weil local system.
(2) The object:

(1, arthm arthim -1 V

lies in cohomological degree 0,%° and similarly with T replacing G.
(8) The map:

Eis™ : T(LSE™™, wy gurinn ) [071] = T(LSE™, wy garenn ) [0 ] € Vect” (3.5.4)
T G

18 surjective.

This result will be proved in §4.

3.6. Proof of Theorem A. We now deduce the main theorem of this paper from Theorem 3.5.2.1
and our earlier observations. We remind that we have assumed G is semi-simple3? here.

29Note that (3.4.2) predicts that D(LSE™™ w; garenm ) lies in cohomological degree 0. Although we ultimately will
be assuming restricted geometric Langlands, we afe striving here to formulate a theorem independent of it, so we
have included this statement.

30T his assumption somewhat simplifies the discussion. Suitably formulated, the results here apply as well for
general reductive groups.
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3.6.1. First, let us recall the explicit meaning of Langlands parameters, following [Laf3] and [Xuel].
Let o be an e-point of Lsgfthm, i.e., a Weil G-local system on X. We obtain a map:

evy : Excy — e

sending a function f € Exc =T (Lsgthm, 0) to its value at 0. We abuse notation in also letting
ev, denote the induced map (obtained by passing to H?) H°(Exc) — e of classical commutative
algebras. We let m, € HY(Exc) denote the corresponding maximal ideal.

Now recall (from [AGKRRV3], building on [Laf3] and [Xuel]) that Exc — hence H°(Exc) — acts
on Autgl.

We then define:

Aut 15 S Aute

to be the m,-torsion in the right hand side, i.e., ¥ € Aut‘é‘ja[

We let ‘AUtg?ZUSpy[U] = ‘AUtéer,[a] A ‘AUtgjgusp'

o] if m -1 =0 for n » 0.

unr
G,cusp

ity > © M ) (3.6.1)

unr

is?! finite-dimensional, Au Grousp

Warning 3.6.1.1. Because Au decomposes as a direct sum:

G,cusp

(Here the implied equivalence relation ~ relates o1 and oy when m,, = m,,; according to [Laf3]
Proposition 0.38, this occurs exactly when o1 and o9 have equivalent semi-simplifications.)
However, we do not have a similar decomposition (3.6.1) for compactly supported automorphic

functions; there are such functions that do not lie in any Aut:" (o]

3.6.2. Recall®® that ps-Eis(Aut¥™) n Aut@™ = 0.
Therefore, it suffices to show that any 1 € .Autg};[triv] < Auty’y, lies in the image of the map
ps-Eis : Aut’p — Autg't. This will be our objective.

3.6.3. Recall that we have 6~ € Excy = F(Lsgthm, 0). As Auty” is acted on by €xcy, we may

)

invert the action of §x:
—17 . .
Autuéi[d al= C%}?Autuérjz.

We now translate from spectral Eisenstein series using restricted geometric Langlands (and
Proposition 3.4.3.1). By Lemma 3.5.1.1 (1), the map ps-Eis intertwines the actions of d; and
dp on Aut%r’lcr and Au ‘Cl;ng respectively. Moreover, the induced map:

. -1 -1
ps-Eis : Autl}r"s 0] — Aut“G{lZ [647]
is surjective by Theorem 3.5.2.1.

This means that for our given®® automorphic funciton 1, there is an integer n > 0 so that
04 Y = ps-Eis(¢)g) for some vy € Autiy.

Let A € e be the value of §~ at the trivial local system triv e Lsgthm. Note that (05 — A) €
meiy © HY(Exc), so for m » 0, we have:

(65— A)™ 1 = 0.

31We remind that (using that G is semi-simple) there is a quasi-compact open U € Bung defined over Fy such
that any ¢ € Autd' s, vanishes outside U(F,) (see [DG2] Proposition 1.4.6 in the sheaf-theoretic setting); as U(Fy)

G ,cusp
is finite, we clearly obtain the assertion.

3

328ee [MW] I1.2.4 for a much stronger assertion.
33To be clear: this is true for any compactly supported automorphic function, but may be essentially vacuous if
the form has another Langlands parameter.
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By assumption, A # 0. Therefore, we can find a polynomial ¢(t) € e[t] with:
q(t)-t" =1 mod (t — \)™.
Then we clearly obtain:
ps-Eis(q(7) - vo) = a(d¢) - ps-Eis(¢0) = q(0¢) - 0 - = ¢
This concludes the argument.
3.7. A toy model for Theorem 3.5.2.1. We now give a simpler setting in which a form of

Theorem 3.5.2.1 holds. We will ultimately reduce the proof of Theorem 3.5.2.1 to this special case.
The special case we consider is a standard result about the Grothendieck-Springer resolution.

3.7.1. Analogies. By way of analogy, we replace the diagram:

restr
LS’
/ \‘
restr restr
LS’ LSS
with the diagram:

BB

/ \ (3.7.1)
BT BG.
In place of Frobenius, we consider each term in (3.7.1) with its identity endomorphism. Passing to
fixed points under this map, we obtain the diagram:

d
Here for an algebraic group H, H aL/H denotes the (stack) quotient of H acting on itself by

ad S
conjugation; we remind that H/H = (BH)S' = (BH)="d, We remark that the natural map

O a4 — W .4 Is an isomorphism.
H/H H/H
Therefore, the formalism of §3.2 yields a canonical map:

cad . cad .
Eis®e* Y . (T /T,0 .4 ) —»T(G/G,0 .4 ). (3.7.2)
T/T G/G
Lemma 3.7.1.1. The left and right hand sides of (3.7.2) are concentrated in cohomological degree

0 and the map Eis*PeStY s surjective.

Proof. The most straightforward proof is as follows. We identify Rep(T") with @5 i Vect and Rep(G)
with @54+ Vect; here @ denotes the coproduct on DGCatcony and we have implicitly chosen repre-
sentatives of isomorphism classes of irreducible representations. Under this identification, we obtain
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canonical isomorphisms:

@Xelv\k = t-’I‘Rep(T) (ld)(2 F(T / T, 0 _ad V))
(3.7.3)

. ~ad -
®5\EA+k = tI.Rep(G) (ld)(: F(G / Ga 0 ))

These identities clearly imply that both sides of (3.7.2) are concentrated in degree 0. We let e x

_ad _
GG

(A € A) and e s (A € A1) denote the basis vectors for these vector spaces coming from the
displayed isomorphism. By Borel-Weil-Bott, for A dominant, the map Rep(7) — Rep(G) sends
oo ¢ Rep(T)" (the 1-dimensional representation corresponding to wo(A) to V) € Rep(G) (the
representation with highest weight ), so sends €7 wo(%) 1O € a; this yields the surjectivity.

U

Remark 3.7.1.2. We remark (although we do not need it) that in (3.7.3), the isomorphism @;_;+k ~
cad .
I‘(Ga/ G,0 .4 _) sends es 5 (notation as before) to the trace function corresponding to the repre-
G/G :

sentation VA of G, and similarly for T. Therefore, the composition:

cad « igSpec;to, cad -
@ k~T(TT,0 ) " DG G0 W )~ Fu(@Y = (@ k)
AeA T)T G/G AeA

is explicitly calculated using the Weyl character formula (and Borel-Weil-Bott).

3.7.2.  We conclude by recording a variant.
Note that we have a commutative diagram:

BB
A aa
T//W

where T'//W = Spec(e[A]") is the GIT quotient, the lower left map is tautological and the lower
right map is the standard characteristic polynomial map (uniquely characterized by this diagram).

Therefore, Eis*P*>*Y is a map of Fun(T//W)-modules. Lemma 3.7.1.1 then says that EisSPe¢tY
is an epimorphism of Fun(7//W)-modules, so we obtain:

Corollary 3.7.2.1. For any g € T'(T//W, Op/pw), the map:

cad o cad «
Bis™eetoY . (T 7,0 . Vg™ ] — DG G0 . )[g ]
T/T G/aG

1S a surjection.
4. GROTHENDIECK-SPRINGER THEORY FOR LSathm

The goal of this section is to prove Theorem 3.5.2.1. As this theorem occurs purely on the spectral
side, throughout this section, we work by default over the field e.
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4.1. Base-points and Weil group notation. Below, we take xy € X (k) a marked geometric
point, which will serve as the base-point of our fundamental group; here we remind that k = F,.
We encourage the reader to be kind to themselves and assume that ¢ is defined over F; in this
case essentially all of the remaining material of §4.1 can be ignored.
With that said, we include some technical material here to allow for the case where Xy has no
rational points.

4.1.1. Let X denote the universal cover of X based at xo; by definition, X is connected, pro-finite
étale over X, equipped with a lift Zy of xg, and initial among all such data. Note that X is also the
universal cover of X, so there is a tautological action of 7 (Xo) (= 7% (Xo,20)) on X (realizing
it as a w*(X)-torsor over X and a 7$*(Xy)-torsor over Xy, each torsor being understood as locally
trivial for the pro-étale topology).

Let Frobx : X — X be the geometric Frobenius map. Choose once and for all a lift of the point
Frobx (zg) to X. It is easy to see that there is a unique map Frob x fitting into the commutative
diagram

and sending ¥ to our chosen lift of Frobx (o) (which will now be denoted Frob x(Zo))-

This choice also (relatedly) defines an action of Z on X in Sch /X0 the inverse®! to generator
—1le€ Z acts by a map v : X — X characterized by being Frobenius semi-linear over k£ and so that
o Frob x is the absolute Frobenius of X.

This data defines a splitting of the map Wx — Z. We let F' € Wx denote the image of 1 € Z
under the sphttmg By definition, F~! € Wy < n{*(Xy) acts on X by the the map denoted v above.

For g € mf t(X), we let fg :== Adp(g). Note that the choice of point FrobX(xo) gives an isomor-
phism ¢ (X Frobx (zg)) ~ 7*(X, 2¢), and the composition:

(X, 20) i (Froby),

is the map g — g,% i.e., we have:

(X, Froby (z0)) ~ 75" (X, x0)

7t (Frobx)(g) = fg. (4.1.1)

4.1.2. The choice of point Froby (Zp) also defines an isomorphism:
x5 ~ Frobx ()" : Lisse(X)" — Vect”

of e-linear symmetric monoidal functors. In fact, we claim that this comes from an isomorphism of
symmetric monoidal DG functors:

xy ~ Frobx (z)* : qLisse(X) — Vect. (4.1.2)

34We note that per our conventions, the inverse to the generator —1 € Z corresponds to the arithmetic Frobenius
when we identify Z ~ Gal(Fy).

35Tndeed, we have Frobx (¢g70) = ¢! (Frobx )(g) - Frobx (o) by definition of ¢*(Frobx)(g).

Now by definition of F' = v, we have F~'-Frobx (9%0) = ®5(97) for @5 the absolute Frobenius. By functoriality,
absolute Frobenius is a map of spaces with 75" (X)-actions, so ®3(g%0) = g P5(0).

Comparing to our earlier equation, we see this expression equals F~'ns* (Frob x)(g) - Frobx (To) =
F~ 178 (Frobx)(g)F - F_lmx(%o) F~'7{" (Frobx)(g)F - ®5(%0). Therefore, g = 7{*(Frobx)(g)F, yielding the
assertion.
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Indeed, this follows formally whenever qLisse(X) is the derived category of its heart. This is the
case for X # P! by [AGKRRV1] Theorem E.2.8. Slightly more elementarily (and allowing genus 0),
we choose U € X affine open and containing xo and Frobx (z), and then qLisse(U) is the derived
category of its heart by the (simpler) Theorem E.2.8 (a).

Remark 4.1.2.1. The following remark will not be used. For the present moment, let & be any
algebraically closed field (not just Fq). Let Y /k be a connected scheme of finite type. Let y1,y2 €
Y (k) be two points. Then at this moment, it is natural to ask if there exists an isomorphism of
symmetric monoidal DG functors:

yi ~ y5 : qlisse(Y) — Vect.

We claim this is so. Indeed, we have effectively treated above the case of a smooth connected curve.
The case of any connected curve follows in an evident way by considering normalizations (using
intersection points between irreducible components of the singular curve as signposts leading the
way). Finally, the general case follows by noting that there exists a connected curve C' and a map
C — Y with y; and y9 in its image by an elementary argument. (One wonders if there is a purely
Tannakian argument that would apply in this derived setup.)

4.2. The adjoint quotient. Let H be an affine algebraic group in what follows.

4.2.1. Let LS?_?S“’O denote the neutral connected component of LS} i.e., the connected compo-
nent containing the trivial H-local system on X. We remind from [AGKRRV1] Proposition 3.7.2
that LS parametrizes (in a precise sense) H-local systems on X with trivial semi-simplification;
in what follows, we refer to these as unipotent H-local systems.

We then set:
Leathme — pggthm o pglestne,
Lsﬁstr
In other words, Lsgthm’o is the fixed points of Frobenius acting on LSESU’O; it may be thought of

as parametrizing Weil H-local systems that are geometrically unipotent.

4.2.2. There is a canonical map BH — LS""° corresponding to the trivial H-local system. This
map is Frobenius equivariant, where Frobenius acts trivially on BH.
Passing to Frobenius fixed points, we obtain a map:

ad
i H ) H — LSme (4.2.1)

d
Remark 4.2.2.1. Informally, the composition H — Ha/H — LSjgthm’O sends h € H to the Weil

representation Wy — H defined by Wx — Wy /7¢t(X) Rz g As we only consider the

groupoid of Weil representations, this map factors through the adjoint quotient as desired.

Remark 4.2.2.2. One main idea below is that 7y is not too far from being an isomorphism. To moti-
vate what follows, we observe the following obstruction to 75 being an isomorphism. Coarsely (e.g.,
at the level of field-valued points), the enemy is clearly Weil representations that are geometrically
unipotent and geometrically non-trivial.

Suppose H = GLy. Let A € €* and let o) denote the 1-dimensional Weil group representation
where Frobenius acts as multiplication by A (and 7*(X) acts trivially). Extensions 0 — oy — o —
o1 — 0 are classified by suitable group cohomology for Z, i.e., by H' of the complex:

I{O—me[Z]—mod (Cétw (X)’ U)\)'
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Here Cg;o(X) is the complex of étale homology for X, and the Z-action has generator acting by
geometric Frobenius on étale homology. If A # 1, it is easy to see that we have an exact sequence:

o% —id

0 — H'(Home(z).mod) (Cét,s (X),02) = Hy (X, 00) =—— Hg (X, 01)

where ¢x is the geometric Frobenius acting on H}.*® Here we have H} (X, o)) = HZ (X, e), but
with Frobenius action given as A times the standard one. Therefore, if A is a Frobenius eigenvalue
appearing in H élt(X ,e), we find geometrically non-trivial extensions of the desired type.

4.2.3. Splitting. We obtain a map LS — BH by restriction to zo. This map intertwines Frobe-
nius with the identity by3” §4.1.2, so on fixed point we obtain a map:
d
LSE™ — H'/ H.
We denote this map by xg = XH,z,. and similarly its restriction to LS?;thm’O.
By construction, the composition:

B H T st X, gty

is the identity map.

4.3. Non-resonance.

4.3.1. Define the set Rx < e* as the set of of eigenvalues of the (geometric) Frobenius acting on
Hl(X,e) x H:(X,e).
Remark 4.3.1.1. By the Weil conjectures for curves, 1 ¢ Rx. Also, ¢ always lies in Ry (but this is

less relevant to us at the present moment).

4.3.2. Let H be an affine algebraic group.
Let V be a finite-dimensional representation of H. Let py : H — GL(V') be the corresponding
d
homomorphism. Let chy : H a/ H x A' - A' be the map fitting into a commutative diagram:

VXid
_pyxid,

H x A! GL(V) x Al

J/ l(gJ\)Hdet(g—)\'idv)
d
HYH x Al — 2V, Al
Explicitly, for h € H and A € A, chy ([R], \) is the characteristic polynomial of py(h) evaluated at
A
d d
We then let (H a/ H)renres ¢ { a/ H denote the open consisting of conjugacy classes [h] such that

ad
[ ey chy([R], A) # 0, where b is the adjoint representation of H. Explicitly, (H / H)"""* is the
set of conjugacy classes [h] such that the matrix py(h) € GL(h) does not have any eigenvalues in

d d
Rx. We remark that the open embedding (H 8L/ H)ronres s H a/ H is clearly affine.

ad
Remark 4.3.2.1. Note that [1] € (H / H)"*""* by Remark 4.3.1.1.

36Note that geometric Frobenius for homology and cohomology are transpose (i.e., dual) morphisms. However,
if we consider, say, homology He:1(X) = (n$(X)*?)} ® e with its geometric Frobenius (which corresponds to
Adp : 78 (X) — 754 (X) by (4.1.1)) as a Z-representation, the dual Z-action on cohomology has the generator acting
by arithmetic Frobenius. This accounts for the inverse sign in the above formula.

37To be clear, when xg was not F,-rational, this equivariance depended on auxiliary choices.
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d
Notation 4.3.2.2. For any stack Y equipped with a structure map to (H a/ H)Pomres 'we let Ynonres .=
d
Yx a4 (H a/ H)Ponres We use this notation particularly in the case Y = LS®™™° equipped with
b y H quipp
H/H

the structural map xp.

4.3.3. Main geometric result. The following result compares arithmetic local systems with the ad-
joint quotient:

Theorem 4.3.3.1. The map:

_— (Ha/dH)non-res N Lsagthm,o,non—res
from (4.2.1) is an isomorphism.

The proof of this result is the subject of §4.4.
4.4. Proof of Theorem 4.3.3.1.

4.4.1. A criterion for a map to be an isomorphism. We begin by observing:

Lemma 4.4.1.1. Let f : Y1 — Yo be a morphism of algebraic stacks that are locally almost of finite
type (over the algebraically closed field e).
Then f is an isomorphism if and only if:
(i) f is formally étale, i.e., its cotangent complex Qél/% € QCoh(Y;) vanishes.
(i) The map Yi(e) — Ya(e) is an isomorphism of (1-)groupoids.
Here we explicitly remark that condition (ii) can be separated into the two separate conditions:

(ii1) For every y1 € Y1(e), the map Auty, (e)(y1) — Auty,e)(f(y1)) of automorphism groups is
an isomorphism.>®
(ii9) For every ys € Ya(e), there exists y1 € Y1(e) and an isomorphism f(y1) ~ y2 € Ya(e).

Proof. Tt suffices to show that for every affine S locally almost of finite type and equipped with a
map S — Yo, the map S xy, Y5 — S is an isomorphism. The properties (i) and (ii) are obviously
preserved under such base-change, so we may assume Y5 is an affine scheme. Moreover, it is standard
that Y1 — Yo is an isomorphism if and only if Y; xy, ‘gjgl — 951 is so; therefore, we may assume Yo
is moreover classical.

Now Y; is an algebraic stack with trivial automorphism groups at e-points, and therefore an
algebraic space. Moreover, Y1 — Y5 is étale, so Y; is also classical. Now f is a radicial map (because
it is locally of finite type and injective on e-points) and étale, so an open embedding. Finally,
because f is surjective on e-points, it must be an isomorphism.

O

Below, we will verify the above hypotheses for the map 7 considered in Theorem 4.3.3.1.

4.4.2. Conventions, formulae, and signs. Before proceeding, we establish certain signs that will be

important. Roughly speaking, it is conceptually difficult to distinguish 7 ([h]) from 7 ([R~1]), but

Theorem 4.3.3.1 does distinguish them, so we must explain exactly how to understand the map 7

a bit more explicitly. (The reader is invited to skip this digression and return to it as needed.)
Below, we let Frobx : X — X denote the geometric Frobenius map.

38We emphasize that there is no room for anything derived here; this is a map between two sets.
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We normalize lisse Weil sheaves on X to be a pair (o, ) where o € Lisse(X)"Y = qLisse(X)Y is
equipped with an isomorphism a : o = Frob% (o). The direction of the map « is the “sign” in
question. Let us explain first why this sign is the “right” one for our conventions.

Note that V := z#(0) is a representation p8°°™ of 7{*(X). We also obtain an isomorphism:

o 4.1.2
V = xf(0) —> Frobx (x)*(o) (L2 zy(o) =V (4.4.1)
that we denote by p(F'). In the notation of §4.1.1, one finds tautologically that p(F') o p&°™(g) =
p&°m (15 (Frobx )(g)) o p(F). By (4.1.1), we can rewrite this equation as:

p(F)pE (g)p(F) ™ = psom(FgF 1)
so we obtain representation of Wx on V with F acting by (4.4.1) — had « gone the other way, we
would need to invert (4.4.1).

Similarly, for H an affine algebraic group, a Weil H-local system is an H-local system o on X
with an isomorphism « : oy —> Frob% (og) (of H-local systems). As a consequence, for h € H,
7 ([Rh]) has op trivial and « is given as multiplication by h. This ensures that the corresponding
Weil group representation Wy — H(e) factors through Z = Wy /7' (X) and sends the generator
to h (as it was supposed to).

Finally, for a lisse Weil sheaf (o, a), the natural “geometric” Frobenius action ¢, on its coho-
mology is given by the operator:

Cat(X,0) — Cet (X, Frobk (o)) *— Cet(X, 0) (4.4.2)
where the first map is the tautological one.

Remark 4.4.2.1. We wish to be clear about the logical status of the above material. First, we have
argued that the map «a should be considered as going in a certain direction. But at some level, this
is a moral argument, not a mathematical one. Rather, we have made explicit a certain® convention
that was implicit before (and shown how it leads to the orientation informally suggested in Remark
4.2.2.1). Logically speaking, establishing this convention was strictly necessary for the statement of
Theorem 4.3.3.1.

4.4.3. T is formally étale. We will show that 77| .a is formally étale.
(H / H)non—res

First, note that we are reduced to checking that the tangent complex vanishes (e.g., both sides
have perfect cotangent complexes). Moreover, we can check this on fibers at all e-points as both
sides are locally almost of finite type.

In general, for o € LS%}thm(e), we can compute the tangent complex as:

Ty , = Cat (X, 0o[1])% = Ker (id —¢5 : Cer(X, bo[1]) — Car(X, bo[1])).

Here b, is the adjoint Weil local system on X induced by o, C¢ (X, hs[1]) is its étale cohomology
complex (up to shift), and we are taking Z-invariants with respect to the action of the Frobenius
¢o (coming from the Weil structure on o).
For h € H(e), the tangent complex T' a/d . € Vect is the homotopy kernel (i.e., shifted cone):
H/H,

T = Ker(id — Ady, : h[1] — b[1])
H / H,[h]

40

ad
39For even more clarity: Hd/ H = (BH)S1 has an automorphism of “loop reversal,” and we need to remove the
ambiguity this automorphism provides.
40See [AGKRRV1] Proposition 2.2.2, §24.5.1.
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d
where Ady, is the adjoint action of A on h; more naturally, writing H a/ H = Maps(BZ,BH) and
this formula yields Z-invariants for the Z-action on h[1] = Ty spec(r) With generator acting by

Adp,. (One consequence: we see that in the above description of T' .4 could have used Adj-1
H /[ H,[h]
in place of Ady.)
On the other hand, we have:

Cet (X, brqn [1]) = Cer(X, €) @ b[1]
with Frobenius:
Pry((n]) = Px ® Adj—

where the inverse occurs because of the appearance of a1 in (4.4.2).

The Frobenius equivariant map e = H’(X,e) — Cg/(X,e) (with Frobenius acting trivially on
the source) induces a commutative diagram:
id — Ad,, 1

b[1] = e®b[1] b[1] = e®b[1]

| |

id —¢x®Ad,
Cet(X,€) @ [1] ——= Cet(X,e) @ b[1].
Passing to (homotopy) kernels along the rows yields the differential for 77 at [h].4!
Therefore, we see that 7y is formally étale at [h] if and only if:

id—¢x ®Adj-1: 771 Ce(X,e) @b — 771 Cyy (X, e) ® b
is an isomorphism, or equivalently, the induced maps on cohomology:
id—¢x ® Adj-1 : Hiy(X,e) ®b — Hi(X,e)®b
id—¢x ® Ady-1 : HE (X, e) ® b — HE (X,e) @b

are isomorphisms. Clearly this happens exactly when 1 is not an eigenvalue of ¢px ® Ady—1, which
occurs exactly when 1 cannot be written as A - p for A an eigenvalue of ¢ x and p an eigenvalue of
Ad,- = Ad;l, i.e., when no eigenvalues of Ady, lie in Rx. This is the defining condition for [h] to

d
lie in (H a/ H)onres g0 we obtain the claim.

4.4.4. Stabilizers. Next, we verify condition (7i1) from Lemma 4.4.1.1. In fact, this is obvious, and
we will never use the subtleties of non-resonance in this step. We explicitly spell out the argument
here:

Suppose o € LS#™m(e), By definition, o lifts to a continuous Weil group representation p :
Wx — H(e) that is well-defined up to conjugacy. In this case, Authgthm(e) (o) is the stabilizer of

the image of p in H(e).

ad
Similarly, an e-point in H / H lifts to some h € H(e), and Aut .,  ([h]) is the stabilizer of h.
H / H(e)

Now for h € H, 7 ([h]) is the Weil group representation Wy — Z I=h g (e), whose stabilizer

obviously coincides with that of A.

ad
4170 see this, consider H / H as the moduli of arithmetic local systems on Spec(k), then apply the above discussion
about LSE™™ accordingly.
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arthm,o,non-res

4.4.5. Lifting isomorphism classes: setup. Finally, we verify (ii2). Suppose o € LS, (e).
We lift o to a continuous representation p : Wy — H(e). Let po : n$*(X) — H(e) denote the
restriction of p to the geometric fundamental group; our task is to show that pg is trivial.

This is a concrete linear algebra problem; we spell out the details below. We use the notation of
§4.1.1 (in particular, ' € Wx and g — fg). In addition, we introduce more notation:

e Let H, € H denote the Zariski closure of Image(po).
e Let 6 : H, = H, denote the adjoint action of p(F), i.e., 8(h) = Ad,(h).

In these terms, note that we have:

po("g) = 0(po(g)) for all g € m{'(X). (4.4.3)

We now make the following additional observations about our hypotheses.

First, that py defines a point in LS}?S“’O c LS means that pp factors through a unipotent
subgroup of H by [AGKRRV1] Proposition 3.7.2. Equivalently, H, is unipotent.

Second, note that the non-resonance condition means that Ad,ry = Lie(f) : h — b has no

eigenvalues in Rx.

4.4.6. Lifting isomorphism classes: proof. In the above notation, our task is to show that H, is
trivial. By unipotence, it suffices to show that its abelianization H2P is trivial. Let V := Lie(H2P);
as H?Y is an abelian unipotent group, we abuse notation in identifying it with (the e-scheme
associated with) its Lie algebra.

By functoriality, # induces an automorphism of V', which we also denote by 8. Suppose V # 0;
then there exists an eigenvector € V'V for the transpose ¥ : VY — VV: we let X € €* denote its
eigenvalue. Note that by the non-resonance assumption, \ ¢ Rx.

We now obtain a continuous homomorphism:

(X)) 2 Ho(e) — V s e

144

that by (4.4.3) satisfies:
po("g) = A-Do(g). (4.4.4)
We also remark that Ker(H,(e) — V — e) is the set of e-points of an algebraic subgroup of H.,,
so by definition of the latter, the homomorphism pg must be non-trivial.
Now pp extends to a non-zero e-linear map H{*(X,e) — e, i.e., it comes from a non-zero coho-

mology class n € H (X, e). As g — Fg induces the (geometric) Frobenius on H{'(X, e) (see (4.1.1)),
(4.4.4) means:

ox(n) =A-n.
This contradicts the non-resonance assumption, so we conclude that V' = 0, as was desired.

4.5. Setup for the proof of Theorem 3.5.2.1. We now begin the proof of Theorem 3.5.2.1.

4.5.1. Recall that our objective is to define the commutative diagram (3.5.3) and verify certain
properties of it. §
We begin by defining a certain function § : T — Al as:

o(t) = H ch(t,\), teT
)\Efo
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where we use notation as in §4.3.2, and are considering § as a representation of T via the adjoint
action. More explicitly, we have:

o) = T (@ —NE=D [T - »
AeRx aeA

where we consider & as a map T — G,, < AL )
Clearly § is a W-invariant morphism, so induces a map 7'//W — A'; we also denote this function
by 9.

4.5.2.  We now form a commutative diagram:

arthm,o
/ lXB \
Lsarthm,o BadB Lsarthm,o
T / a
J/XT / \ lxc
e o (4.5.1)
T,T GG
T//W
Is
Al
We now define d so that its restriction to Lsgthm’o is given by the unique map LSigthm’O — Al

appearing in the diagram (4.5.1), and so its restriction*? to Lsgthm \Lsgthm’O is identically 0. We

define 04 in exactly the same way, replacing G by T everywhere in the previous sentence.
Below, we check that the pair of maps (65, 05) satisfy the conclusions of Theorem 3.5.2.1.

4.5.3. First, the commutative diagram (3.5.3) clearly exists by (4.5.1).

4.5.4. Second, we need to check (1) from Theorem 3.5.2.1, i.e., that §~ takes a non-zero value
at the trivial Weil local system. By construction, it is enough to show §(1) # 0. Clearly 6(1) =
[Dery (1= N)4m(@) - and we recall that 1 ¢ Rx (see Remark 4.3.1.1, §77?).

4.5.5. Next, we observe that the locus where 5 is non-zero is exactly Lsgthm’o’non'res (by defini-
tion).
Therefore, by Theorem 4.3.3.1, we have:
ad .
F(Lsgthm, w) [551] _ F(Lsgthm,o,non—res’w) ~ F((Ga/ G)non—res,w) (4_5'2)
Lad . ad .
which is concentrated in degree zero because it is a localization of F(Ga/ G,w) ~ F(Ga/ G,0) at a

ad .
function Ga/ G — A, verifying hypothesis (2) from Theorem 3.5.2.1.

42\We remind that LSrijm’o c LSTC‘;S" is a connected component, so this process of defining the function on

LSE™H™ = LSE™™ x| grestr LS5™™° and setting it to be zero elsewhere is legitimate.
G
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4.5.6. It remains to verify the surjectivity (i.e., Theorem 3.5.2.1 (3)). We will do this in the
remainder of the section; here we make some preliminary, orienting remarks.
Recall the setting of Lemma 3.7.1.1. We observe that we have two maps:

— Eisspec _ hm,o, _ (4.5.2)
I‘(LSanthm,w) [5T1] is F(Lsgthm,w)[éél] _ F(Lsgt m,o,non res’w) =

DG GLw)[(0g 0 7g) ™Y = TG Gymomres ),

and:

—17 Thm. 4.3.3.1 ,,73d = Eisspec-toy
DLSF™™, w)[6; '] =" (T T, w) (67 0 77) '] =
cad .
D(G G066 0 76) ] = TG G, w)
By Corollary 3.7.2.1, we would be done if these two maps coincided.
This expectation is somewhat too naive: we instead show that they coincide up to invertible
L-values, which will suffice for our purposes.

4.6. L-values and traces. In §4.5.6, we made an opaque remark about L-values. In this subsec-
tion, we will make a precise connection between categorical traces and L-values; this is the main
computational input we will need.

In what follows, we let H denote a unipotent algebraic group over e. (In practice, H = N )

4.6.1. Classes and traces. Suppose € € DGCatcopt is a dualizable DG category on T : € — € is an
endofunctor.

Let €° < @ denote the subcategory of compact objects and let CT2% denote the category of
pairs (F, a) where F € C¢ and o : F — T'(¥) is a morphism in C.

Given some (F, ) as above, there is a canonical point cl(F, o) € Q% tre(T'). Indeed, this follows
from the functoriality of traces as in §3.2.5; equip Vect with the identity self-map, F as a functor
Vect — €, and « as a lax intertwining map, so functoriality gives a map e = tryect(idvect) —
tre(T) € Vect, i.e., a point cl(F, a) € QF tre(T).

More generally, we recall that there is a map cl(—) : K(C>T12) — tro(T) € Spectra of spectra
from the K-theory spectrum of C“T"1X to the trace of T’ (with the latter considered as a spectrum
via the forgetful functor Vect — Spectra).

Notation 4.6.1.1. Note that Vect®d®* — (W e Vect®,¢ : W — W} is a symmetric monoidal
category and as such acts canonically on C“T’8% in the above setting. Explicitly, for (W, ¢) e
Vect“ 418X and (F, o) € @712 1 ® F is equipped with the endomorphism ¢ ® id + id ®a.

Under the class map, one has:
AW ®F, ¢ ®id +id®a) = try (o) - cl(F, a). (4.6.1)

(We do not need this, but this identity can easily be upgraded to a suitable statement at the level
of spectra.)

4.6.2. Statement of the problem. Recall that H is unipotent. By [AGKRRV1] Proposition 3.3.2,
LS'™ is a quasi-compact algebraic stack; in particular, its structure sheaf OLSI};SH € QCoh(LSi™)
is compact (unlike for non-unipotent groups). By abuse of notation, we will let (‘)LS}?m denote the
“same” object of IndCoh(LS¥*") under the fully faithful embedding QCoh(LS}*") < IndCoh(LS}*")
(usually denoted “E” in the literature on IndCoh).

We have a map 79 : BH — LS corresponding to the trivial local system. We can then form
73dCeh (OB ) € IndCoh(LSTF™).
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Note that both objects Opgrestr, T(')?fCOh(OB ) are coherent and carry obvious canonical Frobenius

equivariant structures. Therefore, we may form their classes:*3

cl(Oggestr, @), (105 " (OBR), @) € T(LSHFM™, w).
Our goal is to compare these two classes.

4.6.3. An L-value. Let (x(t) = 2,50 Xo(Fy)[t" € Q(t) < Q((t)) denote the (-function of the
curve X. We remind that the (-function has the form:

xt) = = el

Let % (t) = (1 —t) - (x(t). By the Weil conjectures, (% (1) is non-zero and so equals the leading
term of the Taylor expansion* of (x(t) at ¢t = 1.

4.6.4. Main lemma. We will prove:

Lemma 4.6.4.1. There exists an equivalence:
cl(rg’s " (OBr), @) = (DT cl(O grestr, @) € QT (LSH™™, w).

Less homotopically, this result simply means that the images of the two points above in the set
To(QPT(LSEH™ ) = HOT(LSHEM™ ) are equal.

Proof.

Step 1. We begin with a toy model.

Let V and W be finite-dimensional vector spaces equipped with endomorphisms ¢y and ¢y .

Let Y denote the stack (over e) V' x QoW , which we consider equipped with the self-map ¢ =
oy x Qoodw; here QoW is the derived loop space 0 xyy 0.

We let e.g. Og € Coh(Y) denote the structure sheaf at the origin, Oy € Coh(Y) denote the structure
sheaf of V € Y, etc.

We use the category Coh(Y)?*!8X of lax ¢4-equivariant coherent sheaves on Y, i.e., Coh(Y)®*1ax =
{FeCoh(Y),a:F — ¢u(F)} (see §4.6.1).

Koszul resolutions provide identities:

DDAWY @ 0v] ~ [0y]

DUA-1Y[AVY @ Oy] = [0g].
Here the notation means the following. First, A‘W Y ® 0y € Coh(Y)?#!2* is equipped with the
lax equivariant structure from Notation 4.6.1.1, where A*WV is equipped with the endomorphism
A'¢y,; similar notation holds for A7V ® Oy. The notation [—] is used for the class in the K-theory
spectrum®® K (Coh(Y)?=12x),

By (4.6.1), we find:
cl(0g, ) = Y (1) tr(AMgy) - cd(Ov, ) = Y (=1) tr(AMgy) - cd(Oy, @) =
det(idy —¢y) - cl(Oy, @) € Q°T(Y?, w)

for Y the derived fixed points.

(4.6.2)

d
43By unipotence of H, note that every point of LS¥*™™ is non-resonant, i.e., the map Ha/ H — LS¥™Mm jg an
isomorphism.

4Note that — unlike in number theory — we are expanding in the variable t = ¢~*°

rather than in s itself.
450ne could also simply use Grothendieck groups for our purposes.
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Similarly, we have:
cl(0y, ) = det(idy —pw) - cl(Oy, a) € QT (Y2, w).
Comparing these two identities, we obtain:
det(idw —¢w) - cl(Qp, @) = det(idy —¢y ) - cl(Oy, a).
Now assume that det(idy —¢w ) is non-zero, so is invertible in the field e. We obtain:

_ det(idy —¢v) o (yd
CI(O0,0Z) = m Cl(old,a) e F(H ,CU).

Taking V = H}, (X) and W = HZ(X) equipped with their Frobenii endomorphisms, we observe

that: dot(idy —bv)
et (i V=PV) .«
e —gn) ~ K

by Grothendieck’s trace formula.

Step 2. Next, suppose we are in the following more general setup.

We suppose that Z is a QCA stack equipped with an endomorphism ¢ = ¢4 and is equipped
with a quasi-smooth map Z — Y =V x QoW intertwining the maps ¢.

We let Zg denote the fiber of Z over 0 € Y. We note that Zg is eventually coconnective, so Og,
is a coherent sheaf on Z.

The previous analysis then shows:

_ det(idv —¢V)
~ det(idw —¢w)

(assuming 1 is not an eigenvalue of ¢y ).

cl(Og,, ) - cl(Og, @) € Q°T(22,w) (4.6.3)

Step 3. We now wish to apply the above formalism to deduce our claim.

Choose a nested sequence {1} = Hy < H; < ... € H, = H of subgroups with each H; normal in
H and H;1/H; ~ G,. We remark that r = dim(H).

Then define algebraic stacks:

2; = LS x B(H/H))

LT,

where B(H/H;) — LSIES/?IZ_ is the map 79, i.e., it corresponds to trivial H/H;-local systems on X.
Observe that Z, = LS 2y = BH, and we have closed embeddings:

Zog—=>21—...—>2Z,.

We can rewrite the definition of Z; as follows. Note that H/H; acts on the classifying stack BH;;
formally, this is encoded by the fiber sequence BH; — BH — B(H /H;). Unwinding the definitions,
this induces an action of H/H; on LS}, We then have:

2; ~ LST" /(H/Hy).
Now for each i, we have a diagram:
H/HZ —_— H/H,L'+1 — BG,

) ) )

restr restr restr
LS —— LSt —— LS
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where the rows are fiber sequences and the top row is a fiber sequence of groups. Here the action
of BG, on LSE?itr is induced by the homomorphism of group stacks BG, — LSrcﬁitr corresponding
to pullback of local systems along X — Spec(k) (i.e., the map 7y for G,). Passing to quotients in
this diagram and identifying® LS ~ BG, x H (X) x QoHZ(X), we obtain a fiber square:

Z’i E— Z’i-’rl

l !

Spec(k) —— LSrC?:tlr /G, —— Hélt(X) X QOHéQt(X)

We now obtain the result by induction from the previous step.*”
O

4.6.5. An extended digression: divergent series via categorical traces. We explain a general format
for thinking about the above proof of Lemma 4.6.4.1. This material is informal and may be skipped.
However, we believe it is an important philosophical point that we wish to highlight.

Roughly speaking, the idea is that so-called categorical functional analysis (e.g., fine consider-
ations about distinctions between Perf and Coh) relate to actual analysis (e.g., summing infinite
series) via categorical traces. Strikingly, we will see that Hochschild homology allows us to some-
times “correctly” evaluate infinite sums without ever mentioning a topology on the field e in which
they occur.

We consider the following geometric setup. Let Y be an algebraic stack (over e), which we assume
is quasi-smooth and QCA. Assume Y is equipped with a self-map ¢ : Y — Y. The functor:

Ty : QCoh(Y) — IndCoh(Y)
F—F ® w'(.;
Oy
preserves compact objects and intertwines the self-maps ¢* and ¢' of the source and target. More-
over, this functor is a morphism of QCoh(Y)-module categories.

Now recall (e.g., [GKRV] §3.8.8) that for a dualizable QCoh(Y)-module category € with an
endofunctor T : € — € suitably compatible with ¢*, there is a canonical object:

tr°"(T") € QCoh(Y?)
with the basic property that I'(Y,tr®*®(T)) = tr(T) € Vect. This construction satisfies the usual
functoriality properties for traces. We have:*8
frenh (%) = Oys
£ (1) = wys
and then Yy yields a canonical map:
71 Oyp = tr(¢*) — tr"%(¢') = wy € QCoh(Y?).

(This map 7 can be thought of as a weak Calabi-Yau structure on the derived fixed points.)

46We note that by purity, there is a canonical such splitting compatible with Frobenius.

47Formally, the induction should be done on K-theory classes, generalizing (4.6.2). We map to Hochschild homology
only at the end.

4811 this formula, we consider wye as an object of QCoh, not of IndCoh. In other words, we implicitly are taking
the “true” dualizing sheaf in IndCoh and applying the forgetful functor ¥ : IndCoh(Y?) — QCoh(Y?) to it. As wys is
a line bundle, this is a quite mild thing to have done, so we do not specifically demarcate it in the notation.
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We let Y#good < Yo denote the locus of points where 7 is an isomorphism. Note that Yé,good
contains (Y5™)? (the fixed points of the smooth locus of Y) but in general is larger: one can in fact
verify that Y#2°°d is exactly the quasi-smooth locus of Y®.

Now, any perfect object F € Perf(Y) with a self map a : F — ¢*(F) yields a class:

cl(F, a)qcon(y) € T(Y?, 0)

i.e., a function on the fixed points Y of ¢. In this notation, we use the subscript cl(—, —)qcoh to
emphasize that we are considering F as an object of QCoh (this will be an important distinction
soon). This function can be understood quite explicitly; at a point y € Y?, we take the trace of the
resulting map:

By :y*(F) = y*(¢*(F)) = o(y)*(F) ~ y*(I) (4.6.4)
where the last isomorphism uses the identification y ~ ¢(y) implicit in y being a fixed point. In
other words, we have:

cl(F, a)qeony) = (¥ — tr(By)).
Now suppose instead that F € Coh(Y), though still equipped with a map « : F — ¢*(F). Because
F may not be compact in QCoh(Y), we cannot form its class in I'(Y?, ) any longer. However, we

can twist and form F ® wy, which lies in Coh because Y is quasi-smooth (so Gorenstein). We then
obtain a map:

d=a®id: FQuwy — ¢*(F) @uwy = ¢' (T Quwy).
Therefore, we can form the class:
(T ® wy, @)indcon € T'(Y?,w?).
Tautologically, in the special case where F € Perf(Y) < Coh(Y), we have:
cl(F ® wy, &)indcoh = T(cl(F, @)qcon)- (4.6.5)
Following this equation, we define the reqularized class:
cI"8(F, a)qcoh € (Y2204, 0)

as the image of cl(F ® wy, @)indcon under the composition:

(Y%, w) — DY ) '~ T(y2eeod ),

By construction, this regularized class coincides with (the restriction to Y#&°°d of) cl(F, a)qcon
when ¥ is perfect.

Suppose y € Y. The map (4.6.4) still makes sense. However, if F is not perfect near y, then
while the complex (4.6.4) is finite-dimensional in each degree, it is unbounded from below, so the
trace of 3, is not well defined. We define the regularized trace:

178 (3,) = (cI'8(F, a)qcoh) (¥)

as the value of the regularized class at y € Y®.
Heuristically, the regularized trace can be thought of as assigning an actual value to the infinite
sum:
D=0 e (HY(By)) : H (y*(F) — H' (y*(F)) e e (4.6.6)
1€Z
where we reiterate that the summands are each well-defined, the summands vanish for ¢ » 0, but
generally, an infinite number of summands appear.
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Example 4.6.5.1. Let us explain how this works in the simplest possible case. Suppose Y = QpA!
and ¢ is multiplication by a number A € e. Take the sheaf F to be Op, the structure sheaf of
the point 0 € QyA'. Note that 0 is canonically a fixed point of ¢, so we can think of 0 as a
point of Y?. By a standard calculation, 0%(Og) has 1-dimensional cohomology in even non-positive
cohomological degrees and vanishing cohomology outside these degrees; moreover, the map Sy acts
on H=2(0*(0g)) as multiplication by A’. Therefore, the sum from (4.6.6) is the geometric series
D0 M. We emphasize that this is a formal expression; at the moment, ) is an arbitrary element
of the field A and is in no sense “small.”

Now suppose A # 1. Then 0 € Y®&°°d (in fact, Y#&°°d = Y¢ — Spec(e) = {0}). Then the
regularized trace tr"®8(fp) is well-defined, and the (completely elementary) argument from Step 1

from the proof of Lemma 4.6.4.1 calculates:
I ——
1—A
In other words, we have given direct, purely algebraic meaning to the geometric series formula

> A¢=" 1 which usually requires us to know A’ "2 0 in some suitably analytic sense.

Remark 4.6.5.2 (Regularized traces and functional equations). Suppose now that ¢ : Y — Y is
in fact an isomorphism. Then ¢* = ¢' (say, as functors restricted to Perf or Coh). Therefore, for
F € Perf(Y) with o : T — ¢*(F), we also obtain a mp o/ : F — ¢'(F). For y € Y%, we obtain a
canonical map:

Yy (F) = y'(T)
defined in the same way as 3,. As J is perfect, we have:

y(T) =y (Tewyewy) =y (T@wy) @y (wy') =y (F) @y (wy)® ",
This map intertwines v, (for F) with 3, (for both F and wy). If we set ¢, to be the trace of the
map:
Yy (wy) = y*(wy)
constructed using 7, (and the obvious isomorphism wy =~ ¢'(wy) = ¢*(wy)), we find:

€y - tr(7yy) = tr(By).

Now we can define tr'*&(v,) exactly as we did for coherent F when y € Yo:800d  We obtain a
tautological “functional equation:”

ey - 7% () = tr5(3,)

(where €, is thought of as an e-factor).

Let us see how this logic plays out in the setting of Example 4.6.5.1. We should have A # 0 so
that ¢ is an isomorphism. We note that 0'(Og) has cohomology in even non-negative degrees, and
the action of vy on H?(0'(0p)) is multiplication by A~%. Also, 0*(w) = e[—1] with “y” operator
multiplication by A~!. Therefore, the regularized trace tr*®&(vy) heuristically makes sense of the
sum:

trie8(yp) “=" 2 A
=0
while ¢g = —A71.
Therefore, in this case, our functional equation heuristically yields:

_)\—1 Z )\—i “=reo {rree (70) — tres (BO) “_» Z )\z"

=0 1>0
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This resulting equation —A™1 >, A7"“=" %, A" is a favorite from the world of divergent series;
over C, the left hand side is defined for |A\| > 1 while the right hand side is defined for || < 1, but,
of course, the analytic continuations of these two functions coincide on their domains.

We note that this sort of manipulation with divergent series is closely related to the functional
equation for the (-function of an algebraic curve.

Remark 4.6.5.3. It would be of great interest to interpret categorically some analytic aspects of the
analytic theory of automorphic forms over function fields using some version of the above ideas.

4.6.6. Variant. In practice, we need a slight extension of the discussion of §4.6.4.
Let H be a unipotent group as before, and now let S be a torus acting on H by automorphisms.
(In practice, S = T acting on H = N. ) For brevity, we let @@ denote the semi-direct product S x H.
In this case, we define a rational map:

Goans S — Al

via the formula:

det (id — Ady—1 ®px —~ b ® HE (X))

det (id —Ad;-1 ®px —~ b ®H§t(X)) '

Here ¢x is the Frobenius acting on étale cohomology of X while we abuse notation somewhat in
letting Ad_ denote the action of S on h coming from the action of S on H.

Remark 4.6.6.1. Note that (% ;¢ is defined at 1 € S and takes the value (% (1)dmH there (see
Lemma 4.6.4.1).

(se8)—

Remark 4.6.6.2. Suppose p1,..., u, : S — Gy, are the characters of S appearing in its representa-
tion b, counted with multiplicities (so 7 = dim(H)). Then we have:

Cx,m,s(s HCX pi(s™h)

In particular, the domain of definition of CX7H7S is Nni{s € S | pi(s) # q}, and Ck p 5 is (defined
and) invertible on N;{s € S| pi(s) ¢ Rx}.

It will be convenient also to introduce the notation:

px.m,s(s) = det (id — Ady-1 ®px —~ b ® HY (X pr (pi(s

ax.m,5(s) = det (id = Ady @px —~ h @ HE(X)) = [ [(1 = q- pa(s™))
=1

_ Px,H,S

QXHS

so px,u,s and gx p,s are (regular) functions on S with Cems =
We introduce the notation:

LSGY = LS x BS = (LSj)/S.
S

We observe that LSbeigr is a quasi-compact algebraic stack (by unipotence of H). We let LSgg’m
denote the Frobenius fixed points of LSEisg. Explicitly, we have:

ad
Sarthm _ LSaQrthm <« S / S.

arthm
LS%

We let 71 : BQ — LSE'j;ngr denote the evident map.
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d ~
Remark 4.6.6.3. To be more explicit, we remind that Sa/S — LSg“hm’O by Theorem 4.3.3.1,

recalling that S is a torus. Therefore, Lngsl?m is the connected component of the identity in Lsgthm.

Lemma 4.6.6.4. There exists an equivalence:

dx,H,S * CI(T{?fCOh(OBQ)a Q) ~PX HS - Cl(OLere?gra a) € QOOF(LSg;tgmaw)-

Remark 4.6.6.5. Informally, the lemma should be understood as saying:
(1" (0BQ), @) > (ks - A(Opgeesr, @)

Proof of Lemma 4.6.6.4. The proof is essentially identical to that of Lemma 4.6.4.1. The differences
are as follows.

First, in Step 1, one should assume V and W are S-representations, and one should account for
the S-action in (4.6.2). That the dual representations V¥ and W appear in (4.6.2) accounts for
the appearance of s~! rather than s in the definition of C;(’ m,s above.

Second, one should note that the subgroups H; from the proof of Lemma 4.6.4.1 can be taken
to be invariant under the S-action (proof: diagonalize the S-action on h/[h,H] and proceed by
induction).

Otherwise, the argument proceeds verbatim.

O

4.7. Conclusion. We now return to the setting of §4.5.

4.7.1. Let LS;E?“;O c LS%rthm denote the non-vanishing locus of d;.
O

We have a rational function:

Lsz%rthm Thm.:4.3_3,1 Ta/dT N T C)E,ff_;”f“ Al

Sqrt hm

that is clearly defined and invertible on L T 6000

By abuse of notation, we also let (y y 7 denote
the resulting map:

. arthm 1
Cxvr  LSF ) — AN,

4.7.2.  We now prove the following result:

Theorem 4.7.2.1. There is a commutative diagram:

_ jgSpec cad » non-re
D(LSFm, w) == T(LSF™™, w)[6;"] — BT TG G)ronTes )
id
NLX,N,T' \
_ isS ec,to cad _ cad « non-res
L(LSF ) w) == D(LSFM™ w)[051] == T(G/ C,w)[(¥g 0 1) 7] == T((C) G)"""*, w).

Using Corollary 3.7.2.1, this clearly yields the desired surjectivity from §4.5.6. Therefore, it
remains to prove this theorem.

Proof of Theorem 4.7.2.1.
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Step 1. The commutative diagram:
5 B restr
BB —— LS%
lptoy lp
5 TG restr
BG —— LSg
of stacks under proper morphisms yields an identification of the resulting two functors:
Rep(B) — IndCoh(LS™)

preserving compact objects.
Passing to traces of Frobenius, this yields a commutative diagram:

(B B,w) —— DLguthm o)

£ l (4.7.1)
/G,w

(G Gyw) —— D(LSEI™ o),

Step 2. Next, form the commutative square:
B restr
BB —— LS%

-

BT T LSiew

We obtain a natural transformation:

#,IndCoh IndCoh IndCoh toy,*,IndCoh
q- T* - B* q

of functors:
Rep(T ) IndCoh(LSreS“)

But this functor is not an isomorphism, so mere functoriality of traces has little to say about it.
Still, we claim that we have a commutative diagram:

d N Lad - tr(q* IndCoh IndCoh)
(T T w) 2T DT w) T syt w)

H (4.7.2)
tr(T;én,d:oh qtoy,*,lndCoh)

d . T cad -
T w) s (T w)

(T T)T,w
To construct this diagram, note that the maps are naturally morphisms of F(Ls%fthm, 0)-modules.

.ad .
This algebra clearly acts F(Ta/ T,w) (the source of the diagram we wish to construct) through its
factor:

cad .
L(Lse™™e, 0) = (1 T, 0).
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Therefore, it suffices to produce a commutative diagram:

tr(q*,lndCothpdCoh)

Lad . 7P .ad . o .
DT T, w) XN T, w) T, p(Lsytm ) P, prgathne )
cad - S sad - tr(TIpdCohqtoy,*,lndCoh) .
P(Ta/ T, w) %{L} F(Ta/ T, w B F(Ls%rthm, w) proj F(Ls%rthm’o, w)

of F(Ta/dT, 0)-modules.

Recall that H a/d H is naturally Calabi-Yau for an algebraic group H; the equivalence QCoh(BH)) EX
IndCoh(BH) gives an isomorphism on Hochschild homology F(Ha/dH, 0) = F(Ha/dH, w). Let
voly e T'(H a/d H,w) denote the resulting generator — explicitly, it is the class of the identity object

of Rep(H). Therefore, to produce the above diagram, it suffices to provide an isomorphism:*”
Px N7 PIO] <tr(q*,lndCohTJI{::Coh)(VOIT)> _
x N.F * PTO] (tr(Tg’ic°hqt°y’*’|”dc°h)(V01T~)> € QOOF(LSEthm’O,w).
By construction, we have:
tr(rg SO YN (vol ) = cl(Og 5, a) € QFT(LSE™™, w).
Similarly, by base-change, we have:
tr(q*""dC"hT:',{::COh)(VOIT) = cl((f)LSrBestr Xy BT a) = CI(OLSLFBe?%r, a) € QT (LS w).

So the identity follows from Lemma 4.6.6.4, reminding that LS%}FTbm = LSjgthm’o (see Remark
4.6.6.3).

Step 3. Concatenating diagrams (4.7.1) and (4.7.2), we obtain a commutative diagram:

tr(Tl—ndCOh)

cad . P N Ak cad o :oSpec
DT T,w) —— T(T) T,w) ——— T(LS¥hm ) — 2 p(Lsathm )
cad . q N T T cad . s <Spec,toy cad . tr(TIFdCOh
DT )T, w) —=C 5 T(T) T, w) —= DG/ G, w). E s T(LSEM™ ).
This diagram refines the theorem we were supposed to prove.
[l
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