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Abstract. Vincent Lafforgue has constructed a Langlands decomposition of the space of cuspidal
automorphic functions for function fields. In our joint work with Arinkin, Gaitsgory, Kazhdan,
Rozenblyum, and Varshavsky, we showed that a version of the geometric Langlands conjectures
yields a description of the eigenspaces of Lafforgue’s decomposition in the everywhere unramified
case.

In this note, we give an overview of the latter circle of ideas. We then explain how to use these
methods to show that geometric Langlands implies that there are no everywhere unramified cusp
forms with trivial Langlands parameter, addressing a question of Michael Harris.

Of some independent interest, we calculate a spectral analogue of pseudo-Eisenstein series near
the trivial Langlands parameter in some explicit terms. In suitable coordinates, we find it is a
product of the Weyl character formula with a zeta factor related to the curve.
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1. Introduction

1.1. Background and goals.

1.1.1. In our joint works [AGKRRV1], [AGKRRV2], and [AGKRRV3] with Arinkin, Gaitsgory,
Kazhdan, Rozenblyum, and Varshavsky, we formulated a conjectural spectral decomposition of
unramified, compactly supported automorphic functions. This conjecture was also found by X. Zhu
in [Zhu].

Our spectral decomposition, inspired by V. Lafforgue’s breakthroughs [Laf3] and by the geo-
metric Langlands conjecture of Beilinson-Drinfeld, is of Langlands type, but of different nature: it
describes all (compactly supported) automorphic functions, not merely eigenforms, and it yields
both reciprocity and functoriality statements without explicitly incorporating either into its formu-
lation.

One major purpose of our work was to show that the spectral decomposition actually follows
from an ℓ-adic version of the geometric Langlands conjecture.

1.1.2. In advertising our joint work, including in my talks at IHÉS, I have tried to argue that
our conjecture yields new insights into automorphic functions that should be of interest to number
theorists. Our conjecture is most manifestly satisfying around discrete (alias: elliptic) Langlands pa-
rameters (cf. Example 2.4.5.1). But I have been hard pressed to give precise, concrete consequences
near other Langlands parameters.

For instance, our conjecture as is does not immediately reproduce the Arthur multiplicity formula
for discrete series. Further development of the theory is needed to understand such forms.

1.1.3. With that said, the main new contribution of this note is to give a simple, concrete applica-
tion of our work to automorphic functions, answering a question of Michael Harris. The assertion
statement concerns the trivial Langlands parameter, which is essentially as far from discrete as
possible.

1.1.4. In addition, befitting conference proceedings, in §2 we provide some introduction to the
geometric Langlands program and the circle of ideas developed in [AGKRRV1], [AGKRRV2], and
[AGKRRV3]. These two parts of the paper can be read essentially independently.

The reader who is most interested in this survey material might skip ahead to §2; as that material
is by its nature introductory, the emphasis of the remainder of the introduction is on the problem
considered in the latter part of the paper.

1.2. Statement of the main result.

1.2.1. Setting. We fix Fq a finite field of characteristic p and let k “ Fq denote its algebraic closure.

We let ℓ ‰ p be a fixed prime and let e denote Qℓ; this is the field of coefficients in the terminology
of [AGKRRV1]. We fix G{Fq a split reductive group and let Ǧ{e denote its Langlands dual group.

Let X0{Fq be a smooth, projective, and geometrically connected curve, and we let X “ X0 ˆFq k
denote its base-change to k.
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We let F “ FqpX0q denote the global field associated with X0. We let A denote its ring of adèles
and let O Ď A denote the subring of integral adèles.

We let AutunrG,c denote the space of everywhere unramified, compactly supported automorphic
function for F . By definition, this means that Autunrc is the vector space of functions:

GpF qzGpAq{GpOq Ñ e

with finite support. We let Autunrcusp Ď Autunrc denote the subspace of cuspidal automorphic forms.1

1.2.2. We fix once and for all a k-point of X to use as the base-point for our fundamental groups;
we omit it from the notation.2 We let πét

1 pXq denote the étale fundamental group of X, we let
πarthm
1 pXq :“ πét

1 pX0q denote the arithmetic fundamental group, and we let WX :“ πarthm
1 pXq ˆ

pZ
Z

denote the Weil group of X (considered with its standard topology, so that πét
1 pXq Ď WX is open).

Notation 1.2.2.1. For definiteness: we always use geometric Frobenius conventions. So we have

identified pZ » πét
1 pSpecpFqqq with generator of pZ corresponding to the geometric Frobenius element.

1.2.3. Lafforgue-Langlands decomposition. For the moment, we assume that G is semisimple to
simplify the discussion. (The body of the paper works with general reductive groups.)

A Langlands parameter is a continuous homomorphism ρ : WX Ñ Ǧpeq. A Langlands parameter
is semi-simple if for any parabolic P̌ Ď Ǧ such that ρ factors through P̌ peq, there exists a Levi
factor M̌ Ď P̌ so that ρ further factors through M̌peq (see [AGKRRV1] §3.5-3.6).

We now remind that [Laf3] constructed a decomposition:

Autunrcusp » ‘
rσs

Autunrcusp,rσs (1.2.1)

where rσs runs over conjugacy classes of semi-simple Langlands parameters.

Remark 1.2.3.1. The above applies just as well for ramified automorphic functions. Our main results
are restricted to the unramified setting, so we have chosen simply to emphasize the unramified
setting throughout this text.

1.2.4. The main result in this note is the following:

Theorem A. Let G be semi-simple (and not the trivial group). Let triv : WX Ñ Ǧpeq denote the
trivial Langlands parameter, i.e., the constant map with value the identity.

Assume the restricted geometric Langlands conjecture of [AGKRRV1] with its compatibility with
Eisenstein series.

Then the summand Autunrcusp,rtrivs Ď Autunrcusp is zero. In other words, there are no unramified cusp

forms with trivial Langlands parameters.

Remark 1.2.4.1. Although we do not emphasize this in the text, one can get by with less. Namely,
according to [AGKRRV1] Corollary 14.3.5, ShvNilppBunGq breaks up as a sum over semi-simple

Ǧ-local systems on X. One only needs restricted geometric Langlands for the trivial local system.
We expect forthcoming work to completely address this problem.

Remark 1.2.4.2. Roughly speaking, the argument goes as follows. In §3, we discuss what Eisenstein
series corresponds to on the spectral side of arithmetic Langlands. Then in §4, we provide local
coordinates on LSarthm

Ǧ
near the trivial local system (see Theorem 4.3.3.1) and then explicitly

1We remind the well-known fact that over function fields, cuspidal automorphic forms are a priori compactly
supported.

2It is better to think in terms of the category of lisse sheaves on X, as we often do. We use πét
1 simply to make

some points of our discussion more concrete.
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calculate spectral Eisenstein series in these coordinates (see Theorem 4.7.2.1). From here, the result
is essentially obvious (see Lemma 3.7.1.1).

Remark 1.2.4.3. We remark that one key point of the proof of Theorem 4.7.2.1 suggests a relation-
ship between manipulations with certain divergent series and categorical trace methods. We spell
out our ideas on this subject – such as they are – in §4.6.5. This material can be read essentially
independently of the rest of the paper.

1.3. Some comments.

1.3.1. Motivation I. The vanishing of Autunrcusp,rtrivs is an ingredient in forthcoming work of Beuzart-

Plessis–Harris–Thorne studying the local Langlands correspondence for function fields via the trace
formula. The above theorem leaves their results conditional on the geometric Langlands correspon-
dence, on which a great deal of progress has been made in recent years.

1.3.2. Motivation II. For G “ PGLn, any cusp form has irreducible Langlands parameter, i.e., in
this case Autunrcusp,rσs “ 0 unless σ is irreducible; we refer to [Laf3] Lemma 16.4 for a recent treatment

(following parts of [Laf1]; see the statement of [Laf1] Theorem VI.9 in particular).
However, for general G the situation is more complicated: cusp forms may have reducible Lang-

lands parameters; this is related to the failure of the Ramanujan conjecture for these cusp forms.
Still, Arthur’s conjectures provide some restrictions on the σ’s that may appear. First, note that

there is a canonical map WX Ñ Z
1 ÞÑq´1

ÝÝÝÝÑ eˆ that we denote γ ÞÑ |γ|; choosing
?
q P eˆ, we then

obtain a canonical map:

WX Ñ WX ˆ SL2peq

γ ÞÑ
´

γ,

ˆ ?
|γ| 0

0 1?
|γ|

˙

¯

.
(1.3.1)

Arthur’s conjectures predict that Autunrcusp,rσs will be zero except possibly when σ extends along

(1.3.1) to an irreducible representation of WX ˆ SL2 into Ǧ.3

1.3.3. Suppose we are given such an Arthur parameter σ7 : WX ˆ SL2 Ñ Ǧ, and suppose its
restriction to πét

1 pXq is trivial, so we have a map σ7 : Z ˆ SL2 Ñ Ǧ. Let f P ǧpeq denote the

logarithm of σ7
´

0, p 1 0
1 0 q

¯

and let F P Ǧpeq denote the image of
´

1,

ˆ

1?
q

0

0
?
q

˙

¯

. Note that F

encodes the underlying Langlands parameter of σ7, and also note that AdF pfq “ qf . We also note
that f must be non-zero, or else σ7 will not be irreducible.

We then arrive at:

Conjecture 1.3.1. Suppose F P Ǧpeq is a semisimple element and let σF : WX Ñ Ǧpeq denote

the corresponding Langlands parameter WX Ñ Z
1 ÞÑFÝÝÝÑ Ǧpeq. Then Autunrcusp,rF s is trivial unless q is

an eigenvalue of AdF : ǧ Ñ ǧ.

Remark 1.3.3.1. Of course, q can be replaced by q´1 in this conjecture (apply the Cartan involution
on Arthur’s SL2), which partially reflects the invariance of the conjecture under modifications of
our normalizations (like geometric vs. arithmetic Frobenius).

3Formally, this means we have a map SL2 Ñ Ǧ over e and a continuous map WX Ñ Ǧpeq whose image commutes
with the image of SL2peq Ñ Ǧpeq.
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Assuming geometric Langlands, we will prove something close to this conjecture. Namely, we will
show that Autunrcusp,rσF s “ 0 unless AdF has an eigenvalue equal to a Frobenius eigenvalue appearing

in H1
étpXq ˆ H2

étpXq; as q is the Frobenius eigenvalue on H2
étpXq, this is somewhat stronger than

the hypotheses of the conjecture. We remark that the case where F is the identity yields Theorem
A.

1.4. Conventions and notation. Our hope is that this note can serve as a point of entry to the
long papers [AGKRRV1], [AGKRRV2], [AGKRRV3]. We have provided some background in §2.
We also refer the reader to the introduction of [AGKRRV1] for more background on the subject.
We have also aimed to include precise citations whenever we use technical results from these papers
with the hopes that this can help the reader navigate these works.

We generally maintain the conventions and notation of [AGKRRV1]; we refer to §0.9 in particular.
We work over the geometric field k “ Fq for geometry of the curve X, its moduli stacks BunH of

H-bundles, and so on, and we use the characteristic 0 coefficient field e “ Qℓ for geometry of local
systems. Outside of §2, we have k “ Fq. The geometry over k is classical algebraic geometry, while
the algebraic geometry over e is derived. We use higher categorical methods. Our DG categories
are assumed to be enriched over e-vector spaces.

For an algebraic stack Y over k locally of finite type, we let ShvpYq denote the DG category
of e-sheaves on Y (see [GKRV] A.1.1 (d’)). We let qLissepYq Ď ShvpYq denote the subcategory of
quasi-lisse complexes as in [AGKRRV1] Definition 1.2.6; these are objects whose (perverse, say)
cohomologies are colimits of lisse sheaves (in the usual sense).

We generally refer to 8-categories simply as categories to simplify the terminology.
We let DGCatcont denote the category of cocomplete (and accessible) DG categories under con-

tinuous DG functors. We consider DGCatcont as equipped with Lurie’s tensor product. We let
Vect P DGCatcont denote the DG category of e-vector spaces, which is the unit for the monoidal
structure.

For C a DG category, we let Cc denote its subcategory of compact objects. When C has a t-
structure, we let C♥ (resp. Cď0, resp. Cě0) denote the heart of the t-structure (resp. the subcategory
of connective objects, resp. the subcategory of coconnective objects).

We refer to [GKRV] for background on categorical trace methods.
ForH an affine algebraic group over e, we remind that there is a moduli stack LSrestrH “ LSrestrH pXq

over e ofH-local systems (with restricted variation) onX. We remind that anH-local system is sim-
ply a t-exact (equivalently: right t-exact) symmetric monoidal functor ReppHq Ñ qLissepXq (equiv-
alently: a symmetric monoidal e-linear functor ReppHq♥,c Ñ LissepXq♥). Therefore, we define the
stack LSrestrH to parameterize right t-exact symmetric monoidal DG functors ReppHq Ñ qLissepXq;
more precisely, the S “ SpecpAq points of LSrestrH are the groupoid of right t-exact symmetric
monoidal functors ReppHq Ñ A-modpqLissepXqq.

Pullback along geometric Frobenius FrobX : X Ñ X defines a map LSrestrH Ñ LSrestrH that we also

call Frobenius.4 Its Frobenius fixed points are by definition the stack LSarthmH , which (tautologically)
parameterizes right t-exact symmetric monoidal functors from ReppHq to quasi-lisse Weil sheaves
on X.

Finally, we always assume p “ charpkq satisfies the (mild) assumptions from [AGKRRV1] §14.4.1.

1.5. Acknowledgements. I’m grateful to Michael Harris for raising this question. I also thank
Sasha Braverman and Dennis Gaitsgory for their interest and for helpful conversations on this

4Note that this map is a map of stacks over e. The Frobenius for LSrestr
H can be thought of as a non-abelian/non-

linear version of Frobenius acting on the (e-vector space of) étale cohomology of X.
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subject. I thank Dima Arinkin, Dennis Gaitsgory, David Kazhdan, Nick Rozenblyum, and Yasha
Varshavsky for their collaboration on this subject and to Vincent Lafforgue and Cong Xue for
related discussions.

This work was supported by NSF grant DMS-2101984 and a Sloan Research Fellowship.
Finally, I thank the organizers of the 2022 Summer School on the Langlands program at IHÉS

for the invitation to speak and for their extraordinary patience with me while writing this article.

2. AGKRRV theory

We begin with a general overview of the works [AGKRRV1] and [AGKRRV3] and some of the
background material.

These works are admittedly technical. We do not intend here to provide an overview of each bit
of the technical background needed for those works. However, we have tried at least to explain why
certain technical issues arise (e.g., the need for derived algebraic geometry). But in this vein, we
freely appeal to foundational ideas in the subject that may not be familiar to all readers: stacks, DG
categories, D-modules, ℓ-adic sheaves, and IndCoh stand out. Although these subjects are technical
and not always widely known, these days there are many references (and generous experts), and we
think the interested reader should readily find resources to pursue their interest in the background
material that comes up in the discussion.

This section is structured as follows. First, in §2.1, we explain a bit how someone interested
in automorphic functions should regard about the de Rham (or D-module) geometric Langlands
conjecture, and we highlight some nice pleasant features of the latter subject in comparison with
the former. In §2.3, we explain the restricted geometric Langlands correspondence; one side involves
moduli theory for ℓ-adic local sheaves, which we explain in §2.2. In §2.4, we explain how the story
develops working over finite fields, when Frobenius is considered. Finally, in §2.5, we describe how
our main arithmetic result (from [AGKRRV3]) is proved, emphasizing the key role played by Xue’s
work on sheaves of shtuka cohomologies.

2.1. Arithmetic and geometric Langlands.

2.1.1. Arithmetic Langlands. Conventional arithmetic Langlands concerns automorphic represen-
tations, which by definition are certain irreducible representations appearing in a suitable space of
automorphic functions.

A crude (and perhaps vulgar) form of the Langlands philosophy predicts that automorphic
representations for G correspond to Langlands parameters for Ǧ. There are corrections that are
not quite our emphasis here: Arthur parameters should be used, L-packets appear, for number fields
there is not a suitable definition of Langlands parameter (or Langlands group), and so on. What is
our emphasis is the atomic nature of the conjecture: the basic objects are irreducible subquotients
of a space of functions, not the function space itself.

2.1.2. Geometric Langlands. By contrast, the conventional form of the geometric Langlands con-
jecture predicts that:

D-modpBunGq » IndCohNilppLSdR
Ǧ

q « QCohpLSdR
Ǧ

q. (2.1.1)

Since the conference primarily concerns arithmetic aspects of the Langlands program, we digress
for some time to explain some starting features of the geometric setting, including the notation
used above and some ways of thinking about the main objects that appear there.

This form of the geometric Langlands conjecture is due to Beilinson-Drinfeld and Arinkin-
Gaitsgory, see [AG] and [Gai3] for an introduction to this circle of ideas. We will refer to it as
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the de Rham geometric Langlands conjecture because the theory of D-modules remembers de
Rham’s cohomology groups.

2.1.3. The input for geometric Langlands conjecture is a smooth projective curve X{k for a fixed
field k. We assume k is algebraically closed to simplify certain points, although this is not funda-
mentally essential in the de Rham setting.

Then BunG is the space of G-bundles on X. More specifically, BunG “ BunGpXq is a stack whose
functor of points is given by:

BunGpSq :“ HompX ˆ S,BGq “ tG–bundles on X ˆ Su

where S is an affine scheme and BG is the classifying stack of G. It is standard that BunG is a
smooth algebraic stack locally of finite type, although it is not quasi-compact.

A lovely formula due to Weil5 says that:

BunGpkq “ GpF qzGpAq{GpOq

with O “
ś

xPXpkq Ox the ring of integral adèles (for Ox the ring of Taylor series based at x P Xpkq),

A “ colimSĎXpkq finite

`
ś

xPS FracpOxq ˆ
ś

xRS Ox

˘

the similarly defined ring of adèles, and F “
kpXq the field of rational functions on X. Therefore, we can think of BunG as a geometric avatar
of the double quotient space where unramified automorphic functions would live (if we replaced k
by a finite field).

2.1.4. A foundational analogy in geometric representation theory says that when k is of charac-
teristic zero, the category of D-modules on a stack Y behaves like the space of functions on the set
YpFqq of Fq-points of Y, if such a thing makes sense.6

There are several justifications of this idea. First, for k “ C, some D-modules are related to
constructible sheaves by the Riemann-Hilbert correspondence, which are in turn related to étale
sheaves by the Riemann existence theorem, which for k “ Fq are in turn related to functions by
the Grothendieck-Deligne sheaves-functions correspondence.7

Alternatively, one can imagine that D-modules encode linear systems of differential equations
whose solutions define functions (or distributions) on YpCq, which are analogous to functions on
YpFqq for different reasons.

In practice, it is important in this analogy to work with all D-modules on Y. For example, the
Mellin transform in this setting is an equivalence D-modpGmq » QCohpA1{Zq; it can be thought
of as a simplified toy model geometric Langlands-style equivalences. Under the Mellin transform,
neither holonomic nor regular holonomic objects on the left hand side have reasonable descriptions
on the right hand side. One takes this as a sign that one should work with the category of “all”
D-modules in geometric representation theory rather than a constructible sort of subcategory.

Moreover, by [Lau2], for G “ Gm, the equivalence (2.1.1) does not come from an equivalence of
abelian categories; that is, it is necessary to work with derived categories in this analogy. Per the

5This formula is essentially obvious once one knows that G-bundles are Zariski (not merely étale) locally trivial
on smooth projective curves. For GLn, this follows from descent. For other groups, this is Steinberg’s theorem.

We remark here that the theorem also holds over finite fields, as is often implicitly taken for granted in the subject.
For simply-connected G, this is a theorem of Harder [Har]. In general, one takes a surjective G1 Ñ G with G1 having
simply-connected derived group and KerpG1 Ñ Gq being a (connected) torus; then G-bundles on X lift to G1 (by
class field theoretic Brauer group considerations), so we are reduced to Harder’s theorem.

6For example, the reader can imagine Y is defined over Zr1{N s for N prime to q. But I would encourage the
reader not to be so literal on this point.

7We refer to the first sections of [Del] “Applications de la formule des traces aux sommes trigonométriques” for
background on this notion.
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modern understanding, we use DG categories in the homotopical formalism of 8-categories; we
generally abide by the convention that our DG categories should have all direct sums and functors
between them should be linear, exact, and preserve direct sums. The advantage of the homotopical
formalism is that it eases the foundational burdens of the subject by introducing algebraic tools –
we speak can fluently of monoidal categories, module categories, tensor products, and so on most
readily in this language.

Example 2.1.4.1. Per the previous discussion, one considers D-modpBunGq as analogous to the space
Autunrc of unramified automorphic functions.

2.1.5. Let us pause a bit further to discuss the analogy between categories and vector spaces
further.

The origin can be thought of as follows: for Y{Fq defined over Fq, a constructible Weil étale sheaf
F on Y gives rise to a function on YpFqq by taking the trace of Frobenius on the fibers at rational
points, giving a fairly general procedure for producing functions from sheaves. This is the usual
source of the analogy between sheaves and functions.

One can say that functions on a space form a vector space, while sheaves on a space form a
category, so vector spaces (of functions) categorify to categories (of sheaves).

2.1.6. One can make the previous discussion more precise.
Fundamentally, the source of functions in the previous discussion was that if we have a (finite-

dimensional) vector space V with a linear transformation T : V Ñ V , we can form trV pT q to obtain
a number.

Similarly, for a (dualizable DG) category C with endofunctor T : C Ñ C, there is a trace trCpT q P
Vect associated to this datum; we refer to [GKRV] for a detailed discussion of this construction.
We wish to highlight that – besides (maybe serious) psychological barriers around categories – the
general construction is quite formal and mirrors the usual theory of traces.

2.1.7. We now turn to more closely interpreting the geometric Langlands equivalence.
The space LSdR

Ǧ
“ LSdR

Ǧ
pXq is the moduli stack of de Rham Ǧ-local systems on X. In the field,

the stack LSdRH (for H{k an affine algebraic group) is conventionally defined as having S-points:

LSdRH pSq :“ HompXdR ˆ S,BǦq

where XdR is the de Rham space of X. It would be too digressive here to discuss the de Rham
space in detail, but its key point is that QCohpXdRq “ D-modpXq.

Less conventionally, one can proceed as follows. First, at the level of k-points: what is an H-local
system supposed to be? We could take qLissedRpXq Ď D-modpXq to be the subcategory of objects
each of whose cohomologies is a colimit of local systems, i.e., vector bundles with connections;
this is a suitable derived category of lisse D-modules, but we call them quasi-lisse to adhere to
conventions from [AGKRRV1].

Then a de RhamH-local system is essentially a symmetric monoidal functor ReppHq Ñ qLissedRpXq;
this is not quite right since for H “ Gm, such a datum is a tensor-invertible object σ of qLissedRpXq,
i.e., a cohomologically shifted line bundle with connection; to remove that ambiguity, we refine our
definition by asking that our functor be right t-exact.8

8Of course, this issue arises only because of our insistence to work with derived categories, which the reader may
take issue with. In §2.1.12, we explain that it is necessary to use derived algebraic geometry in the story we are telling,
so our affine test schemes S should also be derived; the derived category QCohpSq is sensitive to derived geometry
but not the abelian category QCohpSq♥ is not.

In anticipation of these issues, we have made a pedagogical choice to stick with derived categories and right t-exact
functors.
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We note that this definition then behaves essentially as expected: a de Rham GLn-local system
is a rank n vector bundle on X with connection; a de Rham SOn-local system is a rank n vector
bundle E with connection ∇ and non-degenerate symmetric pairing E bOX

E Ñ OX preserving
the connections; a de Rham Sp2n-local system is similar, but the non-degenerate pairing is anti-
symmetric; a de Rham G2-local system is an octonion bundle with connection; and so on.

This Tannakian definition of local systems – which is perhaps the simplest way to define local
systems for general algebraic groups – adapts to give S-points for LSdRH : its S-points are right
t-exact functors:

ReppHq Ñ D-modpXq b QCohpSq. (2.1.2)

We suggest the reader turn refer to [AGKRRV1] §4.1 for further related discussion. We briefly

note that any symmetric monoidal functor ReppHq Ñ D-modpXq lands in qLissedRpXq.

2.1.8. Needless to say: for a number theorist, LSdR
Ǧ

is thought of as a moduli stack of Galois
parameters.

Indeed, by (a very easy form of) the Riemann-Hilbert correspondence, for k “ C, there is
an analytic identification of Ǧ-local systems with homomorphisms ρ : π1pXpCqq Ñ ǦpCq up to
conjugation (although this does not work naively in S-families).

2.1.9. The next key piece of structure in the geometric Langlands conjecture is the spectral action.
This is the action of the monoidal category QCohpLSdR

Ǧ
q on D-modpBunGq constructed in [Gai1]

by Drinfeld-Gaitsgory. According to loc. cit., this action is uniquely characterized by its compati-
bility with (a suitably strong version of) the Hecke action on D-modpBunGq.

2.1.10. The spectral action can be visualized as follows.
Let Y be any stack and suppose C is a module category for QCohpYq. We draw this as a category

fibered over Y:

‚
y

Cy

Y

-

Here the fiber Cy at y is defined as:

Cy :“ C b
QCohpYq

Vect

if y is a k-point; if it is an A-point, replace Vect with A-mod. Heuristically, we might write C “
ş

yPY Cy dy. This formalism was studied in great detail in [Gai4].

So informally, the Drinfeld-Gaitsgory spectral action says that the category D-modpBunGq fibers
over LSdR

Ǧ
, and that this structure is canonically defined by Hecke functors. Therefore, the existence

of the spectral action can be interpreted as a (categorical) reciprocity law for the category of
automorphic sheaves (a phrase that means D-modpBunGq, at least in this de Rham context).

By definition, the fiber D-modpBunGqσ of D-modpBunGq at a point σ P LSdR
Ǧ

is the category of
Hecke eigensheaves with eigenvalue σ.
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2.1.11. In the heuristic formula C “
ş

yPY Cy dy above, we imagine that we have a category-valued

measure Cy dy on Y. In cases of interest, we may wish to calculate it.

This is the job of the full geometric Langlands conjecture. The QCohpLSdR
Ǧ

q-module category

IndCohNilppLSdR
Ǧ

q encodes an analogue of Plancherel measure under this metaphor.

Here the category IndCohNilppLSdR
Ǧ

q of ind-coherent sheaves with nilpotent singular support was

defined in [AG] and has been the subject of wide study in the field since then. We refer to [AG] for
an introduction to this subject.

Because irreducible Ǧ-local systems do not support non-zero nilpotent horizontal sections of their
adjoint bundles, we have:

QCohpLSdR,irred

Ǧ
q b
QCohpLSdR

Ǧ
q
IndCohNilppLSdR

Ǧ
q “ QCohpLSdR,irred

Ǧ
q

(see [AG] Proposition 13.3.3 for more details).

Under our analogy, this means that Plancherel measure is constant on LSdR,irred

Ǧ
with value Vect.

Near reducible local systems, there is a correction relating to nilpotent horizontal sections of the
adjoint bundle, which are avatars here of Arthur’s SL2.

2.1.12. We now give a quick example illustrating some basic technical points.
Suppose X “ P1 and G “ Gm. Then BunGm parameterizes line bundles on P1, so is isomorphic

to Z ˆ BGm: the Z-factor parametrizes degrees of line bundles while the BGm-factor encodes the
fact that every line bundle on P1 has automorphism group Gm (suitably understood in S-families).

Therefore, D-modpBunGmpP1qq “
ś

nPZD-modpBGmq.
The category D-modpBGmq can be calculated quite explicitly. Let π : Specpkq Ñ BGm be

the structure map, which we remind is a smooth covering. The functor π! : D-modpBGmq Ñ
D-modpSpecpkqq “ Vect is evidently conservative and admits a left adjoint π!. By base-change,
the endofunctor π!π! of Vect is given by tensoring with CdRpGmq, the de Rham homology of Gm.
Moreover, by a simple form of Barr-Beck, this endofunctor π!π! has a natural monad structure
corresponding to the algebra structure on CdRpGmq coming from the group structure on Gm;
moreover, the induced functor D-modpBGmq Ñ CdRpGmq is an equivalence.

Finally, of course, CdRpGmq is a DG algebra which is a square-zero extension of k by a single
generator η in cohomological degree ´1 (aliases: a symmetric algebra on a generator in degree -1;
a homologically graded exterior algebra on one generator). So we have:

D-modpBunGmpP1qq “
ź

nPZ

pk ˆ kηq-mod. (2.1.3)

Naively, P1 is a simply-connected, so has no non-trivial local systems, so one might expect
LSdR

Ǧ
pP1q to equal BǦ (reflecting the non-trivial automorphism group of a trivial local system).

For Ǧ “ Gm, we would have QCohpBGmq “ ReppGmq “
ś

nPZ Vect, which is close to (2.1.3), but
missing the generator in degree ´1.

In fact, this is because we were too naive. The derived stack LSdR
Ǧ

pP1q equals9 BǦ ˆǧ{Ǧ BǦ,

which for Ǧ “ Gm is just BGm ˆ p0 ˆA1 0q. Here it is important the fiber products be taken in
the sense of derived algebraic geometry. Then we find QCohpLSdRGm

pP1qq “
ś

nPZQCohp0 ˆA1 0q.
Finally, we note that 0 ˆA1 0 is Spec of kbkrtsk (the tensor product being derived), which is the
same square-zero extension CdRpGmq we saw before.

We remark that the underlying classical stack recovers our naive conception of LS from before.

9This formula comes e.g. from thinking of a local system on P1 as a pair of local systems on the two standard open
A1’s in P1 with an isomorphism on their intersectionA1z0. We note thatA1 is contractible, not just simply-connected.
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Alternatively, one can see the utility of derived algebraic geometry as follows. For general X and
Ǧ, standard arguments say that the tangent space of LSdR

Ǧ
at a Ǧ-local system σ is H1

dRpX, ǧσq,
the first de Rham cohomology with coefficients in the adjoint local system of σ. More generally,
we should expect the tangent complex to be CdRpX, ǧσqr1s. As the above example illustrates, this
formula is only possible in general when LSdR

Ǧ
is interpreted as a derived stack.

In summary: we use derived algebraic geometry in the spectral side of geometric Langlands
because it produces right answers (unlike classical algebraic geometry) and because it yields more
manageable infinitesimal geometry of moduli spaces.

2.1.13. Conclusion. Above, we briefly discussed arithmetic Langlands and gave a lengthier intro-
duction to (de Rham) geometric Langlands.

There is a key difference, which §2.1.1 already hints at: in arithmetic Langlands, we study atomic
objects (irreducible representations), whereas in geometric Langlands we study molecular objects
(an analogue of the space of automorphic functions). One may compare the situation with the
Fourier theory on the circle S1: the atomic theory says (necessarily unitary) characters of S1

are in bijection with Z, but the actual Fourier theory says L2pS1q is a direct integral over Z of
1-dimensional Hilbert spaces (i.e., L2pZq). In the automorphic theory, an analogue of the latter
would be desirable, but the former is all we can access.

One starting point for [AGKRRV1] is an attempt to resolve this discrepancy, at least for func-
tion fields, at least in the everywhere unramified case. In the end, we end up with an arithmetic
perspective closer to the geometric Langlands conjecture.

I wish to emphasize: our work is not the only one working on bridging this gap; [Zhu] and [FS]
are closely related efforts, and we all were inspired by V. Lafforgue’s breakthroughs [Laf3].

2.2. Local systems with restricted variation: an introduction. There is an old desire to
have some kind of geometric Langlands for ℓ-adic sheaves instead of D-modules. One side is easier
to imagine: we should consider (certain) ℓ-adic sheaves on BunG instead of D-modules on BunG.
The spectral side (i.e., the LS-side) has been less clear, but the relevant geometry was developed
in [AGKRRV1]. We now summarize the story.

2.2.1. What is the problem? Suppose now that k is an algebraically closed field and X is a smooth
projective curve over k. We let e :“ Qℓ.

We wish to imitate the general geometric Langlands story, but understanding local systems as
lisse étale e-sheaves rather than vector bundles with connection. What goes wrong?

First, let us be maximally optimistic: we wish to have a stack LSét
Ǧ

“ LSét
Ǧ

pXq that behaves

like our earlier stack LSdR
Ǧ

from before. Suitably understood, its points should be Ǧ-local systems,

i.e., right t-exact symmetric monoidal functors ReppǦq Ñ qLissepXq – here qLissepXq Ď ShvpXq “
ShvétpXq is understood in the étale sense, as in §1.4.

As a preliminary step, note that the automorphism group of the trivial Ǧ-local system on X
is Ǧpeq. This suggests that LSét

Ǧ
should be defined over the field e and contain a copy of BǦ

corresponding to the trivial local system.

Remark 2.2.1.1. Here we see a basic bifurcation in the algebraic geometry of the geometric Lang-
lands; some objects, like X, G, BunG, etc. live over the ground field k, but spectral objects, like

Ǧ, LS
p?q
Ǧ

, etc. live over the coefficient field e. For the de Rham theory, the coefficient field is the
ground field and this distinction can be ignored.
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2.2.2. Now let us suppose k has characteristic 0 and X has genus g ą 0.
Ignoring technical issues (stackyness, derived structures), we might first guess that LSétGm

would

be something likeG2g
m over the field e. After all, the étale fundamental group ofX has abelianization

pZ2g. Moreover, one can see that (neglecting the same technical issues), the stack LSdRGm
over C is

complex analytically isomorphic to G2g
m pˆBGm ˆ 0 ˆA1 0q.

However, the difference between Z and pZ is key here. In point of fact, continuous homomorphisms
pZ2g Ñ eˆ are indexed by points in pOˆ

e q2g where Oe Ď e is its usual valuation subring of integral

elements. In other words, our hope LSétGm
“ G2g

m pˆBGm ˆ 0ˆA1 0q « G2g
m was too naive: the right

hand side has too many points over e!
Note that it is hard to find an interesting scheme over e with e-points Oˆ

e . So we give up on a
nice stack (say, connected and algebraic) LSétGm

existing.

2.2.3. One the other hand, deformation theory of étale local systems (alias: Galois representations)
is an old story. Usually one considers torsion coefficients, but we need not do so here. The basic
point is that for an étale local system σ, we have a DG Lie algebra CétpX, ǧσq, so has an associated
formal moduli problem (see [Lur] Chapter 13 and [GR3]).

In other words, although we gave up on LSét
Ǧ

existing, we do know its e-points (which are local

systems after all) and we do know its formal completion at each such point.

2.2.4. The definition. In [AGKRRV1], we define a prestack over e (i.e., functor from connective
commutative e-algebras to 8-groupoids, i.e., moduli problem) called LSrestrH for any affine algebraic
group H{e. In general, it remembers a little more than just formal neighborhoods of points, as we
will see.

The definition is a naive imitation of (2.1.2); by definition, an S-point of LSrestrH is a right t-exact
symmetric monoidal functor:

ReppHq Ñ qLissepXq b QCohpSq.

Remark 2.2.4.1. To make this definition appear more concrete, let us explain what the right hand
side is without using tensor products of DG categories. Suppose C is a DG category, which we
remind as all colimits. Suppose S “ SpecpAq. Then C b QCohpSq “ C b A-mod “ A-modpCq, i.e.,
an object of C with an action of A. So the right hand side is reasonably concrete – the complexity
is about the same as that for A-mod.

2.2.5. What do we get? The above is a formal definition. It remains to justify that we have given
a good notion, where the meaning of this phrase will become more refined as we proceed.

2.2.6. Example: the additive group. First, suppose H “ Ga.
We claim that in this case, LSrestrGa

actually “looks the same” as in the de Rham case! More

precisely, we will show that LSrestrGa
is the algebraic stack corresponding to the complex CétpXqr1s,

i.e., it is (non-canonically10) isomorphic to BH0
étpXqˆH1

étpXqˆΩH2
étpXq (where ΩH2

étpXq is defined
as the derived scheme 0 ˆH2

étpXq 0). One can see (e.g., via the following analysis) that the same

holds in the de Rham setting, but with de Rham cohomology replacing étale everywhere.
To see this, let triv P ReppGaq be the trivial representation, i.e., the tensor unit. There is a canoni-

cal map triv Ñ trivr1s P ReppGaq corresponding to the standard 2-dimensional representation p 1 ‹
0 1 q

of Ga.
Now for C a symmetric monoidal DG category and F : ReppGaq Ñ C a symmetric monoidal

functor, we can apply F to the extension class above to obtain a map 1C Ñ 1Cr1s, i.e., a point

10We have in effect chosen a formality isomorphism for CétpXqr1s.
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in the (8-)groupoid HomCp1C,1Cr1sq “ Ω8´1EndCp1Cq.11 It is easy to see12 that this gives an
isomorphism of groupoids:

HomComAlgpDGCatcontqpReppGaq,Cq »ÝÑ HomCp1C,1Cr1sq.

Taking C “ qLissepXq b QCohpSq, we see that S-points of LSrestrH equal:

Ω8`

HomqLissepXqpeX , eX r1sq b HomQCohpSqpOX ,OXq
˘

“ Ω8`

CétpXqr1s b ΓpS,OSq
˘

for eX the constant sheaf on X. Up to unwinding the formalism, this proves the claim.

2.2.7. Example: the multiplicative group. Here we simply state the outcome:
The space LSrestrGm

is an ind-algebraic stack. It is a disjoint union of its connected components, each

of which is (again non-canonically13) isomorphic to BGm ˆ H1
étpXq^

0 ˆ ΩH2
étpXq. The connected

components of LSrestrGm
are in bijection with its e-points, which we remind are just the rank 1 lisse

sheaves on X.

2.2.8. What is the toolkit? This material can be ignored. For the reader’s convenience, we describe
the general recipes for proving things about LSrestrH .

First, we need to probe the underlying classical stack, ignoring issues about derived algebraic ge-
ometry. For this, we let ΠX be the Tannakian group attached to the Tannakian category qLissepXq♥,
so ΠX is a group scheme over e with a symmetric monoidal equivalence ReppΠXq♥ » qLissepXq♥.

For classical schemes, S-points of LSrestrH are canonically in bijection with maps ΠX ˆS Ñ H ˆS
of group schemes over S, considered up to conjugation (where we quotient in the groupoid sense)
– see [AGKRRV1] Proposition 2.5.9 (though the assertion is essentially Tannakian duality plus
bookkeeping). This allows us to study the underlying classical prestack of LSrestrH using tools from
the theory of algebraic groups.

We then extend to derived schemes using deformation theory, which is simple to compute for
LSrestrH ; see [AGKRRV1] §2.2.

Example 2.2.8.1. Let us illustrate the first technique in an example.
The earlier assertion that LSrestrGm

is a disjoint union of “fat points” from §2.2.7 amounts to saying

that for any algebraically closed field extension e1{e, a map S “ Specpe1q Ñ LSrestrGm
factors through

an e-point. This becomes a general assertion about group schemes: a map ΠX ˆ S Ñ Gm ˆ S
comes from a map defined over e. As Gm has finite type, this reduces to the same assertion with
ΠX replaced by an affine algebraic group Γ (i.e., a finite type quotient of ΠX), which we can even
assume is abelian. Here the assertion is evident from the representation theory of commutative
algebraic groups.

11To clarify for the reader who is not versed in this material: for a spectrum V (or complex of k-vector spaces),
Ω8V means “take the underlying 8-groupoid” – at least for connective spectra/chain complexes, this is analogous
to taking the underlying set of an abelian group, and in general, one can think of it as “pass to the connective cover
and then take the underlying homotopy set.” In explicit set-theoretic models, we might take a chain complex V ‚ of
Z-modules, truncate to obtain τď0pV ‚q, and then pass to the corresponding simplicial abelian group (hence simplicial
set) under Dold-Kan.

The notation Ω8´1pV q simply means Ω8pV r1sq.
12Namely, one simply uses that there is a standard symmetric monoidal equivalence between ReppGaq and modules

over the commutative algebra e ˆ er´1s.
13Here is a recipe to construct the component more canonically. First, take LSrestr

Ga
and formally complete it at

the trivial Ga-local system. The resulting stack receives a homomorphism from BG^
a “ BG^

m (here we use the
exponential); then pushout along the map to BGm.
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2.2.9. Structure of LSrestr in general. We hope the following results will contain no surprises at this
point.

First, LSrestrH is always a formal algebraic stack. More precisely, if one maps LSrestrH “ LSrestrH pXq Ñ
BH “ LSrestrH pSpecpkqq by taking the fiber at a k-point in X, this map is representable in ind-
schemes, and even better, in indschemes that are disjoint unions of formal schemes – see [AGKRRV1]
Theorem 1.4.5.

Second, the connected components of LSrestrH are in bijection with semi-simple H-local systems
up to equivalence. Informally, two points of LSrestrH lie in the same connected component if and
only if their semi-simplifications are infinitesimally close. See [AGKRRV1] Proposition 3.7.2 for a
precise statement.

Finally, if we imagine LSétH existed, then for each semi-simple σ, there would be a closed substack

LSétH,σ of local systems with semi-simplification σ; LSrestrH is then morally the disjoint union of LSétH
formally completed at each such LSétH,σ. For more precise assertions in the Betti and de Rham
settings, see [AGKRRV1] §4.

2.3. Restricted geometric Langlands. We briefly discuss our main conjecture in the subject.

2.3.1. Let ShvNilppBunGq Ď ShvpBunGq denote the subcategory of sheaves with singular support
in the nilpotent cone. Here singular support of étale sheaves was defined by Beilinson in [Bei].

In the Betti setting, Ben-Zvi and Nadler [BZN] said that sheaves with nilpotent singular support
are the right object to study. We mimic this principle in the étale setting, conjecturing:

Conjecture 2.3.1 (Restricted geometric Langlands conjecture). There is an equivalence ShvNilppBunGq »
IndCohNilppLSrestr

Ǧ
q.

Here the right hand side is defined as in the de Rham case.

Remark 2.3.1.1. One can find a simplified version of this conjecture in [Lau1] Conjecture 6.3.2.

Remark 2.3.1.2. Of course, Conjecture 2.3.1 is subject to many compatibilities. The compatibility
with Whittaker coefficients, (a mild form of) the compatibility with Eisenstein series,14 and a
version of [FR] Theorem 8.3.0.1 uniquely determine the comparison functor in Conjecture 2.3.1; in
the de Rham and Betti settings, this idea is the subject of [GR1].

2.3.2. Evidence. When the geometric field k has characteristic 0, we show in [AGKRRV1] that the
restricted GLC follows from the de Rham geometric Langlands conjecture.

In general, one can directly verify the conjecture for G “ Gm, and similar ideas as in [Laf2], one
can reduce the conjecture to derived Satake for X “ P1.

2.4. Frobenius. We now discuss what happens when we include Frobenius.

2.4.1. Now suppose the ground field k is Fq. Suppose X is defined over Fq; as G is a priori defined
over Z, it follows that BunG is naturally defined over Fq as well. Recall that rational structure can
be encoded in the geometric Frobenius endomorphism of X (resp. BunG).

Therefore, there are Frobenius automorphisms (namely: pullback along geometric Frobenius)
acting on ShvpXq, qLissepXq, and ShvpBunGq.

By definition of LSrestrH , the Frobenius automorphism of qLissepXq induces a “Frobenius” auto-
morphism of LSrestrH .

14See [Gai3] for formulations of both Whittaker and Eisenstein compatibilities.
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Example 2.4.1.1. Suppose H “ Ga. By §2.2.6, LSrestrGa
is a geometric avatar of the chain complex

CétpXqr1s; this complex carries its own standard Frobenius automorphism, and the two tautologi-
cally match under this dictionary.

In general, the Frobenius on LSrestrH might therefore be thought of as a non-linear analogue of
the Frobenius on CétpXq.

2.4.2. We define LSarthmH as the Frobenius fixed points of LSrestrH .
More precisely, we have a Cartesian diagram:

LSarthmH LSrestrH

LSrestrH LSrestrH ˆLSrestrH
∆

of formal derived stacks where the arrow on the right is the graph of the Frobenius map.
Note that e-points of LSarthmGLn

are rank n lisse Weil sheaves on X. More generally, we think of

LSarthm
Ǧ

as the stack parametrizing continuous homomorphisms from the Weil group WX to the

algebraic group Ǧ{e, considering these homomorphisms up to conjugacy. Said more neatly: LSarthm
Ǧ

is the stack of unramified Langlands parameters for the global field FqpXq.

Remark 2.4.2.1. Let qLisseφpXq denote the DG category of quasi-lisse Weil sheaves, which by
definition are the fixed points of the Z-action on qLissepXq coming from Frobenius. Tautologically,

LSarthmH parametrizes symmetric monoidal functors ReppHq Ñ qLisseφpXq in the same way that

LSrestrH parametrizes symmetric monoidal functors ReppHq Ñ qLissepXq (i.e., S-points of LSarthmH

are right t-exact symmetric monoidal functors ReppHq Ñ qLissepXq b QCohpSq).
However, qLisseφpXq has different categorical properties than qLissepXq. For example, qLisseφpXq♥

is not a Tannakian category. This leads to some formal differences between the two settings, with
LSarthmH behaving more like the moduli of Betti local systems in some regards; e.g., it turns out

([AGKRRV1] Theorem 16.1.4) that LSarthmH is a (non-formal!) algebraic stack that is quasi-compact
(and in particular: has finitely many connected components!).

Remark 2.4.2.2. We do not try to provide more explicit pictures in this section, beyond commenting
that the geometry of LSarthm

Ǧ
is more complicated than its restricted counterpart. But in Theorem

4.3.3.1, we give coordinates on a patch of LSarthm
Ǧ

containing the trivial representation, providing
some bit of explicit analysis of its geometry.

2.4.3. Essentially by Remark 2.3.1.2, any restricted geometric Langlands equivalence must be
compatible with Frobenius automorphisms on both sides.

Recall the notion of categorical trace alluded to in §2.1.6: it takes (dualizable) DG categories
with endofunctors and produces vector spaces.

We can then take the trace of Frobenius on both sides of the restricted geometric Langlands
equivalence. As outlined in [AGKRRV1] §16, the trace of the Frobenius on IndCohNilppLSrestr

Ǧ
q is

the same as on IndCohpLSrestr
Ǧ

q, which is:

ΓpLSarthm
Ǧ

,ωq

for ω the dualizing sheaf on LSarthm
Ǧ

.

On the other hand, the main theorem of [AGKRRV3] calculates the trace of Frobenius on
ShvNilppBunGq as:

AutunrG,c.
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One can interpret this as a higher categorical version of the sheaves-functions correspondence (albeit
in a special case, not as a general geometric phenomenon).

2.4.4. We end up with the arithmetic conjecture:

AutunrG,c » ΓpLSarthm
Ǧ

,ωq.

As in the introduction, the vector space on the left is that of unramified automorphic functions,
i.e., compactly supported functions on BunGpFqq. In particular, unramified cusp forms sit in this
space.

2.4.5. There is a canonical map τ : OLSarthm
Ǧ

Ñ ωLSarthm
Ǧ

encoding a “weak Calabi-Yau” structure

on LSarthm
Ǧ

– see §4.6.5 for more discussion.

In particular, there is a natural map from functions on LSarthm
Ǧ

to the right hand side ΓpLSarthm
Ǧ

,ωq

above. One should think of Arthur’s SL2 as measuring the difference between O and ω on LSarthm
Ǧ

.

Example 2.4.5.1. Suppose σ P LSarthm
Ǧ

is a smooth, isolated point of this stack. (Such σ are called

an elliptic or discrete Langlands parameter.) Then one can see that τ |σ is an isomorphism. There-
fore, our conjecture predicts that there is a 1-dimensional space of unramified automorphic forms
corresponding15 to σ.

2.5. Xue’s theorem and the Frobenius trace.

2.5.1. Above, we said that:

trpFrob˚
BunG

, ShvNilppBunGqq » Autunrc (2.5.1)

was the main theorem of [AGKRRV3]. We briefly indicate how this is proved. They key role is
played by Xue’s theorem from [Xue2].

One can also turn to the introduction of [AGKRRV3] for an overview of the argument. Our
summary is not so different here, except we try a little harder to sweep Beilinson’s spectral projector
under the rug (maybe to the detriment of the discussion).

2.5.2. Step 1. One lesson from Drinfeld’s work16 on the Langlands correspondence is that it is
generally helpful to consider automorphic functions Autunrc as special cases of sheaves of shtuka
cohomologies.

We remind the story briefly. The shtuka construction takes a finite set I, a representation V P
ReppǦIq, and yields a sheaf ShtI,V P ShvpXIq. Namely, attached to the data of I and V , one has a
Hecke functor :

HV : ShvpBunGq Ñ ShvpBunG ˆXIq.

This functor comes from a naturally defined kernel KV P ShvpBunG ˆBunG ˆXIq. We remark that
geometric Satake plays a key role in the construction, and we refer to [Laf3] or [AGKRRV3] for
more details on the construction.

Then ShtI,V is obtained by ˚-pulling back KV along the graph of Frobenius:

BunG ˆXI GraphFrob ˆ id
XI

ÝÝÝÝÝÝÝÝÝÝÝÑ BunG ˆBunG ˆXI

15We are being sloppy about what “corresponding to” means here. To be more precise, our conjecture combined
with the discussion of [AGKRRV1] §24.2 implies that there should be a 1-dimensional space of unramified eigenforms
for the action of V. Lafforgue’s excursion algebra with the eigenvalue being that defined by σ. As is well-known, for
general G, Hecke operators alone are not enough to pick out a 1-dimensional eigenspace.

16The perspective discussed here for general reductive groups is from [Var].
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and then taking compactly supported cohomology along the BunG factor, i.e., !-pushing forward to
XI .

For example, when I “ H (and V is the 1-dimensional representation of the trivial group),
KV “ ∆!peBunGq, so by base-change, the above computes Cét,cpBunGpFqqq “ AutunrG .

There are natural morphisms between shtuka cohomology sheaves. First, for I fixed, the above
construction yields a functor ShtI : ReppǦIq Ñ ShvpXIq. But we can also vary I; more precisely,
the symmetric monoidal structure on ReppǦq maps the assignment I ÞÑ ReppǦIq “ ReppǦqbI

into a functor fSet Ñ DGCatcont (for fSet the category of finite sets); ˚-pullback along diagonal
morphisms makes the assignment I ÞÑ ShvpXIq into a functor fSet Ñ DGCatcont as well. Then
standard functoriality properties of geometric Satake say we have a natural transformation:

Sht : pI ÞÑ ReppǦIqq Ñ pI ÞÑ ShvpXIqq

of functors:
fSet Ñ DGCatcont.

This functoriality is a key property of shtuka cohomologies, and its existence encodes key sym-
metries of automorphic functions: V. Lafforgue used exactly this functoriality in [Laf3] to construct
excursion operators.

2.5.3. Step 2. We now similarly generalize the other side of our theorem, which we remind is
trShvNilppBunGqpFrobq. The answer should input V P ReppǦIq and yield a sheaf on XI , which we

will ultimately denote by ShttrI,V . Of course, the construction should involve Hecke functors and
ShvNilppBunGq, so we presently digress to discuss the latter subject for a moment.

Following [NY] in the topological setting, we show in [AGKRRV1] Theorem 14.2.4 (and its sub-
sequent discussion) that for V P ReppǦIq, the Hecke functor HV maps ShvNilppBunGq Ď ShvpBunGq
into ShvNilppBunGq b qLissepXIq Ď ShvpBunG ˆXIq.

Moreover, we prove a converse as well: in loc. cit. Theorem 14.4.3, we show that for F P ShvpBunGq
with HV pFq P ShvpBunGq b qLissepXq for all V P ReppǦq, one necessarily has F P ShvNilppBunGq.17

So we summarize with the motto: ShvNilppBunGq can be regarded as the subcategory of sheaves
F whose Hecke transforms HV,xpFq are locally constant as we vary the point x P X.

This perspective on ShvNilppBunGq is actually the better one for almost18 every result in the
AGKRRV series. (From one point of view, this is why it is important to introduce Hecke functors
and general shtuka sheaves into our present analysis: ShvNilppBunGq itself is best understood using
the Hecke action.)

2.5.4. Step 3. By the above, for V P ReppǦq, we have a Hecke functor:

HV : ShvNilppBunGq Ñ ShvNilppBunGq b qLissepXIq.

We can precompose this functor with the Frobenius on BunG to obtain:

HV ˝ FrobBunG : ShvNilppBunGq Ñ ShvNilppBunGq b qLissepXIq.

We can then take the trace along19 ShvNilppBunGq to obtain an object of qLissepXIq. This is the

desired object ShttrI,V .

17Technically, there are minor restrictions on the characteristic of the ground field in this assertion. Recall from §1.4
that we always neglect these small characteristics, and we implicitly assume we are away from these characteristics
in our discussion here.

18The main exception is the Künneth formula from [AGKRRV1].
19This is analogous to saying that if we have a linear transformation W1 Ñ W1 b W2 with W1 finite-dimensional,

we have a corresponding vector in W_
1 b W1 b W2, and we can pair along the first two factors to obtain a “trace

along W1” that is a vector in W2.
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Our goal in what follows is to show that we have functorial identifications:

ShttrI,V » ShtI,V r2|I|s (2.5.2)

where the cohomological shift occurs for technical reasons that will appear below. The case I “ H,
V 1-dimensional now recovers (2.5.1) in concise notation.

2.5.5. Step 4. Observe a difference between ShttrI,V and ShtI,V : for essentially geometric reasons,

ShttrI takes values in qLissepXIq Ď ShvpXIq, but this is not apparent for ShtI itself.
In [AGKRRV2], we introduce methods for calculating traces on ShvNilppBunGq. We refer to loc.

cit. for details, but the summary answer is that traces can be computed using general geometric
ingredients (upper-* and lower-! functors) plus a specific ingredient from (geometric) representation
theory. The latter is Beilinson’s spectral projector, whose job (for our purposes) is to take compatible
(over I) systems of functors SI : ReppǦIq Ñ ShvpXIq and produce a compatible systems λSI :
ReppǦIq Ñ qLissepXIq.

At an imprecise, top level view, the recipe from [AGKRRV2] produces the following answer: the
system of functors ShttrI is the best approximation to the system of functors ShtI that takes values
in qLissepXIq rather than ShvpXIq, i.e., it is λ ShtI .

Then Xue’s theorem [Xue2] says that ShtI itself takes values in qLissepXIq, so λ ShtI coincides
with ShtI itself, so we obtain (2.5.2).

2.5.6. Step 5. The above is morally correct, but we now fix one lie. The discussion that follows can
be compared with [AGKRRV3] Remark 3.2.6.

The functors ShtI are compatible under upper-* functors as we vary the finite set I. However, the
procedure of applying the spectral projector applies for a system of functors SI compatible under
upper-! functors. So we need a variant Sht! of the shtuka functors that are suitably compatible
under upper-! functors.

The relevant functors Sht!I,´ : ReppǦIq Ñ ShvpXIq are characterized by the formula:

CcpX
I , Sht!I,V

!
bFq “ CcpBunG ˆXI , pFrobˆ idq˚pKV

˚
b p˚

3pFqq (2.5.3)

for p3 : BunG ˆBunG ˆXI Ñ XI the projection.20

A priori, the result from [AGKRRV2] actually implies is that tShttrI uIPfSet is the best approxi-

mation to the functors tSht!IuIPfSet taking values in the subcategories qLisse Ď Shv.
The logic then proceeds by applying Xue’s theorem twice. First, this theorem tells us that

Sht!I,V “ ShtI,V r2|I|s (where 2|I| appears as 2 dimpXIq) – namely, we simply substitute ShtI,V r2|I|s

in place of Sht!I,V in the left hand side of (2.5.3), and then we apply the identity G
!

b F “ G
˚
b

Fr´2 dims for G being lisse to (functorially) manipulate the resulting expression into the right

hand side of (2.5.3). In particular, Xue’s theorem then implies Sht!I,V takes values in qLisse, so the

previous paragraph implies ShttrI “ Sht!I , which we just saw also equals ShtIr2|I|s, as desired.

3. Spectral Eisenstein series

We now begin working toward Theorem A. For the remainder of the paper, we assume k “ Fq.
Our goal in this section is to define and study a certain map:

Eisspec : ΓpLSarthm
Ť

,ωLSarthm
Ť

q Ñ ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q.

20A notational remark: our notation is inconsistent with [AGKRRV3]. The collection of functors we now call Sht!I
are neatly packaged in the single functor called Sht in [AGKRRV3], although the functors we call ShtI here are
denoted in the same way in [AGKRRV3]. They differ only by shifts by Xue’s theorem.
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Throughout this section, we only consider (pre)stacks locally almost of finite type; we omit
further mention of this hypothesis.

3.1. Automorphic Eisenstein series. We begin by reviewing some constructions regarding geo-
metric Eisenstein series and their function-theoretic counterpart, the pseudo-Eisenstein series. We
will later wish to find counterparts of these constructions on the spectral side.

3.1.1. First, we have a canonical functor:

Eis! : ShvpBunT q Ñ ShvpBunGq

defined by ˚-pullback along BunB Ñ BunT followed by !-pushforward along BunB Ñ BunG.
By the Hecke property for Eis! established in [BG], and [AGKRRV1] Theorem 14.4.3 (the “con-

verse to the Nadler-Yun theorem”), we find:

Proposition 3.1.1.1. The functor Eis! maps qLissepBunT qp“ ShvNilpT pBunT qq to ShvNilppBunGq.

3.1.2. Pseudo-Eisenstein series. Let ps-Eis : AutunrT,c Ñ AutunrG,c be the pseudo-Eisenstein map. By
definition, this is the composition:

AutunrT,c :“ FuncpBunT pFqqq Ñ FuncpBunBpFqqq Ñ FuncpBunGpFqqq “: AutunrG,c

given by first restricting (noting that the fibers of the map BunBpFqq Ñ BunT pFqq are finite) and
then summing along the fibers of the map BunBpFqq Ñ BunGpFqq (which is well-defined because
we consider this on functions with finite support).

3.1.3. Compatibility of the two. The functor Eis! obviously intertwines Frobenii and preserves com-
pact objects, so we may pass to traces of Frobenius to obtain a map:

trpEis!q : trqLissepBunT qpFrobq Ñ trShvNilppBunGqpFrobq.

By the main theorem of [AGKRRV3], we have isomorphisms:

trqLissepBunT qpFrobq » AutunrT,c

trShvNilppBunGqpFrobq » AutunrG,c

(3.1.1)

so trpEis!q corresponds to a map:

AutunrT,c Ñ AutunrG,c.

By21 [AGKRRV3] Theorem 5.2.3, the isomorphisms (3.1.1) are given by a version of the sheaves-
functions correspondence; it follows formally that we have a commutative diagram:

trqLissepBunT qpFrobq trShvNilppBunGqpFrobq

AutunrT,c AutunrG,c.

trpEis!q

» »

ps-Eis

(3.1.2)

In other words: the trace of geometric Eisenstein series is the pseudo-Eisenstein series.

3.2. Some general constructions. Until further notice, we work exclusively over the field e.
Below, we give general a construction of Eisspec in a general stack-theoretic context.

21We remark that loc. cit. is conditional (even in its formulation) on a certain technical hypothesis on
ShvNilppBunGq; see [AGKRRV3] §5.1. This hypothesis was recently verified by the author and Gaitsgory and will
appear in forthcoming work.
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3.2.1. Terminology around stacks. Recall the notion of a QCA stack from [DG1]: this means an
algebraic stack Y that is quasi-compact with affine diagonal. For any such QCA stack Y, [DG1]
Theorem 0.4.5 asserts that IndCohpYq “ IndpCohpYqq; this is our key use of this hypothesis.

Also, we recall the notion of ind-algebraic stack from [AGKRRV1] §5.2. We remind that a prestack
Y is ind-algebraic if it is convergent and for every n ě 0 its n-truncation ďnY can be written as a
filtered colimit of n-truncated algebraic stacks Yi under closed embeddings. We say Y is ind-QCA
if the terms Yi can moreover be taken to be QCA.

Our main example is LSrestrH for H an affine algebraic group. According to [AGKRRV1] Corollary
5.2.6, LSrestrH is ind-algebraic; moreover, the proof of this result shows that LSrestrH is in fact ind-QCA.

By the above theorem of Drinfeld-Gaitsgory, any ind-QCA stack Y has IndCohpYq being compactly
generated.

3.2.2. Below, we fix f : Y Ñ Z a 1-representable22 map between ind-QCA stacks.
Suppose in addition that we are given automorphisms φY : Y Ñ Y and φZ : Z Ñ Z intertwined

by f (i.e., we are given an identification φZ ˝ f » f ˝ φY). We sometimes omit the subscripts and
simply write φ for either φY or φZ.

We form the fixed point stack Yφ (resp. Zφ) of φ. Explicitly, this is the equalizer EqpY
φ

Ñ
id

Yq,

which can also be written as the Cartesian product of Y
Graphφ
ÝÝÝÝÑ Y ˆ Y

∆ÐÝ Y. By assumption, we
have an induced map Yφ Ñ Zφ that we denote by fφ.

Below, under suitable hypotheses, we will construct canonical maps between ΓpYφ,ωYφq and
ΓpZφ,ωZφq.

3.2.3. Pushforward. First, suppose that the map f is representable and proper. In this case, we will
construct a map:

ΓIndCohpYφ,ωYφq Ñ ΓIndCohpZφ,ωZφq. (3.2.1)

In fact, this is quite easy. In this case, the map fφ : Yφ Ñ Zφ is also proper (and representable),23

which is all we will need below.
Then fφ,IndCoh

˚ is left adjoint to fφ,!, so we obtain a canonical adjunction map fφ,IndCoh
˚ f ! Ñ id.

This yields a map fφ,IndCoh
˚ pωYφq Ñ ωZφ ; applying ΓIndCohpZφ,´q gives the desired map (3.2.1).

Remark 3.2.3.1. The map (3.2.1) is ΓpZφ,OZφq-linear.

3.2.4. Pullback. Next, suppose that f is eventually coconnective (and 1-representable). In this case,
we will construct a map:

ΓIndCohpZφ,ωZφq Ñ ΓIndCohpYφ,ωYφq. (3.2.2)

First, note24 that f IndCoh
˚ : IndCohpYq Ñ IndCohpZq admits a left adjoint f˚,IndCoh in this case. We

have base-change between ˚-pushforwards and ˚-pullbacks (with the latter being only considered
for eventually coconnective morphisms).

In this case, we have a natural transformation:

pidˆfq˚,IndCohpidˆφZqIndCoh˚ pidˆfqIndCoh˚ “

pidˆfq˚,IndCohpidˆfqIndCoh˚ pidˆφqIndCohY,˚ Ñ pidˆφYqIndCoh˚ P EndpIndCohpY ˆ Yqq.

22I.e., the fibers are algebraic stacks. Specifically, for every S P AffSch and S Ñ Z, the fiber product Y ˆZ S is an
algebraic stack. In our context, this condition rules out a map like Y Ñ Specpeq unless Y is an actual (as opposed to
ind-)algebraic stack.

23Indeed, because f is representable and separated, the morphism Yφ “ YˆYˆYY Ñ YˆZˆZY is a closed embedding.
Clearly the further projection Y ˆZˆZ Y Ñ Z ˆZˆZ Z “ Zφ is proper.

24This, and other similar assertions in this section, formally reduce to the results of [GR2] Chapter 4 §3.
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coming from adjunction. Applying this map to ∆IndCoh
˚ pωYq, we obtain a canonical map:

pidˆfq˚,IndCohGraphIndCohφZ˝f,˚pωYq Ñ GraphφY,˚pωYq P IndCohpY ˆ Yq. (3.2.3)

Here for a map g : S Ñ T , the map Graphg : S Ñ S ˆ T is the graph morphism, i.e., Graphg :“
pidˆgq ˝ ∆S .

Let ϖY denote the canonical map Yφ Ñ Y sending a pair py P Y, y » φZpyqq to y, and similarly
for ϖZ. Below, we will construct a canonical isomorphism:

∆!
Ypidˆfq˚,IndCohGraphIndCohφZ˝f,˚pωYq » f˚,IndCohϖIndCoh

Z,˚ pωZφq P IndCohpYq. (3.2.4)

Assuming for a moment that this construction has been given, we obtain a canonical map:

f˚,IndCohϖIndCoh
Z,˚ pωZφq Ñ ∆!

YGraphφY,˚pωYq P IndCohpYq

by applying ∆!
Y to (3.2.3). By adjunction, this yields a canonical map:

ϖIndCoh
Z,˚ pωZφq Ñ f IndCoh

˚ ∆!
YGraphφY,˚pωYq » f IndCoh

˚ ϖIndCoh
Y,˚ pωYφq P IndCohpZq.

Here we have used the base-change isomorphism ∆!
YGraphIndCohφY,˚ » ϖIndCoh

Y,˚ ϖ!
Y. Now applying the

global sections functor ΓIndCohpZ,´q to both sides above, we obtain the desired map (3.2.2).
It remains to give the isomorphism (3.2.4). First, the Cartesian diagram:

Y Y ˆ Z

Z Z ˆ Z

GraphφZ˝f

f fˆid

GraphφZ

gives a base-change isomorphism:

GraphIndCohφZ˝f,˚pωYq » pf ˆ idq!GraphIndCohφZ,˚ pωZq.

This now yields:

∆!
Ypidˆfq˚,IndCohGraphIndCohφZ˝f,˚pωYq » ∆!

Ypidˆfq˚,IndCohpf ˆ idq!GraphIndCohφZ,˚ pωZq.

We have25 pidˆfq˚,IndCohpf ˆ idq! » pf ˆ idq!pidˆfq˚,IndCoh, so we can rewrite the right hand side
above as:

∆!
Ypf ˆ idq!pidˆfq˚,IndCohGraphIndCohφZ,˚ pωZq “ Graphσ,!f pidˆfq˚,IndCohGraphIndCohφZ,˚ pωZq.

Here we use Graphσg to denote pg ˆ idq ˝ ∆, i.e., the graph map following by swapping the two
Cartesian factors.

Now base-change for the Cartesian diagrams:

Y Z ˆ Y Zφ Z

Z Z ˆ Z Z Z ˆ Z

Graphσf

f idˆf

ϖZ

ϖZ GraphφZ

∆Z ∆Z

yields identifications:

Graphσ,!f pidˆfq˚,IndCohGraphIndCohφZ,˚ pωZq » f˚,IndCoh∆!
ZGraphIndCohφZ,˚ pωZq »

f˚,IndCohϖIndCoh
Z,˚ pωZφq

25This kind of commutation is a general fact: see [Gai2] Proposition 7.1.6. However, it is particularly easy in the
present setting: by the Künneth formula, we can write pf ˆ idq! “ f ! b id and pidˆfq˚,IndCoh as idbf˚,IndCoh.
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as desired.

Remark 3.2.4.1. The map (3.2.2) is ΓpZφ,OZφq-linear.

3.2.5. Categorical setting. We now present a more conceptual approach to constructions such as
the above.

Suppose F : C Ñ D P DGCatcont is a map between dualizable DG categories. Suppose that C

(resp. D) is equipped with an endofunctor φC (resp. φD) and that:

‚ F admits a continuous right adjoint FR.
‚ F lax intertwines φ, i.e., we are given a map (often an isomorphism) F ˝ φC Ñ φD ˝ F .

Then standard functoriality of traces yields a canonical map:

trCpφCq Ñ trDpφDq P Vect

associated with this data. Namely, we have:

trCpφCq Ñ trCpφCF
RF q » trDpFφCF

Rq Ñ trDpφDFFRq Ñ trDpφDq.

Here we used the cyclicity of traces and standard adjunction maps.

3.2.6. Pushforward/pullback revisted. Suppose first that we are given f : Y Ñ Z as before repre-
sentable and proper.

In the setting of §3.2.5, take C “ IndCohpYq, D “ IndCohpZq, F “ f IndCoh
˚ , φC “ φIndCoh

Y,˚ and

φD “ φIndCoh
Z,˚ . Then the categorical formalism yields a canonical map:26

ΓIndCohpYφ,ωYφq “ trIndCohpYqpφ
IndCoh
Y,˚ q Ñ trIndCohpZqpφ

IndCoh
Z,˚ q “ ΓIndCohpZφ,ωZφq.

A straightforward diagram chase shows that this map recovers (3.2.1). We remark that properness
is needed for f IndCoh

˚ to admit a continuous right adjoint.
Next, take f : Y Ñ Z 1-representable and eventually coconnective. Now take C “ IndCohpZq,

D “ IndCohpYq, F “ f IndCoh,˚, φC “ φ!
Z, φD “ φ!

Y. Then the categorical formalism yields a canonical

map:27

ΓIndCohpZφ,ωZφq “ trIndCohpZqpφ
!
Zq Ñ trIndCohpYqpφ

!
Yq “ ΓIndCohpYφ,ωYφq.

A diagram chase shows that this map coincides with (3.2.2).

Remark 3.2.6.1. The second diagram chase is routine, but unsurprisingly, somewhat more involved
than the first. We omit the verification here. Actually, for our purposes, the reader may take the
categorical constructions as definitions of (3.2.1) and (3.2.2), completely ignoring the material of
§3.2.3-3.2.4. We only included the explicit constructions to make the construction appear more
concrete.

3.3. Spectral Eisenstein series.

3.3.1. Setup. We have the standard correspondence:

LSrestr
B̌

LSrestr
Ť

LSrestr
Ǧ

.

q p

26Here the equalities are standard isomorphisms; see e.g. [GKRV] §3.5.3.
27Note that trCpF q “ trC_ pF_q, so trpφ!q “ trpφIndCoh

˚ q.
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The map p is representable and proper, while the map q is quasi-smooth and 1-representable.
Also, each of these spaces carries a Frobenius self-map, and the maps p and q intertwine these
Frobenii. Therefore, by (3.2.1) and (3.2.2), we obtain canonical maps:

ΓpLSarthm
Ť

,ωLSarthm
Ť

q Ñ ΓpLSarthm
B̌

,ωLSarthm
B̌

q Ñ ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q.

Definition 3.3.1.1. The composition of the above maps is the spectral Eisenstein series Eisspec :
ΓpLSarthm

Ť
,ωLSarthm

Ť
q Ñ ΓpLSarthm

Ǧ
,ωLSarthm

Ǧ
q.

3.4. Spectral vs. function theoretic Eisenstein series.

3.4.1. Recall that restricted geometric Langlands (see [AGKRRV1] Main Conjecture 21.2.7) pre-
dicts an equivalence of categories:

ShvNilppBunGq » IndCohNilpspecpLSrestr
Ǧ

q. (3.4.1)

We refer to [AGKRRV1] §21 for background on this conjecture.
The equivalence should be subject to various compatibilities. We formulate two of salient interest

here:

‚ (Hecke compatibility): The equivalence (3.4.1) is of QCohpLSrestr
Ǧ

q-module categories; here
the right hand side has the evident action and the left hand side carries the action of
[AGKRRV1] Theorem 14.3.2.

‚ (Eisenstein compatibility, P “ B case): The diagram:

qLissepBunT q ShvNilppBunGq

QCohpLSrestr
Ť

q IndCohNilpspecpLSrestr
Ǧ

q

Eis!

»

Eisspec

commutes; here the left arrow is the equivalence unconditionally constructed in [AGKRRV1]
Example 21.2.9.

3.4.2. We now recall the following result:

Proposition 3.4.2.1. Suppose Y is a quasi-smooth ind-algebraic stack equipped with a self-map
φY. Let N Ď T ˚r´1sY be a closed conical substack (of the -1-shifted cotangent bundle of Y) such
that for every point y P Y φ, the map dφr´1s : Ny Ñ Ny is contracting onto 0 P T ˚

y r´1sY. Then the
map:

trIndCohNpYqpφ
!q Ñ trIndCohpYqpφ

!q “ ΓpYφ,ωYφq

is an isomorphism.

See [AGKRRV1] §24.6.8.28
In particular, we find that restricted geometric Langlands produces an isomorphism:

AutunrG,c » ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q. (3.4.2)

Assuming the Hecke compatibility for restricted geometric Langlands, this is an equivalence of
ExcǦ :“ ΓpLSarthm

Ǧ
,OLSarthm

Ǧ
q-modules, where the left hand side inherits its ExcǦ-module structure

from [AGKRRV3]. We remind (see [AGKRRV1] §24.2) that the ExcǦ-module structure on Autunrc

refines the Lafforgue-Xue action of excursion operators on this space (see §1.2.3).
28In loc. cit., this is formulated as a conjecture. But it is actually straightforward to prove from the formalism of

[AG].
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3.4.3. We now obtain:

Proposition 3.4.3.1. Assume restricted geometric Langlands holds for G with its Eisenstein com-
patibility. Then the following diagram commutes:

AutunrT,c AutunrG,c

ΓpLSarthm
Ť

,ωLSarthm
Ť

q ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q

»

ps-Eis

»

Eisspec

where the vertical isomorphisms come from (3.4.2).

Indeed, this follows from the realizations of ps-Eis and Eisspec via traces, see (3.1.2) and §3.2.6.

3.5. Formulation of the main result.

3.5.1. We will be concerned with localized versions of the map Eisspec. We briefly discuss the
relevant formalism.

Suppose we are given a commutative diagram:

LSarthm
B̌

LSarthm
Ǧ

LSarthm
Ť

A1
f g

Let Å1 :“ A1z0. Note that:

ΓpLSarthm
Ǧ

,ωqrf´1s :“ colim
f ¨´

ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q » ΓpLSarthm
Ǧ

ˆ
A1

Å1,ωq

and similarly for pŤ, gq or pB̌, f |LS
B̌arthm

“ g|LS
B̌arthm

q in place of pǦ, fq.
Now observe that we have a correspondence:

LSarthm
B̌

ˆ
A1

Å1

LSarthm
Ǧ

ˆ
A1

Å1 LSarthm
Ť

ˆ
A1

Å1

(3.5.1)

with left arrow proper and representable and right arrow eventually coconnective and 1-representable.
As in the definition of spectral Eisenstein series, we obtain a canonical map:

ΓpLSarthm
Ť

,ωLSarthm
Ť

qrg´1s Ñ ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

qrf´1s. (3.5.2)

We clearly have:

Lemma 3.5.1.1. (1) The map Eisspec : ΓpLSarthm
Ť

,ωLSarthm
Ť

q Ñ ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q intertwines

the operators of multiplication by f and g, i.e., the map is naturally a morphism of erts-
modules.
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(2) The map (3.5.2) is obtained by inverting the action of t, i.e., tensoring over erts with
ert, t´1s.

(3) The diagram:

ΓpLSarthm
Ť

,ωLSarthm
Ť

q ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

q

ΓpLSarthm
Ť

,ωLSarthm
Ť

qrg´1s ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

qrf´1s

Eisspec

(3.5.2)

commutes.

Accordingly, when the meaning is unambiguous, we will abuse notation in also denoting the map
(3.5.2) by Eisspec.

3.5.2. We are now in a position to state our main result about Eisspec.

Theorem 3.5.2.1. There exists a commutative diagram:

LSarthm
B̌

LSarthm
Ǧ

LSarthm
Ť

A1
δǦ δŤ

(3.5.3)

such that:

(1) The map δǦ takes a non-zero value at the trivial Weil local system.
(2) The object:

ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

qrδ´1
Ǧ

s P Vect

lies in cohomological degree 0,29 and similarly with Ť replacing Ǧ.
(3) The map:

Eisspec : ΓpLSarthm
Ť

,ωLSarthm
Ť

qrδ´1
Ť

s Ñ ΓpLSarthm
Ǧ

,ωLSarthm
Ǧ

qrδ´1
Ǧ

s P Vect♥ (3.5.4)

is surjective.

This result will be proved in §4.

3.6. Proof of Theorem A. We now deduce the main theorem of this paper from Theorem 3.5.2.1
and our earlier observations. We remind that we have assumed G is semi-simple30 here.

29Note that (3.4.2) predicts that ΓpLSarthm
Ǧ ,ωLSarthm

Ǧ
q lies in cohomological degree 0. Although we ultimately will

be assuming restricted geometric Langlands, we are striving here to formulate a theorem independent of it, so we
have included this statement.

30This assumption somewhat simplifies the discussion. Suitably formulated, the results here apply as well for
general reductive groups.
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3.6.1. First, let us recall the explicit meaning of Langlands parameters, following [Laf3] and [Xue1].
Let σ be an e-point of LSarthm

Ǧ
, i.e., a Weil Ǧ-local system on X. We obtain a map:

evσ : ExcǦ Ñ e

sending a function f P Exc “ ΓpLSarthm
Ǧ

,Oq to its value at σ. We abuse notation in also letting

evσ denote the induced map (obtained by passing to H0) H0pExcq Ñ e of classical commutative
algebras. We let mσ Ď H0pExcq denote the corresponding maximal ideal.

Now recall (from [AGKRRV3], building on [Laf3] and [Xue1]) that Exc – hence H0pExcq – acts
on AutunrG,c.

We then define:
AutunrG,c,rσs Ď AutunrG,c

to be the mσ-torsion in the right hand side, i.e., ψ P AutunrG,c,rσs if m
n
σ ¨ ψ “ 0 for n " 0.

We let AutunrG,cusp,rσs :“ AutunrG,c,rσs X AutunrG,cusp.

Warning 3.6.1.1. Because AutunrG,cusp is31 finite-dimensional, AutunrG,cusp decomposes as a direct sum:

AutunrG,cusp » ‘
σ{„

AutunrG,cusp,rσs. (3.6.1)

(Here the implied equivalence relation „ relates σ1 and σ2 when mσ1 “ mσ2 ; according to [Laf3]
Proposition 0.38, this occurs exactly when σ1 and σ2 have equivalent semi-simplifications.)

However, we do not have a similar decomposition (3.6.1) for compactly supported automorphic
functions; there are such functions that do not lie in any AutunrG,c,rσs.

3.6.2. Recall32 that ps-EispAutunrT,c q X AutunrG,c “ 0.
Therefore, it suffices to show that any ψ P AutunrG,c,rtrivs Ď AutunrG,c lies in the image of the map

ps-Eis : AutunrT,c Ñ AutunrG,c. This will be our objective.

3.6.3. Recall that we have δǦ P ExcǦ :“ ΓpLSarthm
Ǧ

,Oq. As Autunr
Ǧ,c

is acted on by ExcǦ, we may

invert the action of δǦ:

Autunr
Ǧ,c

rδ´1
Ǧ

s :“ colim
δǦ¨´

Autunr
Ǧ,c

.

We now translate from spectral Eisenstein series using restricted geometric Langlands (and
Proposition 3.4.3.1). By Lemma 3.5.1.1 (1), the map ps-Eis intertwines the actions of δŤ and
δǦ on AutunrT,c and AutunrG,c respectively. Moreover, the induced map:

ps-Eis : Autunr
Ť,c

rδ´1
Ť

s Ñ Autunr
Ǧ,c

rδ´1
Ǧ

s

is surjective by Theorem 3.5.2.1.
This means that for our given33 automorphic funciton ψ, there is an integer n ě 0 so that

δn
Ǧ

¨ ψ “ ps-Eispψ0q for some ψ0 P AutunrT,c .

Let λ P e be the value of δǦ at the trivial local system triv P LSarthm
Ǧ

. Note that pδǦ ´ λq P
mtriv Ď H0pExcq, so for m " 0, we have:

pδǦ ´ λqm ¨ ψ “ 0.

31We remind that (using that G is semi-simple) there is a quasi-compact open U Ď BunG defined over Fq such
that any ψ P AutunrG,cusp vanishes outside UpFqq (see [DG2] Proposition 1.4.6 in the sheaf-theoretic setting); as UpFqq
is finite, we clearly obtain the assertion.

32See [MW] II.2.4 for a much stronger assertion.
33To be clear: this is true for any compactly supported automorphic function, but may be essentially vacuous if

the form has another Langlands parameter.
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By assumption, λ ‰ 0. Therefore, we can find a polynomial qptq P erts with:

qptq ¨ tn “ 1 mod pt ´ λqm.

Then we clearly obtain:

ps-EispqpδŤ q ¨ ψ0q “ qpδǦq ¨ ps-Eispψ0q “ qpδǦq ¨ δn
Ǧ

¨ ψ “ ψ.

This concludes the argument.

3.7. A toy model for Theorem 3.5.2.1. We now give a simpler setting in which a form of
Theorem 3.5.2.1 holds. We will ultimately reduce the proof of Theorem 3.5.2.1 to this special case.
The special case we consider is a standard result about the Grothendieck-Springer resolution.

3.7.1. Analogies. By way of analogy, we replace the diagram:

LSrestr
B̌

LSrestr
Ť

LSrestr
Ǧ

q p

with the diagram:

BB̌

BŤ BǦ.

(3.7.1)

In place of Frobenius, we consider each term in (3.7.1) with its identity endomorphism. Passing to
fixed points under this map, we obtain the diagram:

B̌
ad
{ B̌

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Here for an algebraic group H, H
ad
{ H denotes the (stack) quotient of H acting on itself by

conjugation; we remind that H
ad
{ H “ pBHqS

1
“ pBHqid“id. We remark that the natural map

O
H

ad

{ H
Ñ ω

H
ad

{ H
is an isomorphism.

Therefore, the formalism of §3.2 yields a canonical map:

Eisspec,toy : ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
q Ñ ΓpǦ

ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q. (3.7.2)

Lemma 3.7.1.1. The left and right hand sides of (3.7.2) are concentrated in cohomological degree
0 and the map Eisspec,toy is surjective.

Proof. The most straightforward proof is as follows. We identify ReppŤ q with ‘λ̌PΛ̌Vect and ReppǦq
with ‘λ̌PΛ̌`Vect; here ‘ denotes the coproduct on DGCatcont and we have implicitly chosen repre-
sentatives of isomorphism classes of irreducible representations. Under this identification, we obtain
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canonical isomorphisms:

‘λ̌PΛ̌k » trReppŤ qpidqp» ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
qq

‘λ̌PΛ̌`k » trReppǦqpidqp» ΓpǦ
ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
qq.

(3.7.3)

These identities clearly imply that both sides of (3.7.2) are concentrated in degree 0. We let eŤ,λ̌
(λ̌ P Λ̌) and eǦ,λ̌ (λ̌ P Λ̌`) denote the basis vectors for these vector spaces coming from the

displayed isomorphism. By Borel-Weil-Bott, for λ̌ dominant, the map ReppŤ q Ñ ReppǦq sends

ℓw0pλ̌q P ReppŤ q♥ (the 1-dimensional representation corresponding to w0pλ̌q to V λq P ReppǦq (the
representation with highest weight λ), so sends eŤ,w0pλ̌q to eǦ,λ; this yields the surjectivity.

□

Remark 3.7.1.2. We remark (although we do not need it) that in (3.7.3), the isomorphism ‘λ̌PΛ̌`k »

ΓpǦ
ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q sends eǦ,λ̌ (notation as before) to the trace function corresponding to the repre-

sentation V λ̌ of Ǧ, and similarly for Ť . Therefore, the composition:

‘
λ̌PΛ̌

k » ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
q Eisspec,toyÝÝÝÝÝÝÑ ΓpǦ

ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
q » FunpŤ qW “

`

‘
λ̌PΛ̌

k
˘W

is explicitly calculated using the Weyl character formula (and Borel-Weil-Bott).

3.7.2. We conclude by recording a variant.
Note that we have a commutative diagram:

B̌
ad
{ B̌

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Ť {{W

where Ť {{W “ SpecperΛ̌sW q is the GIT quotient, the lower left map is tautological and the lower
right map is the standard characteristic polynomial map (uniquely characterized by this diagram).

Therefore, Eisspec,toy is a map of FunpŤ {{W q-modules. Lemma 3.7.1.1 then says that Eisspec,toy

is an epimorphism of FunpŤ {{W q-modules, so we obtain:

Corollary 3.7.2.1. For any g P ΓpŤ {{W,OŤ {{W q, the map:

Eisspec,toy : ΓpŤ
ad
{ Ť ,O

Ť
ad

{ Ť
qrg´1s Ñ ΓpǦ

ad
{ Ǧ,O

Ǧ
ad

{ Ǧ
qrg´1s.

is a surjection.

4. Grothendieck-Springer theory for LSarthm

The goal of this section is to prove Theorem 3.5.2.1. As this theorem occurs purely on the spectral
side, throughout this section, we work by default over the field e.
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4.1. Base-points and Weil group notation. Below, we take x0 P Xpkq a marked geometric
point, which will serve as the base-point of our fundamental group; here we remind that k “ Fq.

We encourage the reader to be kind to themselves and assume that x0 is defined over Fq; in this
case essentially all of the remaining material of §4.1 can be ignored.

With that said, we include some technical material here to allow for the case where X0 has no
rational points.

4.1.1. Let rX denote the universal cover of X based at x0; by definition, rX is connected, pro-finite

étale over X, equipped with a lift rx0 of x0, and initial among all such data. Note that rX is also the

universal cover of X0, so there is a tautological action of πét
1 pX0q ( “ πét

1 pX0, x0q) on rX (realizing
it as a πét

1 pXq-torsor over X and a πét
1 pX0q-torsor over X0, each torsor being understood as locally

trivial for the pro-étale topology).
Let FrobX : X Ñ X be the geometric Frobenius map. Choose once and for all a lift of the point

FrobXpx0q to rX. It is easy to see that there is a unique map ĆFrobX fitting into the commutative
diagram

rX rX

X X

ĆFrobX

π π

FrobX

and sending rx0 to our chosen lift of FrobXpx0q (which will now be denoted ĆFrobXprx0q).
This choice also (relatedly) defines an action of pZ on rX in Sch{X0

; the inverse34 to generator

´1 P pZ acts by a map γ : rX Ñ rX characterized by being Frobenius semi-linear over k and so that

γ ˝ ĆFrobX is the absolute Frobenius of rX.
This data defines a splitting of the map WX Ñ Z. We let F P WX denote the image of 1 P Z

under the splitting. By definition, F´1 P WX Ď πét
1 pX0q acts on rX by the map denoted γ above.

For g P πét
1 pXq, we let Fg :“ AdF pgq. Note that the choice of point ĆFrobXprx0q gives an isomor-

phism πét
1 pX,FrobXpx0qq » πét

1 pX,x0q, and the composition:

πét
1 pX,x0q

πét
1 pFrobXq

ÝÝÝÝÝÝÝÑ πét
1 pX,FrobXpx0qq » πét

1 pX,x0q

is the map g ÞÑ Fg,35 i.e., we have:

πét
1 pFrobXqpgq “ Fg. (4.1.1)

4.1.2. The choice of point ĆFrobXprx0q also defines an isomorphism:

x˚
0 » FrobXpx0q˚ : LissepXq♥ Ñ Vect♥

of e-linear symmetric monoidal functors. In fact, we claim that this comes from an isomorphism of
symmetric monoidal DG functors:

x˚
0 » FrobXpx0q˚ : qLissepXq Ñ Vect. (4.1.2)

34We note that per our conventions, the inverse to the generator ´1 P pZ corresponds to the arithmetic Frobenius

when we identify pZ » GalpFqq.
35Indeed, we have ĆFrobXpgrx0q “ πét

1 pFrobXqpgq ¨ ĆFrobXprx0q by definition of πét
1 pFrobXqpgq.

Now by definition of F “ γ´1, we have F´1 ¨ ĆFrobXpgrx0q “ Φ
ĂXpgrxq for Φ

ĂX the absolute Frobenius. By functoriality,

absolute Frobenius is a map of spaces with πét
1 pXq-actions, so Φ

ĂXpgrx0q “ g ¨ Φ
ĂXprx0q.

Comparing to our earlier equation, we see this expression equals F´1πét
1 pFrobXqpgq ¨ ĆFrobXprx0q “

F´1πét
1 pFrobXqpgqF ¨ F´1

ĆFrobXprx0q “ F´1πét
1 pFrobXqpgqF ¨ Φ

ĂXprx0q. Therefore, g “ πét
1 pFrobXqpgqF , yielding the

assertion.
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Indeed, this follows formally whenever qLissepXq is the derived category of its heart. This is the
case for X ‰ P1 by [AGKRRV1] Theorem E.2.8. Slightly more elementarily (and allowing genus 0),
we choose U Ď X affine open and containing x0 and FrobXpx0q, and then qLissepUq is the derived
category of its heart by the (simpler) Theorem E.2.8 (a).

Remark 4.1.2.1. The following remark will not be used. For the present moment, let k be any
algebraically closed field (not just Fq). Let Y {k be a connected scheme of finite type. Let y1, y2 P
Y pkq be two points. Then at this moment, it is natural to ask if there exists an isomorphism of
symmetric monoidal DG functors:

y˚
1 » y˚

2 : qLissepY q Ñ Vect.

We claim this is so. Indeed, we have effectively treated above the case of a smooth connected curve.
The case of any connected curve follows in an evident way by considering normalizations (using
intersection points between irreducible components of the singular curve as signposts leading the
way). Finally, the general case follows by noting that there exists a connected curve C and a map
C Ñ Y with y1 and y2 in its image by an elementary argument. (One wonders if there is a purely
Tannakian argument that would apply in this derived setup.)

4.2. The adjoint quotient. Let H be an affine algebraic group in what follows.

4.2.1. Let LSrestr,˝H denote the neutral connected component of LSrestrH , i.e., the connected compo-
nent containing the trivial H-local system on X. We remind from [AGKRRV1] Proposition 3.7.2
that LSrestrH parametrizes (in a precise sense) H-local systems on X with trivial semi-simplification;
in what follows, we refer to these as unipotent H-local systems.

We then set:

LSarthm,˝
H :“ LSarthmH ˆ

LSrestrH

LSrestr,˝H .

In other words, LSarthm,˝
H is the fixed points of Frobenius acting on LSrestr,˝H ; it may be thought of

as parametrizing Weil H-local systems that are geometrically unipotent.

4.2.2. There is a canonical map BH Ñ LSrestr,˝H corresponding to the trivial H-local system. This
map is Frobenius equivariant, where Frobenius acts trivially on BH.

Passing to Frobenius fixed points, we obtain a map:

τH : H
ad
{ H Ñ LSarthm,˝

H . (4.2.1)

Remark 4.2.2.1. Informally, the composition H Ñ H
ad
{ H Ñ LSarthm,˝

H sends h P H to the Weil

representation WX Ñ H defined by WX ↠ WX{πét
1 pXq

Fr
» Z

1 ÞÑhÝÝÝÑ H. As we only consider the
groupoid of Weil representations, this map factors through the adjoint quotient as desired.

Remark 4.2.2.2. One main idea below is that τH is not too far from being an isomorphism. To moti-
vate what follows, we observe the following obstruction to τH being an isomorphism. Coarsely (e.g.,
at the level of field-valued points), the enemy is clearly Weil representations that are geometrically
unipotent and geometrically non-trivial.

Suppose H “ GL2. Let λ P eˆ and let σλ denote the 1-dimensional Weil group representation
where Frobenius acts as multiplication by λ (and πét

1 pXq acts trivially). Extensions 0 Ñ σλ Ñ σ Ñ
σ1 Ñ 0 are classified by suitable group cohomology for Z, i.e., by H1 of the complex:

HomerZs-modpCét,‚pXq,σλq.
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Here Cét,‚pXq is the complex of étale homology for X, and the Z-action has generator acting by
geometric Frobenius on étale homology. If λ ‰ 1, it is easy to see that we have an exact sequence:

0 Ñ H1pHomerZs-modqpCét,‚pXq,σλq Ñ H1
étpX,σλq

φ´1
X ´id

ÝÝÝÝÑ H1
étpX,σλq

where φX is the geometric Frobenius acting on H1
ét.

36 Here we have H1
étpX,σλq “ H1

étpX, eq, but
with Frobenius action given as λ times the standard one. Therefore, if λ is a Frobenius eigenvalue
appearing in H1

étpX, eq, we find geometrically non-trivial extensions of the desired type.

4.2.3. Splitting. We obtain a map LSrestrH Ñ BH by restriction to x0. This map intertwines Frobe-
nius with the identity by37 §4.1.2, so on fixed point we obtain a map:

LSarthmH Ñ H
ad
{ H.

We denote this map by χH “ χH,x0 , and similarly its restriction to LSarthm,˝
H .

By construction, the composition:

H
ad
{ H

τHÝÝÑ LSarthmH
χHÝÝÑ H

ad
{ H

is the identity map.

4.3. Non-resonance.

4.3.1. Define the set RX Ď eˆ as the set of of eigenvalues of the (geometric) Frobenius acting on
H1

étpX, eq ˆ H2
étpX, eq.

Remark 4.3.1.1. By the Weil conjectures for curves, 1 R RX . Also, q always lies in RX (but this is
less relevant to us at the present moment).

4.3.2. Let H be an affine algebraic group.
Let V be a finite-dimensional representation of H. Let ρV : H Ñ GLpV q be the corresponding

homomorphism. Let chV : H
ad
{ H ˆ A1 Ñ A1 be the map fitting into a commutative diagram:

H ˆ A1 GLpV q ˆ A1

H
ad
{ H ˆ A1 A1.

ρV ˆid

pg,λq ÞÑdetpg´λ¨idV q

chV

Explicitly, for h P H and λ P A1, chV prhs,λq is the characteristic polynomial of ρV phq evaluated at
λ.

We then let pH
ad
{ Hqnon-res Ď H

ad
{ H denote the open consisting of conjugacy classes rhs such that

ś

λPRX
chhprhs,λq ‰ 0, where h is the adjoint representation of H. Explicitly, pH

ad
{ Hqnon-res is the

set of conjugacy classes rhs such that the matrix ρhphq P GLphq does not have any eigenvalues in

RX . We remark that the open embedding pH
ad
{ Hqnon-res ãÑ H

ad
{ H is clearly affine.

Remark 4.3.2.1. Note that r1s P pH
ad
{ Hqnon-res by Remark 4.3.1.1.

36Note that geometric Frobenius for homology and cohomology are transpose (i.e., dual) morphisms. However,
if we consider, say, homology Hét,1pXq “ pπét

1 pXqabq^
ℓ b e with its geometric Frobenius (which corresponds to

AdF : πét
1 pXq Ñ πét

1 pXq by (4.1.1)) as a Z-representation, the dual Z-action on cohomology has the generator acting
by arithmetic Frobenius. This accounts for the inverse sign in the above formula.

37To be clear, when x0 was not Fq-rational, this equivariance depended on auxiliary choices.
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Notation 4.3.2.2. For any stack Y equipped with a structure map to pH
ad
{ Hqnon-res, we let Ynon-res :“

Y ˆ
H

ad

{ H
pH

ad
{ Hqnon-res. We use this notation particularly in the case Y “ LSarthm,˝

H equipped with

the structural map χH .

4.3.3. Main geometric result. The following result compares arithmetic local systems with the ad-
joint quotient:

Theorem 4.3.3.1. The map:

τH : pH
ad
{ Hqnon-res Ñ LSarthm,˝,non-res

H

from (4.2.1) is an isomorphism.

The proof of this result is the subject of §4.4.

4.4. Proof of Theorem 4.3.3.1.

4.4.1. A criterion for a map to be an isomorphism. We begin by observing:

Lemma 4.4.1.1. Let f : Y1 Ñ Y2 be a morphism of algebraic stacks that are locally almost of finite
type (over the algebraically closed field e).

Then f is an isomorphism if and only if:

(i) f is formally étale, i.e., its cotangent complex Ω1
Y1{Y2

P QCohpY1q vanishes.

(ii) The map Y1peq Ñ Y2peq is an isomorphism of (1-)groupoids.

Here we explicitly remark that condition (ii) can be separated into the two separate conditions:

(ii1) For every y1 P Y1peq, the map AutY1peqpy1q Ñ AutY2peqpfpy1qq of automorphism groups is

an isomorphism.38

(ii2) For every y2 P Y2peq, there exists y1 P Y1peq and an isomorphism fpy1q » y2 P Y2peq.

Proof. It suffices to show that for every affine S locally almost of finite type and equipped with a
map S Ñ Y2, the map S ˆY2 Y1 Ñ S is an isomorphism. The properties (i) and (ii) are obviously
preserved under such base-change, so we may assume Y2 is an affine scheme. Moreover, it is standard
that Y1 Ñ Y2 is an isomorphism if and only if Y1 ˆY2 Y

cl
2 Ñ Ycl

2 is so; therefore, we may assume Y2

is moreover classical.
Now Y1 is an algebraic stack with trivial automorphism groups at e-points, and therefore an

algebraic space. Moreover, Y1 Ñ Y2 is étale, so Y1 is also classical. Now f is a radicial map (because
it is locally of finite type and injective on e-points) and étale, so an open embedding. Finally,
because f is surjective on e-points, it must be an isomorphism.

□

Below, we will verify the above hypotheses for the map τH considered in Theorem 4.3.3.1.

4.4.2. Conventions, formulae, and signs. Before proceeding, we establish certain signs that will be
important. Roughly speaking, it is conceptually difficult to distinguish τHprhsq from τHprh´1sq, but
Theorem 4.3.3.1 does distinguish them, so we must explain exactly how to understand the map τH
a bit more explicitly. (The reader is invited to skip this digression and return to it as needed.)

Below, we let FrobX : X Ñ X denote the geometric Frobenius map.

38We emphasize that there is no room for anything derived here; this is a map between two sets.
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We normalize lisse Weil sheaves on X to be a pair pσ,αq where σ P LissepXq♥ “ qLissepXq♥ is

equipped with an isomorphism α : σ
»ÝÑ Frob˚

Xpσq. The direction of the map α is the “sign” in
question. Let us explain first why this sign is the “right” one for our conventions.

Note that V :“ x˚
0pσq is a representation ρgeom of πét

1 pXq. We also obtain an isomorphism:

V “ x˚
0pσq

αx0ÝÝÑ FrobXpx0q˚pσq
(4.1.2)

» x˚
0pσq “ V (4.4.1)

that we denote by ρpF q. In the notation of §4.1.1, one finds tautologically that ρpF q ˝ ρgeompgq “
ρgeompπét

1 pFrobXqpgqq ˝ ρpF q. By (4.1.1), we can rewrite this equation as:

ρpF qρgeompgqρpF q´1 “ ρgeompFgF´1q

so we obtain representation of WX on V with F acting by (4.4.1) – had α gone the other way, we
would need to invert (4.4.1).

Similarly, for H an affine algebraic group, a Weil H-local system is an H-local system σH on X

with an isomorphism α : σH
»ÝÑ Frob˚

XpσHq (of H-local systems). As a consequence, for h P H,
τHprhsq has σH trivial and α is given as multiplication by h. This ensures that the corresponding
Weil group representation WX Ñ Hpeq factors through Z “ WX{πét

1 pXq and sends the generator
to h (as it was supposed to).

Finally, for a lisse Weil sheaf pσ,αq, the natural “geometric” Frobenius action φσ on its coho-
mology is given by the operator:

CétpX,σq Ñ CétpX,Frob˚
Xpσqq α´1

ÝÝÑ CétpX,σq (4.4.2)

where the first map is the tautological one.

Remark 4.4.2.1. We wish to be clear about the logical status of the above material. First, we have
argued that the map α should be considered as going in a certain direction. But at some level, this
is a moral argument, not a mathematical one. Rather, we have made explicit a certain39 convention
that was implicit before (and shown how it leads to the orientation informally suggested in Remark
4.2.2.1). Logically speaking, establishing this convention was strictly necessary for the statement of
Theorem 4.3.3.1.

4.4.3. τH is formally étale. We will show that τH |
pH

ad

{ Hqnon-res
is formally étale.

First, note that we are reduced to checking that the tangent complex vanishes (e.g., both sides
have perfect cotangent complexes). Moreover, we can check this on fibers at all e-points as both
sides are locally almost of finite type.

In general, for σ P LSarthmH peq, we can compute the tangent complex as:40

TLSarthmH ,σ “ CétpX, hσr1sqZ “ Ker
`

id´φσ : CétpX, hσr1sq Ñ CétpX, hσr1sq
˘

.

Here hσ is the adjoint Weil local system on X induced by σ, CétpX, hσr1sq is its étale cohomology
complex (up to shift), and we are taking Z-invariants with respect to the action of the Frobenius
φσ (coming from the Weil structure on σ).

For h P Hpeq, the tangent complex T
H

ad

{ H,rhs
P Vect is the homotopy kernel (i.e., shifted cone):

T
H

ad

{ H,rhs
“ Kerpid´Adh : hr1s Ñ hr1sq

39For even more clarity: H
ad
{ H “ pBHqS

1

has an automorphism of “loop reversal,” and we need to remove the
ambiguity this automorphism provides.

40See [AGKRRV1] Proposition 2.2.2, §24.5.1.
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where Adh is the adjoint action of h on h; more naturally, writing H
ad
{ H “ MapspBZ,BHq and

this formula yields Z-invariants for the Z-action on hr1s “ TBH,Specpkq with generator acting by
Adh. (One consequence: we see that in the above description of T

H
ad

{ H,rhs
could have used Adh´1

in place of Adh.)
On the other hand, we have:

CétpX, hτHprhsqr1sq “ CétpX, eq b hr1s

with Frobenius:

φτHprhsq “ φX b Adh´1

where the inverse occurs because of the appearance of α´1 in (4.4.2).
The Frobenius equivariant map e “ H0pX, eq Ñ CétpX, eq (with Frobenius acting trivially on

the source) induces a commutative diagram:

hr1s “ e b hr1s hr1s “ e b hr1s

CétpX, eq b hr1s CétpX, eq b hr1s.

id´Adh´1

id´φXbAdh´1

Passing to (homotopy) kernels along the rows yields the differential for τH at rhs.41

Therefore, we see that τH is formally étale at rhs if and only if:

id´φX b Adh´1 : τě1CétpX, eq b h Ñ τě1CétpX, eq b h

is an isomorphism, or equivalently, the induced maps on cohomology:

id´φX b Adh´1 : H1
étpX, eq b h Ñ H1

étpX, eq b h

id´φX b Adh´1 : H2
étpX, eq b h Ñ H2

étpX, eq b h

are isomorphisms. Clearly this happens exactly when 1 is not an eigenvalue of φX b Adh´1 , which
occurs exactly when 1 cannot be written as λ ¨ µ for λ an eigenvalue of φX and µ an eigenvalue of
Adh´1 “ Ad´1

h , i.e., when no eigenvalues of Adh lie in RX . This is the defining condition for rhs to

lie in pH
ad
{ Hqnon-res, so we obtain the claim.

4.4.4. Stabilizers. Next, we verify condition (ii1) from Lemma 4.4.1.1. In fact, this is obvious, and
we will never use the subtleties of non-resonance in this step. We explicitly spell out the argument
here:

Suppose σ P LSarthmH peq. By definition, σ lifts to a continuous Weil group representation ρ :
WX Ñ Hpeq that is well-defined up to conjugacy. In this case, AutLSarthmH peqpσq is the stabilizer of

the image of ρ in Hpeq.

Similarly, an e-point in H
ad
{ H lifts to some h P Hpeq, and Aut

H
ad

{ Hpeq
prhsq is the stabilizer of h.

Now for h P H, τHprhsq is the Weil group representation WX Ñ Z
1 ÞÑhÝÝÝÑ Hpeq, whose stabilizer

obviously coincides with that of h.

41To see this, consider H
ad
{ H as the moduli of arithmetic local systems on Specpkq, then apply the above discussion

about LSarthm
H accordingly.
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4.4.5. Lifting isomorphism classes: setup. Finally, we verify (ii2). Suppose σ P LSarthm,˝,non-res
H peq.

We lift σ to a continuous representation ρ : WX Ñ Hpeq. Let ρ0 : πét
1 pXq Ñ Hpeq denote the

restriction of ρ to the geometric fundamental group; our task is to show that ρ0 is trivial.
This is a concrete linear algebra problem; we spell out the details below. We use the notation of

§4.1.1 (in particular, F P WX and g ÞÑ Fg). In addition, we introduce more notation:

‚ Let H˝ Ď H denote the Zariski closure of Imagepρ0q.
‚ Let θ : H˝

»ÝÑ H˝ denote the adjoint action of ρpF q, i.e., θphq “ AdρpF qphq.

In these terms, note that we have:

ρ0pFgq “ θpρ0pgqq for all g P πét
1 pXq. (4.4.3)

We now make the following additional observations about our hypotheses.
First, that ρ0 defines a point in LSrestr,˝H Ď LSrestrH means that ρ0 factors through a unipotent

subgroup of H by [AGKRRV1] Proposition 3.7.2. Equivalently, H˝ is unipotent.
Second, note that the non-resonance condition means that AdρpF q “ Liepθq : h Ñ h has no

eigenvalues in RX .

4.4.6. Lifting isomorphism classes: proof. In the above notation, our task is to show that H˝ is
trivial. By unipotence, it suffices to show that its abelianization Hab

˝ is trivial. Let V :“ LiepHab
˝ q;

as Hab
˝ is an abelian unipotent group, we abuse notation in identifying it with (the e-scheme

associated with) its Lie algebra.
By functoriality, θ induces an automorphism of V , which we also denote by θ. Suppose V ‰ 0;

then there exists an eigenvector µ P V _ for the transpose θ_ : V _ Ñ V _; we let λ P eˆ denote its
eigenvalue. Note that by the non-resonance assumption, λ R RX .

We now obtain a continuous homomorphism:

πét
1 pXq H˝peq V e

ρ0

ρ0

µ

that by (4.4.3) satisfies:

ρ0pFgq “ λ ¨ ρ0pgq. (4.4.4)

We also remark that KerpH˝peq Ñ V Ñ eq is the set of e-points of an algebraic subgroup of H˝,
so by definition of the latter, the homomorphism ρ0 must be non-trivial.

Now ρ0 extends to a non-zero e-linear map H ét
1 pX, eq Ñ e, i.e., it comes from a non-zero coho-

mology class η P H1
étpX, eq. As g ÞÑ Fg induces the (geometric) Frobenius on H ét

1 pX, eq (see (4.1.1)),
(4.4.4) means:

φXpηq “ λ ¨ η.

This contradicts the non-resonance assumption, so we conclude that V “ 0, as was desired.

4.5. Setup for the proof of Theorem 3.5.2.1. We now begin the proof of Theorem 3.5.2.1.

4.5.1. Recall that our objective is to define the commutative diagram (3.5.3) and verify certain
properties of it.

We begin by defining a certain function δ : Ť Ñ A1 as:

δptq :“
ź

λPRX

chǧpt,λq, t P Ť
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where we use notation as in §4.3.2, and are considering ǧ as a representation of Ť via the adjoint
action. More explicitly, we have:

δptq “
ź

λPRX

p1 ´ λqdimpŤ q
ź

α̌P∆̌

pα̌ptq ´ λq

where we consider α̌ as a map Ť Ñ Gm Ď A1.
Clearly δ is a W -invariant morphism, so induces a map Ť {{W Ñ A1; we also denote this function

by δ.

4.5.2. We now form a commutative diagram:

LSarthm,˝
B̌

LSarthm,˝
Ť

B̌
ad
{ B̌ LSarthm,˝

Ǧ

Ť
ad
{ Ť Ǧ

ad
{ Ǧ

Ť {{W

A1

χB̌

χŤ χǦ

δ

(4.5.1)

We now define δǦ so that its restriction to LSarthm,˝
Ǧ

is given by the unique map LSarthm,˝
Ǧ

Ñ A1

appearing in the diagram (4.5.1), and so its restriction42 to LSarthm
Ǧ

zLSarthm,˝
Ǧ

is identically 0. We

define δŤ in exactly the same way, replacing Ǧ by Ť everywhere in the previous sentence.
Below, we check that the pair of maps pδǦ, δŤ q satisfy the conclusions of Theorem 3.5.2.1.

4.5.3. First, the commutative diagram (3.5.3) clearly exists by (4.5.1).

4.5.4. Second, we need to check (1) from Theorem 3.5.2.1, i.e., that δǦ takes a non-zero value
at the trivial Weil local system. By construction, it is enough to show δp1q ‰ 0. Clearly δp1q “
ś

λPRX
p1 ´ λqdimpGq, and we recall that 1 R RX (see Remark 4.3.1.1, §??).

4.5.5. Next, we observe that the locus where δǦ is non-zero is exactly LSarthm,˝,non-res
Ǧ

(by defini-

tion).
Therefore, by Theorem 4.3.3.1, we have:

ΓpLSarthm
Ǧ

,ωqrδ´1
Ǧ

s “ ΓpLSarthm,˝,non-res
Ǧ

,ωq » ΓppǦ
ad
{ Ǧqnon-res,ωq (4.5.2)

which is concentrated in degree zero because it is a localization of ΓpǦ
ad
{ Ǧ,ωq » ΓpǦ

ad
{ Ǧ,Oq at a

function Ǧ
ad
{ Ǧ Ñ A1, verifying hypothesis (2) from Theorem 3.5.2.1.

42We remind that LSrestr,˝
Ǧ

Ď LSrestr
Ǧ is a connected component, so this process of defining the function on

LSarthm,˝
Ǧ

:“ LSarthm
Ǧ ˆLSrestr

Ǧ
LSrestr,˝

Ǧ
and setting it to be zero elsewhere is legitimate.
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4.5.6. It remains to verify the surjectivity (i.e., Theorem 3.5.2.1 (3)). We will do this in the
remainder of the section; here we make some preliminary, orienting remarks.

Recall the setting of Lemma 3.7.1.1. We observe that we have two maps:

ΓpLSarthm
Ť

,ωqrδ´1
Ť

s EisspecÝÝÝÝÑ ΓpLSarthm
Ǧ

,ωqrδ´1
Ǧ

s “ ΓpLSarthm,˝,non-res
Ǧ

,ωq
(4.5.2)

»

ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s “ ΓppǦ

ad
{ Ǧqnon-res,ωq.

and:

ΓpLSarthm
Ť

,ωqrδ´1
Ť

s Thm. 4.3.3.1“ ΓpŤ
ad
{ Ť ,ωqrpδŤ ˝ τŤ q´1s Eisspec,toyÝÝÝÝÝÝÑ

ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s “ ΓppǦ

ad
{ Ǧqnon-res,ωq.

By Corollary 3.7.2.1, we would be done if these two maps coincided.
This expectation is somewhat too naive: we instead show that they coincide up to invertible

L-values, which will suffice for our purposes.

4.6. L-values and traces. In §4.5.6, we made an opaque remark about L-values. In this subsec-
tion, we will make a precise connection between categorical traces and L-values; this is the main
computational input we will need.

In what follows, we let H denote a unipotent algebraic group over e. (In practice, H “ Ň .)

4.6.1. Classes and traces. Suppose C P DGCatcont is a dualizable DG category on T : C Ñ C is an
endofunctor.

Let Cc Ď C denote the subcategory of compact objects and let Cc,T,lax denote the category of
pairs pF,αq where F P Cc and α : F Ñ T pFq is a morphism in C.

Given some pF,αq as above, there is a canonical point clpF,αq P Ω8 trCpT q. Indeed, this follows
from the functoriality of traces as in §3.2.5; equip Vect with the identity self-map, F as a functor
Vect Ñ C, and α as a lax intertwining map, so functoriality gives a map e “ trVectpidVectq Ñ
trCpT q P Vect, i.e., a point clpF,αq P Ω8 trCpT q.

More generally, we recall that there is a map clp´q : KpCc,T,laxq Ñ trCpT q P Spectra of spectra
from the K-theory spectrum of Cc,T,lax to the trace of T (with the latter considered as a spectrum
via the forgetful functor Vect Ñ Spectra).

Notation 4.6.1.1. Note that Vectc,id,lax “ tW P Vectc,φ : W Ñ W u is a symmetric monoidal
category and as such acts canonically on Cc,T,lax in the above setting. Explicitly, for pW,φq P
Vectc,id,lax and pF,αq P Cc,T,lax, W b F is equipped with the endomorphism φ b id` idbα.

Under the class map, one has:

clpW b F,φ b id` idbαq “ trW pφq ¨ clpF,αq. (4.6.1)

(We do not need this, but this identity can easily be upgraded to a suitable statement at the level
of spectra.)

4.6.2. Statement of the problem. Recall that H is unipotent. By [AGKRRV1] Proposition 3.3.2,
LSrestrH is a quasi-compact algebraic stack; in particular, its structure sheaf OLSrestrH

P QCohpLSrestrH q
is compact (unlike for non-unipotent groups). By abuse of notation, we will let OLSrestrH

denote the

“same” object of IndCohpLSrestrH q under the fully faithful embedding QCohpLSrestrH q ãÑ IndCohpLSrestrH q
(usually denoted “Ξ” in the literature on IndCoh).

We have a map τ0 : BH Ñ LSrestrH corresponding to the trivial local system. We can then form
τ IndCoh0,˚ pOBHq P IndCohpLSrestrH q.
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Note that both objects OLSrestrH
, τ IndCoh0,˚ pOBHq are coherent and carry obvious canonical Frobenius

equivariant structures. Therefore, we may form their classes:43

clpOLSrestrH
,αq, clpτ IndCoh0,˚ pOBHq,αq P ΓpLSarthmH ,ωq.

Our goal is to compare these two classes.

4.6.3. An L-value. Let ζXptq “
ř

ně0 |X0pFn
q q|tn P Qptq Ď Qpptqq denote the ζ-function of the

curve X. We remind that the ζ-function has the form:

ζXptq “
pXptq

p1 ´ tqp1 ´ qtq
, pXptq P Qrts.

Let ζ‹
Xptq “ p1 ´ tq ¨ ζXptq. By the Weil conjectures, ζ‹

Xp1q is non-zero and so equals the leading
term of the Taylor expansion44 of ζXptq at t “ 1.

4.6.4. Main lemma. We will prove:

Lemma 4.6.4.1. There exists an equivalence:

clpτ IndCoh0,˚ pOBHq,αq » ζ‹
Xp1qdimH ¨ clpOLSrestrH

,αq P Ω8ΓpLSarthmH ,ωq.

Less homotopically, this result simply means that the images of the two points above in the set
π0pΩ8ΓpLSarthmH ,ωqq “ H0ΓpLSarthmH ,ωq are equal.

Proof.

Step 1. We begin with a toy model.
Let V and W be finite-dimensional vector spaces equipped with endomorphisms φV and φW .
Let Y denote the stack (over e) V ˆ Ω0W , which we consider equipped with the self-map φ “

φV ˆ Ω0φW ; here Ω0W is the derived loop space 0 ˆW 0.
We let e.g. O0 P CohpYq denote the structure sheaf at the origin, OV P CohpYq denote the structure

sheaf of V Ď Y, etc.
We use the category CohpYqφ˚,lax of lax φ˚-equivariant coherent sheaves on Y, i.e., CohpYqφ˚,lax “

tF P CohpYq,α : F Ñ φ˚pFqu (see §4.6.1).
Koszul resolutions provide identities:

ÿ

p´1qirΛiW_ b OV s » rOYs
ÿ

p´1qjrΛjV _ b OV s » rO0s.
(4.6.2)

Here the notation means the following. First, ΛiW_ b OY P CohpYqφ˚,lax is equipped with the
lax equivariant structure from Notation 4.6.1.1, where ΛiW_ is equipped with the endomorphism
Λiφ_

W ; similar notation holds for ΛjV _ bOV . The notation r´s is used for the class in the K-theory

spectrum45 KpCohpYqφ˚,laxq.
By (4.6.1), we find:

clpO0,αq “
ÿ

p´1qj trpΛjφ_
V q ¨ clpOV ,αq “

ÿ

p´1qj trpΛjφV q ¨ clpOV ,αq “

detpidV ´φV q ¨ clpOV ,αq P Ω8ΓpYφ,ωq

for Yφ the derived fixed points.

43By unipotence of H, note that every point of LSarthm
H is non-resonant, i.e., the map H

ad
{ H Ñ LSarthm

H is an
isomorphism.

44Note that – unlike in number theory – we are expanding in the variable t “ q´s rather than in s itself.
45One could also simply use Grothendieck groups for our purposes.
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Similarly, we have:

clpOY,αq “ detpidW ´φW q ¨ clpOV ,αq P Ω8ΓpYφ,ωq.

Comparing these two identities, we obtain:

detpidW ´φW q ¨ clpO0,αq “ detpidV ´φV q ¨ clpOY,αq.

Now assume that detpidW ´φW q is non-zero, so is invertible in the field e. We obtain:

clpO0,αq “
detpidV ´φV q
detpidW ´φW q

¨ clpOY,αq P Ω8ΓpYφ,ωq.

Taking V “ H1
étpXq and W “ H2

étpXq equipped with their Frobenii endomorphisms, we observe
that:

detpidV ´φV q
detpidW ´φW q

“ ζ‹
Xp1q

by Grothendieck’s trace formula.

Step 2. Next, suppose we are in the following more general setup.
We suppose that Z is a QCA stack equipped with an endomorphism φ “ φZ and is equipped

with a quasi-smooth map Z Ñ Y “ V ˆ Ω0W intertwining the maps φ.
We let Z0 denote the fiber of Z over 0 P Y. We note that Z0 is eventually coconnective, so OZ0

is a coherent sheaf on Z.
The previous analysis then shows:

clpOZ0 ,αq “
detpidV ´φV q
detpidW ´φW q

¨ clpOZ,αq P Ω8ΓpZφ,ωq (4.6.3)

(assuming 1 is not an eigenvalue of φW ).

Step 3. We now wish to apply the above formalism to deduce our claim.
Choose a nested sequence t1u “ H0 Ď H1 Ď . . . Ď Hr “ H of subgroups with each Hi normal in

H and Hi`1{Hi » Ga. We remark that r “ dimpHq.
Then define algebraic stacks:

Zi :“ LSrestrH ˆ
LSrestrH{Hi

BpH{Hiq

where BpH{Hiq Ñ LSrestrH{Hi
is the map τ0, i.e., it corresponds to trivial H{Hi-local systems on X.

Observe that Zr “ LSrestrH , Z0 “ BH, and we have closed embeddings:

Z0 ãÑ Z1 ãÑ . . . ãÑ Zr.

We can rewrite the definition of Zi as follows. Note that H{Hi acts on the classifying stack BHi;
formally, this is encoded by the fiber sequence BHi Ñ BH Ñ BpH{Hiq. Unwinding the definitions,
this induces an action of H{Hi on LSrestrHi

. We then have:

Zi » LSrestrHi
{pH{Hiq.

Now for each i, we have a diagram:

H{Hi H{Hi`1 BGa

LSrestrHi
LSrestrHi`1

LSrestrGa

ñ ñ ñ
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where the rows are fiber sequences and the top row is a fiber sequence of groups. Here the action
of BGa on LSrestrGa

is induced by the homomorphism of group stacks BGa Ñ LSrestrGa
corresponding

to pullback of local systems along X Ñ Specpkq (i.e., the map τ0 for Ga). Passing to quotients in
this diagram and identifying46 LSrestrGa

» BGa ˆ H1
étpXq ˆ Ω0H

2
étpXq, we obtain a fiber square:

Zi Zi`1

Specpkq LSrestrGa
{Ga H1

étpXq ˆ Ω0H
2
étpXq

We now obtain the result by induction from the previous step.47

□

4.6.5. An extended digression: divergent series via categorical traces. We explain a general format
for thinking about the above proof of Lemma 4.6.4.1. This material is informal and may be skipped.
However, we believe it is an important philosophical point that we wish to highlight.

Roughly speaking, the idea is that so-called categorical functional analysis (e.g., fine consider-
ations about distinctions between Perf and Coh) relate to actual analysis (e.g., summing infinite
series) via categorical traces. Strikingly, we will see that Hochschild homology allows us to some-
times “correctly” evaluate infinite sums without ever mentioning a topology on the field e in which
they occur.

We consider the following geometric setup. Let Y be an algebraic stack (over e), which we assume
is quasi-smooth and QCA. Assume Y is equipped with a self-map φ : Y Ñ Y. The functor:

ΥY : QCohpYq Ñ IndCohpYq

F ÞÑ F b
OY

ωY

preserves compact objects and intertwines the self-maps φ˚ and φ! of the source and target. More-
over, this functor is a morphism of QCohpYq-module categories.

Now recall (e.g., [GKRV] §3.8.8) that for a dualizable QCohpYq-module category C with an
endofunctor T : C Ñ C suitably compatible with φ˚, there is a canonical object:

trenhpT q P QCohpYφq

with the basic property that ΓpY, trenhpT qq “ trpT q P Vect. This construction satisfies the usual
functoriality properties for traces. We have:48

trenhpφ˚q “ OYφ

trenhpφ!q “ ωYφ

and then ΥY yields a canonical map:

τ : OYφ “ trenhpφ˚q Ñ trenhpφ!q “ ωY P QCohpYφq.

(This map τ can be thought of as a weak Calabi-Yau structure on the derived fixed points.)

46We note that by purity, there is a canonical such splitting compatible with Frobenius.
47Formally, the induction should be done onK-theory classes, generalizing (4.6.2). We map to Hochschild homology

only at the end.
48In this formula, we consider ωYφ as an object of QCoh, not of IndCoh. In other words, we implicitly are taking

the “true” dualizing sheaf in IndCoh and applying the forgetful functor Ψ : IndCohpYφq Ñ QCohpYφq to it. As ωYφ is
a line bundle, this is a quite mild thing to have done, so we do not specifically demarcate it in the notation.
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We let Yφ,good Ď Yφ denote the locus of points where τ is an isomorphism. Note that Yφ,good

contains pYsmqφ (the fixed points of the smooth locus of Y) but in general is larger: one can in fact
verify that Yφ,good is exactly the quasi-smooth locus of Yφ.

Now, any perfect object F P PerfpYq with a self map α : F Ñ φ˚pFq yields a class:

clpF,αqQCohpYq P ΓpYφ,Oq

i.e., a function on the fixed points Yφ of φ. In this notation, we use the subscript clp´,´qQCoh to
emphasize that we are considering F as an object of QCoh (this will be an important distinction
soon). This function can be understood quite explicitly; at a point y P Yφ, we take the trace of the
resulting map:

βy : y˚pFq αÝÑ y˚pφ˚pFqq “ φpyq˚pFq » y˚pFq (4.6.4)

where the last isomorphism uses the identification y » φpyq implicit in y being a fixed point. In
other words, we have:

clpF,αqQCohpYq “ py ÞÑ trpβyqq.

Now suppose instead that F P CohpYq, though still equipped with a map α : F Ñ φ˚pFq. Because
F may not be compact in QCohpYq, we cannot form its class in ΓpYφ,Oq any longer. However, we
can twist and form F b ωY, which lies in Coh because Y is quasi-smooth (so Gorenstein). We then
obtain a map:

rα “ α b id : F b ωY Ñ φ˚pFq b ωY “ φ!pF b ωYq.

Therefore, we can form the class:

clpF b ωY, rαqIndCoh P ΓpYφ,ωφq.

Tautologically, in the special case where F P PerfpYq Ď CohpYq, we have:

clpF b ωY, rαqIndCoh “ τpclpF,αqQCohq. (4.6.5)

Following this equation, we define the regularized class:

clregpF,αqQCoh P ΓpYφ,good,Oq

as the image of clpF b ωY, rαqIndCoh under the composition:

ΓpYφ,ωq Ñ ΓpYφ,good,ωq
τ´1

» ΓpYφ,good,Oq.

By construction, this regularized class coincides with (the restriction to Yφ,good of) clpF,αqQCoh

when F is perfect.
Suppose y P Yφ. The map (4.6.4) still makes sense. However, if F is not perfect near y, then

while the complex (4.6.4) is finite-dimensional in each degree, it is unbounded from below, so the
trace of βy is not well defined. We define the regularized trace:

trregpβyq :“ pclregpF,αqQCohqpyq

as the value of the regularized class at y P Yφ.
Heuristically, the regularized trace can be thought of as assigning an actual value to the infinite

sum:
ÿ

iPZ

p´1qi trpH ipβyqq : H ipy˚pFqq Ñ H ipy˚pFqq P e (4.6.6)

where we reiterate that the summands are each well-defined, the summands vanish for i " 0, but
generally, an infinite number of summands appear.



42 SAM RASKIN

Example 4.6.5.1. Let us explain how this works in the simplest possible case. Suppose Y “ Ω0A
1

and φ is multiplication by a number λ P e. Take the sheaf F to be O0, the structure sheaf of
the point 0 P Ω0A

1. Note that 0 is canonically a fixed point of φ, so we can think of 0 as a
point of Yφ. By a standard calculation, 0˚pO0q has 1-dimensional cohomology in even non-positive
cohomological degrees and vanishing cohomology outside these degrees; moreover, the map β0 acts
on H´2ip0˚pO0qq as multiplication by λi. Therefore, the sum from (4.6.6) is the geometric series
ř

iě0 λ
i. We emphasize that this is a formal expression; at the moment, λ is an arbitrary element

of the field λ and is in no sense “small.”
Now suppose λ ‰ 1. Then 0 P Yφ,good (in fact, Yφ,good “ Yφ “ Specpeq “ t0u). Then the

regularized trace trregpβ0q is well-defined, and the (completely elementary) argument from Step 1
from the proof of Lemma 4.6.4.1 calculates:

trregpβ0q “
1

1 ´ λ
.

In other words, we have given direct, purely algebraic meaning to the geometric series formula
ř

λi“=” 1
1´λ , which usually requires us to know λi iÑ8Ñ 0 in some suitably analytic sense.

Remark 4.6.5.2 (Regularized traces and functional equations). Suppose now that φ : Y Ñ Y is
in fact an isomorphism. Then φ˚ “ φ! (say, as functors restricted to Perf or Coh). Therefore, for
F P PerfpYq with α : F Ñ φ˚pFq, we also obtain a mp α1 : F Ñ φ!pFq. For y P Yφ, we obtain a
canonical map:

γy : y!pFq Ñ y!pFq

defined in the same way as βy. As F is perfect, we have:

y!pFq “ y!pF b ωY b ω´1
Y q “ y!pF b ωYq b y˚pω´1

Y q “ y˚pFq b y˚pωYqb´1.

This map intertwines γy (for F) with βy (for both F and ωY). If we set 󰂃y to be the trace of the
map:

y˚pωYq Ñ y˚pωYq

constructed using γy (and the obvious isomorphism ωY » φ!pωYq “ φ˚pωYq), we find:

󰂃y ¨ trpγyq “ trpβyq.

Now we can define trregpγyq exactly as we did for coherent F when y P Yφ,good. We obtain a
tautological “functional equation:”

󰂃y ¨ trregpγyq “ trregpβyq

(where 󰂃y is thought of as an 󰂃-factor).
Let us see how this logic plays out in the setting of Example 4.6.5.1. We should have λ ‰ 0 so

that φ is an isomorphism. We note that 0!pO0q has cohomology in even non-negative degrees, and
the action of γ0 on H2ip0!pO0qq is multiplication by λ´i. Also, 0˚pωq “ er´1s with “γ” operator
multiplication by λ´1. Therefore, the regularized trace trregpγ0q heuristically makes sense of the
sum:

trregpγ0q“=”
ÿ

iě0

λ´i

while 󰂃0 “ ´λ´1.
Therefore, in this case, our functional equation heuristically yields:

´λ´1
ÿ

iě0

λ´i“=”ε0 tr
regpγ0q “ trregpβ0q“=”

ÿ

iě0

λi.
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This resulting equation ´λ´1
ř

iě0 λ
´i“=”

ř

iě0 λ
i is a favorite from the world of divergent series;

over C, the left hand side is defined for |λ| ą 1 while the right hand side is defined for |λ| ă 1, but,
of course, the analytic continuations of these two functions coincide on their domains.

We note that this sort of manipulation with divergent series is closely related to the functional
equation for the ζ-function of an algebraic curve.

Remark 4.6.5.3. It would be of great interest to interpret categorically some analytic aspects of the
analytic theory of automorphic forms over function fields using some version of the above ideas.

4.6.6. Variant. In practice, we need a slight extension of the discussion of §4.6.4.
Let H be a unipotent group as before, and now let S be a torus acting on H by automorphisms.

(In practice, S “ Ť acting on H “ Ň .) For brevity, we let Q denote the semi-direct product S ˙H.
In this case, we define a rational map:

ζ‹
X,H,S : S 󰃚󰃚󰃄 A1

via the formula:

ps P Sq ÞÑ
det

`

id´Ads´1 bφX ñ h b H1
étpXq

˘

det
`

id´Ads´1 bφX ñ h b H2
étpXq

˘ .

Here φX is the Frobenius acting on étale cohomology of X while we abuse notation somewhat in
letting Ad´ denote the action of S on h coming from the action of S on H.

Remark 4.6.6.1. Note that ζ‹
X,H,S is defined at 1 P S and takes the value ζ‹

Xp1qdimH there (see

Lemma 4.6.4.1).

Remark 4.6.6.2. Suppose µ1, . . . , µr : S Ñ Gm are the characters of S appearing in its representa-
tion h, counted with multiplicities (so r “ dimpHq). Then we have:

ζ‹
X,H,Spsq “

r
ź

i“1

ζ‹
Xpµips

´1qq.

In particular, the domain of definition of ζ‹
X,H,S is Xits P S | µipsq ‰ qu, and ζ‹

X,H,S is (defined

and) invertible on Xits P S | µipsq R RXu.

It will be convenient also to introduce the notation:

pX,H,Spsq “ det
`

id´Ads´1 bφX ñ h b H1
étpXq

˘

“
r

ź

i“1

pXpµips
´1qq

qX,H,Spsq “ det
`

id´Ads´1 bφX ñ h b H2
étpXq

˘

“
r

ź

i“1

p1 ´ q ¨ µips
´1qq

so pX,H,S and qX,H,S are (regular) functions on S with ζ‹
X,H,S “ pX,H,S

qX,H,S
.

We introduce the notation:

LSrestrQ;S :“ LSrestrQ ˆ
LSrestrS

BS “ pLSrestrH q{S.

We observe that LSrestrQ;S is a quasi-compact algebraic stack (by unipotence of H). We let LSarthmQ;S

denote the Frobenius fixed points of LSrestrQ;S . Explicitly, we have:

LSarthmQ;S “ LSarthmQ ˆ
LSarthmS

S
ad
{ S.

We let τ1 : BQ Ñ LSrestrQ;S denote the evident map.
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Remark 4.6.6.3. To be more explicit, we remind that S
ad
{ S

»ÝÑ LSarthm,˝
S by Theorem 4.3.3.1,

recalling that S is a torus. Therefore, LSarthmQ;S is the connected component of the identity in LSarthmQ .

Lemma 4.6.6.4. There exists an equivalence:

qX,H,S ¨ clpτ IndCoh1,˚ pOBQq,αq » pX,H,S ¨ clpOLSrestrQ;S
,αq P Ω8ΓpLSarthmQ;S ,ωq.

Remark 4.6.6.5. Informally, the lemma should be understood as saying:

clpτ IndCoh1,˚ pOBQq,αq » ζ‹
X,H,S ¨ clpOLSrestrQ;S

,αq

Proof of Lemma 4.6.6.4. The proof is essentially identical to that of Lemma 4.6.4.1. The differences
are as follows.

First, in Step 1, one should assume V and W are S-representations, and one should account for
the S-action in (4.6.2). That the dual representations V _ and W_ appear in (4.6.2) accounts for
the appearance of s´1 rather than s in the definition of ζ‹

X,H,S above.
Second, one should note that the subgroups Hi from the proof of Lemma 4.6.4.1 can be taken

to be invariant under the S-action (proof: diagonalize the S-action on h{rh, hs and proceed by
induction).

Otherwise, the argument proceeds verbatim.
□

4.7. Conclusion. We now return to the setting of §4.5.

4.7.1. Let LSarthm
Ť,δŤ ‰0

Ď LSarthm
Ť

denote the non-vanishing locus of δŤ .

We have a rational function:

LSarthm
Ť

Thm. 4.3.3.1“ Ť
ad
{ Ť Ñ Ť

ζX,Ň,Ť󰃚󰃚󰃄 A1

that is clearly defined and invertible on LSarthm
Ť,δŤ ‰0

. By abuse of notation, we also let ζX,Ň,Ť denote

the resulting map:

ζX,Ň,Ť : LSarthm
Ť,δŤ ‰0

Ñ A1z0.

4.7.2. We now prove the following result:

Theorem 4.7.2.1. There is a commutative diagram:

ΓpLSarthm
Ť,δŤ ‰0

,ωq ΓpLSarthm
Ť

,ωqrδ´1
Ť

s ΓppǦ
ad
{ Ǧqnon-res,ωq

ΓpLSarthm
Ť,δŤ ‰0

,ωq ΓpLSarthm
Ť

,ωqrδ´1
Ť

s ΓpǦ
ad
{ Ǧ,ωqrpδǦ ˝ τǦq´1s ΓppǦ

ad
{ Ǧqnon-res,ωq.

Eisspec

id
ζX,Ň,Ť ¨´»

Eisspec,toy

Using Corollary 3.7.2.1, this clearly yields the desired surjectivity from §4.5.6. Therefore, it
remains to prove this theorem.

Proof of Theorem 4.7.2.1.
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Step 1. The commutative diagram:

BB̌ LSrestr
B̌

BǦ LSrestr
Ǧ

τB̌

ptoy p

τǦ

of stacks under proper morphisms yields an identification of the resulting two functors:

ReppB̌q Ñ IndCohpLSrestr
Ǧ

q

preserving compact objects.
Passing to traces of Frobenius, this yields a commutative diagram:

ΓpB̌
ad
{ B̌,ωq ΓpLSarthm

B̌
,ωq

ΓpǦ
ad
{ Ǧ,ωq ΓpLSarthm

Ǧ
,ωq.

(4.7.1)

Step 2. Next, form the commutative square:

BB̌ LSrestr
B̌

BŤ LSrestr
Ť

τB̌

qtoy q

τŤ

We obtain a natural transformation:

q˚,IndCohτ IndCoh
Ť,˚ Ñ τ IndCoh

B̌,˚ qtoy,˚,IndCoh

of functors:

ReppŤ q Ñ IndCohpLSrestr
B̌

q.

But this functor is not an isomorphism, so mere functoriality of traces has little to say about it.
Still, we claim that we have a commutative diagram:

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthm

B̌
,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq.

pX,Ň,Ť ¨´ trpq˚,IndCohτ IndCoh
Ť,˚

q

qX,Ň,Ť ¨´
trpτ IndCoh

B̌,˚
qtoy,˚,IndCohq

(4.7.2)

To construct this diagram, note that the maps are naturally morphisms of ΓpLSarthm
Ť

,Oq-modules.

This algebra clearly acts ΓpŤ
ad
{ Ť ,ωq (the source of the diagram we wish to construct) through its

factor:

ΓpLSarthm,˝
Ť

,Oq “ ΓpŤ
ad
{ Ť ,Oq.
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Therefore, it suffices to produce a commutative diagram:

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthm

B̌
,ωq ΓpLSarthm,˝

B̌
,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthm

B̌
,ωq ΓpLSarthm,˝

B̌
,ωq

pX,Ň,Ť ¨´ trpq˚,IndCohτ IndCoh
Ť,˚

q proj

qX,Ň,Ť ¨´ trpτ IndCoh
B̌,˚

qtoy,˚,IndCohq proj

of ΓpŤ
ad
{ Ť ,Oq-modules.

Recall that Ȟ
ad
{ Ȟ is naturally Calabi-Yau for an algebraic groupH; the equivalence QCohpBHq ΞÝÑ

IndCohpBHq gives an isomorphism on Hochschild homology ΓpH
ad
{ H,Oq »ÝÑ ΓpH

ad
{ H,ωq. Let

volH P ΓpH
ad
{ H,ωq denote the resulting generator – explicitly, it is the class of the identity object

of ReppHq. Therefore, to produce the above diagram, it suffices to provide an isomorphism:49

pX,Ň,Ť ¨ proj
´

trpq˚,IndCohτ IndCoh
Ť,˚ qpvolŤ q

¯

“

qX,Ň,Ť ¨ proj
´

trpτ IndCoh
B̌,˚ qtoy,˚,IndCohqpvolŤ q

¯

P Ω8ΓpLSarthm,˝
B̌

,ωq.

By construction, we have:

trpτ IndCoh
B̌,˚ qtoy,˚,IndCohqpvolŤ q “ clpOBB̌,αq P Ω8ΓpLSarthm

B̌
,ωq.

Similarly, by base-change, we have:

trpq˚,IndCohτ IndCoh
Ť,˚ qpvolŤ q “ clpOLSrestr

B̌
ˆ

LSrestr
Ť

BŤ ,αq “ clpOLSrestr
B̌;Ť

,αq P Ω8ΓpLSarthm
B̌

,ωq.

So the identity follows from Lemma 4.6.6.4, reminding that LSarthm
B̌;Ť

“ LSarthm,˝
B̌

(see Remark

4.6.6.3).

Step 3. Concatenating diagrams (4.7.1) and (4.7.2), we obtain a commutative diagram:

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpLSarthm

Ť
,ωq ΓpLSarthm

Ǧ
,ωq

ΓpŤ
ad
{ Ť ,ωq ΓpŤ

ad
{ Ť ,ωq ΓpǦ

ad
{ Ǧ,ωq. ΓpLSarthm

Ǧ
,ωq.

pX,Ň,Ť ¨´ trpτ IndCoh
Ť,˚

q
Eisspec

qX,Ň,Ť ¨´ Eisspec,toy
trpτ IndCoh

Ǧ,˚
q

This diagram refines the theorem we were supposed to prove.
□
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[Laf3] Vincent Lafforgue. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale. Journal

of the American Mathematical Society, 31(3):719–891, 2018.
[Lau1] Gérard Laumon. Correspondance de Langlands géométrique pour les corps de fonctions. Duke Mathe-
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[Xue2] Cong Xue. Smoothness of cohomology sheaves of stacks of shtukas. arXiv preprint arXiv:2012.12833,

2020.

http://people.math.harvard.edu/~gaitsgde/GL/GenVan.pdf
https://people.mpim-bonn.mpg.de/gaitsgde/GLC/functor.pdf
https://www.math.ias.edu/~lurie/papers/moduli.pdf


48 SAM RASKIN

[Zhu] Xinwen Zhu. Coherent sheaves on the stack of Langlands parameters. arXiv preprint arXiv:2008.02998,
2020.

Yale University, Department of Mathematics, 219 Prospect St, New Haven, CT 06511
Email address: sam.raskin@yale.edu


