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ABSTRACT. We prove that stability — a strong quasiconvexity property — pulls back
under proper actions on proper metric spaces. This result has several applications,
including that convex cocompact subgroups of both mapping class groups and outer
automorphism groups of free groups are stable. We also characterize stability in
relatively hyperbolic groups whose parabolic subgroups have linear divergence.

1. INTRODUCTION

The concept of hyperbolicity has been central to the study of finitely generated
groups, with hyperbolic groups automatically satisfying a host of useful algebraic, geo-
metric, and algorithmic properties [Gro87, ABCT91, GLH90]. Thus if a geodesic metric
space X is not globally hyperbolic, it becomes natural to look for the subspaces or di-
rections along which X does exhibit negatively curved behavior.

The aim of this paper is to study a negatively curved behavior called stability, which
is a generalization of the notion of quasiconvexity in hyperbolic groups. Informally,
an undistorted, quasiconvex subspace Y of a geodesic metric space X is called stable
if any two quasigeodesics in X with common endpoints in Y are forced to uniformly
fellow travel. A subgroup H of a finitely generated group G is stable when it constitutes
a stable subset of a Cayley graph for G. We note that stable subgroups are always
hyperbolic and quasiconvex, and subgroup stability is a quasi-isometry invariant.

We prove that stability pulls back under proper actions on proper spaces:

Theorem 1.1 (Pulling back stability). Let G be a finitely generated group with a proper
action G —~ X on a proper geodesic metric space X. Let H < G be such that for some

x € X, the orbit map orb,: G — X given by g — gx restricts to a stable embedding on
H. Then H 1is stable in G.

Our main applications are to establishing criteria for subgroup stability in subgroups
of mapping class groups, outer automorphism groups of free groups (Theorem 1.3), and
relatively hyperbolic groups (Theorem 1.5).

The stability property is a generalization of the more familiar Morse stability property
for a single quasigeodesic. For a function D: Rio — R-p, a quasigeodesic v in a
geodesic metric space X is called D-stable if any (k, A)-quasigeodesic g with endpoints
on v remains within the D(k, \)-neighborhood of 7. The connection between stability
for an undistorted subgroup H and the stability property for a single quasigeodesic is
as follows: H is stable in G if and only if there exists D so that every geodesic in H
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is D-stable in GG. That is, stability of a subgroup equates to uniform stability for its
geodesics in the ambient group.

A main ingredient in the proof of Theorem 1.1 is to demonstrate an alternative char-
acterization of Morse stability, called middle recurrence, which was first introduced by
Drutu-Mozes—Sapir [DMS10]. This characterization satisfies two important properties:

(1) It behaves well under Lipschitz maps (e.g., orbit maps of finitely generated
groups into metric spaces).

(2) It constitutes an effective characterization of stability; that is, we prove an
explicit relationship between the stability function D(x,A) and the function
associated with the middle recurrence characterization. As stability of a sub-
group requires a simultaneous control of the stability functions for all geodesics
of that subgroup, this effectivity plays a crucial role.

A quasigeodesic ¢ ¢ X is called middle recurrent if for any C > 0, there exists
K > 0 so that if p is any path with endpoints a,b on ¢ whose arclength is less than
C - dx(a,b), then p meets the K-neighborhood of the “middle portion” of g between
a and b. A precise definition of “middle portion” can be found in Section 3, but
heuristically this is a subset of ¢ which lies at a definite distance from both endpoints a
and b. Note that the condition ¢(p) < C'-dx(a,b) does not impose any local constraint
on the path p; in particular, it need not be a quasigeodesic. We prove the following:

Theorem 1.2 (Middle recurrence and stability). Let ¢ be a quasigeodesic in a geodesic
metric space X. Then q is stable if and only if q is middle recurrent. Moreover, its
recurrence function can be bounded from above only in terms of its stability function,
and visa versa.

See Subsection 3.3 for a discussion of middle recurrence in [DMS10]. In forthcoming
work, the authors establish effective control on the divergence of a stable quasigeodesic
in terms of its stability function. That these notions are related follows from [DMS10,
CS14, ACGH164a).

Applications. Our motivation for Theorem 1.1 lies in its applications—the study of
stable subgroups of the mapping class group, the outer automorphism group of the free
group, and relatively hyperbolic groups.

MCG(S) and Out(F},). Given an orientable surface S of finite type, let MCG(S) denote
its mapping class group and let 7(S) denote its Teichmiiller space. Motivated by the
many analogies between the action of MCG(S) on T (S) and the action of a Kleinian
group on hyperbolic space, Farb-Mosher [FM02] defined a subgroup H < MCG(S)
to be conver cocompact if for any X € T(S), the orbit H - X < T(S) is quasiconvex
with respect to the Teichmiiller metric. When S is closed, combined work of Farb-
Mosher and Hamenstédt [HamO05] proves that such H are precisely those subgroups
which determine hyperbolic surface group extensions.

Kent-Leininger [KLO8| and independently Hamenstadt [HamO05] later proved that
convex cocompactness is equivalent to the condition that any orbit map of H into
the curve complex C(S) is a quasi-isometric embedding. The second and third authors
[DT15b] subsequently gave a characterization of convex cocompactness that is intrinsic
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to MCG(S), in that it does not reference an action on some external space: H is convez
cocompact if and only if H is stable in MCG(S).

Let Out(F},,) denote the outer automorphism group of the free group F,, on n > 3
generators. Motivated by the above results, Hamenstéddt—Hensel [HH14] proposed the
definition that H < Out(F,,) is conver cocompact if any orbit map into the free factor
complex F, (see Section 5.2 for definitions) is a quasi-isometric embedding. Dowdall-
Taylor [DT14] proved that such subgroups, if purely atoroidal, determine hyperbolic
extensions of F,, analogous to the situation in MCG(S).

Using Theorem 1.1 and work of Dowdall-Taylor [DT14, DT15a], we recover one
direction of the main theorem of [DT15b] and extend it to Out(F},), using one unified
approach:

Theorem 1.3. If H < MCG(S) quasi-isometrically embeds into C(S), then H is stable
in MCG(S). Similarly, if G < Out(F,) quasi-isometrically embeds into F,,, then G is
stable in Out(F,,). Thus in both cases, convexr cocompactness implies stability.

We note that Hamenstadt has announced a complete characterization of stable sub-
groups of Out(F,,); according to this announcement, the converse of Theorem 1.3 in
the setting of Out(F},) does not hold [Ham15].

Relatively hyperbolic groups. Mirroring the situation in MCG(S) and Out(F,,), we also
obtain a criterion for stability in a relatively hyperbolic group; in this result the cusped
space [GMO8] plays the role of the curve and free factor complexes (see Section 5.3 for
the relevant definitions).

Theorem 1.4. Suppose that G is hyperbolic relative to a family of subgroups P, and
that H is a subgroup of G. If an orbit map of H into the cusped space cusp(G,P) is a
quasi-isometric embedding, then H is stable in G.

Theorem 1.4 can be promoted to a full characterization of stable subgroups when
the extra assumption of linear divergence is placed on the peripheral subgroups P.

Theorem 1.5. Let (G,P) be relatively hyperbolic and suppose that each P € P is
1-ended with linear divergence. Then for any H < G, the following are equivalent:

(1) H is stable in G.
(2) H has a quasi-isometric orbit map into cusp(G,P).
(3) H has a quasi-isometric orbit map into the coned-off Cayley graph cone(G,P).

Inheriting subgroup stability. It is a fairly immediate consequence of the definitions that
if H < L < G with all three finitely generated, and H is stable in L and L is stable in
G, then H must be stable in G. Thus, stability is transitive under subgroup inclusion.
Using Theorem 1.1, we prove that stability is inherited under subgroup inclusion as
well:

Theorem 1.6. Let H < L < G, with H, L finitely generated, and suppose that H is
stable in G. Then H is stable in L.

Proof. Choose a finite generating set S for G that includes finite generating sets for
L and H. Then the orbit of H in the corresponding Cayley graph I'(G, S) is stable.
Since I'(G, S) and the L-action on it are both proper, Theorem 1.1 implies that H is
stable in L. d
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In the special case where H is cyclic, Theorem 1.6 appears as Lemma 3.25 in
[DMS10]. However, see Section 3.3 for further discussion.

Remark 1.7. Theorem 1.6 is most interesting when L is highly distorted in G. For
example, we may take GG to be the mapping class group and L to be the handlebody
or Torelli subgroup. Similarly, if G = Out(F),), we could take L to be the Torelli
subgroup.

Random subgroups are stable. Let G be a finitely generated group, £ > 2, and u a
probability measure on G whose support generates a non-elementary semigroup. Let
I'(n) = (wl, w2, ...,,wk) be the subgroup generated by the n'* step of k independent
random walks.

Following Taylor-Tiozzo [TT16], we say a k-generated random subgroup of G has
property P if

P[I'(n) has P] — 1 as n — 0.

Combining Theorem 1.3 with a result of Taylor-Tiozzo [TT16], we prove random
subgroups of several aforementioned groups are stable:

Corollary 1.8. Let G be MCG(S), Out(F,), relatively hyperbolic, a handlebody group,
or the Torelli subgroup of MCG(S) or Out(F,). Then a k-generated random subgroup
of G is stable.

Proof. In each case, we are given an action G —~ X on a hyperbolic space X such
that if H < G has a quasi-isometric orbit map into X, then H is stable in G. For
G = MCG(S), this follows from [DT15b], for G = Out(F),) this is Theorem 5.2, and
for G relatively hyperbolic, this is Proposition 5.5.

Now we apply the main theorem of [TT16], to conclude that a random subgroup of
G quasi-isometrically embeds into X. Hence, a random subgroup of G is stable. O

For MCG(S), Corollary 1.8 is proven in [TT16], but it is novel for the other examples.

Stable coherence. It follows from Theorem 1.6 that if H < G is stable, then so
is each cyclic subgroup (h) < G for h € H. We say that a group G has the stable
coherence property if for every finitely generated, undistorted subgroup H < G, H is
stable in G whenever each of its nontrivial cyclic subgroups is stable in G.

Question 1. What groups G have the stable coherence property for stability?

In [KMT14], Koberda-Mangahas—Taylor prove that right-angled Artin groups have
the stable coherence property. In that case, the assumption that H is undistorted
was unnecessary to conclude stability. Recently, Bestvina—Bromberg—Kent—Leininger
[BBKL16] proved that undistorted purely pseudo-Anosov subgroups of MCG(S) are
convex-cocompact. Translating this result into our language shows that MCG(S) also
has the stable coherence property. Whether or not the undistorted assumption is
necessary for subgroups of the mapping class group remains unknown.

We thank David Hume for pointing out to us that not all finitely generated groups
G have the stable coherence property; for example, see [ACGH16b, Theorem 6.6].
However, there are no known counterexamples when G is finitely presented.
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1.1. Structure of paper. In Section 2, we begin with some background on met-
ric spaces and overview definitions and equivalent characterizations of stability. In
Section 3, we prove that stability and middle-recurrence are effectively equivalent. In
Section 4, we prove the main result, Theorem 1.1, that stability pulls back under proper
actions for finitely generated groups on proper geodesic metric spaces. Section 5 holds
our applications, with those to MCG(S) in Section 5.1, Out(F,) in Section 5.2, and
relatively hyperbolic groups in Section 5.3. Finally, in the Appendix (Section 6), we
include a technical lemma about contracting directed geodesics in the thick part of
Outer space, which is needed in Section 5.2.

1.2. Acknowledgments. The authors thank Jeff Brock, Daniel Groves, and Yair Min-
sky for useful conversations. We also thank Cornelia Drutu for helpful comments on
an earlier draft of this paper. The first, second, and third authors were partially sup-
ported by NSF grants DMS-1502623, DMS-1045119, and DMS-1400498, respectively.
The second and third author would also like to thank the Mathematical Sciences Re-
search Institute for hosting them during the completion of this project.

2. BACKGROUND

Let X be a geodesic metric space. Then X is proper if closed balls are compact, and
an action G —~ X is proper if for each compact K < X, the set {g: gK n K # J} is
finite. If v is any finite path in X, let |y| denote the distance between its endpoints,
and let || denote its arclength. The slope of 7 is defined to be the ratio

[l
sl(v) = —
(7) B
of the length of v to the distance between its endpoints.
For X,Y metric spaces, A > 0 and k > 1, a (k, \)-quasi-isometric embedding of X
into Y isamap ¢ : X — Y so that for any a,b e X,

%dx(a, b) — A < dy (6(a), (b)) < 5 - dix (a, b) + A

Finally, a (k, A)-quasigeodesic in a metric space Y is a (k, \)-quasi-isometric embedding
of interval into Y, where we allow for the possibility that the interval is infinitely long.
By a k—quasigeodesic, we mean a (k, k)—quasigeodesic.

For an injective map i: X — Y between metric spaces, we say that X is undistorted
in Y if 7 is a quasi-isometric embedding. In this case, we often identify X with its image
in Y. We will sometimes abuse our terminology and say that a subspace X < Y is
undistorted, but in this case the metric on X will be clear from context. Similarly, we
will often blur the distinction between a quasigeodesic and its image in X.

For X a subspace of Y and D > 0, let Np(X) denote the D-neighborhood of X in
Y. Then given X, X’ € Y two subspaces of a metric space Y, we say that X and X’
are D—Hausdorff close if X ¢ Np(X’) and X' ¢ Np(X).

2.1. Stability and the sublinear contracting projections. We begin by defining
stability for subgroups of a finitely generated group G. We then recall the definition of
sublinear contracting projections.
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Definition 1 (Stability). Let X < Y be an undistorted subspace of a metric space
Y. Then X is stable in Y if for any k > 1, there exists D > 0 so that if q,q' are
k—quasigeodesics in Y with the same endpoints a,b € X, then q and ¢’ are D—Hausdorff
close.

A stable embedding of X into Y is a quasi-isometric embedding ¢ : X — Y so
that the image ¢(X) is stable in Y.

Although we have defined stability in a general setting, our focus will be the case
of a finitely generated group G. Fix a finite generating set S of G and let |- |¢ be the
associated word metric. Recall that any two generating sets of G give quasi-isometric
metrics and that a finitely generated subgroup H < G is undistorted in G when the
inclusion H — G is a quasi-isometric embedding for some (any) word metrics on H
and G. Then a finitely generated subgroup H < G is stable if H is undistorted
in G and H < (G,]| - |s) is stable for any choice of word metric on H. We note
that for a pair of finitely generated groups H < G, stability of H in G is indepen-
dent of the generating sets for H or GG. Recent work on stable subgroups appears in
[KMT14, CH16b, CD16, CH16a)].

Our proof of Theorem 1.1 uses a recent result of Arzhantseva—Cashen—Gruber—Hume
[ACGH16a] which characterizes stable quasigeodesics using a contracting property for
the nearest point projection. We follow their discussion closely.

Let X be a geodesic metric space and Y < X a subspace. For ¢ > 0, the e-closest
point projection 73, : X — 2Y maps a point & € X to the points of ¥ whose distance
to x is within € of y:

my(z) ={yeY :d(x,y) <d(z,Y) + €}.

Let p be a sublinear function, i.e. a function which is nondecreasing, eventually nonneg-
ative, and for which lim,_. 27 = 0. Then given ¢ > 0, Y < X is (p, €)—contracting
if for all z,2" € X, d(z,2") < d(x,Y) implies that

diam (w%(w) U7r§/(m’)> < p(d(z,Y)).

We also say that Y is sublinearly contracting with contracting function p. For our
applications, Y will always be the image of a quasigeodesic in X and we call the
resulting quasigeodesic sublinearly contracting. One of the key results of [ACGH16a]
is the following:

Proposition 2.1 (Proposition 4.2 of [ACGH16al). For each stability function D and
€ > 0 there is a sublinear function p such that if Y is a D-stable subspace of a geodesic
metric space X, then'Y is (p, €)—contracting.

3. MIDDLE RECURRENCE AND STABILITY

A path v in X is called simple if v: I — X is injective. Throughout, we assume that
our paths are simple — this is a simplifying assumption so that we may unambiguously
identify the path v with its image in X.

For a simple path v in X let a,b € 7. For t € (0,1/2), the t~middle of 7, is
the set of = € v lying between a and b such that min{d(x,a),d(z,b)} =t -d(a,b). We
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denote the t-—middle of v 41 by Vg[a,p]- If 7 is defined on a finite length interval, then
its t—middle is denoted simply ~x.

p

F1cURE 1. The path p returns to the t-middle of the path . In general,
Vt[a,b] €ed Ot be connected.

We say that the path v is t—-middle recurrent if there is a function m; ,: Ry — R
so that for any path p with endpoints a, b € v satisfying |p|| < C - d(a,b), we have

P O Ny, (o) Ve[ap]) # -

The function my,: Ry — R is called the t-recurrence function of the path . The
idea is simply that any path with controlled slope and endpoints on v must return to
a bounded diameter neighborhood of the middle portion of . See Figure 1.

When ~ is t-middle recurrent for each ¢ € (0,1/2), we say that v is middle recur-
rent.

3.1. Middle recurrent implies stable. We now prove the first direction of the effec-
tive equivalence between the middle recurrence and stability conditions (Theorem 1.2):

Theorem 3.1. Let ~y be a continuous path which satisfies t-middle recurrence for some
0 <t < 1/2 with recurrence function myy: Ry — Ry. For any k > 1, if ¢ is a
Kk-quasigeodesic with endpoints on vy, then

q < Nr(7),

for a constant R > 0 depending only on wmy: R, — R, and k.

Proof. By replacing g with a tame quasigeodesic, as in [BH99, Lemma ITI.H.1.11], we
may assume that ¢ satisfies the inequality

Hq‘[a,b]H < K‘/d(a7 b) + Kla

for some ' depending only on k.

Set d = max(my (4K’ + 1),1). We claim the following: if h < ¢ is a subpath of ¢
whose endpoints o', b’ satisfy d(a’,v),d(b',v) < d and d(a’,b") = 4 - d/t, then there is a
point ¢’ € v between o’ and b’ such that d(c¢,~) < d.

Before proving the claim, we show how it completes the proof. Let Q = {z € ¢ :
d(xz,7) < d}. The claim implies that the complement of @ in ¢ is a collection of open
intervals of length at most 4+’ - d/t + x'. Hence, ¢ © Ny 4wajew (), as required.

To prove the claim, let a,b € v such that d(a,a’),d(b,b’) < d. Let w be the concate-
nation [a,a’] - h - [b/,b]. We compute the slope of w:
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ol _ bl +2d
d(a,b) S da, ) —2d
K'd(a' b)) + K +2d
1/2d(a’,b")
Kd(a' b)) + k' +1/2d(a’, V)
1/2d(a’,b")

S

X

<4k +1

Thus there is a point ¢ € w and a point c € Vt[a,b] SUch that d(c,c) < d. Note that
d(e,a),d(c,b) = t-d(a,b). To finish the claim, it suffices to show that ¢’ is not contained
in either [a,a’] or [V, b]. Suppose towards a contradiction that ¢’ € [a,a’]. Then

t-d(a,b) < d(c,a) < d(c,d)+d(d,a) <2d

and so d(a’,b') < 2d/t + 2d = 2d(1 + 1/t) < 4d/t, a contradiction, completing the
proof. O

3.2. Stable implies middle recurrent. Having established Theorem 3.1, it remains
to prove that stable quasigeodesics are middle recurrent.

Theorem 3.2. For a given t € (0,1/2), stability function D: R2 — Ry, k > 1,
A = 0, and Lipschitz constant C = 1, there exists M = M(t,D,C,k,\) = 0 satisfying
the following: If v is a stable (K, \)-quasigeodesic in a geodesic metric space X with
stability function D, and p is a path with endpoints a,b € 7 satisfying |p| < C-d(a,b)|,
then

P O Ny (Vifap)) # -
The proof of Theorem 3.2 will require the following lemma.

Lemma 3.3. Let v be a p—contracting quasigeodesic and suppose that h is a path at
distance at least K = 0 from ~ whose endpoints have distance exactly K from . Then

2K _ sl(h) + 2K /||
p(K) S 12K/

Proof. Break up h into m consecutive subpaths hq, ..., hy, so that ||h;| = 2K for all
i <m,and ||h,| < 2K. Thus |hl| = (m —1) 2K, so m < (|h]|/2K) + 1.

The midpoint (by distance) of such a subpath is the center of a ball of radius K which
misses v by construction. Hence the diameter of the projection of h; to + is no more
than p(K). Note that |h| < 2K + mp(K), which can be observed by concatenating
a geodesic from the initial endpoint of h to -, the images of the projections of our
subpaths, and a geodesic from  to the terminal endpoint of h. Hence,

h
|h| — 2K < <2|K”+1> - p(K)

_ <W+1) ()
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|h| — 2K - sl(h)
p(K) — 2K/|h]
A rearrangement gives the required inequality. O

+1

We now prove Theorem 3.2:

Proof. Let v: I — X be a D-stable (k, A)-quasigeodesic. By Proposition 2.1, there is
a function p, depending only on D, so that 7 is p—contracting. Now fix C' = 1 and let
L > 0 be such that there is a path p with endpoints a,b € v such that |p|| < C|p| and

PO NL(V[ap) = D-
We prove that L is uniformly bounded. Let 7 (resp. 7¢) be the set of all points z € ~y
so that either x is to the left of a in the orientation of v (resp. to the right of b), or
T € Y[qp) and d(z,a) < t-d(a,b) (resp. d(x,b) <t-d(a,b)). Note that we are free to
assume that d(a,b) = |p| > 4 \k?/(1 — 2t).
Since 1, Yr, and Yg[qp) are pairwise disjoint by construction,

(1) Y =M Y Vt[ab] Y e
We note that 1, v, and 744 may each be disconnected, but this will not matter in

what follows.
We claim that for any z,y € I with vy(x) € 3 and v(y) € W,

(2) d(v(x),7(y)) > k(1 = 2t)[p| — 2.

To see this, assume first that (), v(y) € Va5- Then d(y(x),a),d(v(y),b) < t-|pl,

and the triangle inequality gives
d(a,b) < td(a,b) + d((x),7(y)) + td(a,b)
and a rearrangement gives that d(y(z),v(y)) = (1 — 2t)d(a,b).

We next assume that v(x) is to the left of a and y(y) is to the right of b; let s,t € I so
that v(s) = a and y(t) = b. Then z < s <t < y and since 7 is a (k, A)-quasigeodesic,
we get

RHd(ab) = A) <t —s <y —a < wdy(@),7(y) + A)
and a rearrangement and simplification gives d(vy(z),v(y)) = x2d(a, b) — 2.

Finally, a similar argument proves that in the mixed case when (without loss of

generality) () is to the left of a and v(y) € V(4,4

d(v(x),7(y)) = £~ %d(a,7(y)) — 2.
Hence, the desired bound follows from the fact that d(a,v(y)) = (1 — 2t) - |p|. This
proves the claim.
Now set

8 C

where we are assuming that L is sufficiently large so that K > 0. Then since L < ||p| <
C|p|, we have that

K < = [k72(1—2t)|p| — 2]

0|
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Since p avoids the L—neighborhood of the t-middle of 7, it also avoids the K—neighborhood
of the t-middle of ~.

Let H be the collection of maximal subarcs of p which lie outside of the open K—
neighborhood of 7. Order H using the orientation of p. We claim that there is an
h € H which has one endpoint that is K—close to 7; and one endpoint K—close to 7.

To see this, first note that any point of p contained in the closed K-—neighborhood
of =, including endpoints of paths in H, has distance at most K from either v or vy.
This follows from (1) and the fact that the entire path p avoids the K-neighborhood
of the t—middle of ~.

If each path in H has both endpoints close to only one of 4y or vy, then there must
exist consecutive subpaths h; and h;q1 in H such that the terminal endpoint of A; is
close to a different end of v than the initial endpoint of h;; 1. If ¢ is the closed subpath
of p between h; and h;,1, then each point of ¢ lies within distance K from either v
or 7y, and its endpoints are K-close to different ends. Hence, by continuity, there is a
point z € ¢ which is K—close to points in both 7, and 7,. This gives a point in v and a
point in 4 which have distance at most 2K < $[x~2(1 — 2t)[p| — 2A] from one another.
This, however, is impossible as it contradicts (2).

We conclude that there is h € H with endpoints x,y such that d(x,v) < K and
d(y,v) < K. Since by (2) any point in v has distance at least x~2(1 — 2t)|p| — 2\ from
any point in -, we have

|h| = k2(1 —2t)|p| — 2\ — 2K

1
>k 2(1—2t)|p| — 2\ — Z({2(1 — 2t)[p| — 2))

= S0 20)lpl — 20,
Therefore,
Kl Ip| 4Cp|
sl(h) = — < < .
"= = S 2l 20 = 32020~ 20

Since K/|h| < 1/6, we can apply Lemma 3.3 to the path h to conclude that

K < 1 <sl(h) +2K/yh>
p(K) 2\ 1-2K/Jhl
< % (3-sl(h) +1))
< Clp|
T RT2(1—2t)|p| — 2X
Ck?
< —
2(1— 2t)

+1

+1,

where the last inequality holds since we have assumed that |p| > 4\k?/(1 — 2t). As
p is sublinear, x/p(z) is eventually increasing and so the constant K, and hence L, is
uniformly bounded above in terms of the constants C,t, k, A, and the function p. O
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3.3. Middle recurrence in the literature. In this subsection, we identify and ad-
dress an error in the literature.

The notion of middle recurrence for a quasigeodesic g in X—the central concept of
this project—was first introduced by Drutu—Mozes—Sapir [DMS10]. Proposition 3.24
of [DMS10] gives a list of 5 conditions which are claimed to be equivalent to stability
of a biinfinite quasigeodesic. One of these conditions is middle recurrence. We note
that since their proof runs through an argument involving asymptotic cones, it does
not give an explicit relationship between the stability and recurrence functions as is
achieved by Theorem 1.2 and which is necessary for Theorem 4.1.

We now show that one of these conditions —which we refer to as Property 5 as it
is the fifth listed condition — is in fact strictly stronger than stability:

Property 5: For every C > 1, there exists K > 0 so that if p is a path with
endpoints a, b on 7 satisfying ||p|| < C - d(a,b), the portion 7|, of v between
a and b lies within K of p.

The following example demonstrates that geodesics in the hyperbolic plane do not
satisfy Property 5; however, they are all stable, as is any geodesic in a Gromov hyper-
bolic space.

Example 1. Let v be the horizontal diameter in the disk model of H?. Let Sp be the
sphere of radius D about the origin (which « runs through; identify v with R in the
obvious way, identifying the center of the disk with the origin). Note that the upper
hemisphere of Sp has length on the order of e”. Let p be the following path: let a be
the point corresponding to —e® on 7 and follow ~ until reaching —D; then follow along
the upper hemisphere of Sp until arriving at D; then proceed along + until reaching
eP, which we call b. Then |p| < (7 + 2)e? < 3-d(a,b). Note that the origin, which is
a point on v, does not lie in a D—neighborhood of p by construction. Since D can be
made arbitrarily large, v does not satisfy Property 5.

We note that as D — o0, the diameter of Sp is vanishingly small compared to the full
length of ’y|[a7b], and therefore this example does not contradict the middle recurrence
property.

The proof in [DMS10] that stability implies middle recurrence factors through Prop-
erty 5. However, Theorem 1.2 gives a direct proof of the equivalence of middle recur-
rence and stability.

4. PULLING BACK STABILITY

Using the middle recurrence property for stable quasigeodesics we prove our main
theorem (Theorem 1.1). We encourage the reader to observe that its proof relies on the
uniform equivalence of stability and middle recurrence as established in the previous
section.

Theorem 4.1. Let G be a finitely generated group with a proper action G —~ X on the
proper geodesic metric space X. Let H < G be a subgroup such that for some x € X,
the orbit map orb,: G — X given by g — gx restricts to a stable embedding on H.
Then H is stable in G.
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Proof. Since orb,: G — X is coarsely Lipschitz and its restriction to H is a quasi-
isometric embedding, it follows easily that H < G is undistorted. It suffices to show
that for any geodesic v in the group H, = is f—stable as a quasigeodesic in G, where
the stability function f is independent of 7. By Theorem 3.1, this is equivalent to the
statement that there is a constant 0 < ¢ < 1/2 such that for each C' > 0 there is an
M > 0 satisfying the following: if p is any path in G with |p| < C|p| sharing endpoints
with v, then

p N Nu(w) # .

To this end, let C = 0 and let p be such a path. We use ~ notation for the images
of objects under the orbit map orb,. Since orb,: H — X is a stable embedding, the
image 7 is an fx—stable quasigeodesic in X, for a stability function fx not depending
on 7. Moreover, p is a path which shares endpoints with 5 such that |p| < Cx|p|,
where C'x = 0 depends only on C' and H,G, X. Hence, by Theorem 3.2, there is an
Mx, again depending only on C and H, G, X, such that

PN NMX(F_YI/3) # .

Since G acts properly on X, there exists M > 0 depending only on My so that if
dx(gi1x, gox) < Mx, then dg(g1,92) < M. Hence, there are x € p and z € y such that
Z € Y13 and dg(v,z) < M, so it only remains to show that z € 4 for 0 < ¢t < 1/2
not depending on . However, this follows easily from the fact that orb,: H — X is a
quasi-isometric embedding. O

5. APPLICATIONS

5.1. Stability in the mapping class group. We begin with a shorter, simpler proof
of one direction of the main theorem from [DT15b]:

Theorem 5.1 ([DT15b]). Let H be a convex cocompact subgroup of the mapping class
group. Then H < MCG(S) is stable.

Proof. Since H is convex cocompact, for any X € 7(S), the orbit H - X is quasiconvex
for the Teichmiiller metric. This implies that all Teichiiller geodesics joining orbit
points in H - X are uniformly thick, and so the orbit map H — T(S) is stable by
[Min96]. See also [KLO08, Theorem 6.3].

Since MCG(S) — T (S) satisfies the hypothesis of Theorem 4.1, we conclude that H
is stable in MCG(S) as required. O

5.2. Stability in Out(F,). The free factor complex F,, is the simplicial complex whose
vertices are proper conjugacy classes of free factors of F,, and whose k—simplices cor-
respond to chains Ag < A; < ... < Ag. The action of Out(F},) on conjugacy classes of
free factors extends to a simplicial action of F,,, which like the action of the mapping
class group on the curve complex, is highly nonproper. However, Bestvina and Feighn
proved that F,, is hyperbolic [BF14].

The main result of this section is the following:

Theorem 5.2. Let H be a finitely generated subgroup of Out(F,,) which has a quasi-
isometric orbit map into the free factor complex F,,. Then H is stable in Out(Fy,).
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Roughly the same argument as in Theorem 5.1 can be used along with Theorem 4.1
to show that convex cocompact subgroups of Out(F;,) are stable. The only difficulty
in applying Theorem 4.1 in this setting is that fact that the Lipschitz metric on Outer
space is asymmetric. Hence, we must appeal to the arguments in Theorem 4.1 rather
than the theorem statement itself.

For the remainder of this subsection, we assume that the reader has some familiarity
with the Lipschitz metric on Outer space. See for example [FM11, BF14].

Let A, denote Outer space with the Lipschitz metric d. Informally, d(G1,G2) is
the logarithm of the minimal Lipschitz constant among all maps from G1 to Gs in the
correct homotopy class. We recall that in general d(G1,G2) # d(G2,G1) and we set
dsym(G1,G2) = d(G1,G2) + d(G2,G1). Although the symmetrized metric dgym is an
honest metric on &, which induces the usual topology, (&, dsym) is not a geodesic
metric space [FM11]. We remark, however, that the metric space (Xy,, dsym) is proper
and that the natural action Out(F,,) —~ X, is properly discontinuous. Finally, we
denote by X, ¢ the e-thick part of X,,; this is the subspace of X, consisting of graphs
whose shortest essential loop has length at least e.

Recall that a directed geodesic v: I — X is D-strongly contracting if for any H, H' €
X with d(H, H') < d(H,~), the diameter of the projection of the geodesic from H to
H’ to 7 is bounded by D. See [AK11, DT15a].

We need the following lemma which gives the required middle recurrence statement
for strongly contracting geodesics in &,,, analogous to Lemma 3.3. The proof is provided
in the Appendix (Section 6).

Lemma 5.3. For each D,C = 0 there is an R = 0 such that the following holds: Let
v: [0,T] — X2€ be a directed geodesic which is D-strongly contracting. Suppose that
p is a path in X7 with endpoints a = v(0) and b = v(T) such that |p| < C - d(a,b).
Then there are x € p and t € R with T/3 <t < 2T'/3 such that dsym(z,v(t)) < R.

We can now show that convex cocompact subgroups of Out(F,,) are stable.

Proof of Theorem 5.2. Fix an orbit map Out(F,,) — X,,. We note that for some @ > 0,
this map is ()—Lipschitz and proper with respect to the metric dgym. By our assumption,
the Lipschitz map X,, — JF,, induces an orbit map Out(F,) — F, such that the
restriction H — JF, is a quasi-isometric embedding. At the cost of increasing @, if
necessary, suppose that the orbit map of H into both X, and F,, is a Q—quasi-isometric
embedding.

Since the orbit map Out(F,,) — F, is coarsely Lipschitz, it follows immediately that
the subgroups H < Out(F},) is undistorted. As in the proof of Theorem 4.1, it suffices
to show the following: There is a constant 0 < m < 1/2 such that for any C' > 0 there
is an R > 0 with the property that for any a,b € H and any path p in Out(F},) between
a,b with |p| < C - d(a,b), the path p meets the R-neighborhood of the m-middle of
[a,b] . We remark that it suffices to assume that d(a,b) is larger than some constant
depending only on H.

To this end, let « denote the geodesic in H between a,b € H and let p be a path
from a to b as above. As before, we use bar notation, -, to denote the images of
these objects under our fixed orbit map Out(F,) — A&,,. By [DT15a, Theorem 1.6],
the orbit H is strongly contracting, meaning that there are constants D,e > 0 such
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that any directed geodesic in X' joining points in H is contained in X>¢ and is D—
strongly contracting. Hence, if we let : [0,T] — X>¢ denote the directed geodesic
from @ to b, then Lemma 6.1 applies to the path p. In particular, we have that
1P| <2Q|p| <2QCd(a,b), and so by Lemma 6.1 there is a constant K, depending only
on H < Out(F},) and our orbit map, such that for some x € p, we have dsym(a: v(t) < K
where T/3 <t < 27/3. Note that T = d(a@,b) < dsym(a,b).

By [DT14, Theorem 4.1], the paths v and @ uniformly fellow travel in X, with
respect to the symmetric metric. Hence, at the cost of increasing K, we have that
there is z € a such that dsym(7(t),2) < K. Combining these facts, dsym(Z,2) < 2K
and since Out(F),) — A, is proper with respect to the symmetric metric, we conclude
d(z,z) < R for some constant R > 0 depending only on K and the orbit map. Since
x € p and z € «, it only remains to show that z lies in the m—middle of «, for some m
depending only on H and the orbit map. For this, we compute

d(a,7) > ;dsymw, 7 - é( @~(1) - K) -1
Q(1/3 d(@,b) — K) —
> 22(1/362 cd(a,b) — Q3 — K) —1
@d(a ,b)

where the last inequality holds for d(a, b) sufficiently large, depending only on K. Since
a similar inequality holds to give a lower bound on d(z,b), we conclude that z is in the
m~middle of a for m = 6Q2 This completes the proof. O

5.3. Relatively hyperbolic groups. In this section, we characterize stable subgroups
of groups which are hyperbolic relative to subgroups of linear divergence. We assume
the reader has some familiarity with relatively hyperbolic groups [Gro87, Far98, Bow12],
and in particular with the definition of relative hyperbolicity due to Groves-Manning
[GMO8]. See [Hrul0] for a thorough treatment of the various equivalent definitions.

Recall that for a pair (G,P) with P = {P1,...P,} and P; < G, the group G is
hyperbolic relatively to P if and only if the associated cusped space cusp(G,P) is
hyperbolic [GMO08]. Briefly, fix a generating set S for G which intersects each P; in
a generating set for P;; hereafter, S will be implicit in the discussion. The cusped
space cusp(G,P) is the space obtained by attaching combinatorial horoballs along
translates of each P; in the Cayley graph of G — see [GMO8] for a precise definition.
We remark that since horoballs are attached equivariantly, there is an induced properly
discontinuous action G — cusp(G, P), and cusp(G, P) itself is a proper metric space.
The subgroups P € P are called the peripheral subgroups.

Following [Far98], we let cone(G,P) be the coned-off Cayley graph. This is the
space obtained from the Cayley graph of G by adding edges between all elements of g P
for g € G and P € P. As before, we have an action G — cone(G, P), which, as opposed
to the action on cusp(G,P), is not proper. We remark that there is an equivariant,
1-Lipschitz map cusp(G, P) — cone(G, P) which sends each vertex of each horoball to
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the vertex of gP it lies over.

Both cusp(G,P) and cone(G,P) can be used to characterize stable subgroups of
G, when (G, P) is relatively hyperbolic and each P € P is one-ended and has linear
divergence.

Theorem 5.4 (Stability in relatively hyperbolic groups). Let (G, P) be relatively hy-
perbolic and suppose that each P € P is one-ended and has linear divergence. Then the
following are equivalent for a finitely generated subgroup H < G':

(1) H is stable in G.
(2) H has a quasi-isometric orbit map into cusp(G,P).
(3) H has a quasi-isometric orbit map into cone(G,P).

We note that the hypothesis that each P; has linear divergence cannot be removed.
For example, if GG is additionally assumed to be hyperbolic, then any cyclic subgroup
of G is stable, regardless of whether it is contained in some P;.

The following proposition imposes no conditions on the peripheral subgroups:

Proposition 5.5. Suppose that (G, P) is relatively hyperbolic and that H is a finitely
generated subgroup G. If H has an orbit map into cusp(G, P) which is a quasi-isometric
embedding, then H is stable in G.

Proof. Since cusp(G,P) is a locally finite, hyperbolic graph and the action of G on
cusp(G, P) is proper, Theorem 4.1 implies that H is stable in G, as required. O

Using the 1-Lipschitz, equivariant map cusp(G,P) — cone(G, P), we immediately
obtain the implications [(3) == (2) == (1)] in Theorem 5.4 as a corollary to
Proposition 5.5. Note that these implications hold without any conditions on the
peripheral subgroups.

We remark that the condition of H quasi-isometrically embedding into cone(G, P) is
equivalent to “strong relative quasiconvexity”, and hence Proposition 5.5 gives another
proof that such subgroups are hyperbolic; see [Hrul0, Section 9].

The remainder of the section will prove the implication [(1) = (3)] of Theorem 5.4.

Peripheral subgroups and projections. Fix a relatively hyperbolic group (G, P), a gen-
erating set S as above, and let dg denote distance in G with respect to S. Let
P ={gP:ge G and P; € P} be the set of all left translates of peripheral subgroups.
For each z € G and P € P, let wp(x) be all y € P such that dg(z,y) < dg(z, P) + 1;
wp(x) is called the almost projection of x onto P, following [DS05, Definition 4.9).

For a subset H of G and P € P, we denote by diamp(H) the diameter of the set
{mp(x):x € H}. For x,y € G, we also set dp(x,y) = diamp({x,y}).

Lemma 5.6. Let (G, P) be relatively hyperbolic and H < G be a finitely generated
subgroup. Any orbit map of H into cone(G,P) is a quasi-isometric embedding if and
only if H is undistorted in G and there exists Mg > 0 such that for each P € P, we
have

diamp(H) < M.
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Proof. The reverse implication is a consequence of [Sis13, Theorem 0.1], which estab-
lishes a formula for distance in G in terms of distance in cone(G,P) and projections
to subgroups in P. In our setting, this implies that when diamp(H) < M for each
P e P, distance in G (and hence H by nondistortion) is coarsely equal to the distance
between the corresponding orbit points in cone(G, P).

For the forward direction, let x,y € H and let v be any geodesic in H between
x and y; since H is undistorted in G, there exists x = 1,A > 0 such that v is a
(K, A)-quasigeodesic in G. By [Sisl3, Lemma 1.15] (see also [DS05, Lemma 4.15]),
there exist M, R > 0 depending only on G and k, A so that if d,.p(x,y) > M for
some g € G,P € P, then there exist xp,yp € v such that xp € Ng(m,p(x)) and
yp € Nr(mg.p(y)). Hence dg(zp, yp) is coarsely bounded below by dg.p(z,y). However,
deone(c,p) (TP, yp) < 2R + 2 by construction of cone(G, P).

Thus if there is no bound on the projections of H to the peripheral subgroups and
their translates, then we obtain a contradiction of the fact that H quasi-isometrically
embeds in cone(G, P). O

Proof of Theorem 5./. By our observations above, it suffices to prove the implication
[(1) = (3)]. Hence, assume that H is stable in G. By Lemma 5.6, it suffice to show
that there is a uniform bound on diamp(H) for each P € P.

Towards a contradiction, assume that there exists sequences h;, b, € H and ¢; € G
such that

dgip(hi7 h;) =1

for some peripheral subgroup P € P.

Let p; be a geodesic in g; P (with its induced word metric) joining points of w4, p(h;)
and my,p(h;) at distance i. Since H is undistorted in G, the H-geodesic [h;, h)|g
is a uniform quasigeodesic in G. Again by [Sis13, Lemma 1.15], there is a constant
R > 0 depending only on H < G such that there exist z;,y; € [hi, hi]g such that
dg(xi, mg,p(hi)), da(yi, mg,p(h;)) < R. Since p;, as a path in G, is also quasigeodesic
with uniform constants, stability of H < G implies that p; and the portion of [h;, h}] g
between x; and y; uniformly fellow travel. This implies that the paths p; are also
uniformly stable in G and, again using that each P € P are undistorted, that the p;
are uniformly stable as geodesics in g; P. Denote their common stability function by
D:R, > R,.

Hence, for each ¢ = 0 we have a geodesic path p; in g; P of length 4 such that p; is
D-stable, for a stability function that depends only on H < G. Then v; = g, Ly is
a geodesic in P of length ¢ which is also D—-stable, since g; € G induces an isometry
between P and g; P. After left multiplication by an element of P, we may assume that
each ; has 1 € P as an approximate midpoint and, after passing to a subsequence,
conclude that there is a biinfinite geodesic v in P such that 7; converges uniformly on
compact sets to v. We conclude that «y is a biinfinite D-stable geodesic in the group P.
By [DMS10, Lemma 3.15], the existence of a biinfinite stable quasigeodesic contradicts
that P has linear divergence and completes the proof. O
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6. APPENDIX

In this section, we prove the technical Lemma 6.1. As before, we expect the reader
to be somewhat familiar with the geometry of Outer space. We let N, () denote the
inward k-neighborhood of ~, that is all points whose distance to 7 no more than k.
Recall that if v = X>¢, then N;~(y) = x> for ¢ depending only on € and k. Finally,
we remind the reader that given ¢ > 0 there is an M, such that if a,b € X>¢, then
d(a,b) < Md(b,a) [AKB12].

Lemma 6.1. For each D,C = 0 there is an R = 0 such that the following holds: Let
v: [0, T] — X2€ be a directed geodesic which is D—strongly contracting. Suppose that
p is a path in XZ¢ with endpoints a = v(0) and b = v(T) such that |p| < C - d(a,b).
Then there are x € p and t € R with T/3 <t < 2T'/3 such that dsym(z,7(t)) < R.

Proof. Fix C, D = 0. We note that it suffices to prove that lemma for T" > 6D.

Let L > 0 be a number such that there is a path p with endpoints a = (0) and
b = ~(T), which avoids the inward L-neighborhood of 5 = 7|[7/327/3] and for which
|p| < Cd(a,b). We show that L is uniformly bounded. Denote the portions of v which
come before and after 4, by 4 and -y, respectively. Note that T' = d(a,b) = |p| and
that T' < |p| < Cd(a,b) = CT

First, set K = m. Since L < |p| < C|p| = CT, we have that K < W.
Since p avoids the inner L-neighborhood of 74, it also avoids the K—neighborhood of 7.

Let H be the collection of maximal subarcs of p which lie outside of the open inner
K-neighborhood of 7. Order H using the orientation of p. We claim that there is an
h € H which has one endpoint K—close to v and one endpoint K—close to .. To see
this, first note that any point of p in the closed K—neighborhood of 7y, include endpoints
of paths in H, has distance at most K from either v or «,. This is because the entire
path p avoids 7. If each path in H has both its endpoints close to only one of v or vy,
then there must consecutive subpaths h; and h;;1 in H such that the terminal endpoint
of h; is close to a different ‘end’ of v than the initial endpoint of h;y,. If g is the closed
subpath of p between h; and h;y1, then each point of ¢ lies within distance K from
either 41 or 7, and its endpoint K—are close to different ends. Hence, by continuity,
there is a point ¢ € ¢ which is K—close to points in both 7; and .. This gives a point
in 71 and a point in 4, which have distance at most K (1 + M) from one another (in
the direction along ). However, by construction, such points necessarily have oriented
distance at least 7'/3 and so we obtain that 7'/3 < K (1 + M) < T/8, a contradiction.

We conclude that there is a h € H with endpoints z,y such that d(z,v) < K and
d(y,v) < K. Let 2/ € v and y' € v be points realizing these distances. We note that
these points are within (symmetric) distance D from the projections to v of x and vy,
respectively.

Break up h into m consecutive subpaths hq, ..., hy, so that ||h;| = K for all i < m,
and |[hy,| < K. Thus || = (m —1) - K, so m < (|h]|/K) + 1.

The starting point of such a subpath is the center of a ball of outward radius K
which misses v by construction. Hence the diameter of the projection of h; to « is no
more than D. Stringing together the projections of the h; we have a path from z’ to 3/
of length at most Dm < D(|h|/K +1). As 7 lies between 2’ and 3/, and ~ is a directed
geodesic, we have



18

T. AOUGAB, M.G. DURHAM, AND S.J. TAYLOR

13T < D(|hl/K +1) < D(|lpll/K + 1)

<
<D(C/K T +1).

Rearranging gives,

3DCT
K< ———.
T-3D

Hence, so long as T' = 6D, we have that K < 6C'D. Then by definition of K, the
constant L is bounded by 24C2D(1 + M,). We conclude that there is an x € p such
that d(z,7) < 24CP(1 + M,). Since both x and v are in X>¢, we conclude that there

is T/3 <t < 2T/3 with dgym(x,7(t)) < 24C2DM.(1 + M,). O
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