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Abstract

We construct quasi-isometric embeddings from right-angled Artin groups into the
outer automorphism group of a free group. These homomorphisms are modeled on
the homomorphisms into the mapping class group constructed by Clay, Leininger, and
Mangahas in [CLM12]. Toward this goal, we develop tools in the free group setting that
mirror those for surface groups and discuss various analogs of subsurface projection.

1 Introduction

For a finite simplicial graph Γ with vertex set Γ0, the right-angled Artin group A(Γ) is
the group presented with generators si ∈ Γ0 and relators [si, sj ] = 1 whenever si and
sj are joined by an edge in Γ. Although they are simple to define, right-angled Artin
groups have been at the center of recent developments in geometric group theory and low-
dimensional topology. This interest is, in part, because many geometrically significant
groups contain right-angled Artin subgroups. For example, Wang constructed injective
homomorphisms from certain right-angled Artin groups into SLn(Z), for n ≥ 5 [Wan07]. In
[Kap11], Kapovich proved that for any finite simplicial graph Γ and any symplectic manifold
(M,ω), A(Γ) embeds into the group of Hamiltonian symplectomorphisms of (M,ω). Turning
our attention to the mapping class group of a surface, Koberda showed that under general
conditions the subgroup generated by sufficiently high powers of finitely many mapping
classes is a right-angled Artin subgroup of Mod(S) [Kob10]. In [CLM12], Clay, Leininger,
and Mangahas constructed quasi-isometric embeddings of right-angled Artin groups into
mapping class groups using partial pseudo-Anosov mapping classes. Specifically, they prove
the following:

Theorem 1.1 (Theorem 1.1 of [CLM12]). Suppose that f1, . . . , fn ∈ Mod(S) are fully sup-
ported on disjoint or overlapping non-annular subsurfaces. Then after raising to sufficiently
high powers, the elements generate a quasi-isometrically embedded right-angled Artin sub-
group of Mod(S). Furthermore, the orbit map to Teichmüller space is a quasi-isometric
embedding.

Corollary 1.2 (Corollary 1.2 of [CLM12]). Any right-angled Artin group admits a homo-
morphism to some mapping class group which is a quasi-isometric embedding, and for which
the orbit map to Teichmüller space is a quasi-isometric embedding.
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In this paper, we develop the theory necessary to quasi-isometrically embed right-angled
Artin groups into Out(Fn). Here, we show the following (see Section 4 for definitions and
a more general statement):

Theorem 1.3. Suppose that f1, . . . , fn ∈ Out(Fn) are fully supported on an admissible col-
lection of free factors. Then after raising to sufficiently high powers, the elements generate
a quasi-isometrically embedded right-angled Artin subgroup of Out(Fn).

The admissible collection condition on the set of free factors in Theorem 1.3 is meant
to mimic the situation in Theorem 1.1, where the subsurfaces considered are either disjoint
or overlapping. We note that if Γ is the “coincidence graph” for the involved free factors,
then the right-angled Artin group generated in Theorem 1.3 is A(Γ). This is made precise
in Section 4. We also obtain

Corollary 1.4. Any right-angled Artin group admits a homomorphism to Out(Fn), for
some n, which is a quasi-isometric embedding.

We remark that although much of the inspiration for this paper is drawn from [CLM12],
there are several significant points of departure. First, the methods of [CLM12] rely heavily
on subsurface projections for Mod(S), which were introduced by Masur and Minsky in
[MM00]. When working in Out(Fn), however, there are different possible projections that
one could employ. In [BF14], Bestvina and Feighn begin with free factors A and B of
Fn that are in “general position,” and they define the projection of A to the free splitting
complex of B. These projections, though powerful in other settings, are not delicate enough
for our application. In particular, the presence of commuting outer automorphisms in our
construction precludes the free factors from satisfying the conditions for finite diameter
Bestvina-Feighn projections. See [Tay13] for recent work that extends the Bestvina-Feighn
projections to a larger class of free factors. In [SS12], a different sort of projection is
developed. Sabalka and Savchuk consider a topologically defined projection using sphere
systems in Mn, the double of the handlebody of genus n. Although these projections are
interesting in their own right, they do not always give free splittings of free factors and
so they cannot be used in this paper. These difficulties are discussed in detail in Section
5.3. To resolve these issues, we develop our own projections which are tailored for the
applications in this paper. In the process, we demonstrate the relationship between the
projections of [BF14] and [SS12], answering a question that appears in both papers.

Second, the authors of [CLM12] use the Masur-Minsky distance formulas for Mod(S)
to verify that the homomorphisms they construct are quasi-isometric embeddings. For
Out(Fn), however, there are no general distance formulas available. Instead, in Section
10 we address this issue by using the partial ordering on the syllables of g ∈ A(Γ). This
partial ordering allows us to control distance in Out(Fn) by using the projections that are
defined in Section 3.2. This suffices for proving the lower bounds on Out(Fn)-distance that
is needed in our main theorem.

Finally, we note that there is another method to construct quasi-isometrically embedded
right-angled Artin subgroups of Out(F2g). One could start with a once-punctured genus g
surface Ṡ and use the methods of [CLM12] to build a quasi-isometric embedding from A(Γ)
into Mod(Ṡ). In [HH11], the authors show that the injective homomorphism Mod(Ṡ) →
Out(F2g) induced by the action of Mod(Ṡ) on π1(Ṡ) = F2g, is itself a quasi-isometric
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embedding. Composing two such maps then gives a quasi-isometric embedding from A(Γ)
into Out(F2g). These homomorphisms have the property that they factor through mapping
class groups and, hence, fix the conjugacy class in F2g corresponding to the puncture. In
our approach, however, homomorphisms into Out(Fn) do not factor through mapping class
groups.

1.1 Outline of the paper and its sequel

The paper is organized as follows: Section 2 covers basic background material. Section 3
defines the subfactor projections that we use, gives their basic properties, and relates them
to the projections of [BF14]. Section 4 defines the homomorphisms from right-angled Artin
groups into Out(Fn) that are of interest, gives a precise statement of our main theorem,
and provides a few examples.

In order to control distance in Out(Fn) for the proof of our main theorem, we require
a version of Behrstock’s inequality, which is an important tool for studying subsurface
projections. To prove this, we work with a topological model of the projections that is
developed in Section 5. This approach has the additional advantage that it can be used to
relate the various notions of projection that are discussed above. In Section 6, we prove
the version of Behrstock’s inequality that is needed. This is followed by Sections 7 and 8
which give related partial orderings for both free factors and syllables of g ∈ A(Γ). Section
9 closely follows the arguments of [CLM12] and gives conditions when normal form words
in A(Γ) provide large projection distances.

Having arranged large projection distances, the last step is to argue that for “non-
disjoint” free factors these distances independently contribute to distance in Out(Fn); this
is done in Section 10. This section can be thought of as making up for the lack of lower
bounds coming from Masur-Minsky type formulas. The proof that our homomorphisms are
quasi-isometric embeddings into Out(Fn) is then concluded in Section 11.

In the sequel to this paper, we answer the following question: Fix a quasi-isometric
embedding φ : A(Γ)→ Out(Fn), as constructed in this paper. What conditions on g ∈ A(Γ)
guarantee that φ(g) is a fully irreducible outer automorphism of Out(Fn)? To answer this
question, we use the extension of the Bestvina-Feighn subfactor projections obtained in
[Tay13].

1.2 Acknowledgments

The author is grateful to Patrick Reynolds, Chris White, and Nick Zufelt for helpful conver-
sation. Thanks are also due to Jeffrey Hatley, Chris Leininger and Chris Westenberger, who
made constructive comments on an earlier version of this paper. Most importantly, the au-
thor is indebted to his advisor Alan Reid as well as Hossein Namazi for their encouragement,
advice, and continuous feedback throughout this project.
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2 Background

2.1 Quasi-isometries

Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is a (K,L) - quasi-isometric
embedding if for all x1, x2 ∈ X

1

K
dX(x1, x2)− L ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + L.

If, in addition, every point of Y is within distance L from the image f(X), then f is a quasi-
isometry and X and Y are said to be quasi-isometric. In this paper, the metric spaces of
interest arise from finite dimensional simplicial complexes. For a particular complex, the
metric is induced by giving each simplex the structure of a standard Euclidean simplex.
Recall that if K is a finite dimensional simplicial complex, then this piecewise Euclidean
metric on K is quasi-isometric to K1, the 1-skeleton of K, with its standard graph metric
(see [BH09] for details). Since we are interested in the coarse geometry of such complexes,
i.e. their metric structure up to quasi-isometry, this justifies our convention of when working
with a complex K to consider only the graph metric on K1. Here, and below, a graph is a
1-dimensional CW complex and a simply connected graph is a tree.

2.2 Out(F) basics

Fix n ≥ 2 and let Fn denote the free group of rank n with outer automorphism group
Out(Fn). When it is clear from context, the subscript n will be dropped from the notation.
In this section, we recall some basic facts about Out(Fn) that we will need throughout the
paper. First, a splitting of F is a minimal, simplicial action F y T on a non-trivial simplicial
tree. The action is determined by a homomorphism ψ : F → Aut(T ) into the simplicial
automorphisms of T . An action on a tree is minimal if there is no proper invariant subtree.
By a free splitting, we mean a splitting with trivial edge stabilizers and refer to a k-edge
splitting as a free splitting with k natural edge orbits. Here, natural edges are the edges of
the cell structure on T whose vertices all have valence ≥ 3. From Bass-Serre theory, k-edge
splittings correspond to graph of groups decompositions of F with k edges, each edge with
trivial edge group. Two actions F y T and F y T ′ are conjugate if there is a F-equivariant
homeomorphism χ : T → T ′, and the conjugacy class of an action is denoted by [F y T ].
We will usually drop the action symbol from the notation and refer to the splitting by T .
Finally, an equivariant surjection c : T → T ′ between F-trees is a collapse map if all point
preimages are connected. In this case, T is said to be a refinement of T ′.

The free splitting complex Sn of the free group Fn is the simplicial complex defined as
follows (see [HM13a] for details): The vertex set S0

n is the set of conjugacy classes of 1-edge
splittings of Fn, and k + 1 vertices [T0], . . . , [Tk] determine a k-simplex of Sn if there is a
(k + 1)-edge splitting T and collapse maps ci : T → Ti, for each i = 0, . . . , k. That is,
a collection of vertices span a simplex in Sn if they have a common refinement. We will
mostly work with the barycentric subdivision of the free splitting complex, denoted by S ′n.
The vertices of S ′n are conjugacy classes of free splittings of Fn and two vertices are joined
by an edge if, up to conjugacy, one refines the other. Higher dimensional simplicies are
determined similarly.
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For n ≥ 3, the free factor complex FFn of Fn is the simplicial complex defined as follows
(see [HV98] or [BF11] for details): The vertices are conjugacy classes of free factors of Fn
and k + 1 conjugacy classes [A0], . . . , [Ak] span a k-simplex if there are representative free
factors in these conjugacy classes with A0 ⊂ A1 ⊂ . . . ⊂ Ak. When n = 2, the definition
is modified so that FF2 is the standard Farey graph. In this case, vertices of FF2 are
conjugacy classes of rank 1 free factors and two vertices are jointed by an edge if there are
representatives in these conjugacy classes that form a basis for F2.

Out(Fn) acts simplicially on these complexes. For FF , if f ∈ Out(F) is represented by
an automorphism φ, we define f [A] = [φA]. It is clear that this is independent of choice of φ
and that the action extends to a simplicial action on all of FF . For S the action is defined
as follows: with f and φ as above and [T ] ∈ S0, suppose that the action on T is given by
the homomorphism ψ : F→ Aut(T ). Then f [T ] is the conjugacy class of F-tree determined
by ψ ◦ φ−1 : F → Aut(T ). That is, the underlying tree is unchanged and the action is
precomposed with the inverse of a representative automorphism for f . Again, checking
that this is a well-defined action that extends to all of S (or S ′) is an easy exercise. These
definitions have the convenient property that if [T ] is a conjugacy class of free splitting
with vertex stabilizers [A1], . . . , [Al], then f [T ] has vertex stabilizers f [A1], . . . , f [Al], for
any f ∈ Out(F).

There is a natural, coarsely defined map π : S ′ → FF . For T ∈ (S ′)0, we set π(T ) equal
to the set of free factors that arise as a vertex group of a 1-edge collapse of T . That is,
A ∈ π(T ) if and only if there is a tree T0 ∈ S0, T refines T0, and A is a vertex group of T0.
Letting dFF denote distance in FF and setting dFF (π(T ), π(T ′)) = diamFF (π(T )∪π(T ′)),
it is easily verified that π is coarsely 4-Lipschitz [BF11]. Note that here, and throughout
the paper, the brackets that denote conjugacy classes of trees and free factors will often be
suppressed when it should cause no confusion to do so.

Recent efforts to understand the free splitting and free factor complex have focused on
their metric properties along with their similarity to the curve complex of a surface. In
particular, both complexes are now known to be Gromov-hyperbolic. Hyperbolicity of the
free factor complex was proven by Bestvina-Feighn in [BF11], and hyperbolicity of the free
splitting complex was proven by Handel-Mosher in [HM13a]. See [KR12] and [HH12] for
alternative proofs and perspectives. Although these results represent significant progress in
understanding the geometry of FF and S, they are not directly used in this paper.

We remark that the action Out(Fn) y Sn is far from proper; all vertices have infinite
stabilizers. There is, however, an invariant subcomplex of S ′n that is locally finite, and
the inherited action is proper. This is the spine of Outer space and we refer the reader to
[CV86] or [HM13b] for details beyond what is discussed here. Also, see [Hat95] or [AS11]
for an alternative perspective.

The spine of Outer space Kn is the subcomplex of S ′n spanned by vertices that correspond
to proper splittings of Fn. Recall that a splitting T is proper if no element of Fn fixes a
vertex in T . Hence, T ∈ S ′n is proper if and only if T/Fn is a graph with fundamental group
isomorphic to Fn. Observe that since Out(Fn) preserves the vertices of S ′n corresponding
to proper splittings there is an induced simplicial action Out(Fn) y Kn.

It is well-known that Kn is a locally finite, connected complex and that the action
Out(Fn) y Kn is proper and cocompact (see [CV86]). Hence, for any tree T ∈ K0

n, the
orbit map g 7→ gT defines a quasi-isometry from Out(Fn) to Kn by the S̆varc-Milnor lemma
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[BH09]. As remarked above, the metric considered here is the standard graph metric on K1
n,

the 1-skeleton of the spine of Outer space. This metric on K1
n will serve as our geometric

model for Out(Fn).

2.3 The sphere complex

We recall the Out(Fn)-equivalent identification between the free splitting complex and the
sphere complex. See [AS11] for details. Take Mn = #n(S1×S2), or equivalently, the double
of the handlebody of genus n. Let Mn,s be Mn with s open 3-balls removed. Note that
π1Mn is isomorphic to Fn and, once and for all, fix such an isomorphism. A sphere S in
Mn,s is essential if it is not boundary parallel and does not bound a 3-ball. A collection
of disjoint, essential, pairwise non-isotopic spheres in Mn is called a sphere system. By
[Lau73], spheres S1 and S2 are homotopic in Mn if and only if they are isotopic.

The sphere complex S(Mn) is the simplicial complex whose vertices are isotopy classes
of essential spheres and vertices [S0], . . . , [Sk] span a k-simplex if there are representatives
in these isotopy classes that are disjoint in Mn. It is a theorem of [Lau73] that with
Mod(Mn) = π0(DiffMn) there is an exact sequence

1→ K → Mod(Mn)→ Out(Fn)→ 1,

whereK is a finite group generated by “Dehn twists” about essential spheres. Since elements
of K act trivially on S(Mn), we have a well-defined action Out(Fn) y S(Mn). The following
proposition of Aramayona and Souto identifies Sn and S(Mn). See Section 5.1 for how one
constructs splittings from essential spheres.

Proposition 2.1 ([AS11]). For n ≥ 2, Sn and S(Mn) are Out(Fn)-equivariantly isomor-
phic.

2.4 Translation length in FFn
An outer automorphism f ∈ Out(Fn) is fully irreducible if no positive power of f fixes a
conjugacy class of a free factor. That is, for any A ∈ FF0

n, fn(A) = A implies that n = 0.
Recall that the (stable) translation length of an outer automorphism f ∈ Out(Fn) on FFn
is defined as

`FF (f) = lim
k→∞

dFF (A, fkA)

k

where A ∈ FF0
n. It is not difficult to verify that `FF (f) is well-defined and independent of

A ∈ FF0
n. It also satisfies the property `FF (fn) = n·`FF (f) for n ≥ 0. Further, `FF (f) ≥ c

if and only if for all A ∈ FF0
n, dFF (A, fnA) ≥ c|n|. The following proposition characterizes

those outer automorphisms with positive translation length on FFn.

Proposition 2.2 ([BF11]). Let f ∈ Out(Fn), f is fully irreducible if and only if `FF (f) > 0.

It appears to be an open question whether there is a uniform lower bound on translation
length for fully irreducible outer automorphisms of Out(Fn). In the mapping class group
situation, this is indeed the case. That is, for a fixed surface S there is an η > 0 so that
if f ∈ Mod(S) is pseudo-Anosov then the curve complex translation length of f is greater
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than or equal to η [MM99]. It is worthwhile to note that when n = 2, Proposition 2.2
reduces to the following statement: if an outer automorphism is infinite order and does not
fix a conjugacy class of a primitive element in F2, then it acts with positive translation
length on FF2, which as noted above is the Farey graph.

3 Projections to free factor complexes

For a finitely generated subgroup H ≤ F, let S(H) and F(H) denote the free splitting
complex and free factor complex of H, respectively. A subgroup H is self-normalizing if
N(H) = H, where N(H) is the normalizer of H in F. When H is self-normalizing the
complexes S(H) and F(H) depend only on the conjugacy class of H in F. More precisely,
if H ′ = gHg−1 for g ∈ F, then g induces an isomorphism between S(H) and S(H ′) (and
between F(H) and F(H ′)) via conjugation. For any other x ∈ F with H ′ = xHx−1 we see
that x−1g normalizes H and so x−1g ∈ H. In this case, gH = xH and it is easily verified
that g and x induce identical isomorphisms between S(H) and S(H ′). Hence, when H is
self-normalizing we obtain a canonical identification between the free splitting complex of
H and the free splitting complex of each of its conjugates. The same holds for the free
factor complex of H. This allows us to unambiguously refer to the free splitting complex
or free factor complex for the conjugacy class [H]. Finally, recall that a subgroup C ≤ F
is malnormal if xCx−1 ∩ C 6= {1} implies that x ∈ C. For example, free factors of F are
malnormal and malnormal subgroups are self-normalizing.

3.1 Projecting trees

Given a free splitting T ∈ S ′ and a finitely generated subgroup H ≤ F denote by TH the
minimal H-subtree of T . This is the unique minimal H-invariant subtree of the restricted
action H y T . For any such H, TH is either trivial, in which case H fixes a unique
vertex in T , or TH is the union of axes of elements in H that act hyperbolically on T .
When TH is not trivial, we define the projection of T to the free splitting complex of H
as πS(H)(T ) = [H y TH ], where the brackets denote conjugacy of H-trees. Note that this
projection is a well-defined vertex of S ′(H) and it depends only on the conjugacy class of
T . To see this, note that any conjugacy between F-trees will induce a conjugacy between
their minimal H-subtrees. Further define the projection to the free factor complex of H to
be the composition πH(T ) = π(πS(H)(T )), where π : S(H)→ F(H) is the 4-Lipschitz map
defined in Section 2.2. Hence, πH(T ) ⊂ F(H) is the collection of free factors of H that
arise as a vertex group of a one-edge collapse of the splitting H y TH . When H is also
self-normalizing, e.g. a free factor, these projections are independent of the choice of H
within its conjugacy class. The following lemma verifies that such projections are coarsely
Lipschitz.

Lemma 3.1. Let Fn y T be a free splitting and H ≤ Fn a finitely generated subgroup with
TH non-trivial. Let T0 be a refinement of T with equivariant collapse map c : T0 → T .
Then there is an induced collapse map cH : TH0 → TH . Hence, TH0 is a refinement of TH .

Proof. Since c(TH0 ) ⊂ T is an invariant H-tree, it contains TH . Also, the axis in T0 of
any hyperbolic h ∈ H is mapped by c to either h’s axis in T or a singe vertex stabilized
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by h; each of which is contained in TH . Since TH0 is the union of such axes, we see that
c(TH0 ) = TH . Hence the map cH described in the lemma is given by restriction. It remains
to show that cH is a collapse map. This is the case since for any p ∈ TH ,

c−1
H (p) = TH0 ∩ c−1(p)

is the intersection of two subtrees of T0 and is, therefore, connected.

For a free factor A of F we use the symbol dA to denote distance in F(A) and for Fn-trees
T1, T2 we use the shorthand

dA(T1, T2) := dA(πA(T1), πA(T2)) = diamA(πA(T1) ∪ πA(T2))

when both projections are defined. The following proposition follows immediately from the
definitions in this section and Lemma 3.1.

Proposition 3.2 (Basic properties I). Let T1, T2 be adjacent vertices in Kn, A ∈ FFn, and
H a finitely generated and self-normalizing subgroup of Fn containing A, up to conjugacy.
Then we have the following:

1. diamF(A)(πA(T )) ≤ 4,

2. dA(T1, T2) ≤ 4,

3. πA(T1) = πA(πS(H)(T1)) and so dA(T1, T2) = dA(πS(H)(T1), πS(H)(T2)).

3.2 Projecting factors

Let A and B be rank ≥ 2 free factors of Fn. Define A and B to be disjoint if they are
nonconjugate vertex groups of a free splitting of Fn. Disjoint free factors are those that
will support commuting outer automorphisms in our construction. Define A and B to meet
if there exist representatives in their conjugacy classes whose intersection is nontrivial and
proper in each factor. In this section, we show that this intersection provides a well-defined
projection of [B] to F(A), the free factor complex of A. Note that if A and B meet, then
dFF ([A], [B]) = 2.

Fix free factors A and B in Fn. Define the projection of B into F(A) to be

πA(B) = {[A ∩ gBg−1] : g ∈ Fn} \ {[1], [A]},

where conjugacy is taken in A. Observe that A and B meet exactly when πA(B) 6= ∅ 6=
πB(A). We show that members of πA(B) are vertex groups of a single (non-unique) free
splitting of A and so πA(B) has diameter less than or equal to 4 in F(A). Since the
projection is independent of the conjugacy class of B, this provides the desired projection
from [B] to the free factor complex of A.

Lemma 3.3. Suppose the free factors A and B meet. Then diamF(A)πA(B) ≤ 4.
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Proof. First, observe that g uniquely determines the class [A ∩ gBg−1] ∈ πA(B) up to
double coset in F. Precisely, [A ∩ gBg−1] = [A ∩ hBh−1] 6= 1 if and only if AgB = AhB;
this follows from the fact that free factors are malnormal. Now choose any marked graph
G which contains a subgraph GB whose fundamental group represents B up to conjugacy.
Let pA : G̃A → G be the cover of G corresponding to the free factor A and let GA denote
the core of G̃A. By covering space theory, the components of p−1(GB) are in bijective
correspondence with the double cosets {AgB : g ∈ F}. Also, the fundamental group of the
component corresponding to AgB is A ∩ gBg−1. Since the core carries the fundamental
group of G̃A, all nontrivial subgroups A ∩ gBg−1 correspond to double cosets representing
components of p−1(GB) in the core GA. Hence, GA is a marked A-graph that contains
disjoint subgraphs whose fundamental groups (up to conjugacy in A) are the subgroups of
πA(B). This completes the proof.

If A ∈ FF0
n and f ∈ Out(Fn) stabilizes A, then f induces an outer automorphism

of A, denoted f |A ∈ Out(A). In this case, let `A(f) represent the translation length of
f |A on F(A). By Proposition 2.2, if f |A is fully irreducible in Out(A), then `A(f) > 0.
The following proposition provides the additional properties of the projections that will be
needed throughout the paper. Its proof is a straightforward exercise in working through
the definitions of this section.

Proposition 3.4 (Basic Properties II). Let A,B,C ∈ FF0
n so that A and B meet and

A and C are disjoint. Let c ∈ Out(F) stabilize the free factors A and C with c|A = 1 in
Out(A). Finally, let T ∈ K0 and f ∈ Out(F) be arbitrary. Then f induces an isomorphism
f : F(A)→ F(fA) and we have the following:

1. f(A) and f(B) meet and πfA(fB) = f(πA(B)) ⊂ F(fA).

2. πfA(fT ) = f(πA(T )) ⊂ F(fA).

3. πA(cB) = πA(B) ⊂ F(A).

4. πA(cT ) = πA(T ) ⊂ F(A).

For the applications in this paper, a slightly stronger condition than meeting is necessary
on the free factors A and B. In particular, we need their meeting representatives to generate
the “correct” subgroup of F. More precisely, say that two free factors A and B of F
overlap if there are representatives in their conjugacy classes, still denoted A and B, so
that A ∩ B = x 6= {1} is proper in both A and B and the subgroup generated by these
representatives 〈A,B〉 ≤ F is isomorphic to A ∗x B. Note that the first condition here is
exactly that A and B meet.

Example 1. Here is an example of free factors that meet but do not overlap. Let F6 =
〈a, b, c, d, e, f〉 and consider the free factors A = 〈a, b, c, d, f〉 and B = 〈aec, bed, f〉. It is
quickly verified that A∩B = 〈f〉, so A and B meet. However, 〈A,B〉 = F6 is not isomorphic
to A ∗〈f〉 B = 〈a, b, c, d〉 ∗B, which has rank 7.

Remark 3.5. Suppose the free factors [A], [B] ∈ FF overlap and select representatives in
their conjugacy classes so that A ∩ B = x is nontrivial and proper in both A and B. Note

9



that as in Lemma 3.3 the free factor x is not necessarily unique up to conjugacy, but once
the conjugacy class of x is fixed the subgroup H = 〈A,B〉 generated by these conjugacy
class representatives is itself determined up to conjugacy in F. Since A and B overlap, x
can be chosen so that H ∼= A∗xB and it is not difficult to verify that H is finitely generated
and self-normalizing. So, for example, if T ∈ S′, then πA(T ) = πA(πS(H))(T ) by Lemma
3.2. Projections of meetings factors, however, may slightly change. In particular, A and B
are free factors of H that overlap but, now as subgroups of H, x is their unique intersection
up to conjugacy. In general, we use the notation πA(B ≤ H) to denote the projection of B
to the free factor complex of A when B is considered as a free factor of H. Note that in
this case πA(B ≤ H) = {[x]} ⊂ πA(B) ⊂ F(A) and so although the choice of x and, hence,
H is not uniquely determined by the overlapping free factors A and B, this ambiguity is
not significant when considering projections.

3.3 The Bestvina-Feighn Projections

In [BF14], the authors show that there is a finite coloring of the vertices of the free factor
complex FFn so that if A and B are free factors of Fn with either (1) A and B have the
same color or (2) dFF (A,B) > 4, then there is a well-defined projection πBF

S(A)(B) ⊂ S(A)
with uniformly bounded diameter. Moreover, these projections have properties similar
to those of subsurface projections. The Bestvina-Feighn projection is defined as follows:
first choose T ∈ K0

n with the property that the marked graph T/Fn contains an embedded
subgraph whose fundamental group represents B, then define πBF

S(A)(B) = πS(A)(T ) ⊂ S(A).
It is shown that when A and B satisfy the stated conditions, this projection is coarsely
independent of the choice of T . See [BF14] for details.

Free factors that meet, however, do not satisfy the conditions stated above, and it is
easy to construct examples where A and B meet but the projection πBF

S(A)(B) does not have

finite diameter in S(A) (as the choice of T is varied). Despite this, Lemma 3.3 shows that if
we further project to the free factor complex of A we obtain a set with finite diameter. This
shows that when the free factors A and B meet, the projection πA(B) defined in this paper
agrees coarsely with the projection π(πBF

S(A)(B)) ⊂ F(A). See [Tay13] for further discussion.

In Section 5.3, we relate the projections discussed here with those of [SS12].

4 The homomorphisms A(Γ)→ Out(Fn)

In this section, we present the most general version of our theorem. Technical conditions are
unavoidable since, unlike the surface case, free factors do not uniquely determine splittings.
Also, some care must be taken when defining the support of an outer automorphism. After
presenting the general conditions, we also give a specific construction for applying the main
theorem. The idea is to replace the surface in the mapping class group situation with a
graph of groups decomposition of F.

4.1 Admissible systems

Let A = {A1, . . . , An} ⊂ FF0 be a collection of (conjugacy classes of) rank ≥ 2 free factors
of F such that for i 6= j either
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1. Ai and Aj are disjoint, that is they are vertex groups of a common splitting, or

2. Ai and Aj overlap, so in particular πAi(Aj) 6= ∅ 6= πAj (Ai).

Then we say that A is an admissible collection of free factors of F. Let Γ = ΓA be the
coincidence graph for A. This is the graph with a vertex vi for each Ai and an edge
connecting vi and vj whenever the free factors Ai and Aj are disjoint.

An outer automorphism fi ∈ Out(F) is said to be supported on the factor Ai if fi(Aj) =
Aj for each vj in the star of vi ∈ Γ0 and fi|Aj = 1 ∈ Out(Aj) for each vj in the link of
vi ∈ Γ0. Informally, fi is required to stabilize and act trivially on each free factor in A that
is disjoint from Ai as well as stabilize Ai itself. We say that fi is fully supported on Ai if,
in addition, fi|Ai ∈ Out(Ai) is fully irreducible. Finally, we call the pair S = (A, {fi}) an
admissible system if the fi are fully supported on the collection of free factors A and for
each vi, vj joined by an edge in Γ, fi and fj commute in Out(F) (this condition is made
unnecessary in the construction of the next section).

Given an admissible system S = (A, {fi}), we have the induced homomorphism

φ = φS : A(Γ)→ Out(Fn)

defined by mapping vi 7→ fi. Our main theorem is the following:

Theorem 4.1. Given an admissible collection A of free factors for F with coincidence graph
Γ there is a C ≥ 0 so that if outer automorphisms {fi} are chosen to make S = (A, {fi})
an admissible system with `Ai(fi) ≥ C then the induced homomorphism φ = φS : A(Γ) →
Out(F) is a quasi-isometric embedding.

It is worth noting that since right-angled Artin groups are torsion-free, homomorphisms
from A(Γ) that are quasi-isometric embeddings are injective.

4.2 Splitting construction

Here we present a particular type of graph of groups decomposition of F that allows for easy
applications of Theorem 4.1. Let G be a free splitting of F along with a family of collapse
maps

pi : G → Gi
to splittings Gi, satisfying the following conditions:

1. Each splitting Gi has a preferred vertex vi ∈ Gi so that all edges of Gi are incident to
vi.

2. Setting Gi = p−1(vi) ⊂ G we require that for i 6= j one of the two following conditions
hold: either (i) Gi and Gj are disjoint, meaning that Gi ∩Gj = ∅, or (ii) Gi ∩Gj is a
subgraph whose induced subgroup is nontrivial and proper in each of the subgroups
induced by Gi and Gj . In the latter case, we say the subgraphs overlap.

We call the splitting G satisfying these conditions a support graph, and we note that
the above data is determined by the collection of subgraphs Gi. For such a splitting of F,
we set Ai = π1(Gi) = (Gi)vi ∈ FF . This is the vertex groups of the vertex vi in Gi. It is
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clear from the above conditions that such a collection of free factors forms an admissible
collection A(G) and that ΓA(G) is precisely the coincidence graph of the Gi in G .

Next, we consider the outer automorphisms that will generate the image of our homo-
morphism. For each i, chose an fi ∈ Out(Fn) which preserves the splitting Gi, induces the
identity automorphism on the underlying graph of Gi, and restricts to the identity on the
complement of vi in Gi. In this case, we say that fi is supported on Gi (or vi), and if the
restriction of fi to the free factor Ai is fully irreducible, we say that fi is fully supported
on Gi (or vi). With these choices, the pair S(G) = (A(G), {fi}) is an admissible system.
Indeed, the only condition to check is that if vi and vj represent disjoint free factors, then
the outer automorphisms fi and fj commute. Observe that since Gi and Gj are disjoint
subgraphs of G we may collapse each to a vertex to obtain a common refinement Gij of Gi
and Gj , which has vertices with associated groups (Gi)vi and (Gj)vj . Label these vertices of
Gij vi and vj corresponding to the subgraphs Gi and Gj of G. From the fact that fi and fj
are supported on Gi and Gj , respectively, it follows that they both stabilize the common
refinement Gij and are each supported on distinct vertices, namely vi and vj . This implies
that fi and fj commute in Out(F). Hence, S(G) = (A(G), {fi}) is an admissible system
inducing a homomorphism

φS(G) : A(ΓG)→ Out(F)

given by
vi 7→ fi

as before. With this setup, our main result can be restated as follows:

Corollary 4.2. Suppose G is a free splitting of F that is a support graph with subgraphs Gi
for 1 ≤ i ≤ k. Let Γ be the coincidence graph for these subgraphs. There is a C ≥ 0 so
that if for each i, fi ∈ Out(F) is fully supported on Gi with `Ai(fi) ≥ C, then the induced
homomorphism φS(G) : A(Γ)→ Out(F) is a quasi-isometric embedding.

We remark that once a support graph G is constructed with π1G = Fn, there is no
obstruction to finding fi fully supported on Gi with large translation length on F(Ai).
Corollary 4.2 then implies that there exist homomorphisms φS(G) : A(Γ)→ Out(Fn) which
are quasi-isometric embeddings.

4.3 Constructions and applications

We use our main theorem to construct quasi-isometric homomorphisms into Out(Fn) be-
ginning with an arbitrary right-angled Artin group A(Γ). We provide a bound on n given
a measurement of complexity of Γ.

First, it is easy to use the splitting construction of Section 4.2 to start with a graph Γ and
find a quasi-isometric embedding A(Γ) → Out(Fn), with n depending on Γ. We illustrate
this with an example and then give a general procedure. Note that although using the
splitting construction is simple, it will always require that n is rather large compared to Γ.
As demonstrated in Example 3, more creative choices of admissible systems can be used to
reduce n.

Example 2. Let Γ = Γ5 be the pentagon graph with vertices labeled counter-clockwise
v0, v2, v4, v1, v3 as in Figure 1, and let Γc be the same graph with vertices labeled cyclically
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v0, . . . , v4. Take G to be the graph of groups with underlying graph (Γc)′, the barycentric
subdivision of Γc, with trivial vertex group labels on the vertices of Γc and infinite cyclic
group labels on the subdivision vertices. Note that π1G = F6. Set Gi (1 ≤ i ≤ 4) equal to
the subgraph of G consisting of the vertex labeled vi, its two adjacent subdivision vertices,
and the edges joining these vertices to vi. Observe that Gi and Gj have empty intersection
if and only if vi and vj are joined by an edge in Γ. Also, if Gi and Gj intersect then their
intersection is a vertex with nontrivial vertex group. Hence, G is a support graph with
subgraphs Gi whose coincidence graph is Γ. By Corollary 4.2 there is a constant C such
that choosing any collection of outer automorphisms fi fully supported on the collection Gi
with `Ai(fi) ≥ C determines a homomorphism A(Γ5) → Out(F6) that is a quasi-isometric
embedding. In Example 3, we improve this construction by modifying G.

Now fix any simplicial graph Γ with n vertices labeled v1, . . . , vn. We give a general
procedure for producing a support graph G with subgraphs Gi whose coincidence graph is
Γ. By Corollary 4.2, this provides examples of homomorphisms A(Γ) → Out(π1(G)) that
are quasi-isometric embeddings. First, assume that the complement graph Γc is connected.
Recall that Γc is the subgraph of the complete graph on Γ0 whose edge set is the complement
of the edge set of Γ. Let (Γc)′ be the barycentric subdivision of Γc. We reserve labels vi for
the vertices of (Γc)′ that are vertices of Γc and label the vertex of (Γc)′ corresponding to
the edge (vi, vj) of Γc by vij . Hence, in (Γc)′ the vertex vij is valence two and is connected
by an edge to both vi and vj . Set Gi equal to the star of the vertex vi in (Γc)′, i.e. Gi is
the union of edges incident to vi together with their vertices. Now take G to be the graph
of groups with underlying graph (Γc)′ and infinite cyclic vertex group labels for each vertex
vij , i 6= j. For vertices vi there are two cases for vertex groups: If vi has valence one in G
then we label it with an infinite cyclic vertex group and otherwise we give it a trivial vertex
group.

With these vertex groups, G becomes of graph of groups decomposition for Fn. Moreover,
G is a support graph for the collection of subgraphs Gi with coincidence graph Γ. Indeed,
Gi and Gj have nonempty intersection in G if and only if vi and vj are joined by an edge
in Γc. When this is the case, their intersection is a single vertex with infinite cyclic vertex
group and this vertex group is proper in each of the groups induced by Gi and Gj . We can
also calculate the rank of π1G. By construction, the rank of π1G is equal to the rank of
the fundamental group of the underlying graph plus the number of nontrivial vertex groups
on G. Since there is a nontrivial vertex group for each edge of Γc and each vertex of Γc of
valence one, the rank of π1G equals

1 + 2|E(Γc)| − |V(Γc)|+ |valence 1 vertices of Γc|.

Translating this into a function of Γ, we see that the rank of π1G is

1 + |V(Γ)| · (|V(Γ)| − 2)− |E(Γ)|+ |valence n− 2 vertices of Γ|,

and we refer to this quantity as the complexity of Γ, denoted c(Γ).
When Γc is not connected it decomposes into components Γc = tli=1∆i and it is not

difficult to show that A(Γ) = A(∆c
1) × . . . × A(∆c

l ). In this case, we set c(Γ) =
∑

i c(∆
c
i )

and the corresponding supported graph is constructed as follows: Let G(∆c
i ) be the support

graph constructed as above for the graph ∆c
i . Let G to be the support graph built by taking
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the wedge of l intervals (at one endpoint of each) and attaching the other endpoint of the
ith interval to an arbitrary vertex of G(∆c

i ). The graph of groups structure on G is induced
by that of G(∆c

i ) along with a trivial group label at the wedge vertex. Then G is a support
graph with coincidence graph Γ and complexity c(Γ). As noted above, the existence of a
support graph with coincidence graph Γ implies the following:

Corollary 4.3. For any simplicial graph Γ, A(Γ) admits a homomorphism into Out(Fn),
with n ≤ c(Γ), which is a quasi-isometric embedding.

The next example shows how Theorem 11.1 can be used to give quasi-isometric embed-
dings into Out(Fn) for smaller n than by using support graphs.

Figure 1: F5 = π1(G)

Example 3. Again, let Γ = Γ5 be the pentagon graph with vertices labeled counter-
clockwise v0, v2, v4, v1, v3 as in Figure 1. Take G as in Figure 1. This is a graph of groups
decomposition for F5; the central vertex has trivial vertex group and the 5 valence one
vertices joined to the central vertex each have infinite cyclic vertex group, with generators
labeled x0 . . . , x4. G can be thought of as a “folded” version of the support graph that
appears in Example 2. For 0 ≤ i ≤ 4, let Gi be the smallest connected subgraph containing
the vertices labeled xi and xi+1, with indices taken mod 5. Note that G together with the
subgraphs Gi is not a support graph; for example G0 and G2 intersect in a vertex with trivial
vertex group. Despite this, for i = 0, . . . , 4, Ai = π1Gi = 〈xi, xi+1〉 does form an admissible
collection of free factors with coincidence graph Γ5. Hence, by Theorem 4.1, there exists
a C ≥ 0 so that if there are outer automorphisms fi ∈ Out(F5) making ({Ai}, {fi}) an
admissible system with `Ai(fi) ≥ C then the induced homomorphism φ : A(Γ5)→ Out(F5)
is a quasi-isometric embedding. Choosing such a collection in this case is straightforward.
Specifically, let Bi = 〈xi+2, xi+3, xi+4〉 and choose fi ∈ Out(F5) for i = 0, . . . , 4 so that

1. fi(Ai) = Ai and fi(Bi) = Bi,

2. the restriction fi|Ai ∈ Out(Ai) is fully irreducible with `Ai(fi) ≥ C, and

3. the restriction fi|Bi = 1 ∈ Aut(Bi).
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With these choices, it is clear that each fi is fully supported on Ai and that fi and fj
commute if and only if vi and vj are joined by an edge of Γ. This makes S = ({Ai}, {fi})
into an admissible system with `Ai(fi) ≥ C and so the induced homomorphism

φS : A(Γ5)→ Out(F5)

is a quasi-isometric embedding. In fact, as we shall see in the proof of the main theorem,
the required translation length is simple to determine. Further, as each of free factors Ai
in the admissible system is rank 2, the free factor complex F(Ai) is the Farey graph where
translation lengths can be computed.

For an application, recall that A(Γ5) contains quasi-isometrically embedded copies of
π1(Σ2), the fundamental group of the closed genus 2 surface (see [CW04]). Restricting the
homomorphism constructed above to such a subgroup, we obtain quasi-isometric embed-
dings

π1(Σ2)→ Out(F5).

5 Splittings and submanifolds

We need a topological interpretation of our projections in order to prove the version of
Behrstock’s inequality that appears in the next section. We first review some facts about
embedded surfaces in 3-manifolds and the splittings they induce.

5.1 Surfaces and splittings

It is well-known that codimension 1 submanifolds induce splittings of the ambient manifold
group [Sha01]. We review some details here, focusing on the case when then inclusion map
is not necessarily π1-injective.

For our application, begin with an orientable, connected 3-manifold X possibly with
boundary and a property embedded, orientable surface F . We do not require that F is
connected or that each component of F is π1-injective. Working, for example, in the smooth
setting, choose a tubular neighborhood N ∼= F × I of F in X whose restriction N ∩ ∂X
is a tubular neighborhood of the boundary of F in ∂X. Let G denote the graph dual to
F in X. This is the graph with a vertex for each component of X \ int(N) and an edge
ef , for each component f ⊂ F , that joins the vertices corresponding to the (not necessarily
distinct) components on either side of f . We may consider G as embedded in X and, after
choosing an appropriate embedding, G is easily seen to be a retract of X. The retraction
is obtained by collapsing each complementary component of N to its corresponding vertex
and projecting f × I to I for each component f of F . Here, I is the closed interval [−1, 1]
and f × {0} corresponds under the identification N ∼= F × I to f ⊂ N .

Let X̃ denote the universal cover of X and let Ñ and F̃ denote the complete preimage
of N and F , respectively. Let TF denote the graph dual to F̃ in X̃. Since TF is a retract
of the connected, simply connected space X̃, TF is a tree. We call TF the dual tree to the
surface F in X. As F̃ and X̃ \Ñ are permuted by the action of π1(X), we obtain a simplicial
action π1(X) y TF , up to the usual ambiguity of choosing basepoints. The following is an
exercise in covering space theory; it appears in [Sha01].
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Proposition 5.1. With the above notation, let v be a vertex of TF corresponding to a lift
of a component C ⊂ X \ N and e an edge of TF corresponding to a lift of a component
f ⊂ F . Then

1. stab(v) = im(π1C → π1X)

2. stab(e) = im(π1f → π1X)

where both equalities are up to conjugation in π1X.

The action π1X y TF provides a splitting of π1X via Basse-Serre theory. The corre-
sponding graph of groups decomposition of π1X has underlying graph G = TF /π1X with
vertex and edge groups as given in Proposition 5.1. A subgraph G′ ⊂ G carries a subgroup
H ≤ π1X if the subgroup induced by G′ contains H, up to conjugacy.

We now specialize to the situation where the action π1X y TF has trivial edge stabi-
lizers. The following proposition determines when the dual tree to a surface is minimal.
First, say that a connected component f ⊂ F is superfluous if f separates X and to
one side bounds a relatively simply connected submanifold, i.e. X \ f = X1 t X2 and
im(π1(X1) → π1(X)) = 1. A component of F that is not superfluous is said to split X.
Also, use the notation Tmin to denote the unique minimal subtree associated to an action
on the tree T , see Section 2.2.

Proposition 5.2. Let F be an orientable, properly embedded surface in the orientable 3-
manifold X with im(π1f → π1X) = 1 for each component f of F . Then the edge ef ⊂ T
corresponding to a lift of the component f ⊂ F is contained in the minimal subtree Tmin

F if
and only if f splits X.

Proof. First suppose that the edge ef whose orbit corresponds to the lifts of f is not in the
minimal subtree Tmin. Setting G = TF /π1X and Gmin = Tmin

F /π1X, the image of ef in G
does not lie in Gmin. Since Gmin carries the fundamental group of X, the image of ef in
G must separate and the component of its complement not containing Gmin has all trivial
vertex groups. In X, this implies that the component f ⊂ F separates X and to one side
bounds a component whose fundamental group, when included into π1X, is trivial. Hence,
f is superfluous.

Now suppose that f is a component of F that is superfluous. Then f corresponds to
a separating edge e in G = TF /π1X, with lift ef ⊂ TF , whose complement in G contains
a component with trivial induced subgroup. Hence, this component of G \ e is a tree with
trivial vertex groups. Set G′ equal to the other component of the complement of e in G.
Then G′ carries all of π1X and so its complete preimage in TF is connected, π1X invariant,
and does not contain the edge ef . Hence, ef is not in Tmin.

We will use the above proposition in the following manner: If f ⊂ F splits X then Tf
is a 1-edge collapse of TF corresponding to a 1-edge splitting of π1X.

5.2 Topological projections

The purpose of this section is to give a topological description of the projection πA(T )
in terms of submanifolds of the manifold Mn. As discussed below, these are similar to the
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submanifold projections of [SS12], and this section serves to explain the connection between
these projections and the projections of [BF14]. To verify that our description is accurate,
we rely on Hatcher’s normal position for spheres in M = Mn and its generalization in
[HOP12]. Let M̃ denote the universal covers of M . We say that essential sphere systems
S1 and S2 in M are in normal position if for S̃1 and S̃2, the complete preimage of S1 and
S2 in M̃ , any spheres s1 ∈ S̃1 and s2 ∈ S̃2 satisfy each of the following:

1. s1 and s2 intersect in at most one component and

2. no component of s1 \ s2 is a disk that is isotopic relative its boundary to a disk in s2.

This definition is easily seen to be equivalent to Hatcher’s original notion of normal position
in the case where one of the sphere systems is maximal [Hat95]. In particular, the authors
of [HOP12] use Hatcher’s original proof of existence and uniqueness of normal position to
show the following:

Lemma 5.3. Any two essential sphere systems S0 and S can be isotoped to be in normal
position. Also, normal position is unique in the following sense: Let S0 be a sphere system
of Mn, and let S, S′ be two isotopic spheres in Mn which are in normal position with respect
to S0. Then there is a homotopy between S and S′ which restricts to an isotopy on S0.

Fix sphere systems S and SA and a preferred component CA ⊂M \SA. In what follows
we assume that SA = ∂CA. When this is the case, we say CA is a splitting component
and observe that CA is homeomorphic to Mk,s, as defined in Section 2.3. Let A be the
(conjugacy class of) free factor π1(CA) and let T = TS be the free splitting of F determined
by the sphere system S. Since we are interested the projection of the splitting F y T to
the free splitting complex of A, our aim is a topological interpretation of the projection
πA(T ) = [Ay TA].

Put S and SA in normal position and consider the collection of connected components
of the surface F = S ∩ CA. This family of surfaces is well-defined up to homotopy in CA
that restricts to isotopy on SA, by Lemma 5.3. Consider the graph of spaces decomposition
of CA given by F with dual tree TF , see Section 5.1. Recall that a connected component
f ⊂ F is superfluous if f separates CA and to one side bounds a relatively simply connected
submanifold, that is CA \ f = C1 t C2 and im(π1(C1) → π1(CA)) = 1. A component
of F that is not superfluous is said to split CA. Set F̄ equal to F minus its superfluous
components and let TF̄ be its dual tree (that is, the tree dual to the complete preimage of
F̄ in the universal cover of CA).

We claim the following about the associated splitting of π1CA = A:

1. there is an A-equivariant simplicial embedding χ : TF → T whose image contains TA,

2. an edge e of TF maps to an edge in TA if and only if e corresponds to the lift of a
component of f ⊂ F that splits CA, and

3. the projection πA(T ) = Ay TA is conjugate to the A-tree TF̄ .

To prove the above claim we refer to Figure 2, where as above the free splitting F y T
corresponds to the sphere system S ⊂ M . Let π : M̃ → M be the universal cover of M
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Figure 2: Defining the map χ : TF → T

and let S̃ be the complete preimage of S in M̃ . The map labeled p̃ is the equivariant map
from M̃ to the tree T obtained by retracting M̃ to the tree dual to S̃ ⊂ M̃ , as explained in
Section 5.1. Hence, if we let m denote the set of midpoints of edges of T then S̃ = p̃−1(m).
Setting F = S ∩ CA as above, we note that if C̃A is a fixed component of the preimage of
CA in M̃ then π|C̃A

: C̃A → CA is the universal cover and F̃ = (π|C̃A
)−1(F ) = S̃ ∩ C̃A.

Hence, by definition of the dual tree to F in CA, TF is precisely the tree dual to S̃ ∩ C̃A in
C̃A.

Because p̃ is F-equivariant, T ′ = p̃(C̃A) is an A-invariant subtree of T and so it contains
TA, the minimal A-subtree of T . Note that by carefully choosing the projection p̃, we may
assume that T ′ is a subcomplex of T . We first show that the A-tree T ′ is conjugate to the
A-tree TF . Since T is dual to S̃ in M̃ and TF is dual to F̃ = S̃ ∩ C̃A in C̃A ⊂ M̃ each
complementary component of F̃ in C̃A corresponds to a complementary component of S̃ in
M̃ . This induces a map from the vertices of TF to those of T . As components of F̃ are
contained in components of S̃, this map extends to a simplicial map of A-trees χ : TF → T
with image T ′. We show that this map does not fold edges and is, therefore, an immersion.
This suffices to prove that χ : TF → T ′ is an A-conjugacy.

Figure 3: Folding edges
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To see that χ does not fold edge, suppose to the contrary that two edges e1 and e2

with common initial vertex v are identified by χ (Figure 3). Then the edge ei is dual to a
component fi ⊂ F̃ in C̃A and these components are disjoint. Since e1 and e2 are folded by χ,
their common image e in T corresponds to a sphere s ⊂ S̃ which must contain f1 and f2 as
subsurfaces. Let τ be an arc in s that connects the interiors of f1 and f2 and intersects only
the components of s∩∂C̃A that separate f1 and f2. Since each component of ∂C̃A separates
M̃ , as do all essential spheres in M̃ , the first and last components of ∂C̃A intersected by τ
must be the same. This implies that f1 and f2 each have a boundary component on the
same component of ∂C̃A. Hence, the sphere s intersects the same component of ∂C̃A in
at least 2 circles. This, however, contradicts normal position of the sphere systems S and
∂CA. We conclude that the A-trees TF and T ′ are simplicially conjugate. This proves claim
(1) and justifies identifying TF and T ′ through χ. Observe that since T ′ contains TA, we
get an induced A-conjugacy χ : TAF → TA on minimal subtrees.

It remains to show that TF̄ = TAF , as this identifies the edges of TF that correspond to
components of F that split CA with those contained in TA. Since the components of F̄ are
precisely those that split CA, Proposition 5.2 implies that the minimal A-subtree of TF is
TF̄ and so TF̄ = TAF , as required. This completes the proofs of claims (2) and (3).

To summarize the above discussion:

Proposition 5.4. Let T ∈ S ′n be a free splitting of Fn corresponding to the sphere system
S ⊂ Mn. Fix a submanifold CA, as above, with π1(CA) = A and ∂CA and S in normal
position. If F̄ is the surface obtained from F = S ∩ CA by removing the components that
separate and bound relatively simply connected components, then F̄ is nonempty if and only
if TA is nontrivial. When this is the case, the resulting splitting TF̄ is conjugate as an
A-tree to πS(A)(T ).

5.3 Relations between the various projections

In [SS12], Sabalka and Savchuk define projections from the sphere complex S(Mn) to the
sphere and disk complex of certain submanifolds of Mn. Their projections can be interpreted
within the framework developed in this section, providing a simple relationship to πS(A)(T ).
This answers a question asked in [SS12, BF14]. However, it is important to note that, as
demonstrated below, it is possible for each of the projections to be defined in situations
when the other is not. Also, it is not clear whether the distances in the target complexes of
the two projections are comparable. This section is not necessary for the rest of the paper.

Let X ⊂Mn denote a component of the complement of some sphere system. In [SS12],
such X are referred to as submanifolds. Note that X is homeomorphic to Mk,s for some
k < n and s > 0. The disk and sphere complex of X, denoted DS(X), is defined to be
the simplicial complex whose vertices are isotopy classes of essential spheres and essential
properly embedded disks in X with k+ 1 vertices spanning a k-simplex whenever the disks
and spheres representing these vertices can be realized disjointly in X. Sabalka and Savchuk
define their projections as follows: Let S be an essential sphere system in Mn. Put S and
∂X in normal position and set F = S ∩ X. The projection πSS

X ([S]) ⊂ DS(X) is then
defined to be the components of F which are either spheres or disks. If there are no such
components of F , then the projection is left undefined.
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Fix a submanifold X with A = π1X a rank ≥ 2 free factor of Fn = π1Mn. There is a
partially defined map Φ : DS0(X)→ S0(A) given by taking D ∈ DS0(X) and mapping it to
the A-tree TD if D splits X. If D does not split X, then Φ(D) is left undefined. Recall that
as in Section 5.1, TD is the dual tree to D ⊂ X. Note that this map will be defined on all
vertices of DS(X) only when X is homeomorphic to Mk,1. When D and D′ are adjacent in
DS(X) and both Φ(D) and Φ(D′) are defined, then it is clear that dS(A)(Φ(D),Φ(D′)) ≤ 1.
With this setup, we can show the following:

Proposition 5.5. Let T be a free splitting of Fn and S its corresponding sphere system in
Mn. Let X be a submanifold of Mn with π1X = A 6= 1. If the composition Φ ◦ πSS

X (S) is
defined, then it is a free splitting of A that has πS(A)(T ) as a refinement.

Proof. By Proposition 5.4, if S and ∂X are in normal position and F = S ∩ X then TA

is conjugate to TF̄ where F̄ is the union of connected components of F that split X. By
definition, Φ ◦ πSS

X (S) is the tree dual to the collection of disks and spheres D ⊂ F that
split X, which is nonempty by assumption. Since D ⊂ F̄ , the induced map TF̄ → TD is a
collapse map. Hence, TF̄ refines Φ ◦ πSS

X (S).

This proposition also gives the connection between the projections of [SS12] and those
of [BF14]. Recall that the projection πBF

S(A)(B) is well-defined, i.e. has bounded diameter

image, when either (1) A and B have the same color in a specific finite coloring of the
vertices of FFn or (2) dFF (A,B) > 4. See [BF14] for the definition of the coloring and
further details.

Corollary 5.6. Let A,B be free factors of Fn satisfying one of the above conditions so that
the projection πBF

S(A)(B) is well-defined. Let X be a submanifold of M with π1X = A and

let S be any sphere system that contains a sphere system S′ ⊂ S whose dual tree TS′ has B
as a vertex stabilizer. If the composition Φ ◦ πSS

X (S) is defined, then it has bounded distance
from πBF

S(A)(B) in S(A), where the bound depends only on n.

It is important to note that whether Φ ◦ πSS
X (S) is defined is highly dependent on the

choice of X and S that represent the free factors A and B in Corollary 5.6. This is demon-
strated in the examples below.

Proof. By definition, we may take πBF
S(A)(B) = πS(A)(TS′). By Lemma 3.1, this is refined by

the projection πS(A)(TS), and by Proposition 5.5, πS(A)(TS) also refines Φ ◦ πSS
X (S). This

completes the proof since we may take as our bound the diameter of the Bestvina-Feighn
projection plus 2.

We end this section with some examples that illustrate cases when one of the projections
is defined and the other is not. The general idea is that while the Bestvina-Feighn projec-
tions are robust, i.e. they do not depend on how a factor is complemented, the Sabalka and
Savchuk projections are highly sensitive to the submanifold that is chosen to represent a
free factor.

Example 4. Take M = M4 and S = S1 ∪ S2 to be a union of two essential spheres so that
X = M \ S connected with π1X = A. Let f ∈ Out(Fn) with f(A) = A but f has no power

20



that fixes S in S(M). Then πS(A)(f
nTS) = πS(A)(TS) is undefined, as A fixes a vertex of

TS , but πSS
X (fnS) is defined for all n ≥ 1 by construction. Hence, it must be the case that

each disk of πSS
X (fnS) is superfluous in X. Informally, each disk of πSS

X (fnS) (n ≥ 1) simply
encloses some boundary components of X without splitting π1X.

Example 5. TakeM,X,A as above and refer to Figure 4 whereM is drawn as a handlebody
and spheres are drawn as properly embedded disks; doubling the picture gives an illustration
of what is described. Let S3 be any sphere that separates M into two components, one of
which contains S = ∂X and the other, denoted Y , has π1Y = A. Let R be the essential
sphere shown in Figure 4 with dual tree TR; R is in normal position with S3. Note that R
splits Y with non-trivial projection πS(A)(TR). However, Y ∩R has no disks of intersection

and so πSS
Y (R) is undefined. If instead we use the submanifold X to represent the free factor

A, we see that πSS
X (R) is the sphere R ⊂ X and Φ ◦ πSS

X (R) = πS(A)(TR).
Even if we only use the submanifold X, which exhausts M in the terminology of [SS12],

to represent the free factor A, the question of whether the composition Φ ◦ πSS
X is defined

still depends on the choice of sphere that is projected. This is because the existence of
a disk in πSS

X (R) that splits X is highly depended on R itself. In fact, it is not difficult
to show the following: for any nonseperating sphere R ⊂ X there is a f ∈ Out(F4) with
f(A) = A and f |A = 1 ∈ Out(A), so in particular πA(fTR) = πA(TR) = Φ ◦ πSS

X (R), but
Φ◦πSS

X (fR) is undefined. This implies that all disks of πSS
X (fR) are superfluous even though

πA(fTR) = πA(TR).

Figure 4: Projecting R to Y

6 Behrstock’s Inequality

We now introduce an analog of Behrstock’s inequality for projections to the free factor
complex of a free factor. For the original statement and proof in the case of subsurface
projections from the curve complex, see [Beh06]. The proof of the free group version given
in Proposition 6.1 is similar in spirit to the proof of the original version of Behrstock’s
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inequality that is recorded in [Man10], where it is attributed to Chris Leininger. Both
proofs investigate intersections of submanifolds and give explicit bounds on the distances
of the projections that are considered.

Proposition 6.1. There is an M ≥ 0 so that if A and B are free factors of F of rank ≥ 2
that overlap, then for any T ∈ S ′ with πA(T ) 6= ∅ 6= πB(T ) we have

min{dA(B, T ), dB(A, T )} ≤M.

Proof. Fix T ∈ S ′ that has nontrivial projection to both the free factors complex of A and
the free factor complex of B. Since A and B overlap we may, as in Section 3.2, choose
conjugates (still denoted A and B) so that A∩B = x, where x 6= {1} is a proper free factor
of A and B. Write A = A′ ∗ x and B = B′ ∗ x so that

H = 〈A,B〉 ∼= A ∗x B ∼= A′ ∗ x ∗B′.

Since πA(B ≤ H) = {[x]} ⊂ πA(B) in F(A) and πB(A ≤ H) = {[x]} ⊂ πB(A) in F(B) and
by Lemma 3.4, πA(πS(H)(T )) = πA(T ) and πB(πS(H)(T )) = πB(T ), we have

dA(B, T ) ≤ dA(πA(B ≤ H), πS(H)(T )) + diamA(πA(B))

≤ dA(x, πS(H)(T )) + 4

and similarly

dB(A, T ) ≤ dB(πB(A ≤ H), πS(H)(T )) + diamB(πB(A))

≤ dB(x, πS(H)(T )) + 4.

Hence, it suffices to show that for T ∈ S ′ with πA(T ) 6= ∅ 6= πB(T )

min{dA(x, πS(H)(T )), dB(x, πS(H)(T ))} ≤M − 4,

where H is fixed as above.
To transition to the topological picture, suppose that rank(H) = k and set M = Mk with

a fixed identification π1M = H. Let SA, SB be two disjoint spheres in M that correspond
to the splitting H = A′ ∗ x ∗ B′ via Proposition 2.1. Take CA to be the submanifold with
boundary SA and π1CA = A and take CB to be the submanifold with boundary SB and
π1CB = B. By construction SA ⊂ CB and SB ⊂ CA and so, in particular, ∂CA induces a
splitting of B = π1CB whose projection to F(B) contains πB(A ≤ H) = {[x]}. Similarly,
∂CB induces a splitting of A = π1CA whose projection to F(A) contains πA(B ≤ H) =
{[x]}.

Now choose any tree T ∈ S ′(H) with nontrivial projections to F(A) and F(B) and let
S be the corresponding sphere system in M . Put S and ∂CA ∪ ∂CB in normal position and
recall that by Proposition 5.4, πS(A)(T ) is given by the collection of components of CA ∩ S
that split CA. With this set-up, we show that

min{dA(∂CB, S), dB(∂CA, S)} ≤ 12

where for any sphere system R in M , πA(R) denotes πA(TR).
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Suppose, toward a contraction, that both dB(∂CA, S) and dA(∂CB, S) are greater than
12 and consider the forest G on S that is dual to the circles of intersection ∂CA ∩ S and
∂CB ∩ S. We label the edges of G dual to circles of ∂CA ∩ S with “a” and those dual to
∂CB ∩ S with “b”. Label the vertices of G that represent components S \ (∂CA ∪ ∂CB)
contained in CA ∩ CB with “AB”, those in CA but not CB with “A”, and those in CB but
not CA with “B”.

Call a subtree of G terminal if it has a unique vertex that separates it from its comple-
ment in G. We say a subtree is an a- tree (or b- tree) if all of its edges are labeled a (or
b).

Claim 1. No AB-vertex which is the boundary of both an a-edge and a b-edge is a vertex
for either a terminal a-tree or a terminal b-tree.

Figure 5: Two cases for S′

Proof of claim 1. We prove the claim for terminal a-trees. The proof for b-trees is obtained
by switching the symbols a and b.

Suppose that there is an AB-vertex v of G which bounds both an a-edge and a b-edge
and is the vertex for a terminal a-tree. Observe that the component S′ of S ∩ CB that
corresponds to the union of b-edges at v (as in Figure 5) splits CB and so it can be used for
the projection πB(S) (see the remark following Proposition 5.2). To see that S′ splits CB,
recall that if this were not the case then CB \ S′ = C1 ∪ C2, where C1 is relatively simply
connected in M . As S′ contains a disk of intersection with either CB∩CA or CB\CA coming
from a valence one vertex of the terminal a-tree, this disk cobounds a region R contained
in C1 with a disk of ∂CA. This shows that R is relatively simply connected with sphere
boundary and basic combinatorial topology implies that R is simply connected in M . This
implies that R is a 3-ball and so it can be used to reduce the number of intersections of S
and ∂CA, contradicting normal position. Hence, S′ splits CB.

Now there are two cases (see Figure 5). Suppose first that v is an endpoint for at least
two b-edges. This implies that S′ has at least two boundary components; each of which
is contained in ∂CB. Since these edges share the endpoint v, these boundary components
co-bound the same component of S′ ∩ CA. Let d1, d2 be two boundary components of S′

which are not separated by another such boundary component of S′ in ∂CB. Let α be an
arc between d1 and d2 in ∂CB which intersects no other boundary component of S′ and
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let β be an arc in S′ joining d1 and d2 with ∂β = ∂α that does not intersect ∂CA. Since
S and ∂CB are in normal position, β is not homotopic relative endpoints into ∂CB and so
γ = α ∗β is an essential loop in CA∩CB which is disjoint from ∂CA and can be homotoped
not to intersect S′. Hence, if [γ] denotes the conjugacy class of the smallest free factor
containing 〈γ〉 then

dB(∂CA, S) ≤ diamF(B)(S) + dB(∂CA, S
′)

≤ diamF(B)(S) + dB(∂CA, [γ]) + dB([γ], S′)

≤ 4 + 4 + 4 = 12,

a contradiction.
If v is the endpoint of only one b-edge, this argument does not work. In this case, S′ is a

disk and we argue as follows: first, any disk component of S′ ∩CA splits CA and is disjoint
from ∂CB providing the bound dA(∂CB, S) ≤ 4, a contradiction. So assume that each
components of S′ ∩CA has at least two boundary components on ∂CA, except possibly the
unique component with a boundary component on ∂CB. Among all components of S′ ∩CA
choose the component S′′ which has two boundary components d1, d2 on ∂CA which are
least separated by other components of S′ ∩ ∂CA. Let α be an arc in ∂CA between d1 and
d2 that intersects only the circles of S′ ∩ ∂CA that separate d1 from d2 in ∂CA. Note that
by our choice of S′′ each circle of S′∩∂CA that is crossed by α bounds a distinct component
of S′ ∩ CA. Let β be an arc in S′′ joining these boundary components with ∂β = ∂α. As
before, γ = α ∗ β is an essential loop in CA ∩ CB and we obtain a similar contradiction as
above if γ intersects S′ at most once; so suppose that this is not the case. Since intersections
between S′ and γ must occur along α we conclude that there is a component C of S′ ∩CA
which does not have boundary on ∂CB and intersects γ exactly once. This implies that C
is nonseparating in CA. Hence, C splits CA and is disjoint from ∂CB. This provides the
upper bound on distance

dA(S, ∂CB) ≤ diamA(S) + dA(C, ∂CB)

≤ 4 + 4 = 8,

a contradiction.

Claim 2. There exists an AB-vertex of G that has both an a-edge and a b-edge.

Proof of claim 2. Assume to the contrary; that is assume that no component of S∩CA∩CB
has its boundary on both ∂CA and ∂CB. Let s ∈ S be a sphere of S that splits CB, this
sphere exists by assumption. If s intersection ∂CB then it does not meet ∂CA and so
dB(s, ∂CA) ≤ 4, a contraction. Hence, s ⊂ CB. If s also splits CA, i.e. if some component
of s ∩ CA splits CA, then we conclude dA(s, ∂CB) ≤ 4; so it must be the case that every
component of s ∩ CA is superfluous, that is, it separates CA and bounds to one side a
component that is relatively simply connected. Note this implies in particular that no
component of s∩CA is a disk. We show that this also leads to a contraction. The argument
is similar to that of the second part of Claim 1.

Among all components of s∩CA choose the one with boundary components on ∂CA that
are least separated by circles of s∩ ∂CA, call this component s′′. As in the poof of Claim 2,
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let α be an arc in ∂CA between these boundary components of s′′ that intersects only the
circles of s∩ ∂CA that separate these boundary components. Note that by our choice of s′′

each circle of s∩∂CA that is crossed by α bounds a distinct component of s∩CA. Let β be
an arc in s′′ joining these boundary components, with the same endpoints as α. By normal
position, γ = α ∗ β is an essential loop in CA ∩ CB that can be homotoped to miss s′′ and
we obtain a similar contradiction as above if γ does not intersect any other components
of s ∩ CA; so assume that this is not the case. Since additional intersections with s must
occur along α we conclude that there is a component C of s ∩CA that intersects γ exactly
once. This implies that C is nonseparating in CA and contradicts the statement that all
components of s ∩ CA are superfluous.

To conclude the proof of the proposition, first locate an AB-vertex v that has both an
a-edge and a b-edge. The existence of v is guaranteed by Claim 2. By the Claim 1, the
b-edges at v are not contained in a terminal b-tree. Hence, there is an a-edge adjacent to
this b-tree in the complement of the initial vertex; the adjacency necessarily occurring at an
AB-vertex. At this new vertex, Claim 1 now implies that the a-edges are not contained in
a terminal a-tree. Hence we may repeat the process and find a new AB-vertex to which we
may again apply Claim 1. Since G is a forest, these AB vertices are distinct and we conclude
that G is infinite. This contradicts that fact that edges of G correspond to components of
the intersection of transverse sphere systems S and SA ∪ SB in Mk and must, therefore, be
finite.

7 Order on overlapping factors

For trees T, T ′ ∈ K0 and K ≥ 2M + 1, define Ω(K,T, T ′) to be the set of (conjugacy classes
of) free factors with the property that A ∈ Ω(K,T, T ′) if and only if dA(T, T ′) ≥ K. This
definition is analogous to [CLM12], where the authors put a partial ordering on the set of
subsurfaces with large projection distance between two fixed markings. See [MM00] and
[BKMM12] for details on this partial ordering on subsurfaces. Defining a partial ordering
on Ω(K,T, T ′), however, requires a more general notion of projection than is available in
our situation. We resolve this issue by defining a relation that is not necessarily transitive.
Lemma 10.1 will then compensate for this lack of transitivity.

For A,B ∈ Ω(K,T, T ′) that overlap we define A ≺ B to mean that dA(T,B) ≥ M + 1,
where M is as in Proposition 6.1. As noted above, this does not define a partial order. In
particular, if A ≺ B and B ≺ C there is no reason to expect that A and C will meet as free
factors. We do, however, have the following version of Proposition 3.6 from [CLM12].

Proposition 7.1. Let K ≥ 2M + 1 and choose A,B ∈ Ω(K,T, T ′) that overlap. Then A
and B are ordered and the following are equivalent

1. A ≺ B

2. dA(T,B) ≥M + 1

3. dB(T,A) ≤M

4. dB(T ′, A) ≥M + 1

5. dA(T ′, B) ≤M
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Proof. (1) implies (2) is by definition, (2) implies (3) is Proposition 6.1, (3) implies (4) is
the observation that

dB(T ′, A) ≥ dB(T, T ′)− dB(T,A) ≥ 2M + 1−M = M + 1,

and the proofs of the remaining implications are similar. To show that A,B ∈ Ω(K,T, T ′)
which overlap are ordered, note that by the equivalence of the above conditions if A ⊀ B
then dA(T,B) ≤M and if B ⊀ A, switching the roles of A and B, dA(T ′, B) ≤M so that

dA(T, T ′) ≤ dA(T,B) + dA(B, T ′) ≤ 2M ≤ K,

a contradiction.

8 Normal forms in A(Γ)

Let Γ be a simplicial graph with vertex set V (Γ) = {s1, . . . , sn} and edge set E(Γ) ⊂
V (Γ) × V (Γ). The right-angled Artin group, A(Γ), associated to Γ is the group presented
by

〈si ∈ V (Γ) : [si, sj ] = 1 ⇐⇒ (si, sj) ∈ E(Γ)〉.

We refer to s1, . . . , sn as the standard generators of A(Γ).

8.1 The [CLM12] partial order

In this section, we briefly recall a normal form for elements of a right-angled Artin group.
For details see Section 4 of [CLM12] and the references provided there. Fix a word w =
xe11 . . . xekk in the vertex generators of A(Γ), with xi ∈ {s1, . . . , sn} for each i = 1, . . . , k.
Each xeii together with its index, which serves to distinguish between duplicate occurrences
of the same generator, is a syllable of the word w. Let syl(w) denote the set of syllables for
the word w. We consider the following 3 moves that can be applied to w without altering
the element in A(Γ) it represents:

1. If ei = 0, then remove the syllable xeii .

2. If xi = xi+1 as vertex generators, then replace xeii x
ei+1

i+1 with x
ei+ei+1

i .

3. If the vertex generators xi and xi+1 commute, then replace xeii x
ei+1

i+1 with x
ei+1

i+1 x
ei
i .

For g ∈ A(Γ), set Min(g) equal to the set of words in the standard generators of A(Γ)
that have the fewest syllables among words representing g. We refers to words in Min(g) as
the normal form representatives of g. Hermiller and Meier showed in [HM95] that any word
representing g can be brought to any word in Min(g) by applications of the three moves
above. Since these moves do not increase the word (or syllable) length, we see that words
in Min(g) are also minimal length with respect to the standard generators and that any two
words in Min(g) differ by repeated application of move (3) only. It is verified in [CLM12]
that for any g ∈ A(Γ) and w,w′ ∈ Min(g) there is a natural bijection between syl(w) and
syl(w′). Because of this, for g ∈ A(Γ) we can define syl(g) = syl(w) for w ∈ Min(g). For
each g ∈ A(Γ), this permits a strict partial order ≺ on the set syl(g) by setting xeii ≺ x

ej
j if

and only if for every w ∈ Min(g) the syllable xeii precedes x
ej
j in the spelling of w.
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8.2 Order on meeting syllables

By analogy with the weaker notion of order on free factors, for g ∈ A(Γ) let
m
≺ be the relation

on syl(g) defined as follows: xeii
m
≺ x

ej
j if and only if xeii ≺ x

ej
j and there is a normal form

w ∈ Min(g) where xeii and x
ej
j are adjacent. The following observation will be important in

proving the lower bound on distance in our main theorem.

Lemma 8.1. The strict partial ordering ≺ on syl(g) is the transitive closure of the relation
m
≺.

Proof. From the definition of
m
≺ it suffices to show that if xeii ≺ x

ej
j in syl(w) then xeii and

x
ej
j cobound a chain of syllables where adjacent terms are ordered by

m
≺. To this end, let

xeii = a1 ≺ a2 ≺ . . . ≺ an = x
ej
j

be a chain of maximal length joining xeii and x
ej
j in syl(g). We show that each pair of

consecutive terms in the chain is ordered by
m
≺. Take 1 ≤ i ≤ n and consider the w ∈ Min(g)

for which ai and ai+1 are separated by the least number of syllables in w. If ai and ai+1

are adjacent in w we are done, otherwise write

w = w1 · ai · s · w2 · ai+1 · w3

where w1, w2, w3 are possibly empty subwords of w and s is a syllable of w. By our choice
of w, ai ≺ s, for otherwise we could commute s past ai resulting in a normal form for g
with fewer syllables separating ai and ai+1. Then either s ≺ ai+1, which contradicts the
assumption that the chain is maximal, or s can be commuted past ai+1 resulting in a normal
form w′ ∈ Min(g) with

w′ = w1 · ai · w′2 · ai+1 · s · w′3
where w′2 is a subword of w2. This contradicts our choice of w. Hence, ai and aj must occur

consecutively in w and so ai
m
≺ ai+1 as required.

9 Large projection distance

Fix an admissible system S = (A, {fi}) for F with coincidence graph Γ. This determines a
homomorphism φ = φS : A(Γ) → Out(F) by mapping the vertex generator si to the outer
automorphism fi.

For g ∈ A(Γ) with w = xe11 . . . xekk ∈ Min(g), let J : {1, . . . , k} → {1, . . . , n} be defined
so that xi = sJ(i), as generators of A(Γ). Hence, φ(xi) = fJ(i) is supported on AJ(i). Write

Aw(xeii ) = φ(xe11 . . . x
ei−1

i−1 )(AJ(i))

for i = 2, . . . , k and Aw(xe11 ) = AJ(1). This defines a map

Aw : syl(w)→ FF0.

27



It is verified in [CLM12] that this map is well-defined for g ∈ A(Γ), independent of the
choice of normal form. Then, set Ag = Aw for w ∈ Min(g) and set fact(g) equal to the
image of the map Ag : syl(g)→ FF0. We refer to the free factors in fact(g) as the active
free factors for g ∈ A(Γ). For notional convenience, set Bi = AJ(i) and gi = φ(xeii ) = feiJ(i).

Note that this notation is for a fixed w ∈ Min(g).
Having developed the necessary tools in the free group setting, the proof of the first

part of the following theorem is a verification that the arguments of [CLM12] extend to this
situation, even with a weaker form of Proposition 6.1 . We repeat their argument here for
completeness. Let M be the constant determined in Proposition 6.1 and let L = 4 be the
Lipschitz constant for the projection πA : K → F(A), A ∈ FF .

Theorem 9.1. Given an admissible collection A of free factors for F with coincidence graph
Γ and T ∈ K0, there is a K ≥ 5M + 3L so that if outer automorphisms {fi} are chosen
to make (A, {fi}) an admissible system with `Ai(fi) ≥ 2K then the induced homomorphism
φ : A(Γ) → Out(F) satisfies the following: For any g ∈ A(Γ) with normal form w =
xe11 . . . xekk ∈ Min(g),

1. dAg(x
ei
i )(T, φ(g)T ) ≥ K|ei| for 1 ≤ i ≤ k. In particular, fact(g) ⊂ Ω(K,T, φ(g)T ).

2. If xeii
m
≺ xejj , then Ag(xeii ) and Ag(x

ej
j ) overlap and

Ag(xeii ) ≺ Ag(xejj ).

Proof. Set K = 5M + 3L+ 2 ·max{dAi(T,Aj)} and observe that this choice of K has the
property that if Ai and Aj overlap then dAi(T,Aj) ≤ K/2 −M . The proof of (1) is by
induction on the syllable length of w ∈ Min(g). If w has only one syllable then

dAJ(1)
(T, fe1J(1)T ) ≥ `AJ(1)

(fe1J(1)) ≥ 2K|e1|.

Now suppose that (1) has been proven for all elements in A(Γ) that have representative
with less than or equal to k − 1 syllables. Take g ∈ A(Γ) with w = xe11 . . . xekk a k-syllable
normal form representative for g. Using the notation at the beginning of this section, write
φ(w) as g1 . . . gk so that for 1 ≤ i ≤ k we must show

dg1...gi−1Bi(T, g1 . . . gkT ) ≥ K|ei|.

With xeii ∈ syl(g) fixed and gi = φ(xeii ), we write φ(g) as abgic by choosing a normal
form w ∈ Min(g) so that

1. c = gi+1 . . . gk and gi and gi+1 do not commute,

2. a = g1 . . . gl with l the largest index among w ∈ Min(g) so that gl and gi do not
commute, and

3. b = gl+1 . . . gi−1, all of which commute with gi.
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Note that we allow a, b or c to be empty.
Using this notation, we show that dabBi

(T, abgicT ) ≥ K|ei|. By Lemma 3.4 and the
triangle inequality,

dabBi
(T, abgicT ) = dBi(b

−1a−1T, gicT ) (1)

≥ dBi(T, giT )− dBi(b
−1a−1T, T )− dBi(gicT, giT ). (2)

Since b is written in terms of generators that restrict to the identity outer automorphism
on Bi and gi restricts to an isometry of the free factor complex of Bi, Lemma 3.4 implies

dBi(b
−1a−1T, T ) = dBi(a

−1T, T )

and
dBi(gicT, giT ) = dBi(cT, T ).

This, along with our hypothesis on translation length, allows us to write

dabBi
(T, abgicT ) ≥ 2K|ei| − dBi(a

−1T, T )− dBi(cT, T ). (3)

We use the induction hypotheses to show that both terms subtracted in (3) are ≤ K/2.
This will complete the proof of (1). First, observe that each of a−1 = g−1

l . . . g−1
1 and

c = gi+1 . . . gk is either trivial or is the image of a normal form subword of w with strictly
fewer than k syllables and begins with a syllable not commuting with xeii . This is all that
is needed for the remainder of the proof. We show the inequality dBi(a

−1T, T ) ≤ K/2, the
other appears in [CLM12] where the proof follows through without change.

By the induction hypothesis applied to a−1,

dBl
(T, a−1T ) = dBl

(T, g−1
l . . . g−1

1 T ) ≥ K|el|,

and so since dBl
(T,Bi) ≤ K/2−M by our choice of K, we have dBl

(Bi, a
−1T ) ≥ K−(K/2−

M) ≥M + 1. Since Bi and Bl overlap, Proposition 6.1 implies that dBi(Bl, a
−1T ) ≤M , so

by another application of dBi(T,Bl) ≤ K/2−M ,

dBi(a
−1T, T ) ≤M + (K/2−M) ≤ K/2,

as required. This completes the proof of the first part of the theorem.
The second part of the theorem is also proven by induction on syllable length. If

g ∈ A(Γ) has syllable length equal to 1, then there is nothing to prove. Suppose that the
ordering statement holds for all g with a minimal syllable representative with less then or
equal to k− 1 syllables. As in the first part of the proof, take g ∈ A(Γ) with w = xe11 . . . xekk
a k-syllable normal form representative for g. Write φ(w) as g1 . . . gk and suppose that

xeii
m
≺ x

ej
j as syllables of g. If j ≤ k − 1 then we may apply the induction hypothesis to

a prefix of w and conclude Aw(xeii ) ≺ Aw(x
ej
j ). More precisely, let w′ be the word formed

by the first k − 1 syllables of w; this is a normal form word for some g′ ∈ A(Γ). By the
induction hypothesis Aw

′
(xeii ) and Aw

′
(x
ej
j ) overlap and Aw

′
(xeii ) ≺ Aw′(xejj ). This suffices

since for l ≤ k − 1 we have Aw(xell ) = Aw
′
(xell ), using the obvious identification of the

syllables of w′ with those of w.
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Otherwise, j = k and by definition of
m
≺ we may choose w ∈ Min(g) so that w = axeii x

ek
k

and so φ(w) = φ(a)gigk. Since xeii
m
≺ xekk , Bi and Bk overlap and so φ(a)giBi = φ(a)Bi and

φ(a)giBk also overlap. We have

dAg(x
ek
k )(A

g(xeii ), φ(g)T ) = dφ(a)giBk
(φ(a)Bi, φ(a)gigkT )

= dBk
(Bi, gkT )

≥ dBk
(T, gkT )− dBk

(Bi, T )

≥ dAJ(k)
(T, fekJ(k)T )− dAJ(k)

(AJ(i), T )

≥ 2K −K
≥ M + 1,

and so since Ag(xeii ), Ag(xekk ) ∈ Ω(K,T, φ(g)T ), by Proposition 7.1

Aw(xeii ) ≺ Aw(xekk ).

10 The lower bound on distance for admissible systems

Let A = ({Ai}, {fi}) be an admissible system satisfying the hypotheses of Theorem 9.1 for
T ∈ K0 and let K ≥ 5M + 3L be as in Theorem 9.1. For g ∈ A(Γ) and w ∈ Min(g) write
in normal form

w = xe11 . . . xekk .

We make use of the notation introduced at the beginning of the previous section.
Set T ′ = φ(g)T and choose a geodesic T = T0, T1, . . . , TN = T ′ in the 1-skeleton of Kn.

Similar to [MM00], we define the subinterval IA = [aA, bA] ⊂ [0, N ] associated to the free
factor A ∈ Ω(K,T, T ′) as follows: Set

aA = max{k ∈ {0, . . . , N} : dA(T, Tk) ≤ 2M + L}

and
bA = min{k ∈ {aA, . . . , N} : dA(Tk, T

′) ≤ 2M + L}.

Since A ∈ Ω(K,T, T ′), dA(T, T ′) ≥ K ≥ 5M + 3L and so both aA and bA are well-defined
and not equal. Hence, the interval IA is nonempty and for all k ∈ IA,

dA(Tk, T ) ≥ 2M + 1 and dA(Tk, T
′) ≥ 2M + 1.

This uses that fact that the projection from K0 to F(A) is L-Lipschitz. The next lemma
shows that if syllables are ordered, then distance in their associated free factors cannot be
made simultaneously.

Lemma 10.1. With notation fixed as above, if xeii , x
ej
j ∈ syl(w) and xeii ≺ x

ej
j then

IAw(x
ei
i ) < I

Aw(x
ej
j )
.

That is, the intervals are disjoint and correctly ordered in [0, N ].
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Proof. We first prove the proposition when xeii
m
≺ xejj . Recall that since xeii

m
≺ xejj , Theorem

9.1 implies that the free factors Aw(xeii ) and Aw(x
ej
j ) overlap and are ordered, Aw(xeii ) ≺

Aw(x
ej
j ). If k ∈ IAw(x

ei
i ), then dAw(x

ei
i )(Tk, T

′) ≥ 2M + 1 and since Aw(xeii ) ≺ Aw(x
ej
j ) we

have dAw(x
ei
i )(A

w(x
ej
j ), T ′) ≤M . The triangle inequality then implies that

dAw(x
ei
i )(Tk, A

w(x
ej
j )) ≥M + 1.

As the free factors Aw(xeii ) and Aw(x
ej
j ) overlap, by Proposition 6.1 we have

d
Aw(x

ej
j )

(Tk, A
w(xeii )) ≤M.

Combining this with the inequality d
Aw(x

ej
j )

(Aw(xeii ), T ) ≤ M , again coming from the or-

dering, provides
d
Aw(x

ej
j )

(T, Tk) ≤ 2M.

Since this is true for each k ∈ IAw(x
ei
i ) it follows from the definition of I

Aw(x
ej
j )

that IAw(x
ei
i )∩

I
Aw(x

ej
j )

= ∅. So if there were an index k ∈ IAw(x
ei
i ) with k > a

Aw(x
ej
j )

then by disjointness

of the intervals aAw(x
ei
i ) > a

Aw(x
ej
j )

. This contradiction the choice of a
Aw(x

ej
j )

as the largest

index k with d
Aw(x

ej
j )

(T, Tk) ≤ 2M + 1 and shows that the intervals of interest are disjoint

and ordered as IAw(x
ei
i ) < I

Aw(x
ej
j )

.

Now, if more generally we have that xeii ≺ x
ej
j , then by Lemma 8.1, xeii and x

ej
j can be

joined by a chain of syllables

xeii = a0
m
≺ a1

m
≺ . . .

m
≺ al = x

ej
j .

Hence, we conclude
IAw(x

ei
i ) < IAw(a1) < . . . < I

Aw(x
ej
j )
,

as required.

Let s = s(Γ) be the size of the largest complete subgraph of Γ. This is also the maximal
rank of a free abelian subgroup of A(Γ). Note by the definition of an admissible system, s
is bounded above by a constant depending only on the rank of F. To simplify notations,
associated to the free factor Ag(xeii ) we set ai = aAg(x

ei
i ) and bi = bAg(x

ei
i ).

Lemma 10.2 (Lower bound on distance). With notation fixed as above, K as in Theorem
9.1 and w ∈ Min(g) in normal form∑

1≤i≤k
dAg(x

ei
i )(T, φ(g)T ) ≤ 5sL · dK(T, φ(g)T ).

Proof. Since Ag(xeii ) ∈ Ω(K,T, φ(g)T ) for all xeii ∈ syl(g) by Theorem 9.1, we have the
collection of nonempty subintervals {IAg(x

ei
i ) : 1 ≤ i ≤ k} of {0, 1, . . . , N}. If, for i ≤ j, it is

the case that xeii ≺ x
ej
j then by Lemma 10.1, IAg(x

ei
i ) and I

Ag(x
ej
j )

are ordered and, hence,
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disjoint. Further, any collection of syllables pairwise unordered by ≺ has size bounded above
by s. This is clear since such a collection of syllables can be commuted to be consecutive in
w using move (3) and so correspond to distinct pairwise commuting standard generators.
We conclude that for any integer j ∈ [0, N ], j is contained in at most s of the intervals
IAg(x

ei
i ). Hence, ∑

1≤i≤k
|bi − ai| ≤ s · dK(T, φ(w)T ).

Using the Lipschitz condition on the projections and the triangle inequality,

dAg(x
ei
i )(T, φ(g)T ) ≤ dAg(x

ei
i )(Tai , Tbi) + 4M + 2L

≤ L|bi − ai|+ 4M + 2L.

Since for each A ∈ Ω(K,T, φ(g)T ), dA(T, φ(g)T ) ≥ K ≥ 5M+3L we have |bA−aA| ≥ M+L
L .

This implies that dA(T, φ(g)T ) ≤ 5L · |bA−aA| and so putting this with the inequality above∑
1≤i≤k

dAg(i)(T, φ(g)T ) ≤ 5sL · dK(T, φ(g)T ),

as required.

11 The quasi-isometric embedding

We can now prove Theorem 11.1.

Theorem 11.1. Given an admissible collection A of free factors for Fn with coincidence
graph Γ there is a C ≥ 0 so that if outer automorphism {fi} are chosen making S = (A, {fi})
an admissible system with `Ai(fi) ≥ C then the induced homomorphism φ = φS : A(Γ) →
Out(Fn) is a quasi-isometric embedding.

Proof. Suppose A is an admissible collection of free factors and T ∈ K0. Take C = 2K, for
K as in Theorem 9.1. We show that the orbit map A(Γ)→ K1

n

g 7→ φ(g)T

is a quasi-isometric embedding, where A(Γ) is given the word metric in its standard gen-
erators. Since Out(Fn) is quasi-isometric to K1

n, this suffices to prove the theorem. First,
recall that the orbit map is Lipschitz, as is any orbit map induced by an isometric action
of a finitely generated group on a metric space. Specifically, dK(T, φ(g)T ) ≤ A · |g|, where
A = max{dK(T, φ(si)T : 1 ≤ i ≤ n} and s1, . . . , sn are the standard generators.

Let g ∈ A(Γ). By Theorem 9.1, we know that if w = xe11 . . . xekk ∈ Min(g), then

dAg(x
ei
i )(T, φ(g)T ) ≥ K|ei|

for 1 ≤ i ≤ k. Hence, by Lemma 10.2

|g| =
∑

1≤i≤k
|ei|

≤ 1

K

∑
1≤i≤k

dAg(x
ei
i )(T, φ(g)T )

≤ 5sL

K
· dK(T, φ(g)T ).
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We conclude that for any g, h ∈ A(Γ)

1

A
dK(φ(g)T, φ(h)T ) =

1

A
dK(T, φ(g−1h)T ) ≤ |g−1h| = dA(Γ)(g, h)

and

dA(Γ)(g, h)) ≤ 5sL

K
· dK(T, φ(g−1h))T ) =

5sL

K
· dK(φ(g)T, φ(h))T ),

as required.
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